CN1696484A - 在混合动力电动车辆中确定发动机输出功率的方法 - Google Patents

在混合动力电动车辆中确定发动机输出功率的方法 Download PDF

Info

Publication number
CN1696484A
CN1696484A CNA2005100729436A CN200510072943A CN1696484A CN 1696484 A CN1696484 A CN 1696484A CN A2005100729436 A CNA2005100729436 A CN A2005100729436A CN 200510072943 A CN200510072943 A CN 200510072943A CN 1696484 A CN1696484 A CN 1696484A
Authority
CN
China
Prior art keywords
output
gradient
parameter
vehicle
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005100729436A
Other languages
English (en)
Other versions
CN100400831C (zh
Inventor
W·R·考托恩
G·A·胡巴德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Publication of CN1696484A publication Critical patent/CN1696484A/zh
Application granted granted Critical
Publication of CN100400831C publication Critical patent/CN100400831C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/642Slope of road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/104Output speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/104Output speed
    • B60W2510/1045Output speed change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/105Output torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/501Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • F16H2037/102Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts the input or output shaft of the transmission is connected or connectable to two or more differentials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • F16H2037/104Power split variators with one end of the CVT connected or connectable to two or more differentials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • F16H2037/105Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts characterised by number of modes or ranges, e.g. for compound gearing
    • F16H2037/106Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts characterised by number of modes or ranges, e.g. for compound gearing with switching means to provide two variator modes or ranges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

该新颖的混合动力电动车(HEV)的静音操作模式与传统的HEV操作模式相比减少了噪音和排放。它是软件控制功能的补充系列,它在特别需要的地方以减少噪音和排放的方式操作车辆,同时允许使发动机功率进入同步。该方法使用了能量存储系统预算,其与分配给该模式的能量模态量相关,并且该方法适于自动调整车辆的操作以适应与预算的能量的偏差。实现该模式的方法也能够结合ESS参数条件的变化调整车辆操作,包括对发动机输出功率的选择使用。特别地,静音操作模式包括从基于速度的发动机输出功率和基于坡度的发动机输出功率中选择发动机输出功率的方法。也可以从多个车辆状态参数中确定基于坡度的发动机输出功率。

