CN1708836A - 外延生长方法以及外延生长用衬底 - Google Patents

外延生长方法以及外延生长用衬底 Download PDF

Info

Publication number
CN1708836A
CN1708836A CNA038255286A CN03825528A CN1708836A CN 1708836 A CN1708836 A CN 1708836A CN A038255286 A CNA038255286 A CN A038255286A CN 03825528 A CN03825528 A CN 03825528A CN 1708836 A CN1708836 A CN 1708836A
Authority
CN
China
Prior art keywords
substrate
growth
compound semiconductor
epitaxial growth
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038255286A
Other languages
English (en)
Other versions
CN100401482C (zh
Inventor
中村正志
栗田英树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Publication of CN1708836A publication Critical patent/CN1708836A/zh
Application granted granted Critical
Publication of CN100401482C publication Critical patent/CN100401482C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02461Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种外延生长方法,其通过衬底支撑工具保持生长用衬底(例如InP衬底),利用有机金属气相生长法使包含3元素或4元素的化合物的半导体层(例如InGaAs层、AlGaAs层、AlInAs层、AlInGaAs层等III-V族化合物半导体层)在所述生长用衬底上生长,其特征在于,在遍及衬底的整个有效利用区域抛光,以使自(100)方向的倾斜角度为0.00°~0.03°或0.04°~0.24°,使用该生长用衬底在衬底上以0.5.μm以上的厚度形成所述化合物半导体层。

