TW201331066A - 在固定路線應用程式下用於電池壽命最大化的系統及方法 - Google Patents
在固定路線應用程式下用於電池壽命最大化的系統及方法 Download PDFInfo
- Publication number
- TW201331066A TW201331066A TW101137362A TW101137362A TW201331066A TW 201331066 A TW201331066 A TW 201331066A TW 101137362 A TW101137362 A TW 101137362A TW 101137362 A TW101137362 A TW 101137362A TW 201331066 A TW201331066 A TW 201331066A
- Authority
- TW
- Taiwan
- Prior art keywords
- charging
- energy storage
- storage system
- electric vehicle
- end point
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2045—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/32—Constructional details of charging stations by charging in short intervals along the itinerary, e.g. during short stops
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/50—Charging stations characterised by energy-storage or power-generation means
- B60L53/54—Fuel cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/13—Maintaining the SoC within a determined range
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/18—Buses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/26—Rail vehicles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/40—The network being an on-board power network, i.e. within a vehicle
- H02J2310/48—The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
本發明之一實施例提供一種使一電動車輛之一儲能系統充電的方法。該方法包含決定在不同時間該電動車輛之一特定路線的估計消耗及基於該儲能系統之一最小充電位準狀態設定該儲能系統之一目標終點。該方法進一步包含基於該目標終點及該決定之估計消耗決定該儲能系統之充電設定點及決定該電動車輛在該給定路線上行駛之後的該儲能系統之實際終點。該方法亦包含比較該實際終點與該目標終點且決定該實際終點與該目標終點之間的該儲能系統之電荷狀態的差值。此外,該方法包含使用該實際終點與該目標終點之間的該差值以調整該儲能系統之該等充電設定點。
Description