Description

在混合动力电动车辆中确定发动机输出功率的方法
技术领域
本发明总的来说涉及内燃机输出功率的控制。具体地,本发明涉及混合动力电动车辆中的内燃机输出功率的控制,更具体地涉及适于在降低车辆排放的静音模式(silent mode)下操作的混合动力电动车辆。
背景技术
HEV是一种具有包括与至少一种其它动力源结合的至少一台电动机或电机的推进系统的车辆。典型地,其它动力源是汽油机或柴油机。根据电动机与其它动力源彼此结合来推进车辆的方式可以分为不同类型的HEV,包括串联、并联及复合HEV,复合HEV包括具有电动变速器(electrically variable transmission)(EVT)的车辆,该电动变速器通过将来自串联与并联HEV动力传动系结构两者的特征结合在一起来提供连续可变的速度比率。
新型HEV动力传动系结构的发展也促进了新颖的车辆操作方法的发展及实现,这些新颖的车辆操作方法利用了这些系统中可得到的新颖的特征。如为了提供特别适于它们的工作环境的、或为了符合施加在其操作环境中的法律、法规或其它约束规定,如用新颖的电动和机械推进能量相结合以使如噪音和废气排放的车辆排放最小,需要利用HEV动力传动系结构的新的操作方法。与车辆硬件和软件系统结合起来作为新型操作模式的操作方法也是需要的,其中该新型操作模式可以由驾驶者手动选择、或响应于预定条件由车辆自动执行。
复合的EVT HEV利用一个或多个电机,并且需要先进的、高能量密度的能量存储系统(ESS),该能量存储系统包括电池、超级电容或它们的组合,以给这些电机提供电能并从其中接收电能并将这些电能存储起来。实现该新型操作方法对电机和与流进流出的能量动态流相关的ESS提出了更多的要求。
因此,非常需要发展一种适合车辆工作环境要求并且能与车辆成为一体作为操作模式的操作方法,其中该操作模式能够实现HEV系统的高级控制,该HEV包括发动机、电机和ESS系统。特别需要实现一种静音或静寂模式,以此电机优选地用于为车辆提供动力并且通常将发动机的输出功率限制在一个小于发动机最大输出功率的值。
发明内容
本发明是一种确定车辆中发动机输出功率的方法,该方法包括确定车辆基于坡度的(grade-base)发动机输出功率;确定基于速度的发动机输出功率,其中将基于速度的发动机输出功率确定为车速的函数;及从基于坡度的发动机输出功率和基于速度的发动机输出功率中选择发动机的输出功率。将基于坡度的发动机输出功率确定为一个或多个车辆状态参数的函数。
本方法优选包括一个预充电步骤,以建立起用于实现该方法的电池能量的所需模态量。
本方法优选还利用电池预算在其中实现静音模式的整个目标区域的长度内分发为实施静音模式而分配的电池能量的模态量。该方法优选还使用了采用电池预算因数控制电池预算的方法,其将预算的电池使用与实际的电池使用进行比较,以确定什么时候需要来自发动机的额外能量。
该方法提供了显著和容易理解的优点以及与在其使用的目标区域内实质减少噪声和废气排放有关的有益之处。通过在检测到坡度时提供额外的基于坡度的发动机输出动力也是一个优点,当在静音模式下操作时,该坡度能够从另一个方面降低车辆性能。
附图说明
从附图中将能更充分地理解本发明,其中:
图1是一种特别适于完成本发明的两模式、复合分离(compund-split)的电动变速器的优选方式的机械硬件示意图;
图2是本发明所披露的混合动力传动系统的优选系统结构的电气和机械示意图;
图3对应于本发明所披露的示范性电动变速器的输入及输出速度的操作的不同区域的图表;
图4是描述本发明的方法实施例的步骤的方块图;
图5是电池使用作为在目标区域中已行驶距离的函数的图,以描述本发明的方法的静音模式的电池使用预算;
图6是一个作为车速函数的发动机输出功率的图,描述了本发明的方法在目标区域中的发动机功率使用;
图7是作为变速器输出速度的函数的发动机输出功率及本发明的方法的电池预算因数的图;
图8是进一步描述图4中块600的方框图;
图9是与图8的块800相关的本发明的方法的附加步骤的流程图;
图10是执行图8的块800的装置实施例的方框图;
图11是图10的块808的方框图;
图12是图11的块842的信息的图;
图13是图10的块814的方框图;
图14是图10的块826的方框图;
图15是描述锁存器操作的表;和
图16是作为时间的函数的基于坡度的发动机输出功率及块838的操作的图。
具体实施方式
首先参考图1和2,通常用11来表示车辆动力传动系。在该动力传动系11中是一个多模式、复合分离的电动变速器(EVT)的表示形式,其特别适用于实现本发明的控制并且在图1和图2中通常用附图标记10来表示。然后,对这些附图做详细的说明,EVT具有输入元件12,它可以具有可由发动机14直接驱动的轴的性质,或如图2所示的那样,可以将瞬时扭转减震器16包括在发动机14的输出元件和EVT10的输入元件之间。瞬时扭转减震器16可以与转矩转换装置(未示出)是一体的或与其结合使用,以允许发动机14选择性地与EVT10啮合,但是必须明确的是,这样的转矩转换装置不用来改变或控制EVT10工作的模式。
在所述的实施例中,发动机14可以是矿物燃料发动机,如柴油机,其更适于提供以固定的每分钟转数(RPM)传递的可用的动力输出。在图1和2所描述的示范性实施例中,在起动后,并且在其多数输入期间,发动机14可以依据是由驾驶者的输入和行驶情况确定的所需要的工作点以一个或各种恒定速度工作。
EVT10利用三个行星齿轮子集24、26和28。第一行星齿轮子集24有一个外齿轮元件30,通常设计为环形齿轮,其包围(circumscribe)一内齿轮元件32,通常设计为太阳齿轮。多个行星齿轮元件34可转动地安装在支架36上,这样每个行星齿轮元件34均既可以与外齿轮元件30啮合又可以与内齿轮元件32啮合。
第二行星齿轮子集26也有一个外齿轮元件38,通常设计为环形齿轮,其包围一内齿轮元件40,通常设计为太阳齿轮。多个行星齿轮元件42可转动地安装在支架44上,这样每个行星齿轮42均既可以与外齿轮元件38啮合又可以与内齿轮元件40啮合。
第三行星齿轮子集28也有一个外齿轮元件46,通常设计为环形齿轮,其包围一内齿轮元件48,通常设计为太阳齿轮。多个行星齿轮元件50可转动地安装在支架52上,这样每个行星齿轮50均既可以与外齿轮元件46啮合又可以与内齿轮元件48啮合。
当所有三个行星齿轮子集24、26和28均为它们自己正确形式的“简单的”行星齿轮子集时,通过毂衬衬齿轮54,将第一行星齿轮子集24的内齿轮元件32连接到第二行星齿轮子集26的外齿轮元件38上,这样将第一和第二行星齿轮子集24和26复合在一起。通过套轴58,将连接在一起的第一行星齿轮子集24的内齿轮元件32与第二行星齿轮子集26的外齿轮元件38继续连接到第一电动机/发电机56上。这里所提到的第一电动机/发电机56也可以用不同的名称来指代,如电动机A或MA
由于通过轴60将第一行星齿轮子集24的支架36与第二行星齿轮子集26的支架44连接,所以行星齿轮子集24和26有了进一步的复合。这样,第一和第二行星齿轮子集24和26的支架36和44是分别连接在一起的。通过转矩转换装置62将轴60选择性地连接到第三行星齿轮子集28的支架52上,该转矩转换装置用来辅助选择EVT10的工作模式,在下面将对该装置做更充分的解释。这里所提到的转矩转换装置62也可以用不同的名称来指代,如第二离合器、离合器二或C2。
第三行星齿轮子集28的支架52直接连接到变速器输出元件64上。当EVT10用于陆地车辆时,输出元件64可以连接到车轴(未示出)上,接下来,在驱动元件(也未示出)处终止。该驱动元件可以包括使用在车辆上的前轮或后轮,或者是履带式车辆的驱动齿轮。
通过包围轴60的套轴66,将第二行星齿轮子集26的内齿轮元件40连接到第三行星齿轮子集28的内齿轮元件48。通过转矩转换装置70,将第三行星齿轮子集28的外齿轮元件46选择性地连接到由变速器箱体68所代表的地面。转矩转换装置70也用于辅助选择EVT10的工作模式,将在下文对该装置进行解释。这里所提到的转矩转换装置70也可以用不同的名称来指代,如第一离合器、离合器一或C1。
此外,套轴66继续与第二电动机/发电机72连接。第二电动机/发电机72也可以用不同的名称来指代,如电动机B或MB。所有行星齿轮子集24、26和28及电动机A和电动机B(56、72)均是同轴取向的,围绕着轴向放置的轴60。很清楚,电动机A和B均是环形结构,以允许它们包围三个行星齿轮子集24、26和28,这样就能够沿电动机A和B的径向向里放置行星齿轮子集24、26和28。这种结构确保EVT10的总包络,也就是圆周尺寸是最小的。
主动齿轮80从输入元件12呈现。如上所述,主动齿轮80将输入元件12固定连接到第一行星齿轮子集24的外齿轮元件30上,因此,主动齿轮80就能够接收来自发动机14和/或电动机/发电机56和/或72的动力。主动齿轮80与情轮82啮合,接下来,情轮82与固定在轴86一端的传动齿轮84啮合。轴86的另一端可以固定到变速器液体泵88,它从机油盘37中提供变速器液,然后将高压液体传送到调节器39,该调节器将一部分液体返回到机油盘37并且在管道41中提供调节后的管道压力。
在所述示范性机械布置中,输出元件64通过EVT10中的两个不同的齿轮系接收动力。当激励第一离合器C1时,选择第一模式或齿轮系,以将第三行星齿轮子集28的外齿轮元件46“接地”。当松开第一离合器C1时,选择第二模式或齿轮系,同时激励第二离合器C2,以将轴60连接到第三行星齿轮子集28的支架52上。
本领域技术人员可以明白,在各工作模式中,EVT10均能提供从相对慢到相对快的输出速度的范围。这种两种模式的结合,其中在各模式中均具有从慢到快输出速度的范围,允许EVT10推动车辆从静止状态到公路速度。另外,其中同时使用离合器C1和C2的固定比率状态是可获得的以用于通过固定齿轮齿数比将输入元件有效机械耦合到输出元件。此外,其中离合器C1和C2同时松开的中立状态是可获得的以用于将输出元件从变速器机械解耦合。最后,EVT10能够在模式间同步换档,在该模式中离合器C1和C2中的转差速度基本上为零。关于示范性EVT的工作的其它细节可以在共同转让的公开号为5931757的美国专利中找到,在这里引用该文的全部内容以供参考。
发动机14优选是柴油机并且由如图2所示的发动机控制模块23电控制。ECM23是基于常规微处理器的柴油机控制器,该柴油机控制器包括如微处理器、只读存储器ROM、随机存取存储器RAM、电可编程只读存储器EPROM、高速时钟、模拟数字(A/D)和数字模拟(D/A)电路、和输入/输出电路及装置(I/O)和适当的信号调节及缓冲电路等的普通元件。ECM23用来从各种传感器处得到数据并且通过多条分立线路分别控制发动机14的各种致动器。为了简单起见,通常以通过集合线35与发动机双向接口来表示ECM23。由ECM23读出的各种参数中有机油盘和发动机的冷却液温度、发动机速度(Ne)、涡轮压力和周围空气的温度及气压。可以由ECM23控制的各种致动器包括喷油嘴、风扇控制器、包括电热塞和格栅式进气加热器的发动机预热器。ECM优选的是响应于由EVT控制系统提供的转矩指令Te_cmd,对发动机14提供公知的基于转矩的控制。本领域技术人员对这样的发动机电子设备、控制及数量是很熟悉的,所以在这里不需要对此做更详细的解释。
如前面描述所表现的,EVT10选择性地接收来自发动机14的动力。如现在继续参考图2所做的解释,EVT10也接收来自电能存储装置或系统20(ESS)的动力,该电能存储装置或系统如在电池组模块(BPM)21中的一个或多个电池。如在此所使用的,提及电池不仅包括单个电池,也包括将单个或多个电池、或者它们的电池单元任意组合成电池组或阵列、或者多个电池组或阵列。BPM21优选是平行的电池组阵列,其中的每一个均包括多个电池。如在此所使用的,术语电池通常指任何二次或可再充电电池,但是选优的是那些包括铅/酸、镍/金属氢化物(Ni/MH)、或锂/离子或聚合物电池的电池。在不改变本发明的原理的情况下,也可以使用其它具有通过充电存储电能及通过放电分配电能的能力的电能存储装置,如用特级电容或超级电容代替电池或与电池结合使用。BPM21是通过DC线路27耦合到双动力变换器模块(DPIM)19的高压DC(如,在示范性实施例中大约是650V)。根据BPM21是充电还是放电可以将电流转换到BPM21或是从BPM21转换电流。BPM21也包括基于常规微处理器的控制器,该控制器包括如微处理器、只读存储器ROM、随机存取存储器RAM、电可编程只读存储器EPROM、高速时钟、模拟数字(A/D)和数字模拟(D/A)电路、和输入/输出电路及装置(I/O)、温度传感器和适当的信号调节和缓冲电路等常见元件,其对于监控电池状态并将该信息传递到控制系统的另外部分来讲是必须的,该控制系统是用于车辆的整体控制的,如VCM15和TCM17。其包括对各种参数信息的检测、处理、计算及其它监控,这些信息是关于电池状态或条件的信息,如它的温度、充电和放电时的电流和电压、以及充电状态(SOC),该SOC包括用占全部能量存储容量的百分比表示的在电池中存储的能量的瞬时量。这也包括将与这些参数相关的信息传递到包括VCM15和TCM17的车辆控制系统的其它部分,以用来与控制算法结合,该控制算法利用电池参数信息,如用来建立与SOC相关的充电和放电极限、安培-小时/小时或能量容许能力极限、温度极限或其它与电池相关的控制函数。
DPIM19包括一对电源变换器和各自的电动机控制器,该电动机控制器用来接收电动机控制指令并且依据该指令控制变换器,以提供电动器驱动或再生功能。电动机控制器是基于微处理器的控制器,该控制器包括如微处理器、只读存储器ROM、随机存取存储器RAM、电可编程只读存储器EPROM、高速时钟、模拟数字(A/D)和数字模拟(D/A)电路、和输入/输出电路及装置(I/O)和适当的信号调节和缓冲电路等的普通元件。在电动机运行控制中,各变换器接收来自DC线路的电流并且通过高压相位线29和31将AC电流提供到各电动机。在再生控制中,各变换器通过高压相位线29和31接收来自电动机的AC电流并且将该电流提供到DC线路27。提供给变换器的净DC电流或者从变换器得到的净DC电流确定了BPM21的充电或放电工作模式。优选地,MA和MB是三相AC电机,并且变换器包括互补的三相功率电子设备。通过DPIM19从电动机的相位信息或常规的旋转传感器也能分别导出MA和MB各自的电动机速度信号Na和Nb。本领域技术人员对这样的电动机、电子设备、控制及数量是很熟悉的,所以在这里不需要对此做更详细的解释。
系统控制器43是基于微处理器的控制器,该控制器包括如微处理器、只读存储器ROM、随机存取存储器RAM、电可编程只读存储器EPROM、高速时钟、模拟数字(A/D)和数字模拟(D/A)电路、数字信号处理器(DSP)、和输入/输出电路及装置(I/O)和适当的信号调节和缓冲电路等的普通元件。在示范性实施例中,系统控制器43包括一对基于微处理器的控制器,指定为车辆控制模块(VCM)15和变速器控制模块(TCM)17。例如,VCM15和TCM17可以提供与EVT和车辆底盘相关的各种控制和诊断功能,如包括与再生制动、防抱死制动及牵引力控制配合的发动机转矩指令、输入速度控制和输出转矩控制,如本文所述的。特别是针对EVT的功能性,系统控制器43用于直接从各种传感器中得到数据并且通过多个离散的线路分别直接控制EVT的各种致动器。为了简单起见,以通过集合线33与EVT双向接口来表示系统控制器43。应特别注意的是,系统控制器43从旋转传感器接收到频率信号,并将其处理成输入元件12的速度Ni和输出元件的速度No,用来控制EVT10。系统控制器也从压力开关(未单独在图中示出)接收压力信号并对其进行处理,以监控离合器C1和C2的作用室压力。还有一种选择,也可以使用具有能够进行大范围压力监控的压力转换器。系统控制器也可以将PMW和/或二元控制信号提供给EVT10以控制离合器C1和C2的填充和排出以用来将其应用和松开。另外,系统控制器43可以接收变速器机油盘37的温度数据,如用来自常规的热电偶输入(未单独在图中列出)以得到机油盘温度Ts,并且能够提供从输入速度Ni和机油盘温度Ts得出的PWM信号,以通过调节器39控制管道压力。通过受螺线管控制的滑阀响应于PWM和上面所提到的二元控制信号能够实现离合器C1和C2的填充和排出。同样地,管道压力调节器39也可以是螺线管控制的,以根据所述的PWM信号建立调节后的管道压力的变种。本领域技术人员对这样的管道压力控制是很熟悉的。从输出速度No、MA的速度Na和MB的速度Nb可以得出离合器C1和C2的离合器转差速度;特别地,C1的滑动是No和Nb的函数,而C2的滑动是No、Na和Nb的函数。同样要说明的是用户接口(UI)块13,包括系统控制器43的输入,如车辆节流阀位置、用于可获得驱动范围选择的按钮式换档选择器(PBSS)、制动力及在其它部件之间的快速空转要求。系统控制器43确定转矩指令Te_cmd并且将其提供给ECM23。转矩指令Te_cmd代表了由系统控制器所确定的发动机所需要的EVT的转矩贡献。
所述的各种模块(也就是,系统控制器43、DPIM19、BPM21、ECM23)通过控制器局域网(CAN)总线25进行通信。CAN总线25允许在各模块之间进行控制参数和指令的通信。使用的特殊通信协议是专用的。例如,对重型车辆来说优选的协议是汽车工程师学会的标准J1939。CAN总线及应用协议在系统控制器、ECM、DPIM、BPIM和其它控制器如防抱死制动及牵引力控制器之间提供稳健的信息传递及多控制器接口,将其作为自动牵引力控制模块(ATCM)45进行说明。
参考图3,描述了EVT10的沿水平轴的输出速度No对在纵轴上的输入速度Ni的图。线91表示的是同步工作状态,即对离合器C1和C2以相对基本为零的转差速度同时工作时输入速度和输出速度之间的关系。同样地,它代表了基本上在各模式之间可以发生同步换档时或在通过同时使用离合器C1和C2而实现将输入端直接机械耦合到输出端时,输入输出速度之间的关系,也称为固定比率。能够产生图3中的线91所述的同步工作的一个特殊的齿轮组关系如下:外齿轮元件30有91个齿,内齿轮元件32有49个齿,行星齿轮元件34有21个齿;外齿轮元件38有91个齿,内齿轮元件40有49个齿,行星齿轮元件42有21个齿;外齿轮元件46有89个齿,内齿轮元件48有31个齿,行星齿轮元件50有29个齿。在这里提到线91时也可以有不同的名称如同步线、换档比率线或固定比率线。
在换档比率线91的左侧是第一模式的操作93的优选区域,其中在第一模式中使用C1而松开C2。在换档比率线91的右侧是第二模式的操作95的优选区域,其中在第二模式中松开C1而使用C2。当在这里提到离合器C1和C2时,术语使用表示通过各离合器的实质转矩传递容量,而术语松开表示通过各离合器的非实质的转矩传递容量。由于通常优选的是使从一个模式同步换档到另一个模式,所以通过两个离合器使用固定比率使得转矩从一个模式转换到另一个模式,其中在松开当前使用的离合器之间的一段有限时间使用当前松开的离合器。而且,通过继续使用与即将进入的模式相关的离合器并且松开与即将退出的模式相关的离合器,当退出固定比率时完成模式变换。虽然操作93的区域是EVT在模式1工作的优选区域,但这并不是说EVT的模式2操作在该区域不能或不会发生。但是,通常来讲,优选在区域93中在模式1操作,因为模式1能够使用特别适于各方面(例如,重量、尺寸、成本、惯性容量等)的齿轮组和电动机硬件以达到区域93的高起动转矩。同样地,虽然操作95的区域通常是EVT的模式2工作的优选区域,但这并不是说EVT的模式1操作在该区域不能或不会发生。但是,通常来讲,优选在区域95中在模式2操作,因为模式2能够使用特别适于各方面(例如,重量、尺寸、成本、惯性容量等)的齿轮组和电动机硬件以达到区域95的高速度。当换档进入模式1时,就认为其是换到了低档并且根据Ni/No的关系与较高的齿轮齿数比相关联。同样地,当换档进入模式2时,就认为其是换到了高档并且根据Ni/No的关系与较低的齿轮齿数比相关联。