Description

外延生长方法以及外延生长用衬底
技术领域
本发明涉及利用有机金属气相生长法在半导体衬底上形成化合物半导体层的外延生长方法以及外延生长用衬底,特别涉及改善化合物半导体层的表面形态的技术。
背景技术
从前,在发光元件以及受光元件等的半导体元件的用途中,广泛使用使InGaAs层、AlGaAs层、InAlAs层、InAlGaAs层、InGaAsP层等的3元体系或4元体系的III-V族化合物半导体层、和InP层依次外延生长在InP衬底上的半导体晶片。该半导体晶片的外延层,例如由有机金属气相生长法(以下称为MOCVD法)形成。
但是,在利用MOCVD法使上述的III-V族化合物半导体层进行外延生长的情况下,在外延层的表面产生小丘状的缺陷,存在表面形态恶化的问题。因此,提出了各种用于改善外延层的表面形态的技术方案。
例如,在日本专利第2750331号公报(专利文献1)中,为了减少在生长膜的表面产生的泪状缺陷(和小丘状缺陷意思相同),规定进行外延生长时的衬底的面方位。具体地讲,根据使外延层生长时的生长温度以及生长速度,规定使用的化合物半导体单晶衬底的面方位,由此有效降低泪状缺陷的发生。
另外,和上述专利文献1相同的内容公开在M.Nakamura et.al.:Journal of Crystal Growth 129(1993)P456-464(非专利文献1)中。
但是,根据上述先有技术,在使InGaAs层、AIGaAs层、AlInAs层、AlInGaAs层等的III-V族化合物半导体层生长在InP衬底的情况下,有时在外延生长层表面观察到不同于小丘状缺陷的异常的变粗糙了的形态(以下,称为异常表面形态)(参照图1)。
本发明目的是为了解决上述问题,其目的在于,提供一种在使InGaAs层、AIGaAs层、AlInAs层、AlInGaAs层等的III-V族化合物半导体层生长于InP衬底的过程中,能够有效防止发生异常表面形态的外延生长方法以及用于外延生长的生长用衬底。
发明内容
以下,简单说明直至完成本发明的过程。
首先,本发明的发明人,根据上述先有技术对使InGaAs层生长在InP衬底上的半导体晶片,调查了其表面形态。其结果是,在使InGaAs层比0.5μm薄地生长时如图1所示那样的异常表面形态完全观察不到,仅在使InGaAs层比0.5μm厚地生长了时,观察到异常表面形态。
另外,异常表面形态有如图2(a)所示沿着衬底的边缘产生的情况,以及如图2(b)所示衬底的一半左右产生的情况等,可知其产生位置根据使用的衬底不同而不同。而且,一般是遍及衬底全范围面方位略微散乱着,因此本发明的发明人等推测如前所述根据衬底的不同异常表面形态的发生状况(发生位置)可能是不同的。
基于这种推测进一步调查后,弄清楚了该异常表面形态集中发生在具有某种特定的面方位的部分,例如从(100)面倾斜了0.03°~0.04°的部分。即,上述的异常表面形态和在衬底的位错位置发生的小丘状缺陷发生机理本质上不同,和衬底的位错无关,仅依存于衬底的面方位而产生。
从以上得到的知识是:使InGaAs层等的III-V族化合物半导体层,以0.5μm以上的厚度外延生长在InP单晶等生长用衬底上的情况下,通过使用在遍及衬底全范围不形成特定的面方位的衬底,能够防止异常表面形态的发生。
本发明是基于上述理解来做的,涉及一种外延生长方法,其利用衬底支撑工具保持生长用衬底,利用有机金属气相生长法使由3元素或4元素构成的化合物半导体层生长在上述半导体衬底上,其特征在于,对衬底的整个有效利用区域进行抛光,使自(100)方向的倾斜角度形成为0.00°~0.03°、或0.04°~0.24°,使用该生长用衬底在衬底上以0.5μm以上的厚度形成上述化合物半导体层。即,如果自(100)面的倾斜角度是0.03°~0.04°,则异常表面形态发生,所以要使用无成为这种面方位的部分的衬底。
这里,所谓有效利用区域,是指在衬底上实施了镜面加工时除去最外周部产生的边缘塌边部分(距离衬底外周约3mm)的中央部分。
再者,也如上述非专利文献1中所示的那样,在倾斜角度为超过0.24°以上的情况下,为了在化合物半导体层的表面产生台阶状的另外的异常形态,将倾斜角度的上限设定为0.24°。
由此,在使用MOCVD法使化合物半导体层外延生长在半导体衬底上时,即使将化合物半导体层的厚度设定为0.5μm以上,也能有效地防止异常表面形态发生。
另外,上述化合物半导体层也可以通过缓冲层形成在上述生长用衬底上。由此,能使结晶质量优良的化合物半导体层外延生长。
另外,在上述生长用衬底上,使至少含有As的III-V族化合物半导体层生长的情况下是有效的。特别适合应用在前述化合物半导体层是InGaAs层或InAlAs层的情况。
另外,在上述非专利文献1中,设定在倾斜角度为0.00°~0.03°的情况下,发生小丘状缺陷,如前所述小丘状缺陷的发生仅由有位错结晶引起,所以通过使用位错密度非常低或无位错的结晶衬底,能够防止小丘状缺陷的产生。具体地,优选使用位错密度5000cm-2以下的半导体结晶衬底。
例如,在使上述III-V族化合物半导体层外延生长的情况下,优选使用掺杂硫的InP衬底。
另外,在上述的外延生长方法中,衬底的整个有效利用区域中,也可以使用预先抛光成自(100)方向的倾斜角度为0.00°~0.03°、或0.04°~0.24°的生长用衬底。
附图说明
图1是在外延层的表面产生的异常形态的显微镜照片。
图2是对外延层表面的异常形态的发生位置例举的说明图。
图3是对本实施方式的半导体晶片的层压结构例举的示意图。