在最近幾年,已提出具有電池組(battery)之混合及電動車輛,且一些車輛已投入使用以有效地使用能源(尤其是可再生能源)來作為保護環境之措施。通常,迄今為止已投入使用且安裝於車輛中之副電池組包含(例如)鉛蓄電池組、鎳金屬氫化物電池組或高功率鋰離子電池組。一些電動車輛(諸如電動車)藉由在充電站插上電動車輛之插頭來使其等電池組充電。其他電動車輛(諸如電動列車及輕軌車)透過軌道中之硬體或透過架空線永久地連接至電源。
因為電動車輛的整合式運輸系統(諸如巴士系統或交其他大眾運輸系統)之永久性電連接難看、不受歡迎、安裝及維護成本高且不安全,所以最近趨勢已從至電動車輛之永久性電連接之使用轉移。此等系統之一些不能使電動車輛獨立於軌道或架空線行駛。對於定期在小時段內再充電之重型車輛(諸如巴士),充電速度可極為相關。最近整合式運輸系統可使用固定充電站來使電動車輛中使用之重型電池組迅速充電。在一實例中,需要電動車輛在小於十分鐘內完成充電而可使其足以在必須再充電之前在一小時內完成其九至十二英里的正常路徑。
電動車輛的一個當前常見充電策略係使用在每個充電事件期間使電動車輛之電池組電池(battery cell)完全充電或儘可能多地充電之「最差情況分析藍本」策略。例如,若需要最大化電動車輛之最大行程,若難以預測下一次充電
事件或若不久的將來,電動車輛之電荷消耗係不可預測的,則此可為最佳。但是,此充電策略可導致損害電池組壽命或對電池組壽命有害的電荷狀態(SOC)範圍內之電池組循環。大多數電池組電池趨向於具有較低SOC範圍中充電之「最適點」(sweet spot),該SOC範圍可取決於電動車輛中使用之電池組化學成分及特定組態而為總電荷之10%至40%,總電荷之20%至60%或另一範圍。
因此,需要用於藉由在SOC範圍之較少受損區域中最大化SOC循環來最大化電動車輛之電池組壽命的系統及方法。
本發明之實施例提供用於藉由在SOC範圍之較少損害區域中最大化SOC循環來最大化電動車輛之電池組壽命的系統及方法。本文描述之本發明之實施例的多種態樣可應用於以下提出之任何特定應用或可應用於任何其他類型之車輛或電源或可應用於要求儲能系統之迅速充電的任何應用。本發明之實施例可應用為獨立系統或方法,或應用為整合式運輸系統,諸如巴士系統或其他大眾運輸系統。應理解,可個別、集體或彼此組合地瞭解本發明之不同態樣。
本發明之一實施例提供一種使一電動車輛之一儲能系統充電的方法。該方法包含決定在不同時間該電動車輛之一特定路線的估計消耗及基於該儲能系統之一最小充電位準狀態設定該儲能系統之一目標終點。該方法進一步包含基
於該目標終點及該決定之估計消耗決定該儲能系統之充電設定點及決定該電動車輛在該給定路線上行駛之後的該儲能系統之實際終點。該方法亦包含比較該實際終點與該目標終點且決定該實際終點與該目標終點之間的該儲能系統之電荷狀態的差值。此外,該方法包含使用該實際終點與該目標終點之間的該差值以調整該儲能系統之該等充電設定點。
決定估計消耗亦可包含:建立該電動車輛之行駛的一消耗表;從一個或多個資料連接構件接收對該消耗表之修改項;基於該等修改項調整該消耗表;及使用該消耗表以決定一特定週期內該電動車輛之該估計消耗。
本發明之實施例亦可包含:獲得關於在該儲能系統中使用之電池組電池的電池組特性化資訊;及決定充電設定點之間的該等差值;決定充電速率分佈以符合該等充電設定點;基於該電池組特性化資訊選擇該等充電速率分佈之一者;及基於該選擇之充電速率分佈修改該等電荷設定點。
本發明之實施例亦可包含一種電腦程式產品,其包含具有體現於其中之一電腦可讀程式碼的一電腦可用媒體。該電腦可讀程式碼經調適以經執行來實施使一電動車輛的一儲能系統充電之一方法,其中該方法包含決定在不同時間該電動車輛之一特定路線的估計消耗及基於該儲能系統之一最小充電位準狀態設定該儲能系統之一目標終點。該方法進一步包含基於該目標終點及該決定之估計消耗決定該儲能系統之充電設定點及決定該電動車輛在該給定路線上
行駛之後的該儲能系統之實際終點。該方法亦包含比較該實際終點與該目標終點且決定該實際終點與該目標終點之間的該儲能系統之電荷狀態的差值。此外,該方法包含使用該實際終點與該目標終點之間的該差值以調整該儲能系統之該等充電設定點。