本发明包括执行操作HEV115(如具有动力传动系统11的系统)的静音模式110或静寂模式110的方法100,从而与常规的HEV操作模式相比可以减少噪音及废气排放。更多关于操作HEV的静音或静寂模式的细节可以在相关的共同转让、共同待审的2003年10月14日提交的系列号为10/686175(代理人编号No.GP-304210)的美国申请中找到,在这里引用其全文以供参考。虽然本发明特别适于用在具有EVT动力传动系统11的HEV115中,但是可以相信其也能用于许多其它的串联、并联和EVT HEV动力传动系统结构中,包括单个、两个或多模式、输入、输出或复合分离的EVT结构。本发明优选的是作为如VCM15、TCM17的静音模式控制器125或如上所述的其它控制器中的软件控制功能或指令的互补系列来实现,当由于需要和受到一定的约束而使发动机的功率进入同步时,允许车辆在特别需要的地方以减少的噪音和废气排放进行操作。申请人已经在VCM15和TCM17种实现了方法100的元素,但是可以相信方法100也可以根据系统设计和其它所考虑的因素在车辆中的其它控制模块或控制器中实现。方法100优选作为计算机控制算法中的代码存储在这些控制器中并在其中执行,但是如果需要也可以用分立逻辑和计算元件在硬件中实现。
静音模式110特别应用于HEV中,该HEV包括一种公共巴士,其包括EVT动力传动系统,在如具有多个乘客的或其它的停车位的停车库或大型建筑的地道或其它封闭空间中操作该动力传动系统。其它应用包括公共巴士、垃圾车或其它运输车辆,这些车辆在限制噪音或废气排放的区域(如医院地区或一定的邻近区域)工作(拾起或放下)。方法100在限定区域中的已限定的路线和未限定的路线中都是可用的,并且也可以用于既没有预定路线也没有预定区域的情况,但是其中该位置或区域应该是适于将需要静音模式操作传送到适于接收这样的通信并且完成方法100的车辆。如这里所使用的,“目标带”指的是在其中需要或者希望车辆在静音模式110下工作以有效地减少噪音和废气排放的位置、地区或区域。
参考图4,一般可以将本发明描述为提供HEV静音模式110操作的方法100,该HEV是包括具有可再充电能量存储系统20(ESS)的动力传动系统11,该方法包括步骤:(1)将静音模式启动要求传送200给静音模式控制器125;(2)将ESS20的至少一个状态参数的实际值与和该实际值相关的至少一个静音模式启动极限值进行比较300,该ESS20的状态参数表示执行静音模式110的ESS20的可用性,其中如果与相关的至少一个模式启动极限值相比较的至少一个状态参数的实际值表示静音模式110是允许的,则方法100转到步骤(3),并且其中如果至少一个状态参数的实际值表示不允许静音模式,则只要正在传送静音模式启动要求就重复步骤(2);(3)将静音模式激活要求传送400到静音模式控制器125;和(4)利用静音模式控制器125在静音模式110下操作500车辆,包括指定电驱动电动机143作为车辆推动能量的主要来源,并且指定发动机145作为车辆推动能量的第二来源,其中在静音模式110期间通过电驱动电动机143分配ESS20中的能量的模态量以进行利用,并且发动机145用来补偿发动机模态量和在静音模式110期间总的车辆推进能量需求之间的差;(5)当车辆处于静音模式时,将发动机的输出功率限制600到静音模式输出功率,其比发动机最大输出功率小;及(6)响应于模式终结事件的发生终止700静音模式110。下面将进一步描述这些步骤。
方法100的第一个步骤包括将静音模式启动要求传送200到静音模式控制器125。也可以用任何适当的方式来传送静音模式启动要求,如通过车辆驾驶员手动传送200静音模式启动要求,自动传送200静音模式启动要求作为车辆的绝对位置的函数,以及将作为车辆的绝对位置的函数的静音模式启动要求自动传送200到其中要求车辆进行静音模式操作的区域。通过激活一个开关或者在如用户界面(UI)13(见图1)的用户界面或图形用户界面上做出合适的选择,也就是与静音模式控制器125进行信号通信,车辆驾驶者可以手动传送200静音模式启动要求。传送200静音模式启动要求也可以耦合到合适的反馈指示器及相关的执行机构以便为驾驶者提供提示,即已经做出要求或者正通过静音模式控制器125处理该要求,如将指示灯与手动模式选择装置形成一体或者相关联,如发光开关或者表示已经做出或正在处理模式启动要求的在UI13上的显示屏。例如,通过自动地和连续地将输入信号与限定了一个或多个目标区域的一组经度和纬度坐标比较,可以完成自动传送200作为车辆的绝对位置的函数的静音模式启动要求,该输入信号表示车辆实际的经度和纬度位置,如是从全球定位卫星(GPS)接收到的信号,其中如果比较结果表示车辆在目标区域内,则将对静音模式110操作的要求作为输入信号自动传送到静音模式控制器125。该GPS信号可以由GPS系统监控,该GPS系统适于自动地和连续地接收这样的信号并且提供输出信号,如本领域人员所知道的该输出信号表示车辆的绝对经度/纬度位置,也可以将这样的输出信号自动地和连续地提供给静音模式控制器125。例如通过与在车上的近程传感器相结合,其中该传感器适于感应表示与目标区域相关或接近的信号,可以实现自动传送作为车辆相对于一个区域的相关位置的函数的静音模式启动要求,在该区域中要求车辆在静音模式下工作。例如,这可以包括使用车上的FM接收器,其适于接收来自与目标区域相关的发射器的FM信号,其中该FM信号表示车辆接近该目标区域。
再参考图4,方法100接下来是将ESS20的至少一个状态参数的实际值与至少一个和该实际值相关的静音模式启动极限值比较300的步骤,该ESS20的状态参数表示ESS20执行静音模式110的可用性,其中如果与相关的至少一个模式启动极限值相比较的至少一个状态参数的实际值表示静音模式110是允许的,则方法100转到下一步,并且其中如果至少一个状态参数的实际值表示不允许静音模式110,则只要正在将静音模式启动要求传送到静音模式控制器125就重复该测试。如上所述,如电池或BPM21的ESS的状态参数可以包括任何表示通用ESS以及特别用于与静音模式110的实现相结合的ESS的可用性的参数,包括提供关于ESS的短期或长期特性或状态的参数。这些包括瞬时电池温度(TBAT)、电池SOC和每小时平均安培-小时的电池容许能力(AH/H)。由于电池的充放电均会引起电池温度的升高(例如,在大多数情况下充电对温度有更大的影响,但是放电也会使电池温度升高),所以TBAT是一个重要参数。由于电池温度升高,所以充电和放电效率及得到和保持所需SOC的能力会受到影响。另外,电池过热会使它的使用寿命减少及可得到的总的安培-小时/小时容许能力降低。由于电池SOC提供电池中总的可用能量及它为DPIM19和EVT11其它部件充电或用这些部件为电池充电的能力的重要指示,所以电池SOC是重要参数。由于高的和低的SOC状态分别与过电压和电压不足的情况相关,它们均能损坏电池并且减少它的使用寿命,所以SOC也很重要。由于已知与电池的工作寿命直接相关,所以积分的安培-小时/小时容许能力也是一个重要参数。通过使用预定的滤波器和算法将ESS电流对时间积分,可以测量ESS的安培-小时每小时容许能力。更多关于安培-小时每小时容许能力的细节可以在2003年10月15日提及的系列号为60/511456(代理人编号No.GP-304118)的共同转让、共同待审的美国申请中找到,在这里引用其全文以供参考。在优选实施例中,该步骤包括比较将TBAT与静音模式启动电池温度极限值(TSMT)进行比较300,其中如果TBAT比静音模式启动电池温度极限值(TSMT)低,则该方法转到步骤(3),并且其中如果TBAT≥TSMT,则只要正在传送静音模式启动要求就重复该步骤,直到继续进行所需的条件得到满足。
这里ESS包括电池,如果TBAT≤TSMI,方法100优选也包括步骤(2A),在静音模式110的启动之前对电池21进行预充电350。这个步骤是优选的,以便确保电池21具有一个SOC,该SOC足够可以提供执行方法100所需的电能量,如这里所述的。同样优选的,当进行预充电350时,该步骤将ESS预充电限制到一个充电状态(SOC)值,该SOC值小于或等于目标预充电SOC极限。该SOC预充电极限的目的是限制与充电相关的电池中的温度升高。预充电SOC上限的另一个目的是有利于一致的充电时间,并且当通过使SOC比所要行驶的目标距离所需的还要高而必须增加AH/H容许能力或ESS的SOC摆动时,能够确保在ESS中具有足够的电能。这里也有关于从最小值到最大值的SOC摆动的大小和速度的使用寿命的考虑。在最大SOC预充电极限后的一个目的是保持足够高的SOC,如果静音模式使用了全部的分配预算,也不会超越最小极限。由于预料到随着静音模式110启动从电池开始的即时并且有可能延长的放电而进行预充电350,并且由于放电也引起了额外的电池加热,所以优选地将预充电限制到一个SOC,该SOC小于或等于目标预充电SOC极限。目标预充电SOC极限需要根据电池21的容量、构造和配置及其它系统设计因数(如与计划车辆载荷相关的最大电池功率需要、目标区域参数和其它参数)进行改变,并且也可以用目标值、最小/最大值或其它标识极限值的类似方法来表示。例如,在与BPM21相关的一个实施例中,其中目标区域的长度大约是2.2公里,电池的总的容量(SOC100%)大约是19安培-小时,则目标预充电极限大约是60%,或11.4安培-小时。当电池21的SOC达到了目标预充电SOC极限时,预充电350就完成了,并且静音模式控制器125停止预充电350。优选地,如果在电池SOC达到目标预充电SOC极限之前启动静音模式110,则终止预充电350。优选地,预充电350包括以车辆的最大充电功率为ESS20充电,其与对和ESS充电/放电、SOC和温度相关的参量化ESS极限的控制一致,这些如在系列号为60/511456(代理人编号No.GP-304118)的共同转让、共同待审的美国申请中所述。而且,在预充电350期间,车辆适于结合Ni和Ti操作发动机145,这能使提供给ESS的充电功率最大并且通常与如所需的No和To的其它系统需要相一致。但是,预充电350的步骤也适于选择将Ni和Ti结合,优选地使对ESS的充电功率最大,即使这样的选择可能会将No和To的可能值约束到一个比所需的或命令的值小的值。确定Ni和Ti的结合以影响EVT动力传动系统的所需控制的方法在2003年10月14日提交的序列号为10/686508(代理人编号No.GP-304193)及2003年10月14日提交的10/686034(代理人编号No.GP-304194)的共同转让、共同待审的美国申请中描述,在这里引用其全文以供参考。在预充电350期间当达到了所需的目标预充电SOC时,优选停止充电,除非车辆操作需要放电,该放电会使SOC降到目标预充电SOC以下,否则不会再重新开始充电。也可以将预充电350安排持续特定的时间段,服从于如这里所述的参数极限。如上所述,由于ESS20不止包括电池21,而且因为即使当ESS由电池组成时,与SOC相关的控制算法也不必在执行该方法之前进行充电350,如在HEV中其它约束要求SOC一直保持在一个水平,在该水平即使不需要预充电也足够完成静音模式110,所以优选具有预充电350的步骤,但是对于执行方法100只是可选的而非必要的。
参考图4,在比较300及任何预充电350的步骤之后,方法100转到步骤(3),用静音模式控制器125传送400静音模式激活要求。也可以用与传送步骤200相似的方式完成传送400,由于通过用任何适合的方式将静音模式激活要求传送400到静音模式控制器125可以激活静音模式110,合适的方式如由车辆驾驶员手动传送400静音模式激活要求,自动传送400作为车辆绝对位置的函数的静音模式激活要求及自动传送400作为车辆相对于一个区域的位置的函数的静音模式激活要求,在该区域中要求车辆在静音模式操作。也可以作为在传送200静音模式启动要求或预充电步骤350的启动或完成后的经历时间或距离的函数来完成静音模式激活要求的传送400。
参考图4,在传送400静音模式激活要求之后,方法100转到步骤(4),利用静音模式控制器125在静音模式110下操作500车辆,其包括指定如电动机A(56)或电动机B(72)或两者同时使用的电驱动电动机143作为车辆推进能量的主要来源,并且指定如发动机14的发动机145作为车辆推进能量的第二来源,其中在静音模式110期间通过电驱动电动机143分配ESS20中的能量模态量以进行使用,并且用发动机145来补偿能量模态量和在静音模式110期间的总的车辆推进能量要求之间的差。发动机145是次要的,因为只是为了补偿能量模态量和在静音模式110期间的总的车辆推进能量要求之间的差才使用发动机145,如果模态量是足够的,则优选不给发动机145提供燃料并且通过如电动机A(56)或电动机B(72)的电驱动电动机143而使发动机145转动。如果需要发动机145,则只是为其提供燃料以使其提供必要的推进能量差,而不是如以它的最大额定容量。在图6中对此进行了描述,其画出作为分配给静音模式110的SOC消耗的特殊点的车速的函数的发动机145的输出功率,以对方法100的示范性实施进行说明。在车速低于大约17mph时,没有来自发动机145的输出功率或能量贡献。在车速从17mph到大约24mph时,以固定比率将发动机145的推进能量贡献提高到车速大约为24mph时的最大静音模式值。为了在目标区域中减少噪音和废气排放,当车辆处于静音模式110时,将最大发动机输出功率限制到最大静音模式输出功率极限,该最大静音模式输出功率极限优选选择得比发动机145的最大输出功率小。在静音模式110期间,分配ESS20中的能量模态量以进行使用。能量模态量包括电池的可用SOC的任何部分。但是,为了简化方法100的执行,优选作为模态量分配的SOC的部分包括最大SOC的固定部分或百分比,或电池21的最大能量存储容量。例如,在电池21具有的最大能量存储容量为19安培-小时的情况下,电池能量的模态量就包括4.75安培-小时,或大约最大SOC的25%。但是,如果预充电350并没有提供所需的目标预充电SOC值,或者如果在激活了静音模式的情况下实际的SOC水平超出目标预充电SOC,则方法100可以调整能量模态量以为不足或过剩进行调节,如这里要进一步描述的。
根据任何合适的分配方案均可以在静音模式110下分配能量模态量以进行使用,但优选的方案是如图5中所示的,建立或计算在静音模式110下使用的ESS使用预算185,其中作为总的行驶距离或目标区域的长度的函数标准化或分配电池能量的模态量。根据与目标区域的长度(如,延长的停止、坡度变化等)、车辆载荷及其它因素相关的变化,该预算可以是线性的或非线性的。
由于车辆穿越目标区域行驶,所以电池能量模态量的实际使用与ESS使用预算发生偏差。当发生该偏差导致ESS推进能量模态量的实际使用大于预算量时,用发动机145来提供这个差额。可以作为依赖于车速和速度/充电消耗的ESS预算因数(EBF)或电池预算因数的函数计算必需的发动机输出功率的量。EBF提供这样的指示,即:作为在目标区域中的距离的函数的实际消耗掉的ESS能量的数量,偏离为与该距离相关的能量的模态量而建立的ESS使用预算的数量。根据下面的公式计算EBF:
EBF = 1 - ( ΔSOC INSTANT - ΔSOC BUDGET ) K , . . . ( 1 )
其中:
ΔSOCINSTANT=SOCINITIAL-SOCINSTANT,                  (2)
ΔSOCBUDGET=SOCBUDGET-SOCINSTANT,                    (3)
以及:
SOCBUDGET=作为距离的函数的预算在静音模式下使用的SOC100%的量,用百分比的形式表示;
SOCINITIAL=在静音模式启动状态下的SOC,用百分比的形式表示;
SOCINSTANT=作为距离的函数的瞬时SOC,用百分比的形式表示;
SOC100%=电池的总的充电容量;和
K=针对一个给定EVT动力传动系统的一个常数,类似于增益,并且在EVT11的HEV中,K的值优选大约为5。
图7是描述作为BPF及以转数/分表示的变速器输出速度的函数的发动机输出功率的一个图,其中该变速器输出速度与车速有直接的关系。在所述的实施例中,通过用因数0.022与变速器输出速度相乘将变速器输出速度(rpm)与车速(mph)联系起来。可以将这种关系存储在一个查找表中。轴表示临界条件。当变速器输出速度大于1364rpm时,作为车速的函数的电动机输出功率是一个常数,其只是作为电池预算因数的函数做适当的改变。对于比零小的值将电池预算因数限制到0,对于比1大的值将电池预算因数限制到1。对于负的车速,将输出功率限制到与零车速相关的一个值。通过静音模式控制器可以计算出EBF的值,并且车辆输出速度可以从如TCM17中得到。这些可以用来查找所必须的发动机输出功率,以补偿分配用来推动车辆的能量的模态量的预算量与总的车辆推进能量要求之间的差。通过VCM15利用从查找表中得到的发动机输出功率以影响发动机145的控制,并且提供在ESS预算量和基于EBF的总的车辆推进要求之间的差。
如上所述,如果实际的预充电SOC与目标预充电SOC发生偏离,比较高或者比较低,则优选利用ESS预算调节因数(EBAF)调节ESS预算,其可以根据经验或理论上基于目标预充电SOC及它所需的设计极限而得到的。在示范性实施例中,其中目标预充电SOC是最大SOC的60%,能量模态量是最大SOC的25%,根据下面所示的公式计算EBAF:
EBAF = SOC INITIAL - 30 25 ; . . . ( 4 )
其中将EBAF限制为在一个范围中的值,该范围是0.1≤EBAF≤1。
用EBAF乘以电池预算因数以针对SOCINITIAL与目标预充电SOC的偏差调节电池预算。
参考图4,与静音模式110下操作500车辆的步骤相结合,方法100转到步骤(5),当车辆处于静音模式110时,将发动机的输出功率限制600到静音模式输出功率,该静音模式输出功率小于发动机的最大输出功率。该对发动机输出功率的限制600是通过执行静音模式110得到的车辆排放的减少的中心,包括噪音和废气排放,并且也可以以下面所述的更详细的方式来执行。