具体实施方式
以下,根据附图说明本发明的最佳实施方式。
首先,为了得到适用于本发明的生长用衬底,通过液相直拉法(Liquid Encapsulated Czochralski;LEC),制作了在(100)方向生长的InP单晶。此时,通过使用各种硫、锡、铁作为掺杂剂,来得到位错密度不同的多个InP单晶。再有,各个InP单晶的位错密度是500cm-2以下(掺杂硫)、5000cm-2(掺杂锡)、20000cm-2(掺杂铁)。
而且,将各个InP单晶加工成直径为2英寸的圆柱状,切片以使表面自(100)面倾斜0.00°~0.30°,切出InP衬底。
然后,在这些衬底上,通过有机金属气相生长法形成外延层,制作出如图3所示的层压结构的半导体衬底。具体地,在InP衬底10上形成厚度为0.5μm的InP缓冲层11,在其上形成厚度0.3~2.5μm的InGaAs层12,再使厚度为0.5μm的InP层13依次外延生长。
需要说明的是,在外延生长中,设定生长温度为640℃,生长压力为50torr,总气体流量为601/min。另外,InGaAs层12的生长速度设为1.0μm/h,InP层11、13的生长速度设为2.0μm/h。
对得到的半导体衬底利用显微镜观察InP层13的表面形态,检查了异常表面形态(图1)、小丘状缺陷、台阶状缺陷的产生状况。
在表1中示出了观察结果的一例。
表1
  掺杂剂   位错密度   倾斜角度(°)   InGaAs膜厚   异常形态   小丘状缺陷   台阶状缺陷
  1   硫黄   <500   0.000   2.5   无   无   无
  2   硫黄   <500   0.025   2.5   无   无   无
  3   硫黄   <500   0.032   0.3   无   无   无
  4   硫黄   <500   0.032   0.45   无   无   无
  5   硫黄   <500   0.032   1.0   无   无
  6   硫黄   <500   0.032   2.5   无   无
  7   硫黄   <500   0.035   2.5   无   无
  8   硫黄   <500   0.070   2.5   无   无   无
  9   硫黄   <500   0.100   2.5   无   无   无
  10   硫黄   <500   0.150   2.5   无   无   无
  11   硫黄   <500   0.200   2.5   无   无   无
  12   硫黄   <500   0.300   2.5   无   无
  13   锡   5000   0.000   2.5   无   无
  14   锡   5000   0.020   2.5   无   无
  15   锡   5000   0.035   2.5   无
  16   锡   5000   0.070   2.5   无   无   无
  17   锡   5000   0.100   2.5   无   无   无
  18   锡   5000   0.150   2.5   无   无   无
  19   锡   5000   0.200   2.5   无   无   无
  20   铁   20000   0.020   2.5   无   无
  21   铁   20000   0.028   2.5   无   无
  22   铁   20000   0.035   0.3   无   无
  23   铁   20000   0.035   0.45   无   无
  24   铁   20000   0.035   1.0   无
  25   铁   20000   0.035   2.5   无
  26   铁   20000   0.100   2.5   无   无   无
  27   铁   20000   0.150   2.5   无   无   无
  28   铁   20000   0.200   2.5   无   无   无
该结果是,在InGaAs层的厚度比0.5μm薄的外延膜中,不管使用的衬底的位错密度、面方位如何,都未观察到异常形态(样品3,4,22,23)。
另一方面,在生长有比0.5μm厚的InGaAs层的情况下,不管掺杂剂的种类以及位错密度如何,在任一衬底上自(100)面的倾斜角度是0.035°、0.037°的情况下,都观察到了异常表面形态(样品5~7、15、24、25)。但是,即使是生长比0.5μm厚的InGaAs层的情况,在自(100)面的倾斜角度是0.035°、0.037°以外时,也未观察到异常表面形态(样品1、2、8~14、16~21、26~28)。
另外,关于小丘状缺陷,如在上述专利文献1、非专利文献1等表示的那样,在认定为有错位结晶的掺杂锡的InP衬底、掺杂铁的InP衬底上,在从(100)的倾斜角度是0.00°~0.05°的情况下观察到了该缺陷(样品13~15、20~25)。
另外,关于台阶状缺陷,如上述非专利文献1所示那样,在倾斜角度超过0.30°的情况下观察到了该缺陷(样品12)。
这样,在用0.5μm以上的厚度使InGaAs层外延生长的情况下,通过使用自(100)面的倾斜角度为0.00~0.03°或0.04°以上的衬底,能防止异常表面形态的发生。另外,通过使用位错密度5000cm-2以下的衬底能防止小丘状缺陷的产生,通过设定自(100)面的倾斜角度小于等于0.25°,能防止台阶状缺陷的产生。