本發明之實施例包含一種用於一電動車輛之充電系統。該充電系統包含一儲能系統,該儲能系統包括複數個電池組電池,其中該儲能系統位於該電動車輛內。該充電裝置可分離地與該電動車輛耦合以使該複數個電池組電池充電。該充電系統亦包含用於接收影響該等電池組電池之充電參數的一個或多個因數之構件。該充電系統亦包含用於該等儲能系統及充電裝置之一充電控制系統,其中該充電控制系統包含用於決定在不同時間該電動車輛之一特定路線的估計消耗之邏輯。該充電控制系統亦包含用於基於該儲能系統之一最小充電位準狀態設定該儲能系統之一目標終點之邏輯及用於基於該目標終點及該決定之估計消耗決定該儲能系統之充電設定點之邏輯。此外,該充電控制系統亦包含用於決定該電動車輛在該給定路線上行駛之後的該儲能系統之實際終點之邏輯及用於比較該實際終點與該目標終點且決定該實際終點與該目標終點之間的該儲能系統之電荷狀態的差值之邏輯。此外,該充電控制系統進一步包含用於使用該實際終點與該目標終點之間的該差值以調整該儲能系統之該等充電設定點之邏輯。
當連同以下描述及附圖考慮時,將進一步瞭解及理解本
發明之其他目標及優點。雖然以下描述可包含描述本發明之特是定實施例之特定細節,但不應解釋為限制本發明之範疇,而是作為較佳實施例之例證。對於本發明之每項態樣,熟悉此項技術者知道本文建議之許多變動係可行的。可在不脫離本發明之精神下在本發明之範疇內作出各種改變及修改。
本說明書中提及之所有公開案、專利及專利申請案以與如同每個個別公開案、專利或專利申請案被明確及個別地指示為以引用的方式併入相同之程度,以引用的方式併入本文中。
利用附圖中之特定性提出本發明之新穎特徵。將藉由參考提出其中使用本發明之原理的繪示性實施例及附圖之以下詳細描述獲得對本發明之特徵及優點之更好理解。
本發明提供用於藉由在SOC範圍之較少受損區域中最大化SOC循環來最大化電動車輛之電池組壽命的系統及方法。本文描述之本發明之多種態樣可應用於以下提出之任何特定應用、應用於電動或混合車輛或應用於任何其他類型之車輛。本文描述之本發明之多種態樣可應用於以下提出之任何特定應用或應用於任何其他類型之車輛或應用於電源或要求使儲能系統迅速充電之任何應用。本發明可應用為獨立系統或方法,或應用為整合式車輛系統之部分。應理解,可個別、集體或彼此組合地瞭解本發明之不同態
樣。
例如,由系統供電之電動車輛可包含根據本發明之一實施例的具有圖1中示意性展示之多種特徵的運輸巴士。巴士之特徵可應用於其他類型之車輛,車輛包含校車、廂式送貨汽車、接駁巴士、牽引式掛車、第5級卡車(重達16,001-19,500磅、雙軸、六輪單節)、第6級卡車(重達19,501-26,000磅、三軸單節)、第7級卡車(重達26,001-33,000磅、四軸或四軸以上的單節)、第8級卡車(重達33,000磅及多於四軸或少於四軸的單節)、具有多於14,000磅之GVWR重量之車輛、具有15:1或更大之貨物相對駕駛員質量的車輛、具有六輪或更多輪之車輛、具有三軸或更多軸之車輛、客車或任何其他類型之車輛。
車輛具有包含電池組之推進電源。此等電池組可封裝為電池組電池、電池組包(battery pack)、模組、電池組串(string)或封裝成其他組態。在本發明之一些實施例中,車輛可具有一個或多個額外電源,諸如內燃機或燃料電池組。無論車輛是全電池組型車輛還是混合電動車輛,車輛可為電池組供電之車輛或混合電動車輛,且可使用相同之基本電池組組態、驅動馬達及控制器。
車輛之推進電源可包含一個或多個電池組總成。電池組總成可透過使用轉換器將高電壓功率提供至車輛中之牽引馬達、高功率配件及低電壓配件。在本發明之一實施方案中,因為可量測每個電池電壓,所以可並聯放置電池以減少電池組管理系統之成本。但是,在一些其他實施例中,
在較大容量電池之情況下,在串聯地放置電池組之前無必要使電池組並聯。使用較大容量電池可增加整個總成之安全而無需增加電池組管理系統之成本。因此,電池組可配置成串聯或並聯或其等任何組合。此電池組連接靈活性亦允許電池組放置之靈活性。無論電池組散佈於車輛上之何處,電池組放置之此靈活性可為有益的。