参考图4,紧接着在静音模式110下操作500车辆的步骤之后,包括限制600发动机输出功率的步骤,方法100转到步骤(6),包括响应于模式终止事件的发生终止700静音模式110。可以从下面的一组事件中选出多个模式终止事件,包括:(a)由车辆驾驶者手动传送静音模式终止要求,(b)作为车辆绝对位置的函数自动传送静音模式终止要求,(c)作为车辆相对于一个区域的相对位置的函数自动传送静音模式终止要求,在该区域中要求车辆在静音模式下工作,一个手动模式终止指令,(d)达到预定的静音模式经过时间的限制,(e)达到预定的静音模式经过距离的限制,及(f)达到至少一个ESS状态参数的终止极限。除非其与退出该目标区域相关,而不是与进入该目标区域相关,则模式终止事件(a)到(c)与上述与传送模式启动及模式激活要求相关的相应事件类似,并且也可以以那里所述的方式完成模式终止事件。当目标区域内所经过的距离或经历的时间是已知的或者能够用如经历的模式距离极限或经历的模式时间极限分别充分定义时,就特别适于使用模式终止事件(d)和(e),其中经历的模式距离极限或经历的模式时间极限是为了自动终止静音模式110而建立的。通过在启动静音模式110时测量里程表信号并且周期性地将其与瞬时里程值相比较以便得到实际的经历过的模式距离值,从而确定实际的经历过的模式距离,以与经历过的模式距离极限比较。相似地,通过在启动静音模式110时启动计时器并且周期性地将其与瞬时计时器值相比较以便得到实际的经历过的模式时间值,从而确定实际的经历过的模式时间,以与经历过的模式时间极限比较。模式终止事件(f)包括达到至少一个ESS状态参数终止极限。如上所述,在ESS包括电池的情况下,状态参数可以包括最大电池温度极限,其中达到最大极限温度就会触发静音模式的终止。应当选择极限温度,以保护电池不会发生会引起短期或长期损害的情况。例如,在ESS包括NiMH电池的一个实施例中,选择的极限是50℃。类似地,在ESS包括电池的一个实施例中,状态参数可以包括最小电池SOC极限、最大电池SOC极限、或者两者都有,其中达到SOC极限会触发静音模式的终止。例如,在包括NiMH电池的一个实施例中,最小/最大SOC极限可以选择为20%≤SOC≤90%。
参考图6-16,以及步骤当车辆处于静音模式110时将发动机的输出功率限制600到静音模式发动机输出功率650,其小于发动机最大输出功率,如图8中所示,通过以下步骤可以确定静音模式输出功率,这些步骤包括:确定800车辆基于坡度的发动机输出功率820;确定900基于速度的发动机输出功率,其中确定基于车速的发动机输出功率902作为车速的函数;以及从基于坡度的发动机输出功率802和基于速度的发动机输出功率902中选择1000发动机的静音模式输出功率650。优选地,选择1000发动机的静音模式输出功率650的步骤包括从基于坡度的发动机输出功率802和基于速度的发动机输出功率902中选取较大的一个。
参考图6-7,以上对确定900基于速度的发动机输出功率902的步骤的做了详细的说明。关于确定基于速度的发动机功率的其它信息可以在系列号为10/686175的美国专利中找到。如那里所述的,作为车速和电池预算因数的函数自动控制发动机145的最大基于速度的静音模式输出功率902。如图7所示,当车速接近零时,发动机的最大静音模式输出功率将逐渐下降,直到达到一个相对低的车速,该车速比车辆停止阈值715还要小,但是大于零,除非电池预算因数是个非常小的值(也就是,电池电荷的消耗远远大于预算量的情况),否则最大静音模式发动机输出功率变为零。通过逐渐减少发动机145的燃料(逐渐减少单位时间内供给的燃料的量)也可以减少最大基于速度的静音模式发动机输出功率902。随着燃料量的减少,最大基于速度的静音模式发动机输出功率902也会减少,直到减少为车辆停止阈值715,加燃料将完全停止并且最大基于速度的静音模式发动机输出功率902变为零。例如,参考图6,当EBF=1(也就是,实际功率消耗等于预算量)的时候,车辆停止阈值715大约是17mph。即使在车辆停止阈值715处停止燃料供应,也优选由至少一台电驱动电动机143转动发动机。发动机及与之相耦合的元件的转动提高了整个EVT动力传动系统对发动机重起要求的响应度,并且即使当发动机的输出功率为零时,在不需要花费很多来重新设计系统以便当发机不转动时也能使其具有应有的功能的情况下,也允许给如变速器润滑系统的通用的机械或液压子系统提供动力。
如在这里所使用的,术语坡度或车辆的坡度通常是指车辆行驶的路面或其它表面的倾斜程度。在这里,一般来说,参考向前行驶的车辆考虑并且解释坡度的检测及坡度的变化,但是,本发明及这里所述的原理通过一定的调整也可以用于倒退的车辆,而这些调整对普通技术人员来讲是显而易见的。优选地,静音模式110也适于检测并响应于车辆处于静音模式110时车辆工作的路面的坡度变化,尤其是坡度的增加,这是因为增加的坡度或倾斜会引起明显偏离电池预算的情况并且由于其会导致车速变慢所以也会影响在该模式下的性能,车速变慢可以不是另外的要求或者是增加发动机输出功率的要求。可以用许多已知的检测或确定斜坡或倾斜及其程度的设备和方法中的任意种直接确定或检测车辆行驶路面的坡度或坡度的变化。但是,典型地,用这样的方法和/或设备要求在车辆中结合必要的附加设备,然后与各种车辆系统和控制器集成在一起,并且要进行质量检测及其它车内测试。因此,优选能从车辆状态参数中直接确定或检测车辆行驶路面的坡度或坡度的变化,特别是进入或退出坡度已增加或正在增加的区域的情况,其中车辆状态参数可以很容易地利用现有的车辆系统和传感器得到。对于给定的车辆,通过经验能够得到各种车辆状态参数的参数极限值、或它们的结合体,其能够表示车辆是否正行驶在平地上、或者是否正在进入斜坡或者正在斜坡上,或者是否已经退出了这样的区域并且已经返回平地或向下倾斜的斜坡,其中车辆状态参数包括变速器输出转矩(To)、输出速度(No)、输出加速度(No_dot)和输出转矩的导数及基于速度的发动机输出功率。针对车辆状态参数的情况,通常用高或增加的输出转矩、慢或减慢的车速、及慢或减慢的加速度来表征在斜坡上的车辆的行驶。例如通过使用一个或多个查找表可以建立这些值中的参数极限或者将其合并到静音模式控制器中。
申请人已经确定在检测到一个超出参数限制的坡度后,只靠电力推动力不足以使车辆加速爬上这个坡,所以就需要产生在这样的条件下的基于坡度的发动机输出功率(如100KW),以确保总的车辆推动能量是充足的,并且也能确保在一个输出功率的范围内操作车辆,其中对于保持恰当的控制来讲静音模式控制算法是有效的,该控制考虑了静音模式电池预算,并且其中电池预算因数提供了对所需输出功率的精确指示作为车速的函数。根据检测或确定坡度所使用的方法,是有可能确定坡度的程度的,其中相信将基于坡度的发动机输出功率802的大小确定为车辆坡度或车辆行驶路面的坡度的函数。
参考图8,在本发明的一个实施例中,可以相信,通常将基于坡度的发动机输出功率802描述为确定为车辆的坡度或车辆行驶路面的坡度的函数,坡度可以通过直接的测量方法和设备确定,如本文所述的。在平坦的地形上,不需要发动机输出功率的基于坡度的贡献,所以基于坡度的发动机输出功率的值为零。对于高于标度阈值的倾斜坡度,如斜率阈值,可以如上所述将发动机功率设置为固定的基于坡度的输出功率。另一种方案,也可以作为斜坡的斜率或度数的函数改变基于坡度的输出功率。
再参考图8-16,在本发明的一个优选实施例中,基于坡度的发动机功率是车辆状态参数的函数。车辆状态参数可以是能够检测、测量、计算或用别的方式导出或确定的任何一个车辆参数,或者它们的结合体,可以用它们来指示车辆工作路面的坡度,或者车辆工作路面的坡度的变化。车辆状态参数通常与车辆的动态状态相关。车辆状态参数可以只是对坡度或坡度变化的一种表示,而不是确定。当前所知道的车辆状态参数包括变速器输出转矩、变速器输出转矩的导数、变速器输出速度及变速器输出加速度。因此,可以从包含这些参数的一组参数中选择车辆状态参数。虽然可以用单独的车辆状态参数实现对坡度或坡度变化的检测,但是优选使用用以不同方式结合的多个车辆状态参数,以检测所存在的坡度或倾斜、或它们的变化,如本文进一步描述的那样。
参考图8-10,通过进一步的步骤可以实现确定800车辆基于坡度的发动机输出功率802的步骤,这些步骤包括:将具有满足或不满足状态的坡度进入条件限定804为与车辆的动态状态相关的坡度进入车辆状态参数806的函数,通常如块808所示,其中当满足坡度进入条件时其表示车辆位于斜坡上;将具有满足或不满足状态的坡度退出条件限定810为与车辆的动态状态相关的坡度退出车辆状态参数812的函数,通常如块814所示,其中当满足坡度退出条件时其表示车辆没有位于斜坡上;确定816坡度进入参数806和坡度退出参数812的值;确定818坡度进入条件和坡度退出条件的状态;比较820坡度进入条件状态822及坡度退出条件状态824,通常如块826所示,以确定坡度状态输出828,其中坡度状态输出828表示车辆是否位于斜坡上;和选择基于坡度的输出功率832作为坡度状态输出828的函数,通常如块834所示。这优选地还包括以下步骤:对基于坡度的输出功率进行滤波,如块838所示,以确定滤波后的基于坡度的输出功率840,其优选地用作基于坡度的输出功率802。下面将对这些步骤做进一步描述。
参考图10,将具有满足或不满足状态的坡度进入条件限定804为与车辆的动态状态相关的坡度进入车辆状态参数806的函数,通常如块808所示。优选将坡度进入条件限定为多个有条件的逻辑测试或为在关于坡度进入参数的静音模式控制器中执行而设计的语句。虽然可以使用单独的坡度进入参数,但是优选的,坡度进入参数是多个坡度进入参数,包括:输出转矩/输出加速度进入参数,其是输出转矩和输出加速度的函数,其中如果输出加速度小于作为输出转矩的函数的输出转矩/输出加速度进入极限,则输出转矩/输出加速度进入参数得到满足;输出转矩进入参数,其中如果输出转矩大于输出转矩进入极限,则输出转矩进入参数得到满足;以及输出转矩导数进入参数,其中如果输出转矩导数小于输出转矩导数进入极限,则输出转矩导数参数得到满足。下面将进一步解释这些参数。
输出转矩/输出加速度进入参数要求由变速器输出加速度表示的车辆加速度小于一个特定的值,该特定的值是变速器输出转矩的函数。该判据或参数的前提是牛顿定律,它规定力的总和等于质量与加速度的乘积。对于旋转运动,它就变为转矩的总和等于转动惯量与转动加速度的乘积。在水平地面上,使车辆加速所需的转矩小于在斜坡上使其加速所需的转矩。该判据有效地检验了车辆输出转矩,并且将该转矩与车辆加速度比较。如果车辆输出转矩高而加速度低,则结论为,该车辆肯定位于斜坡上,并且将提供基于坡度的发动机输出功率。
参考图11和12,如图11的块842和图12中的图表所述,利用插值表实现这种比较。这种标度包括x轴或在块844中所述的To-No_doc插值查找表的To值,以及Y轴或如块848中所述的To-No_dot插值查找表的No_dot值,通过分析经验数据来得到该标度,该经验数据是从车辆在平地上起动及在各种坡度的路面上操作中采集到的。如图11所示,将这些标度与To850当前的值一起输入插值表中,To850当前的值与控制循环相关,以允许插入与To850相关的输出加速度的输出转矩/输出加速度进入极限值852。如块856中所述,将与控制循环相关的No_dot854当前的值与输出转矩/输出加速度进入极限值852的值比较。如果No_dot854的输入小于或等于输出转矩/输出加速度进入极限值852的值,该极限值与To850的输入值相关,则输出转矩/输出加速度进入参数是得到满足的或真的,否则该参数就没有被满足或者是假的。优选的,To850的输入值是经过滤波的输入值,用已知的技术可以对该输入进行滤波。
参考图11,如块860中所示,输出转矩进入参数是一个判据,其要求To850的输入值大于一个标定值或输出转矩进入极限858。该判据的目的是避免在车辆在平坦地形上起动期间错误激活坡度模式。由于时间滞后,该时间滞后根据控制系统的结构发生在控制系统中,所以在某些条件下,输出转矩/输出加速度进入参数会单独对在斜坡上操作的车辆起动做出错误的辨别。因此,输出转矩进入参数也与输出转矩/输出加速度进入参数结合起来使用,以避免对坡度的这种错误检测。选择一个标度,使得大多数在平坦地面上的起动情况不会导致输出转矩值大于标定值。因此,如果输出转矩大于输出转矩进入极限,则输出转矩进入参数得到了满足或者是真的。
再参考图11,输出转矩导数进入参数是一个判据,如块866中所述,它要求车辆输出转矩862的导数的绝对值小于标定值或输出转矩导数进入极限864。该判据也被包括以使如车辆起动的瞬时事件期间错误激活坡度模式的可能性降到最低。在起动时,典型地,驾驶员将会很快地踩下加速器踏板,导致输出转矩会有明显的变化。检查车辆输出转矩的导数及要求该值小于标度能够避免由于这些瞬时活动而激活坡度检测。
典型地,坡度模式的激活并不是非常精确的定时限制。如当在平地上公共巴士在车站中时的情况,相比于错误地激活基于坡度的发动机输出功率,更希望在激活基于坡度的发动机输出功率有一定的延迟。在激活坡度模式中的延迟导致减少加速度的时间稍微长了一点。在水平地面上如在车站上对坡度的错误检测将引起发动机的起动,而在车站环境中会导致不希望的排放和噪音。因此,如果输出转矩导数862的绝对值小于输出转矩导数进入极限864,则输出转矩导数参数是得到满足的或真的。
再参考图11,将转矩输出/输出加速度进入参数、输出转矩进入参数、输出转矩导数进入参数送到AND块868。如果所有的参数都得到了满足或者是真的,则坡度进入条件得到了满足或是真的;否则,该条件就没有得到满足或是假的。将坡度进入条件的输出822送到块826。当可以立即使用坡度进入输出822时,优选的,将如图870所述的对条件的测试持续一段时间,该段时间包括预定的坡度进入间隔872,也可以将其简化地建立为可标定值。该值可以是根据所需车辆性能的任何合适的值,如100ms。如果在预定坡度进入间隔872中条件得到满足或是真的,则将其作为坡度进入输出822送到块826,否则,将适当的出错条件送到块826。
参考图10,总的以块814描述了中限定步骤810,将具有满足或不满足状态的坡度退出条件限定810为与车辆的动态状态相关的坡度退出车辆状态参数的函数。优选将坡度退出条件限定为多个有条件的逻辑测试或为在与坡度退出参数相关的静音模式控制器中执行而设计的语句。虽然可以使用单独的坡度退出参数时,但是优选的是坡度退出参数是多个坡度退出参数,包括:输出转矩退出参数,其是输出转矩的函数,其中如果输出转矩小于输出转矩退出极限,则输出转矩退出参数得到满足;输出速度退出参数,其中如果输出速度小于输出速度退出极限,则输出速度退出参数得到满足;及输出功率退出参数,其中如果基于速度的输出功率的当前值大于基于坡度的输出功率的当前值,则输出功率退出参数得到满足。
参考图13,对于输出转矩退出参数或判据,如块876中所述,如果To850的输入值小于输出转矩退出极限874,则输出转矩退出参数将得到满足或是真的,该算法将指示坡度退出条件,并且有效地去激活坡度检测。该参数将对输出转矩数量进入参数提供滞后作用。由于在平地上所需要的输出转矩比在斜坡上以同样的速度行驶所需要的输出转矩要少,所以,典型地,对经验车辆数据的分析表示在爬坡结束时,当从斜坡过渡到平地时驾驶员将减少输出转矩要求以保持恒定的车速。输出转矩中的这种特有的下降是退出条件的基础。通过对经验车辆数据的分析及选择输出转矩值能够选择一个标定值,使得大多数输出转矩的下降可以被检测到。
再参考图13,对于输出功率退出参数或标准,如块878中所述,当来自正常的静寂模式操作算法的所需的发动机功率900大于当前被坡度检测模式要求的基于坡度的发动机输出功率800(即,从现有控制循环中得到的值)时,该算法将指示坡度退出条件,输出功率退出参数将得以满足或是真的并且有效地去激活坡度检测。当通过图6所示的速度表确定的正常的静寂模式发动机功率大于坡度模式所需的发动机功率时,可以知道车辆已经达到足够高的速度,可以使正常的静音模式保持所要求的输出转矩。这是来自坡度模式的具有支配地位的退出标准。一旦正常的静音模式发动机输出功率能够维持所需的车辆性能,则就可以去激活基于坡度的发动机输出功率。
再参考图13,也可以使用另一个坡度退出参数。对于输出速度退出参数或标准,如块884中所述,如果输出速度No880小于输出速度退出极限882或标定值,则输出速度退出参数将得到满足或是真的,并且有效地去激活坡度检测。该标准为车辆进站提供了附加的退出条件。但是,进一步的研究表明该标准可以防止当车辆在斜坡上起动时触发坡度模式,直到车辆超过该速度。另外,还发现这并不是具有支配地位的退出标准。也就是说,其它标准中的一个将在速度标准之前去激活坡度模式。所以,在一定条件下,该参数的标度可以选择为负的速度,以便有效地避开该参数。
再参考图13,将输出转矩退出参数的输出、输出功率退出参数及任意的输出速度退出参数送到OR块886。如果任何一个得到满足或是真的,则坡度退出条件就得到满足或是真的;否则,该条件就没有得到满足或是假的。将坡度退出条件的输出824送到块826。
参考图9,可以如上所述实现确定816坡度进入参数806和坡度退出参数812的值以及确定818坡度进入条件和坡度退出条件的状态的步骤。
参考图9、10、14和15,总的来说用块826描述比较步骤820,比较820坡度进入条件状态822和坡度退出条件状态824,以确定坡度状态输出828,其中坡度状态输出828表示车辆是否位于斜坡上。实现该比较步骤820的一个方法是逻辑锁存器(logic latch)826,如图10、14和15所示,其具有锁定输入和非锁定输入,其中锁定输入与坡度进入条件输出822相关,非锁定输入与坡度退出条件输出824相关。优选的,如图14和15所示,该逻辑锁存器是非锁定优先的锁存器826。只要非锁定输入信号是真的,锁存器就变为非锁定,并且坡度状态输出828为假。如果非锁定信号是假的而锁定信号是真的,则锁存器就变为锁定的,并且坡度状态输出828为真。如果信号均不是真的,则锁存器就保持先前的值。Z-1块890是单元延迟块,其保留了前一个循环的值。图15所示的就是锁存器826的真值表。
参考图10,在块834中描述了选择830基于坡度的输出功率802作为坡度状态输出828的函数的步骤。优选用逻辑开关完成该选择。如图10所示,开关块834的输出取决于第一个输入,表示为u1。如果第一输入u1是真的,则输出y等于第二输入u2。由标度891提供u2的值。如果第一输入u1是假的,则输出y等于第三输入u3。由标度893提供u3的值。在坡度检测算法中,当坡度模式锁存器是真的并且表示进入倾斜的斜坡时,坡度检测算法利用该开关选择标度,该标度表示所需的基于坡度的发动机输出功率。如果锁存器是假的,例如如果没有表示坡度进入或如果表示坡度退出,则利用开关将基于坡度的发动机输出功率选择为零,这就表示在所关心的坡度检测的范围内不需要发动机功率。
参考图10,方法800优选还包括滤波步骤836,如块838中所述,对基于坡度的输出功率进行滤波836,以确定经过滤波的基于坡度的输出功率840,优选将其作为基于坡度的输出功率802使用。该滤波器希望对输入信号的变化的时间比率进行限制。优选的该滤波器包括对于输入信号的上升比率及下降比率的单独控制。该滤波器可以包括比率限制器或任何其它合适的滤波器,包括已知的一阶滤波器。在一个实施例中,滤波器838可以包括一个比率限制器,其具有上限或上升比率极限892及下限或下降比率极限894。在坡度检测算法中,当激活锁存器826时,开关块的输出是从为零的基于坡度的发动机输出功率到所需的基于坡度的发动机输出功率的阶跃变化。为了避免在所需功率中的该阶跃变化直接传递给发动机并且发出讨厌的声音及导致令人不满的驾驶性能,比率限制器块将所需发动机功率信号的变化的时间比率限制到更希望的变化,如图15所示。
从附图及该详细描述及接下来的权利要求中本发明的更多应用范围会很清晰。但是应当明白,由于在本发明的原理和范围内的各种变化和改进对本领域技术人员来说是显而易见的,所以给出的详细描述及特殊例子,即使指出其是本发明的优先实施例,也只是一种举例说明。