在上述的实施方式中,对在InP衬底上外延生长InGaAs层的例子进行了说明,在InP衬底上,以0.5μm以上的厚度外延生长至少含有As的3元素或4元素组成的III-V族化合物半导体层(例如AlGaAs层、AlInAs层、AlInGaAs层)的情况下,也同样适合应用本发明。
另外,在上述的实施方式中,加工由LEC法在衬底的整个有效利用区域使在(100)方向生长的InP单晶,来得到希望的生长用衬底,也可以使用预先抛光成使衬底的整个有效利用区域自(100)方向的倾斜角度成为0.00°~0.03°或0.04°~0.24°的生长用衬底。
根据本发明,由衬底支撑工具保持生长用衬底,在通过有机金属气相生长法,使包含3元素或4元素组成的化合物半导体层成长在上述半导体衬底上的外延生长方法中,对衬底的整个有效利用区域抛光,使自(100)方向的倾斜角度成为0.00°~0.03°或0.04°~0.24°,做到使用该生长用衬底在衬底上以0.5μm以上的厚度形成上述化合物半导体层,因此,起到能有效防止在形成的化合物半导体层上发生异常表面形态的效果。
工业实用性
本发明不限于使III-V族化合物半导体层生长在InP衬底上的情况,也能适用于,使用要生长的化合物半导体层和晶格常数的差小的结晶衬底,在该结晶衬底上外延生长化合物半导体层的情况。
权利要求书
(按照条约第19条的修改)
1.一种外延生长方法,其通过衬底支撑工具保持生长用衬底,利用有机金属气相生长法在所述生长用衬底上形成包含3元素或4元素的化合物半导体层,其特征在于,对衬底的整个有效利用区域抛光,以使自(100)方向的倾斜角度为0.00°~0.03°或0.04°~0.10°,使用该生长用衬底在衬底上以0.5μm以上的厚度形成所述化合物半导体层。
2.根据权利要求1所述的外延生长方法,其特征在于,在所述生长用衬底上形成缓冲层,在该缓冲层上形成所述化合物半导体层。
3.根据权利要求1或2所述的外延生长方法,其特征在于,所述化合物半导体层是至少含有As的III-V族系化合物半导体层。
4.根据权利要求3所述的外延生长方法,其特征在于,所述化合物半导体层是InGaAs层或InAlAs层。
5.根据权利要求3或4的所述的外延生长方法,其特征在于,所述生长用衬底是位错密度为5000cm-2以下的半导体结晶衬底。
6.根据权利要求5所述的外延生长方法,其特征在于,所述生长用衬底是InP衬底。
7.一种外延生长用衬底,其用于利用有机金属气相生长法在生长用衬底上形成包含3元素或4元素的化合物半导体层的外延生长方法,其特征在于,对衬底的整个有效利用区域抛光,以使自(100)方向的倾斜角度是0.00°~0.03°或0.04°~0.10°。
8.根据权利要求7所述的外延生长用衬底,其特征在于,其是位错密度为5000cm-2以下的半导体结晶衬底。
9.根据权利要求7或8所述的外延生长用衬底,其特征在于,所述生长用衬底是InP衬底。
1.一种外延生长方法,其通过衬底支撑工具保持生长用衬底,利用有机金属气相生长法在所述生长用衬底上形成包含3元素或4元素的化合物半导体层,其特征在于,对衬底的整个有效利用区域抛光,以使自(100)方向的倾斜角度为0.00°~0.03°或0.04°~0.2410°,使用该生长用衬底在衬底上以0.5μm以上的厚度形成所述化合物半导体层。
2.根据权利要求1所述的外延生长方法,其特征在于,在所述生长用衬底上形成缓冲层,在该缓冲层上形成所述化合物半导体层。
3.根据权利要求1或2所述的外延生长方法,其特征在于,所述化合物半导体层是至少含有As的III-V族系化合物半导体层。
4.根据权利要求3所述的外延生长方法,其特征在于,所述化合物半导体层是InGaAs层或InAlAs层。
5.根据权利要求3或4的所述的外延生长方法,其特征在于,所述生长用衬底是位错密度为5000cm-2以下的半导体结晶衬底。
6.根据权利要求5所述的外延生长方法,其特征在于,所述生长用衬底是InP衬底。
7.一种外延生长用衬底,其用于利用有机金属气相生长法在生长用衬底上形成包含3元素或4元素的化合物半导体层的外延生长方法,其特征在于,对衬底的整个有效利用区域抛光,以使自(100)方向的倾斜角度是0.00°~0.03°或0.04°~0.2410°。
8.根据权利要求7所述的外延生长用衬底,其特征在于,其是位错密度为5000cm-2以下的半导体结晶衬底。
9.根据权利要求7或8所述的外延生长用衬底,其特征在于,所述生长用衬底是InP衬底。
基于19条(1)修改的说明
权利要求1是一种外延生长方法,其在衬底的整个有效利用区域自(100)方向的倾斜角度为0.00°~0.03°或0.04°~0.10°。
权利要求7是一种外延生长用衬底,其在衬底的整个有效利用区域自(100)方向的倾斜角度为0.00°~0.03°或0.04°~0.10°。
本发明当自(100)面的倾斜角度是0.03°~0.04°时,则产生异常表面形态,所以使用无成为这种面方位的部分的衬底(本申请说明书的第2页32行)。
在国际审查报告中引用的文献1(特开平08-330238号公报)、文献2(特开平02-239188号公报)中,公开了将衬底表面的面方位设定为自(100)方向角度大于等于0.1°的技术,所以,通过这次的补正,将“0.04°~0.24°”变更为“0.04°~0.10°”,缩小了倾斜角度的范围。