在一些實施例中,重型車輛可行進預定路線,且在預定點停下以進行再充電。參見(例如)美國專利案第3,955,657號,該案之全文以引用的方式併入本文中。
在本發明之一實施例中,車輛之推進電源可包含多種化學成分之電池組電池,該等化學成分包含磷酸鋰鐵(LFP)、硬質碳/鎳鈷錳氧化物(NCM)、磷酸鋰錳、鋰離子化學成分及其他者。在一些實施方案中,推進電源可包含單純具有單個化學成分類型的電池組電池而無需任何其他類型之電池組電池,且電池組電池可包含技術中所知的任何形式或組合物。可以許多組態實施電池組電池,該等組態包含(但不限於)熟悉此項技術者所知的方形電池、圓柱形電池、鈕扣型電池、袋式電池及其他組態。亦可(諸如)使用不同充電速率或Ah電池組電池、電池組化學成分及儲存容量對電池組電池之組態進行多種修改。
車輛(諸如圖1中所示之運輸巴士)可用作使用電動車輛之整合式運輸系統(諸如巴士系統或其他大眾運輸系統)之部分。電動車輛可在相對固定之運輸路線上行駛,在該路線上車輛必須在回到特定位置進行再充電之前完成其整個
路線。在習知實施方案中,可在每個充電事件使電動車輛之電池組完全充電以避免其中要求電池組之整個容量完成給定路線之罕見分析藍本。但是,若電動車輛在固定或可預測路線上行駛,則可根據本發明之實施例實施替代之SOC充電策略以允許改進電池組壽命。若電動車輛之典型行駛在完成路線時僅使用電池組之一半容量,則在大多數案例中可需要充電至少於100%之容量。但是,擔心不能預測將來消耗需求經常導致固定充電策略偏向最差情況發展。此在迅速充電需求導致透過迅速充電使過量SOC可用時變得明顯,但是此以電池組電池之壽命為代價。
可使用(諸如)美國臨時專利申請案第61/385,114號名為「Systems and Methods for Equivalent Rapid Charging With Different Energy Storage Configurations」中描述的習知充電程序或迅速充電程序執行電動車輛之電池組的再充電,該案全文以引用的方式併入本文中。例如,可在短時間量中完成迅速充電程序以最小化車輛「停駛時間」及最大化電動車輛實地行駛時間。電動車輛需要在小於十分鐘內完成充電而可使其足以在必須再充電之前在一小時內完成其九至十二英里的正常路徑。但是,熟悉此項技術者將瞭解對系統範圍、充電時間、可用SOC、迅速充電中使用之安培數及電壓及其他者之修改,且預期本發明亦將涵蓋此等修改、變動及等效例。
具有固定路線(或有限路線選擇)及充電機會之車輛應用使可將SOC循環移至電池組之最少受損區域之適應性充電
策略、同時仍達成所要效能及範圍需求以獲得下一次充電機會成為可能。此在習知鋰離子化學成分下,試圖達成2C或更大之迅速充電速率時變得尤其有意義。對於鋰化學成分,存在較高充電速率充電具較少損害之SOC範圍。最大化此區域中充電事件之重疊使得能在迅速充電應用中達成較長循環壽命。
圖2係展示根據本發明之一實施例之固定路線上電動車輛之行駛的例示性充電及消耗循環之圖表。在典型行駛期間,電動車輛之電池組電池之SOC可在車輛之總SOC的30%至60%之間循環。為了防止車輛用完電荷且不能完成其路線,充電事件期間之初始設定點可經設定以適應電荷之底限或最小位準。例如,在乘客負載為高且車輛之暖氣、通風及空調(HVAC)處於完全使用中之最差案例分析藍本中,電池組電池之消耗可(例如)從2千瓦小時/英里增加至3.4千瓦小時/英里而導致電池組電池之較大放電深度到達約10% SOC。但是,30%至60%之循環範圍可能不與儲能系統之最佳循環範圍匹配,該最佳循環範圍取決於儲能系統中使用之電池組電池及特定組態而為SOC之10%至40%,SOC之20%至50%或另一範圍。