Claims (34)

1.一种确定车辆发动机输出功率的方法,包括:
确定车辆基于坡度的发动机输出功率;
确定基于速度的发动机输出功率,其中将基于速度的发动机输出功率确定为车速的函数;和
从基于坡度的发动机输出功率和基于速度的发动机输出功率中选择发动机输出功率。
2.如权利要求1所述的方法,其中选择发动机的输出功率包括选择基于坡度的发动机输出功率和基于速度的发动机输出功率中较大的那个。
3.如权利要求1所述的方法,其中将基于坡度的发动机输出功率确定为车辆坡度的函数。
4.如权利要求1所述的方法,其中将基于坡度的发动机输出功率确定为车辆状态参数的函数。
5.如权利要求4所述的方法,其中从一个组中选择车辆状态参数,该组包括变速器输出转矩、变速器输出转矩的导数、变速器输出速度、变速器输出加速度及发动机输出功率。
6.如权利要求1所述的方法,其中确定车辆基于坡度的输出功率的步骤,还包括:
将具有满足或不满足状态的坡度进入条件限定为与车辆的动态状态相关的坡度进入参数的函数,其中当满足坡度进入条件时其表示车辆位于斜坡上;
将具有满足或不满足状态的坡度退出条件限定为与车辆的动态状态相关的坡度退出参数的函数,其中当满足坡度退出条件时其表示车辆没有位于斜坡上;
确定坡度进入参数和坡度退出参数的值;
确定坡度进入条件和坡度退出条件的状态;
比较坡度进入条件状态及坡度退出条件状态,以确定坡度状态输出,其中坡度状态输出表示车辆是否位于斜坡上;和
选择基于坡度的输出功率作为坡度状态输出的函数。
7.如权利要求6所述的方法,还包括:
对基于坡度的输出功率进行滤波,以确定滤波后的基于坡度的输出功率,其中通过从滤波过的基于坡度的输出功率和基于速度的输出功率中进行选择来实现对发动机输出功率的选择。
8.如权利要求7所述的方法,其中该滤波器包括一个比率上限,当基于坡度的输出功率增加时使用,及一个比率下限,当基于坡度的输出功率下降时使用。
9.如权利要求6所述的方法,其中如果坡度进入参数得到满足并且该满足情况持续了一个预定的坡度进入时间间隔,则满足坡度进入条件。
10.如权利要求9所述的方法,其中坡度进入参数是多个坡度进入参数,包括:
输出转矩/输出加速度进入参数,其是输出转矩和输出加速度的函数,其中如果输出加速度小于作为输出转矩的函数的输出转矩/输出加速度进入极限,则输出转矩/输出加速度进入参数得到满足;
输出转矩进入参数,其中如果输出转矩大于输出转矩进入极限,则输出转矩进入参数得到满足;和
输出转矩导数进入参数,其中如果输出转矩导数的绝对值小于输出转矩导数进入极限,则输出转矩导数参数得到满足。
11.如权利要求6所述的方法,其中坡度退出参数是多个坡度退出参数,包括:
输出转矩退出参数,其是输出转矩的函数,其中如果输出转矩小于输出转矩退出极限,则输出转矩退出参数得到满足;
输出功率退出参数,其中如果基于速度的输出功率的当前值大于基于坡度的输出功率的当前值,则输出功率退出参数得到满足。
12.如权利要求11所述的方法,还包括:
输出速度退出参数,其中如果输出速度小于输出速度退出极限,则输出速度退出参数得到满足。
13.如权利要求6所述的方法,其中利用具有锁定输入和非锁定输入的逻辑锁存器来实现比较步骤,其中锁定输入与坡度进入条件相关,非锁定输入与坡度退出条件相关。
14.如权利要求13所述的方法,其中逻辑锁存器是非锁定优先的锁存器。
15.一种确定车辆动力传动系统的发动机输出功率的方法,该动力传动系统包括:内燃机;电机,该电机可操作地耦合于能量存储系统,该能量存储系统适于从电机接收电能以及向电机提供电能;和变速器,其可操作地耦合于电机和发动机并且适于传送从电机和发动机中一个或两个中接收来的动力,并且其适于在静音模式下工作,其中优选的是,变速器的主动力是从电机接收来的,并且将发动机输出功率限制到一个值,该值基本上小于发动机的最大输出功率,该方法被实现为车辆控制器中的计算机控制算法,该方法包括:
确定车辆基于坡度的发动机输出功率;
确定基于速度的发动机输出功率,其中将基于速度的发动机输出功率确定为车速的函数;和
从基于坡度的发动机输出功率和基于速度的发动机输出功率中选择发动机输出功率。
16.权利要求15所述的方法,其中选择发动机的输出功率包括选择基于坡度的发动机输出功率和基于速度的发动机输出功率中较大的那个。
17.权利要求15所述的方法,其中将基于坡度的发动机输出功率确定为车辆坡度的函数。
18.如权利要求15所述的方法,其中将基于坡度的发动机输出功率确定为车辆状态参数的函数。
19.如权利要求18所述的方法,其中从一个组中选择车辆状态参数,该组包括变速器输出转矩、变速器输出转矩的导数、变速器输出速度、变速器输出加速度及发动机输出功率。
20.如权利要求15所述的方法,其中确定车辆基于坡度的输出功率的步骤,还包括:
将具有满足或不满足状态的坡度进入条件限定为与车辆的动态状态相关的坡度进入参数的函数,其中当满足坡度进入条件时其表示车辆位于斜坡上;
将具有满足或不满足状态的坡度退出条件限定为与车辆的动态状态相关的坡度退出参数的函数,其中当满足坡度退出条件时其表示车辆没有位于斜坡上;
确定坡度进入参数和坡度退出参数的值;
确定坡度进入条件和坡度退出条件的状态;
比较坡度进入条件状态及坡度退出条件状态,以确定坡度状态输出,其中坡度状态输出表示车辆是否位于斜坡上;和
选择基于坡度的输出功率作为坡度状态输出的函数。
21.如权利要求20所述的方法,还包括:
将比率极限应用于基于坡度的输出功率,以确定比率限制后的基于坡度的输出功率,其中通过从比率限制后的基于坡度的输出功率和基于速度的输出功率中进行选择来实现对发动机输出功率的选择。
22.如权利要求21所述的方法,其中该比率极限包括一个比率上限,当基于坡度的输出功率增加时使用,及一个比率下限,当基于坡度的输出功率下降时使用。
23.如权利要求20所述的方法,其中如果坡度进入参数得到满足并且该满足情况持续了一个预定的坡度进入时间间隔,则满足坡度进入条件。
24.如权利要求23所述的方法,其中坡度进入参数是多个坡度进入参数,包括:
输出转矩/输出加速度进入参数,其是输出转矩和输出加速度的函数,其中如果输出加速度小于作为输出转矩的函数的输出转矩/输出加速度进入极限,则输出转矩/输出加速度进入参数得到满足;
输出转矩进入参数,其中如果输出转矩大于输出转矩进入极限,则输出转矩进入参数得到满足;和
输出转矩导数进入参数,其中如果输出转矩导数的绝对值小于输出转矩导数进入极限,则输出转矩导数参数得到满足。
25.如权利要求20所述的方法,其中坡度退出参数是多个坡度退出参数,包括:
输出转矩退出参数,其是输出转矩的函数,其中如果输出转矩小于输出转矩退出极限,则输出转矩退出参数得到满足;
输出功率退出参数,其中如果基于速度的输出功率的当前值大于基于坡度的输出功率的当前值,则输出功率退出参数得到满足。
26.如权利要求25所述的方法,还包括:
输出速度退出参数,其中如果输出速度小于输出速度退出极限,则输出速度退出参数得到满足。
27.如权利要求20所述的方法,其中利用具有锁定输入和非锁定输入的逻辑锁存器来实现比较步骤,其中锁定输入与坡度进入条件相关,非锁定输入与坡度退出条件相关。
28.如权利要求27所述的方法,其中逻辑锁存器是非锁定优先锁存器。
29.一种为混合动力电动车辆提供静音模式操作的方法,其中该混合动力电动车辆具有可再充电的能量存储系统(ESS),该方法包括以下步骤:
(1)将静音模式启动要求传送到静音模式控制器;
(2)将ESS的表示ESS执行静音模式的可用性的至少一个状态参数的实际值与至少一个与该实际值相关的静音模式启动极限值进行比较,其中如果与相关的至少一个模式启动极限值相比较的至少一个状态参数的实际值表示静音模式是允许的,则方法转到步骤(3),并且其中如果至少一个状态参数的实际值表示不允许静音模式,则只要正在传送静音模式启动要求就重复步骤(2);
(3)将静音模式激活要求传送到静音模式控制器;
(4)利用静音模式控制器在静音模式下操作车辆,包括指定电驱动电动机作为车辆推动能量的主要来源,并且指定发动机作为车辆推动能量的第二能源,其中在静音模式期间通过电驱动电动机分配ESS中的能量的模态量以进行利用,并且发动机用来补偿在静音模式期间能量的模态量和总的车辆推进能量需求之间的差;
(5)当车辆处于静音模式时,将发动机的输出功率限制到静音模式输出功率,其比发动机的最大输出功率小;以及
(6)响应于模式终止事件的发生而终止静音模式。
30.如权利要求29所述的方法,其中通过以下步骤确定静音模式的输出功率:
确定车辆基于坡度的发动机输出功率;
确定基于速度的发动机输出功率,其中将基于速度的发动机输出功率确定为车速的函数;和
从基于坡度的发动机输出功率和基于速度的发动机输出功率中选择发动机的静音模式输出功率。
31.如权利要求30所述的方法,其中选择发动机的静音输出功率包括选择基于坡度的发动机输出功率和基于速度的发动机输出功率中较大的那个。
32.如权利要求30所述的方法,其中将基于坡度的发动机输出功率确定为车辆坡度的函数。
33.如权利要求32所述的方法,其中将车辆坡度确定为车辆状态参数的函数。
34.如权利要求33所述的方法,其中从一个组中选择车辆状态参数,该组包括变速器输出转矩、变速器输出转矩的导数、变速器输出速度、变速器输出加速度及发动机输出功率。
CNB2005100729436A 2004-05-14 2005-05-16 在混合动力电动车辆中确定发动机输出功率的方法 Expired - Fee Related CN100400831C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/846,141 US7653474B2 (en) 2004-05-14 2004-05-14 Method of determining engine output power in a hybrid electric vehicle
US10/846141 2004-05-14