Claims (9)

1.一种外延生长方法,其通过衬底支撑工具保持生长用衬底,利用有机金属气相生长法在所述生长用衬底上形成包含3元素或4元素的化合物半导体层,其特征在于,对衬底的整个有效利用区域抛光,以使自(100)方向的倾斜角度为0.00°~0.03°或0.04°~0.24°,使用该生长用衬底在衬底上以0.5μm以上的厚度形成所述化合物半导体层。
2.根据权利要求1所述的外延生长方法,其特征在于,在所述生长用衬底上形成缓冲层,在该缓冲层上形成所述化合物半导体层。
3.根据权利要求1或2所述的外延生长方法,其特征在于,所述化合物半导体层是至少含有As的III-V族系化合物半导体层。
4.根据权利要求3所述的外延生长方法,其特征在于,所述化合物半导体层是InGaAs层或InAlAs层。
5.根据权利要求3或4的所述的外延生长方法,其特征在于,所述生长用衬底是位错密度为5000cm-2以下的半导体结晶衬底。
6.根据权利要求5所述的外延生长方法,其特征在于,所述生长用衬底是InP衬底。
7.一种外延生长用衬底,其用于利用有机金属气相生长法在生长用衬底上形成包含3元素或4元素的化合物半导体层的外延生长方法,其特征在于,对衬底的整个有效利用区域抛光,以使自(100)方向的倾斜角度是0.00°~0.03°或0.04°~0.24°。
8.根据权利要求7所述的外延生长用衬底,其特征在于,其是位错密度为5000cm-2以下的半导体结晶衬底。
9.根据权利要求7或8所述的外延生长用衬底,其特征在于,所述生长用衬底是InP衬底。
CNB038255286A 2002-12-03 2003-05-14 外延生长方法以及外延生长用衬底 Expired - Lifetime CN100401482C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002350704 2002-12-03
JP350704/2002 2002-12-03

Publications (2)

Publication Number Publication Date
CN1708836A true CN1708836A (zh) 2005-12-14
CN100401482C CN100401482C (zh) 2008-07-09

Family

ID=32463114

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038255286A Expired - Lifetime CN100401482C (zh) 2002-12-03 2003-05-14 外延生长方法以及外延生长用衬底

Country Status (8)

Country Link
US (1) US7338902B2 (zh)
EP (1) EP1569269B1 (zh)
JP (1) JP4657724B2 (zh)
KR (1) KR100952650B1 (zh)
CN (1) CN100401482C (zh)
CA (1) CA2505631C (zh)
DE (1) DE60335287D1 (zh)
WO (1) WO2004051725A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI402896B (zh) * 2006-02-02 2013-07-21 Nippon Mining Co Substrate semiconductor growth substrate and epitaxial growth method
FR2921200B1 (fr) * 2007-09-18 2009-12-18 Centre Nat Rech Scient Heterostructures semi-conductrices monolithiques epitaxiees et leur procede de fabrication