圖3係展示根據本發明之一實施例之固定路線上電動車輛之典型行駛的轉變之充電及消耗循環之圖表。在圖3中,典型充電及消耗循環已從SOC之30%至60%向下轉變為10%至40%以與儲能系統之最佳循環範圍匹配。在初始充電位準已上升至較高位準以與最差情況分析藍本之位準
匹配時,藉由使用適應性設定點策略及更準確地預測完成將來駕駛循環所需之消耗及相應地使儲能系統充電來主動調整充電及消耗循環可經適應較大能耗,如本文所描述。特定言之,可透過在給定電池之最少受損SOC範圍中最大化迅速充電循環及最小化極端充電速率離群點的充電設定點之選擇,最大化電池組壽命,尤其在固定路線迅速充電應用中。
圖4係展示根據本發明之一實施例之電動車輛的充電及消耗演算法之簡化流程圖。在圖4之步驟102中,決定電動車輛之估計消耗。此可為電動車輛之建議路線、可獲得關於電動車輛之估計能耗之資訊所針對的電動車輛整天或整週或任何時段之行駛的一次反覆。估計消耗(或如稍後描述之充電設定點)可以表、矩陣、圖表、資料結構或任何其他格式之形式且可基於從包含(但不限於)先前現場使用、測試資料、天氣資料庫、交通估計、即時交通資料、道路施工資訊、當地事件(諸如音樂會或會議)、機載量測、客運公司操作資料、乘客計數器、車費箱資訊、電池組管理系統、牽引馬達、電源供應器、轉換器或其他電動設備、HVAC系統、GPS及駕駛員輸入的各種源獲得之資訊。可透過包含(但不限於)3G/4G無線連接性、WiFi、藍芽、網際網路之各種傳輸構件、使用現有程式或製表資料、CAN網路、電池組管理系統、資料記錄器、充電站、運輸行駛分析或僅僅藉由在行駛期間或之後量測應用資料來獲得資料。
圖5係展示用於獲得根據本發明之一實施例的電動車輛之估計消耗之程序的流程圖。例如,可使用圖5中所示之一些或所有程序執行圖4中之步驟102。在步驟202中,基於(例如)圖6中所示之初始因數建立基本消耗表。可依具有針對某星期給定日的該日給定時間的估計消耗之條目的表格式顯示估計之基本消耗。估計消耗可基於路線設定檔及完成電動車輛之指定路線所需的kWh(千瓦小時)。雖然圖6及隨後圖可展示電動車輛從上午6點至上午11點之行駛,但是亦可根據本發明之實施例使用其他行駛時間。在車輛之路線設定檔或其他初始消耗因數改變時,可週期性地更新基本消耗表及/或週期性地重複程序202。
在圖5之步驟204中,針對長期因數修改步驟202中建立之基本消耗表。此調整之消耗表之實例如圖7所示。考量包含(但不限於)路線類型(CBD、COM、ARTERIAL)、路線設定檔(平路、山路、市區路線)、基本乘客負載設定檔、歷史HVAC負載、當日時間變化、某週時間變化、SOC之所需儲備位準、所要之電成本及其他者的每月、季節性或長期修改項,可修改表。例如,考量較大乘客負載或額外HVAC使用,在星期一的早上8點至10點之間估計消耗量可為較大。當乘客負載減少時,消耗量亦可在工作日與週末之間變化。在另一實例中,考量較高電成本及HVAC負載,而且較少乘客量,電動車輛之夏季行駛可導致消耗修改項。較高溫度可導致增加之效能,但是有電池組電池壽命縮短之風險,而電池組電池之操作範圍內的較
低溫度可允許增加之電池組電池壽命。來自天氣預報及當日時間之外部熱效果成為消耗修改項之因素,其中若預報炎熱天氣,則規劃額外消耗。相反地,當溫度通常較低時,或若預測涼爽天氣,則可在接近當日結束時規劃減少之消耗。改進之熱管理可藉由將電池之操作溫度維持於最佳範圍(其可在約10℃、15℃、20℃、25℃、30℃、35℃之較窄範圍或其他範圍)而動態地改進電池組電池壽命。天氣預報亦有助於預測車輛HVAC負載以及車輛之估計最大行程。可週期性更新調整之消耗表及週期性重複程序204以適應影響消耗表之長期修改項之改變。