Publications (2)

Publication Number Publication Date
CN1696484A true CN1696484A (zh) 2005-11-16
CN100400831C CN100400831C (zh) 2008-07-09

Family

ID=35310441

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100729436A Expired - Fee Related CN100400831C (zh) 2004-05-14 2005-05-16 在混合动力电动车辆中确定发动机输出功率的方法

Country Status (3)

Country Link
US (1) US7653474B2 (zh)
CN (1) CN100400831C (zh)
DE (1) DE102005022222A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101842569A (zh) * 2008-08-01 2010-09-22 丰田自动车株式会社 发动机燃料诊断装置和用于具有该装置的自动变速器的控制设备
CN102088190A (zh) * 2009-12-03 2011-06-08 三星Sdi株式会社 并网电力存储系统和控制并网电力存储系统的方法
CN101469638B (zh) * 2007-11-04 2012-09-05 通用汽车环球科技运作公司 用于混合动力系统中转矩管理的发动机控制系统
CN101628581B (zh) * 2008-07-18 2012-12-26 通用汽车环球科技运作公司 车辆hvac控制
CN103863309A (zh) * 2012-12-14 2014-06-18 通用汽车环球科技运作有限责任公司 用于管理插入式混合动力车辆中的充电耗减的方法和设备
CN104192141A (zh) * 2014-08-13 2014-12-10 潍柴动力股份有限公司 一种混合动力车辆动力控制方法和系统
CN101508295B (zh) * 2007-11-05 2015-01-28 通用汽车环球科技运作公司 混合动力系系统的控制方法
CN109070764A (zh) * 2016-04-26 2018-12-21 宝马股份公司 用于运行包括电机和内燃机的具有电蓄能器的混合动力车辆的方法和装置
CN112424018A (zh) * 2018-07-17 2021-02-26 松下知识产权经营株式会社 电源系统以及管理装置
CN114007890A (zh) * 2019-07-09 2022-02-01 松下知识产权经营株式会社 管理装置以及车辆用电源系统