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692278B2 (ja) * 1989-03-09 1994-11-16 株式会社ジャパンエナジー エピタキシャル成長方法
JP2750331B2 (ja) 1992-04-23 1998-05-13 株式会社ジャパンエナジー エピタキシャル成長用基板およびエピタキシャル成長方法
JP3129112B2 (ja) * 1994-09-08 2001-01-29 住友電気工業株式会社 化合物半導体エピタキシャル成長方法とそのためのInP基板
JPH08330236A (ja) 1995-05-30 1996-12-13 Furukawa Electric Co Ltd:The 有機金属気相成長法

Also Published As

Publication number Publication date
JPWO2004051725A1 (ja) 2006-04-06
KR100952650B1 (ko) 2010-04-13
DE60335287D1 (de) 2011-01-20
JP4657724B2 (ja) 2011-03-23
WO2004051725A1 (ja) 2004-06-17
EP1569269B1 (en) 2010-12-08
EP1569269A4 (en) 2007-10-24
CA2505631C (en) 2012-02-28
CA2505631A1 (en) 2004-06-17
US7338902B2 (en) 2008-03-04
CN100401482C (zh) 2008-07-09
EP1569269A1 (en) 2005-08-31
US20060012010A1 (en) 2006-01-19
KR20050085234A (ko) 2005-08-29

Similar Documents

Publication Publication Date Title
DE10247017A1 (de) SiC-Einkristall, Verfahren zur Herstellung eines SiC-Einkristalls, SiC-Wafer mit einem Epitaxiefilm, Verfahren zur Herstellung eines SiC-Wafers, der einen Epitaxiefilm aufweist und eine elektronische Vorrichtung aus SiC
CN1950548A (zh) SiC单晶的生长方法和由该方法生长的SiC单晶
KR20110093892A (ko) 에피텍셜 탄화규소 단결정 기판 및 그 제조 방법
JP3776374B2 (ja) SiC単結晶の製造方法,並びにエピタキシャル膜付きSiCウエハの製造方法
EP3026693A1 (en) Pretreatment method for base substrate, and method for manufacturing laminate using pretreated base substrate
DE112018002713T5 (de) SiC-EPITAXIE-WAFER UND VERFAHREN ZU DESSEN HERSTELLUNG
US6379472B1 (en) Group III-nitride thin films grown using MBE and bismuth
CN1708836A (zh) 外延生长方法以及外延生长用衬底
CN1922716A (zh) 气相生长方法
TWI254362B (en) Epitaxial growth method
JP5173441B2 (ja) 化合物半導体成長用基板およびエピタキシャル成長方法
EP1791171B1 (en) Epitaxial crystal growing method
JP3715017B2 (ja) 化合物半導体の結晶成長法
KR20140100121A (ko) 에피택셜 웨이퍼 및 그 제조 방법
US20180261454A9 (en) Semiconductor device
KR20240108261A (ko) 에피택셜 템플릿층을 형성하기 위한 방법, 시스템 및 장치
JPS62219614A (ja) 化合物半導体の成長方法
JP4112207B2 (ja) エピタキシャル成長方法及び化合物半導体エピタキシャル成長用基板
EP1887617B1 (en) Deposition method over mixed substrates using trisilane
JP2003297754A (ja) シリコンエピタキシャルウェーハの製造方法
JP2005347499A (ja) 電界効果トランジスタ用エピタキシャルウェハ及び高電子移動度トランジスタ用エピタキシャルウェハ
CN1879198A (zh) 化合物半导体外延基板的制造方法
KR20150002062A (ko) 에피택셜 웨이퍼
JPH0684796A (ja) 半導体結晶成長方法
JP2007019048A (ja) エピタキシャル成長方法及びエピタキシャル成長用基板

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: JX NIPPON MINING + METALS CORPORATION

Free format text: FORMER NAME: NIPPON MINING + METALS CO., LTD.

CP01 Change in the name or title of a patent holder

Address after: Tokyo, Japan

Patentee after: JX Nippon Mining & Metals Corp.

Address before: Tokyo, Japan

Patentee before: Nippon Mining & Metals Co.,Ltd.

CP01 Change in the name or title of a patent holder

Address after: Tokyo, Japan

Patentee after: JX NIPPON MINING & METALS Corp.

Address before: Tokyo, Japan

Patentee before: JX Nippon Mining & Metals Corp.

CP01 Change in the name or title of a patent holder
CX01 Expiry of patent term

Granted publication date: 20080709

CX01 Expiry of patent term