在圖5之步驟206中,圖7中所示之修改之消耗表可經修改以調整包含(但不限於)車輛駕駛員習慣、乘客數量、天氣變化、諸如音樂會或大型事件之事件、設備問題或故障、遠端命令、智慧型儀錶變化、其他負載牽引源及其他者的短期修改項。若排程電動車輛在其正常排程外行駛且在大型事件之停車場間提供接駁服務,則歸因於車輛上乘客負載增加及對路線設定檔有更多需求,電動車輛之規劃短期消耗為高。在決定規劃消耗中駕駛員傾向亦可作為短期修改項。在給定路線上,一個駕駛員傾向於比另一駕駛員消耗更多kWh,或更有經驗之駕駛員比無經驗之駕駛員在車輛之行駛上更有效率。考量電動車輛之當前條件之改變,可即時或在週期性基礎上(諸如每小時或每隔十五分鐘)更新以上描述之短期修改項。
在本發明之特定實施例中,長期及短期修改項亦可修改
基本消耗表以不僅適應消耗之改變,而且適應規劃充電事件。例如,歸因於電動車輛之行駛排程之改變而迫使其在比正常路線明顯更長之路線上行駛,迫使電動車輛略過充電事件。在此例項中,消耗表可經修改以增加規劃之消耗量。若在上午11點至下午2點之間排程電動車輛略過充電事件,則考量在無略過之充電事件下發生額外消耗,該等時間之間的規劃消耗量增加。如隨後程序中描述,可將充電設定點設定在較高位準以適應增加之消耗,同時允許車輛繼續在其規劃路線上行駛。
在本發明之特定實施例中,充電及消耗演算法可用作允許電動車輛之擁有者或運營商在峰值需量週期期間避免使電動車輛充電之需量費率避免策略之部分。在某些州及國家中,峰值使用時間期間(例如,中午12點至下午4點之間)之電力使用之公用事業費率可急劇更高以鼓勵使用者使消耗轉變至其他週期。根據本發明之實施例之充電及損耗演算法可經轉變以允許電動車輛在其正常行駛時間期間繼續行駛,但是僅在充電係具經濟效率時進行充電。當前對電之需量費率可取決於增加之需量費率是否為電定價之長期修改項,或是否為(例如)由短期改變(諸如引起一段時間內局部區域中總體電消耗之增加的熱浪)引起之短期修改項而用作消耗表之長期修改項及短期修改項二者。
在圖6之步驟208中,決定給定時間之總預測之消耗。此可展示為圖7中所示之修改消耗表,已根據步驟204及206針對長期修改項及短期修改項調整該消耗表。圖7中修改
消耗表中之消耗值亦可從kWh轉換為圖8中所示之展示儲能系統之放電深度的值。此可藉由依據車輛之SOC定義kWh轉放電深度(DOD)之轉換來執行。例如,若車輛之總SOS係100 kWh,則可藉由將該週期內之規劃消耗除以車輛之總SOC將給定週期中20 kWh之規劃消耗轉換為20%之放電深度值。若電動車輛之總SOC係60 kWh,則針對20 kWh規劃消耗值的等量放電深度為33.33%。亦可使用其他替代消耗表或程序流程。例如,長期修改項及短期修改項可隨著基本消耗表之改變而被計算,且在另一步驟中與基本消耗組合。
給定時間內估計消耗亦可描述為變數Ci,j,其描述完成駕駛循環所需之預測消耗。此可連同圖9至圖11更好地理解。圖9係展示根據本發明之一實施例之不同條件期間固定路線上電動車輛之行駛的規劃之充電及消耗循環之圖表。圖10係根據本發明之一實施例之用於圖4中所示之充電及消耗演算法及圖9中之圖表的變數及因數之列表。圖11係展示根據本發明之一實施例之用於圖4中所示之消耗演算法及圖9中之例示性圖表的計算之圖表。
對於估計消耗Ci,j,變數i表示下一次出現排程之充電機會,其中變數j表示當日之當前時間。對於i>j之情形,因為值表示稍後時間之消耗,該等例項中之規劃消耗為長期。當i=j時消耗係短期且在充電機會之時間除了可使用長期消耗值之外亦可使用i=j時之消耗以決定適當之充電參數。因為i=j時不再需要在小於j之時間i關於充電機會預測
消耗(此意指已發生充電事件及消耗),所以可計算Ci,j直至i=j。
在已於圖4之步驟102中決定電動車輛之估計消耗之後,在步驟104中決定充電之目標終點。目標終點ET係應在駕駛循環結束時維持之最小SOC位準。值ET可經設定以維持最小儲備SOC量,使在設備故障或其他因素防止車輛有效行駛之情況下,電動車輛能夠返回至其充電站。終點ET亦可經設定以取決於使用的包含(但不限於)使用之電池組電池、電池組包與模組組態之特定儲能系統之詳情、該等組態之間使用之電互連及採用之特定電池組化學成分而最大化電池組壽命。例如,可將目標終點ET設定在如圖11中所示之SOC之10%以提供最小儲備SOC量且亦允許電動車輛在最佳範圍中循環,如圖9針對電動車輛之典型調整之行駛所示,該最佳範圍可介於總SOC之10%與40%之間。