Families Citing this family (202)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7653474B2 (en) * 2004-05-14 2010-01-26 Gm Global Technology Operations, Inc. Method of determining engine output power in a hybrid electric vehicle
US20070179681A1 (en) * 2006-01-31 2007-08-02 Ford Global Technologies, Llc System and method for operating a vehicle
US8010263B2 (en) * 2006-03-22 2011-08-30 GM Global Technology Operations LLC Method and apparatus for multivariate active driveline damping
JP4561663B2 (ja) * 2006-03-23 2010-10-13 日産自動車株式会社 ハイブリッド車両のモード切り替え制御装置
US8091667B2 (en) * 2006-06-07 2012-01-10 GM Global Technology Operations LLC Method for operating a hybrid electric powertrain based on predictive effects upon an electrical energy storage device
US8620498B2 (en) * 2006-06-20 2013-12-31 GM Global Technology Operations LLC Hybrid road grade determination system
JP4997949B2 (ja) * 2006-12-08 2012-08-15 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP4222415B2 (ja) * 2006-12-19 2009-02-12 トヨタ自動車株式会社 車両の制御装置、制御方法およびその制御方法をコンピュータで実現させるプログラムならびにそのプログラムが記録された記録媒体
JP4179380B2 (ja) * 2007-01-10 2008-11-12 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
US7987934B2 (en) 2007-03-29 2011-08-02 GM Global Technology Operations LLC Method for controlling engine speed in a hybrid electric vehicle
US7999496B2 (en) * 2007-05-03 2011-08-16 GM Global Technology Operations LLC Method and apparatus to determine rotational position of an electrical machine
US7996145B2 (en) 2007-05-03 2011-08-09 GM Global Technology Operations LLC Method and apparatus to control engine restart for a hybrid powertrain system
US7991519B2 (en) 2007-05-14 2011-08-02 GM Global Technology Operations LLC Control architecture and method to evaluate engine off operation of a hybrid powertrain system operating in a continuously variable mode
US8390240B2 (en) 2007-08-06 2013-03-05 GM Global Technology Operations LLC Absolute position sensor for field-oriented control of an induction motor
US7853385B2 (en) * 2007-08-10 2010-12-14 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for controlling transmission shifting during vehicle braking along a decline
US8265813B2 (en) 2007-09-11 2012-09-11 GM Global Technology Operations LLC Method and control architecture for optimization of engine fuel-cutoff selection and engine input torque for a hybrid powertrain system
US7988591B2 (en) * 2007-09-11 2011-08-02 GM Global Technology Operations LLC Control architecture and method for one-dimensional optimization of input torque and motor torque in fixed gear for a hybrid powertrain system
US7983823B2 (en) 2007-09-11 2011-07-19 GM Global Technology Operations LLC Method and control architecture for selection of optimal engine input torque for a powertrain system
US8027771B2 (en) * 2007-09-13 2011-09-27 GM Global Technology Operations LLC Method and apparatus to monitor an output speed sensor during operation of an electro-mechanical transmission
US7867135B2 (en) 2007-09-26 2011-01-11 GM Global Technology Operations LLC Electro-mechanical transmission control system
US8062170B2 (en) * 2007-09-28 2011-11-22 GM Global Technology Operations LLC Thermal protection of an electric drive system
US8234048B2 (en) 2007-10-19 2012-07-31 GM Global Technology Operations LLC Method and system for inhibiting operation in a commanded operating range state for a transmission of a powertrain system
US9140337B2 (en) 2007-10-23 2015-09-22 GM Global Technology Operations LLC Method for model based clutch control and torque estimation
US8060267B2 (en) 2007-10-23 2011-11-15 GM Global Technology Operations LLC Method for controlling power flow within a powertrain system
US8118122B2 (en) 2007-10-25 2012-02-21 GM Global Technology Operations LLC Method and system for monitoring signal integrity in a distributed controls system
US8187145B2 (en) 2007-10-25 2012-05-29 GM Global Technology Operations LLC Method and apparatus for clutch torque control in mode and fixed gear for a hybrid powertrain system
US8296027B2 (en) 2007-10-25 2012-10-23 GM Global Technology Operations LLC Method and apparatus to control off-going clutch torque during torque phase for a hybrid powertrain system
US8265821B2 (en) 2007-10-25 2012-09-11 GM Global Technology Operations LLC Method for determining a voltage level across an electric circuit of a powertrain
US8335623B2 (en) 2007-10-25 2012-12-18 GM Global Technology Operations LLC Method and apparatus for remediation of and recovery from a clutch slip event in a hybrid powertrain system
US9097337B2 (en) 2007-10-26 2015-08-04 GM Global Technology Operations LLC Method and apparatus to control hydraulic line pressure in an electro-mechanical transmission
US8167773B2 (en) 2007-10-26 2012-05-01 GM Global Technology Operations LLC Method and apparatus to control motor cooling in an electro-mechanical transmission
US8406945B2 (en) 2007-10-26 2013-03-26 GM Global Technology Operations LLC Method and apparatus to control logic valves for hydraulic flow control in an electro-mechanical transmission
US8560191B2 (en) 2007-10-26 2013-10-15 GM Global Technology Operations LLC Method and apparatus to control clutch pressures in an electro-mechanical transmission
US8204702B2 (en) 2007-10-26 2012-06-19 GM Global Technology Operations LLC Method for estimating battery life in a hybrid powertrain
US8548703B2 (en) 2007-10-26 2013-10-01 GM Global Technology Operations LLC Method and apparatus to determine clutch slippage in an electro-mechanical transmission
US8303463B2 (en) 2007-10-26 2012-11-06 GM Global Technology Operations LLC Method and apparatus to control clutch fill pressure in an electro-mechanical transmission
US7985154B2 (en) 2007-10-26 2011-07-26 GM Global Technology Operations LLC Method and apparatus to control hydraulic pressure for component lubrication in an electro-mechanical transmission
US8244426B2 (en) 2007-10-27 2012-08-14 GM Global Technology Operations LLC Method and apparatus for monitoring processor integrity in a distributed control module system for a powertrain system
US8062174B2 (en) 2007-10-27 2011-11-22 GM Global Technology Operations LLC Method and apparatus to control clutch stroke volume in an electro-mechanical transmission
US8428816B2 (en) 2007-10-27 2013-04-23 GM Global Technology Operations LLC Method and apparatus for monitoring software and signal integrity in a distributed control module system for a powertrain system
US8099219B2 (en) 2007-10-27 2012-01-17 GM Global Technology Operations LLC Method and apparatus for securing an operating range state mechanical transmission
US8489293B2 (en) 2007-10-29 2013-07-16 GM Global Technology Operations LLC Method and apparatus to control input speed profile during inertia speed phase for a hybrid powertrain system
US8170762B2 (en) 2007-10-29 2012-05-01 GM Global Technology Operations LLC Method and apparatus to control operation of a hydraulic pump for an electro-mechanical transmission
US8112194B2 (en) 2007-10-29 2012-02-07 GM Global Technology Operations LLC Method and apparatus for monitoring regenerative operation in a hybrid powertrain system
US8209098B2 (en) 2007-10-29 2012-06-26 GM Global Technology Operations LLC Method and apparatus for monitoring a transmission range selector in a hybrid powertrain transmission
US8095254B2 (en) * 2007-10-29 2012-01-10 GM Global Technology Operations LLC Method for determining a power constraint for controlling a powertrain system
US8290681B2 (en) 2007-10-29 2012-10-16 GM Global Technology Operations LLC Method and apparatus to produce a smooth input speed profile in mode for a hybrid powertrain system
US8282526B2 (en) 2007-10-29 2012-10-09 GM Global Technology Operations LLC Method and apparatus to create a pseudo torque phase during oncoming clutch engagement to prevent clutch slip for a hybrid powertrain system
US8078371B2 (en) 2007-10-31 2011-12-13 GM Global Technology Operations LLC Method and apparatus to monitor output of an electro-mechanical transmission
US8145375B2 (en) 2007-11-01 2012-03-27 GM Global Technology Operations LLC System constraints method of determining minimum and maximum torque limits for an electro-mechanical powertrain system
US8035324B2 (en) 2007-11-01 2011-10-11 GM Global Technology Operations LLC Method for determining an achievable torque operating region for a transmission
US8556011B2 (en) 2007-11-01 2013-10-15 GM Global Technology Operations LLC Prediction strategy for thermal management and protection of power electronic hardware
US7977896B2 (en) 2007-11-01 2011-07-12 GM Global Technology Operations LLC Method of determining torque limit with motor torque and battery power constraints
US8073602B2 (en) 2007-11-01 2011-12-06 GM Global Technology Operations LLC System constraints method of controlling operation of an electro-mechanical transmission with an additional constraint range
US8287426B2 (en) 2007-11-02 2012-10-16 GM Global Technology Operations LLC Method for controlling voltage within a powertrain system
US8131437B2 (en) 2007-11-02 2012-03-06 GM Global Technology Operations LLC Method for operating a powertrain system to transition between engine states
US8847426B2 (en) 2007-11-02 2014-09-30 GM Global Technology Operations LLC Method for managing electric power in a powertrain system
US8585540B2 (en) 2007-11-02 2013-11-19 GM Global Technology Operations LLC Control system for engine torque management for a hybrid powertrain system
US8121767B2 (en) 2007-11-02 2012-02-21 GM Global Technology Operations LLC Predicted and immediate output torque control architecture for a hybrid powertrain system
US8224539B2 (en) 2007-11-02 2012-07-17 GM Global Technology Operations LLC Method for altitude-compensated transmission shift scheduling
US8121765B2 (en) 2007-11-02 2012-02-21 GM Global Technology Operations LLC System constraints method of controlling operation of an electro-mechanical transmission with two external input torque ranges
US8133151B2 (en) 2007-11-02 2012-03-13 GM Global Technology Operations LLC System constraints method of controlling operation of an electro-mechanical transmission with an additional constraint
US8825320B2 (en) 2007-11-02 2014-09-02 GM Global Technology Operations LLC Method and apparatus for developing a deceleration-based synchronous shift schedule
US8200403B2 (en) 2007-11-02 2012-06-12 GM Global Technology Operations LLC Method for controlling input torque provided to a transmission
US8155814B2 (en) * 2007-11-03 2012-04-10 GM Global Technology Operations LLC Method of operating a vehicle utilizing regenerative braking
US8224514B2 (en) 2007-11-03 2012-07-17 GM Global Technology Operations LLC Creation and depletion of short term power capability in a hybrid electric vehicle
US8068966B2 (en) 2007-11-03 2011-11-29 GM Global Technology Operations LLC Method for monitoring an auxiliary pump for a hybrid powertrain
US8868252B2 (en) 2007-11-03 2014-10-21 GM Global Technology Operations LLC Control architecture and method for two-dimensional optimization of input speed and input power including search windowing
US8002667B2 (en) 2007-11-03 2011-08-23 GM Global Technology Operations LLC Method for determining input speed acceleration limits in a hybrid transmission
US8010247B2 (en) 2007-11-03 2011-08-30 GM Global Technology Operations LLC Method for operating an engine in a hybrid powertrain system
US8135526B2 (en) 2007-11-03 2012-03-13 GM Global Technology Operations LLC Method for controlling regenerative braking and friction braking
US8406970B2 (en) 2007-11-03 2013-03-26 GM Global Technology Operations LLC Method for stabilization of optimal input speed in mode for a hybrid powertrain system
US8296021B2 (en) 2007-11-03 2012-10-23 GM Global Technology Operations LLC Method for determining constraints on input torque in a hybrid transmission
US8260511B2 (en) 2007-11-03 2012-09-04 GM Global Technology Operations LLC Method for stabilization of mode and fixed gear for a hybrid powertrain system
US8285431B2 (en) 2007-11-03 2012-10-09 GM Global Technology Operations LLC Optimal selection of hybrid range state and/or input speed with a blended braking system in a hybrid electric vehicle
US8204664B2 (en) 2007-11-03 2012-06-19 GM Global Technology Operations LLC Method for controlling regenerative braking in a vehicle
US9008926B2 (en) 2007-11-04 2015-04-14 GM Global Technology Operations LLC Control of engine torque during upshift and downshift torque phase for a hybrid powertrain system
US8221285B2 (en) 2007-11-04 2012-07-17 GM Global Technology Operations LLC Method and apparatus to offload offgoing clutch torque with asynchronous oncoming clutch torque, engine and motor torque for a hybrid powertrain system
US8346449B2 (en) 2007-11-04 2013-01-01 GM Global Technology Operations LLC Method and apparatus to provide necessary output torque reserve by selection of hybrid range state and input speed for a hybrid powertrain system
US7988594B2 (en) 2007-11-04 2011-08-02 GM Global Technology Operations LLC Method for load-based stabilization of mode and fixed gear operation of a hybrid powertrain system
US8098041B2 (en) 2007-11-04 2012-01-17 GM Global Technology Operations LLC Method of charging a powertrain
US8204656B2 (en) 2007-11-04 2012-06-19 GM Global Technology Operations LLC Control architecture for output torque shaping and motor torque determination for a hybrid powertrain system
US8414449B2 (en) 2007-11-04 2013-04-09 GM Global Technology Operations LLC Method and apparatus to perform asynchronous shifts with oncoming slipping clutch torque for a hybrid powertrain system
US8112206B2 (en) 2007-11-04 2012-02-07 GM Global Technology Operations LLC Method for controlling a powertrain system based upon energy storage device temperature
US8504259B2 (en) 2007-11-04 2013-08-06 GM Global Technology Operations LLC Method for determining inertia effects for a hybrid powertrain system
US8248023B2 (en) 2007-11-04 2012-08-21 GM Global Technology Operations LLC Method of externally charging a powertrain
US8374758B2 (en) 2007-11-04 2013-02-12 GM Global Technology Operations LLC Method for developing a trip cost structure to understand input speed trip for a hybrid powertrain system
US8630776B2 (en) 2007-11-04 2014-01-14 GM Global Technology Operations LLC Method for controlling an engine of a hybrid powertrain in a fuel enrichment mode
US8897975B2 (en) 2007-11-04 2014-11-25 GM Global Technology Operations LLC Method for controlling a powertrain system based on penalty costs
US8214120B2 (en) 2007-11-04 2012-07-03 GM Global Technology Operations LLC Method to manage a high voltage system in a hybrid powertrain system
US8002665B2 (en) 2007-11-04 2011-08-23 GM Global Technology Operations LLC Method for controlling power actuators in a hybrid powertrain system
US8145397B2 (en) 2007-11-04 2012-03-27 GM Global Technology Operations LLC Optimal selection of blended braking capacity for a hybrid electric vehicle
US8818660B2 (en) 2007-11-04 2014-08-26 GM Global Technology Operations LLC Method for managing lash in a driveline
US8138703B2 (en) 2007-11-04 2012-03-20 GM Global Technology Operations LLC Method and apparatus for constraining output torque in a hybrid powertrain system
US8121766B2 (en) 2007-11-04 2012-02-21 GM Global Technology Operations LLC Method for operating an internal combustion engine to transmit power to a driveline
US8135532B2 (en) 2007-11-04 2012-03-13 GM Global Technology Operations LLC Method for controlling output power of an energy storage device in a powertrain system
US8095282B2 (en) 2007-11-04 2012-01-10 GM Global Technology Operations LLC Method and apparatus for soft costing input speed and output speed in mode and fixed gear as function of system temperatures for cold and hot operation for a hybrid powertrain system
US8494732B2 (en) 2007-11-04 2013-07-23 GM Global Technology Operations LLC Method for determining a preferred engine operation in a hybrid powertrain system during blended braking
US8594867B2 (en) 2007-11-04 2013-11-26 GM Global Technology Operations LLC System architecture for a blended braking system in a hybrid powertrain system
US8112192B2 (en) 2007-11-04 2012-02-07 GM Global Technology Operations LLC Method for managing electric power within a powertrain system
US8079933B2 (en) 2007-11-04 2011-12-20 GM Global Technology Operations LLC Method and apparatus to control engine torque to peak main pressure for a hybrid powertrain system
US8118903B2 (en) 2007-11-04 2012-02-21 GM Global Technology Operations LLC Method for preferential selection of modes and gear with inertia effects for a hybrid powertrain system
US8067908B2 (en) 2007-11-04 2011-11-29 GM Global Technology Operations LLC Method for electric power boosting in a powertrain system
US8214114B2 (en) 2007-11-04 2012-07-03 GM Global Technology Operations LLC Control of engine torque for traction and stability control events for a hybrid powertrain system
US8396634B2 (en) 2007-11-04 2013-03-12 GM Global Technology Operations LLC Method and apparatus for maximum and minimum output torque performance by selection of hybrid range state and input speed for a hybrid powertrain system
US8092339B2 (en) 2007-11-04 2012-01-10 GM Global Technology Operations LLC Method and apparatus to prioritize input acceleration and clutch synchronization performance in neutral for a hybrid powertrain system
US8200383B2 (en) 2007-11-04 2012-06-12 GM Global Technology Operations LLC Method for controlling a powertrain system based upon torque machine temperature
US8214093B2 (en) 2007-11-04 2012-07-03 GM Global Technology Operations LLC Method and apparatus to prioritize transmission output torque and input acceleration for a hybrid powertrain system
US8126624B2 (en) 2007-11-04 2012-02-28 GM Global Technology Operations LLC Method for selection of optimal mode and gear and input speed for preselect or tap up/down operation
US8112207B2 (en) 2007-11-05 2012-02-07 GM Global Technology Operations LLC Method and apparatus to determine a preferred output torque for operating a hybrid transmission in a continuously variable mode
US8448731B2 (en) * 2007-11-05 2013-05-28 GM Global Technology Operations LLC Method and apparatus for determination of fast actuating engine torque for a hybrid powertrain system
US8285462B2 (en) 2007-11-05 2012-10-09 GM Global Technology Operations LLC Method and apparatus to determine a preferred output torque in mode and fixed gear operation with clutch torque constraints for a hybrid powertrain system
US8070647B2 (en) 2007-11-05 2011-12-06 GM Global Technology Operations LLC Method and apparatus for adapting engine operation in a hybrid powertrain system for active driveline damping
US8099204B2 (en) 2007-11-05 2012-01-17 GM Global Technology Operatons LLC Method for controlling electric boost in a hybrid powertrain
US8285432B2 (en) 2007-11-05 2012-10-09 GM Global Technology Operations LLC Method and apparatus for developing a control architecture for coordinating shift execution and engine torque control
US8155815B2 (en) 2007-11-05 2012-04-10 Gm Global Technology Operation Llc Method and apparatus for securing output torque in a distributed control module system for a powertrain system
US8249766B2 (en) 2007-11-05 2012-08-21 GM Global Technology Operations LLC Method of determining output torque limits of a hybrid transmission operating in a fixed gear operating range state
US8219303B2 (en) 2007-11-05 2012-07-10 GM Global Technology Operations LLC Method for operating an internal combustion engine for a hybrid powertrain system
US8229633B2 (en) 2007-11-05 2012-07-24 GM Global Technology Operations LLC Method for operating a powertrain system to control engine stabilization
US8165777B2 (en) 2007-11-05 2012-04-24 GM Global Technology Operations LLC Method to compensate for transmission spin loss for a hybrid powertrain system
US8135519B2 (en) 2007-11-05 2012-03-13 GM Global Technology Operations LLC Method and apparatus to determine a preferred output torque for operating a hybrid transmission in a fixed gear operating range state
EP2060463B1 (en) * 2007-11-05 2012-05-16 GM Global Technology Operations LLC Method for controlling an engine coupled to an input member of a hybrid transmission
US8321100B2 (en) 2007-11-05 2012-11-27 GM Global Technology Operations LLC Method and apparatus for dynamic output torque limiting for a hybrid powertrain system
US8160761B2 (en) 2007-11-05 2012-04-17 GM Global Technology Operations LLC Method for predicting an operator torque request of a hybrid powertrain system
US8121768B2 (en) 2007-11-05 2012-02-21 GM Global Technology Operations LLC Method for controlling a hybrid powertrain system based upon hydraulic pressure and clutch reactive torque capacity
US8179127B2 (en) 2007-11-06 2012-05-15 GM Global Technology Operations LLC Method and apparatus to monitor position of a rotatable shaft
US8281885B2 (en) 2007-11-06 2012-10-09 GM Global Technology Operations LLC Method and apparatus to monitor rotational speeds in an electro-mechanical transmission
US8073610B2 (en) 2007-11-07 2011-12-06 GM Global Technology Operations LLC Method and apparatus to control warm-up of an exhaust aftertreatment system for a hybrid powertrain
US8005632B2 (en) * 2007-11-07 2011-08-23 GM Global Technology Operations LLC Method and apparatus for detecting faults in a current sensing device
US8271173B2 (en) 2007-11-07 2012-09-18 GM Global Technology Operations LLC Method and apparatus for controlling a hybrid powertrain system
US8277363B2 (en) 2007-11-07 2012-10-02 GM Global Technology Operations LLC Method and apparatus to control temperature of an exhaust aftertreatment system for a hybrid powertrain
US8267837B2 (en) 2007-11-07 2012-09-18 GM Global Technology Operations LLC Method and apparatus to control engine temperature for a hybrid powertrain
US8195349B2 (en) 2007-11-07 2012-06-05 GM Global Technology Operations LLC Method for predicting a speed output of a hybrid powertrain system
US8209097B2 (en) 2007-11-07 2012-06-26 GM Global Technology Operations LLC Method and control architecture to determine motor torque split in fixed gear operation for a hybrid powertrain system
US8224544B2 (en) * 2007-11-07 2012-07-17 GM Global Technology Operations LLC Method and apparatus to control launch of a vehicle having an electro-mechanical transmission
US8433486B2 (en) 2007-11-07 2013-04-30 GM Global Technology Operations LLC Method and apparatus to determine a preferred operating point for an engine of a powertrain system using an iterative search
HUP0800048A2 (en) * 2008-01-25 2009-08-28 Istvan Dr Janosi Frying device for making fried cake specially for household
US8731751B2 (en) * 2008-02-07 2014-05-20 GM Global Technology Operations LLC Method and system for controlling a hybrid vehicle
DE102008042544A1 (de) * 2008-10-01 2010-04-08 Robert Bosch Gmbh Verfahren zum Betreiben eines Fahrzeugs mit einem hybriden Motorsystem sowie Motorsystem und Fahrzeug
EP2343210B1 (en) * 2008-10-31 2018-04-04 Toyota Jidosha Kabushiki Kaisha Power supply system for electric vehicle and control method for the same
EP2353920B1 (en) * 2008-10-31 2019-01-23 Toyota Jidosha Kabushiki Kaisha Electrically driven vehicle and electrically driven vehicle control method
WO2010052766A1 (ja) * 2008-11-05 2010-05-14 トヨタ自動車株式会社 ハイブリッド車両およびハイブリッド車両の制御方法
DE102008054699A1 (de) * 2008-12-16 2010-06-24 Robert Bosch Gmbh Verfahren zur Reduktion einer Antriebsleistung eines Fahrzeugantriebs
US20100280690A1 (en) * 2009-04-30 2010-11-04 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Awarding standings to a vehicle based upon one or more fuel utilization characteristics
US20100280686A1 (en) * 2009-04-30 2010-11-04 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Awarding privileges to a vehicle based upon one or more fuel utilization characteristics
US8855907B2 (en) * 2009-04-30 2014-10-07 Searete Llc Awarding privileges to a vehicle based upon one or more fuel utilization characteristics
US20110106591A1 (en) * 2009-04-30 2011-05-05 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Awarding standings to a vehicle based upon one or more fuel utilization characteristics
US20100280691A1 (en) * 2009-04-30 2010-11-04 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Awarding standings to a vehicle based upon one or more fuel utilization characteristics
US20100280887A1 (en) * 2009-04-30 2010-11-04 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Awarding privileges to a vehicle based upon one or more fuel utilization characteristics
US20100280693A1 (en) * 2009-04-30 2010-11-04 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Awarding standings to a vehicle based upon one or more fuel utilization characteristics
US20100280705A1 (en) * 2009-04-30 2010-11-04 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Awarding standings to a vehicle based upon one or more fuel utilization characteristics
US20100280704A1 (en) * 2009-04-30 2010-11-04 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Awarding standings to a vehicle based upon one or more fuel utilization characteristics
US20100280689A1 (en) * 2009-04-30 2010-11-04 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Awarding standings to a vehicle based upon one or more fuel utilization characteristics
US20100280706A1 (en) * 2009-04-30 2010-11-04 Searete Llc, A Limited Liability Corporation Of State Of Delaware Awarding standings to a vehicle based upon one or more fuel utilization characteristics
US20110106354A1 (en) * 2009-04-30 2011-05-05 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Awarding standings to a vehicle based upon one or more fuel utilization characteristics
US20100280708A1 (en) * 2009-04-30 2010-11-04 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Awarding standings to a vehicle based upon one or more fuel utilization characteristics
US20100280692A1 (en) * 2009-04-30 2010-11-04 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Awarding standings to a vehicle based upon one or more fuel utilization characteristics
US20100280709A1 (en) * 2009-04-30 2010-11-04 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Awarding standings to a vehicle based upon one or more fuel utilization characteristics
US20100280886A1 (en) * 2009-04-30 2010-11-04 Searete Llc, A Limited Liability Corporation Of The State Of Delware Awarding privileges to a vehicle based upon one or more fuel utilization characteristics
US20100280707A1 (en) * 2009-04-30 2010-11-04 Searete Llc, A Limited Liability Corporation Of State Of Delaware Awarding standings to a vehicle based upon one or more fuel utilization characteristics
US20100280688A1 (en) * 2009-04-30 2010-11-04 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Awarding standings to a vehicle based upon one or more fuel utilization characteristics
US20100280885A1 (en) * 2009-04-30 2010-11-04 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Awarding privileges to a vehicle based upon one or more fuel utilization characteristics
US20100280888A1 (en) * 2009-04-30 2010-11-04 Searete LLC, a limited libaility corporation of the State of Delaware Awarding privileges to a vehicle based upon one or more fuel utilization characteristics
US9834198B2 (en) * 2009-07-14 2017-12-05 Ford Global Technologies, Llc Generator power control
US8280598B2 (en) * 2009-07-16 2012-10-02 GM Global Technology Operations LLC Motor torque management associated with audible noise for a hybrid powertrain system
US20110165829A1 (en) * 2010-02-25 2011-07-07 Ford Global Technologies, Llc Automotive vehicle and method for operating climate system of same
JP5585211B2 (ja) * 2010-05-27 2014-09-10 日産自動車株式会社 電動車両用動力伝達装置
US20130218386A1 (en) * 2010-08-04 2013-08-22 Fisker Automotive, Inc. Vehicle operation mode systems and methods
DE102010038010A1 (de) * 2010-10-06 2012-04-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Betriebsverfahren für ein Hybridfahrzeug
US9187100B2 (en) * 2010-12-20 2015-11-17 Cummins Inc. Hybrid power train flexible control integration
SE537909C2 (sv) * 2010-12-24 2015-11-17 Komatsu Mfg Co Ltd Hjullastare med motorstyrenhet för växling mellan ett lågt och ett högt motoreffektläge
US9613473B2 (en) * 2011-01-06 2017-04-04 Ford Global Technologies, Llc Method and apparatus for energy usage display
KR101882545B1 (ko) * 2011-05-18 2018-07-26 히다찌 겐끼 가부시키가이샤 작업 기계
US8827865B2 (en) 2011-08-31 2014-09-09 GM Global Technology Operations LLC Control system for a hybrid powertrain system
US9162663B2 (en) 2011-09-09 2015-10-20 Allison Transmission, Inc. Method of optimizing vehicle performance based on countershaft acceleration
TW201331066A (zh) * 2011-10-10 2013-08-01 普羅泰拉公司 在固定路線應用程式下用於電池壽命最大化的系統及方法
DE102011056676A1 (de) * 2011-12-20 2013-06-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Geräuschreduzierung bei Kraftfahrzeugen mit Hybrid-Antrieb
US8801567B2 (en) 2012-02-17 2014-08-12 GM Global Technology Operations LLC Method and apparatus for executing an asynchronous clutch-to-clutch shift in a hybrid transmission
US8725335B2 (en) 2012-04-30 2014-05-13 GM Global Technology Operations LLC System and methods for torque control in an electronic all wheel drive vehicle
KR101481283B1 (ko) * 2013-06-28 2015-01-09 현대자동차주식회사 하이브리드차량의 운전제어방법
CN104417544B (zh) 2013-09-09 2017-08-22 比亚迪股份有限公司 混合动力汽车的控制系统和控制方法
CN104417554B (zh) 2013-09-09 2018-03-13 比亚迪股份有限公司 混合动力汽车及其的巡航控制方法
CN104417347B (zh) 2013-09-09 2017-08-04 比亚迪股份有限公司 混合动力汽车的控制系统和控制方法
CN104417346B (zh) 2013-09-09 2017-04-12 比亚迪股份有限公司 混合动力汽车的控制系统和控制方法
CN104417344B (zh) 2013-09-09 2017-03-15 比亚迪股份有限公司 混合动力汽车及其的驱动控制方法
CN104417557B (zh) 2013-09-09 2017-07-04 比亚迪股份有限公司 一种车辆的滑行回馈控制系统及其控制方法
CN104417543B (zh) 2013-09-09 2017-08-22 比亚迪股份有限公司 混合动力汽车的控制系统和控制方法
US20150224979A1 (en) * 2014-02-07 2015-08-13 GM Global Technology Operations LLC Drive mode moderator for a vehicle
CN104129319B (zh) * 2014-07-09 2016-07-06 浙江绿源电动车有限公司 电动车的电机转速的调节方法和装置
JP5961233B2 (ja) * 2014-09-29 2016-08-02 富士重工業株式会社 車両の制御装置及び車両
US9358892B1 (en) * 2014-12-02 2016-06-07 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for pre-charging a hybrid vehicle for improving reverse driving performance
US9758167B1 (en) 2016-03-08 2017-09-12 Gkn Driveline North America, Inc. Hill detection and grade percent estimation logic for an all-wheel drive system
US10661764B1 (en) * 2017-03-28 2020-05-26 Apple Inc. Braking system control state transitions
EP3505410B1 (en) * 2017-12-28 2020-08-05 Magneti Marelli S.p.A. Method for efficient management and control of a hybrid propulsion system
US10369900B1 (en) * 2018-02-20 2019-08-06 GM Global Technology Operations LLC Onboard DC charging circuit using traction drive components
DE102020110866A1 (de) * 2020-04-22 2021-10-28 Daimler Ag Verfahren zur Ausgabe von Empfehlungen zum energieeffizienten Bedienen eines Fahrzeugs durch ein vom Fahrzeug umfasstes Assistenzsystem
CN111695202B (zh) * 2020-06-19 2022-04-12 太原理工大学 一种基于近似模型的燃料电池汽车模糊控制策略优化方法
CN112937548A (zh) * 2021-03-24 2021-06-11 吉林大学 一种功率分流式混合动力汽车动力域控制系统
CN113619512A (zh) * 2021-08-02 2021-11-09 岚图汽车科技有限公司 利用发动机演奏音乐的方法、控制器、系统、介质及设备
US11376943B1 (en) 2021-08-13 2022-07-05 Oshkosh Defense, Llc Electrified military vehicle
US11498409B1 (en) 2021-08-13 2022-11-15 Oshkosh Defense, Llc Electrified military vehicle
CN114597951B (zh) * 2022-04-06 2023-05-05 西南交通大学 一种电动汽车参与交流城轨供电系统节能运行的优化方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325740A (ja) * 1991-04-26 1992-11-16 Mitsubishi Electric Corp 船外機用内燃機関制御装置
EP0570234B1 (en) 1992-05-15 1999-11-24 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Operating method for a hybrid car
CN1065960C (zh) * 1997-04-08 2001-05-16 华南理工大学 汽车空气阻力系数cd值的测试方法
US6784565B2 (en) * 1997-09-08 2004-08-31 Capstone Turbine Corporation Turbogenerator with electrical brake
US5931757A (en) * 1998-06-24 1999-08-03 General Motors Corporation Two-mode, compound-split electro-mechanical vehicular transmission
US6554088B2 (en) * 1998-09-14 2003-04-29 Paice Corporation Hybrid vehicles
JP3832237B2 (ja) * 2000-09-22 2006-10-11 日産自動車株式会社 ハイブリッド車の制御装置
JP2002106253A (ja) * 2000-10-04 2002-04-10 Kayaba Ind Co Ltd 電動スライドドアの制御装置
US6600414B2 (en) * 2000-12-20 2003-07-29 Trw Inc. Apparatus and method for detecting vehicle rollover having a discriminating safing function
US6523630B2 (en) * 2001-01-18 2003-02-25 Delta Electronics, Inc. Constant speed controlling device and method
US6812586B2 (en) * 2001-01-30 2004-11-02 Capstone Turbine Corporation Distributed power system
DE10209514B4 (de) * 2001-03-30 2016-06-09 Schaeffler Technologies AG & Co. KG Antriebsstrang
JP3666438B2 (ja) * 2001-10-11 2005-06-29 日産自動車株式会社 ハイブリッド車両の制御装置
US7110867B2 (en) * 2002-08-26 2006-09-19 Nissan Motor Co., Ltd. Vibration suppression apparatus and method for hybrid vehicle
US20040044448A1 (en) * 2002-08-27 2004-03-04 Ford Motor Company Vehicle systems controller with modular architecture
US6832148B1 (en) * 2003-10-14 2004-12-14 General Motors Corporation Automatic engine stop and restart mode for reducing emissions of a hybrid electric vehicle
US7127337B2 (en) * 2003-10-14 2006-10-24 General Motors Corporation Silent operating mode for reducing emissions of a hybrid electric vehicle
US7653474B2 (en) * 2004-05-14 2010-01-26 Gm Global Technology Operations, Inc. Method of determining engine output power in a hybrid electric vehicle

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101469638B (zh) * 2007-11-04 2012-09-05 通用汽车环球科技运作公司 用于混合动力系统中转矩管理的发动机控制系统
CN101508295B (zh) * 2007-11-05 2015-01-28 通用汽车环球科技运作公司 混合动力系系统的控制方法
CN101628581B (zh) * 2008-07-18 2012-12-26 通用汽车环球科技运作公司 车辆hvac控制
CN101842569B (zh) * 2008-08-01 2014-09-24 丰田自动车株式会社 发动机燃料诊断装置和用于具有该装置的自动变速器的控制设备
US8428808B2 (en) 2008-08-01 2013-04-23 Toyota Jidosha Kabushiki Kaisha Engine fuel diagnosis device and control apparatus for automatic transmission having the device
CN101842569A (zh) * 2008-08-01 2010-09-22 丰田自动车株式会社 发动机燃料诊断装置和用于具有该装置的自动变速器的控制设备
CN102088190B (zh) * 2009-12-03 2015-01-21 三星Sdi株式会社 并网电力存储系统和控制并网电力存储系统的方法
CN102088190A (zh) * 2009-12-03 2011-06-08 三星Sdi株式会社 并网电力存储系统和控制并网电力存储系统的方法
CN103863309A (zh) * 2012-12-14 2014-06-18 通用汽车环球科技运作有限责任公司 用于管理插入式混合动力车辆中的充电耗减的方法和设备
CN104192141A (zh) * 2014-08-13 2014-12-10 潍柴动力股份有限公司 一种混合动力车辆动力控制方法和系统
CN104192141B (zh) * 2014-08-13 2017-03-01 潍柴动力股份有限公司 一种混合动力车辆动力控制方法和系统
CN109070764A (zh) * 2016-04-26 2018-12-21 宝马股份公司 用于运行包括电机和内燃机的具有电蓄能器的混合动力车辆的方法和装置
CN109070764B (zh) * 2016-04-26 2021-10-26 宝马股份公司 用于运行包括电机和内燃机的具有电蓄能器的混合动力车辆的方法和装置
CN112424018A (zh) * 2018-07-17 2021-02-26 松下知识产权经营株式会社 电源系统以及管理装置
CN112424018B (zh) * 2018-07-17 2024-04-23 松下知识产权经营株式会社 电源系统以及管理装置
CN114007890A (zh) * 2019-07-09 2022-02-01 松下知识产权经营株式会社 管理装置以及车辆用电源系统
CN114007890B (zh) * 2019-07-09 2024-04-02 松下知识产权经营株式会社 管理装置以及车辆用电源系统

Also Published As

Publication number Publication date
US20050256631A1 (en) 2005-11-17
US7653474B2 (en) 2010-01-26
CN100400831C (zh) 2008-07-09
DE102005022222A1 (de) 2005-12-15

Similar Documents

Publication Publication Date Title
CN100400831C (zh) 在混合动力电动车辆中确定发动机输出功率的方法
CN102398595B (zh) 具有控制系统的混合动力传动系和控制其的方法
US6832148B1 (en) Automatic engine stop and restart mode for reducing emissions of a hybrid electric vehicle
US7127337B2 (en) Silent operating mode for reducing emissions of a hybrid electric vehicle
CN104859660B (zh) 利用过去能量消耗中的变量预测电动车辆能量消耗
US7449891B2 (en) Managing service life of a battery
CN1819933B (zh) 动力输出装置、控制动力输出装置的方法以及汽车
US8565952B2 (en) Forward-looking hybrid vehicle control strategy
US20150112526A1 (en) Vehicle system and method for at-home route planning
CN1809486B (zh) 混合动力车辆及混合动力车辆控制方法
CN100417561C (zh) 动力输出设备和混合动力车
CN103354790B (zh) 混合动力车辆的驱动控制设备及混合动力车辆
CN101663187B (zh) 车辆及其控制方法
US20150217755A1 (en) Vehicle energy management system and method
US10730504B2 (en) Vehicle and method for controlling the vehicle
US20130024055A1 (en) Adaptive energy management in a hybrid vehicle
US10065628B2 (en) Location enhanced distance until charge (DUC) estimation for a plug-in hybrid electric vehicle (PHEV)
US20150203096A1 (en) System and Method for Controlling Battery Power Based on Predicted Battery Energy Usage
CN105083274B (zh) 电动车辆的选择性电动模式
US20110172865A1 (en) Method For Optimizing Powertrain Efficiency For A Vehicle
CN101270809A (zh) 用于混合变速器的离合器控制
CN101056775A (zh) 车辆以及车辆的控制方法,特别是在减档期间
CN104417526B (zh) 用于其电动机不可用时的混合动力车辆的控制策略
CN105438164A (zh) 混合动力车
CN1900504B (zh) 车辆及控制车辆发动机的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080709

Termination date: 20200516