在圖4之步驟106中,決定充電機會之充電設定點。充電設定點可表達為表示駕駛循環開始時之電荷狀態的值Si,j,其中變數i表示下一次出現排程之充電機會,其中變數j表示當日之當前時間。如圖12所示,可使用展示不同時間及充電機會之不同設定點值之設定點表來表達充電設定點Si,j。例如,可使用公式決定圖表中之設定點值之初始計算:Si,j=Ci,j+ET其中Ci,j係步驟102中決定之估計消耗且ET係步驟104中決定之目標終點。設定點Si,j應設定於一值以允許電動車輛
在出現排程之充電機會之前完成由其估計消耗Ci,j表示的其規劃之路線,同時維持作為儲備之最小目標終點ET。此外,亦可考量電動車輛之行駛期間的實際能耗,相應地調整充電設定點Si,j,如下描述。設定點Si,j亦可考慮將來的規劃充電事件。例如,若歸因於長期或短期修改項引起電動車輛略過一個或多個充電事件而增加消耗Ci,j,則需要較高設定點Si,j,或若電動車輛可在其下一次排程之充電事件之前返回充電,則亦可減少設定點Si,j。
在步驟108中,決定行駛之後的電動車輛之實際終點EA,i。此可藉由在每個駕駛循環結束時監測電池組電池之SOC來執行。在步驟110中,藉由找到目標終點ET與實際終點EA,i之間的差值來決定該兩個值之間的誤差εi。在步驟112中,設定點可經調整以修改以下更詳細討論之隨後電荷之間的充電分佈。誤差εi可用於在步驟114中使用公式調整將來充電設定點Si,j:Si,j=Ci,j+ET+εi-1其中Ci,j係步驟102中決定之估計消耗,ET係步驟104中決定之目標終點,且εi-1係目標終點ET與先前駕駛循環結束時之實際終點EA之間的差值。若已使用充電設定點表或其他資料表示,則決定之誤差εi可用於更新包含於充電設定點表內的將來充電設定點。可根據圖9及圖13中之圖表更好地理解併入誤差分量之設定點Si,j之計算,圖9及圖13中之圖表分為典型消耗分析藍本、消耗處於較高位準之中間消耗分析藍本以及乘客負載與HVAC操作可處於最高位準
之情況下的最差分析藍本的電動車輛之行駛。對於給定充電循環,若已設定目標終點ET且已決定循環之估計之消耗Ci,j,則目標設定點可用於該循環且可逆算以決定多少電荷應添加至電動車輛之儲能系統,以允許車輛完成其規劃路線,同時使循環維持在對其電池組電池最小損害之SOC位準處。只要資訊可用於預測電動車輛之估計消耗,可針對將來駕駛循環重複此程序。例如,考量估計消耗較高之中間及最差案例分析藍本,在圖9中估計消耗Ci,j增加。但是,因為對於駕駛循環,終點ET為相同,所以電動車輛之實際行駛期間未將步驟110中決定之誤差作為因數考慮。
圖13係展示根據本發明之一實施例之不同條件期間固定路線上電動車輛之行駛期間之充電及消耗循環的圖表。雖然目標終點ET保持於SOC之10%,但是可考量駕駛循環之各者期間電池組電池之剩餘SOC來調整實際終點EA,其中實際終點EA亦用於規劃將來進一步消耗。例如,在第一充電循環期間,實際消耗C0,j可為較大,導致實際終點E1,j低於目標終點ET。因為電動車輛之行駛已導致電池組電池之較大放電深度,所以可將下一次充電設定點S1,j相應地設定為等於第一循環中車輛之實際消耗C0,j(目標終點ET,在此案例中10% SOC)加上目標終點ET與駕駛循環結束時之實際終點E1,j之間的差值εi-1之總和。
在設定點S3,j,電動車輛依中間消耗分析藍本行駛,但是規劃在下一個駕駛循環變換為最差案例消耗分析藍本。為了考量此,下一個設定點S4,j可設定於SOC之較高位準以
適應此增加消耗位準。此外,如由處於低於目標終點之位準處的實際終點E4,j所示,駕駛循環期間之消耗C3,j亦可大於預期。由電動車輛使用之充電演算法可獲取及使用此即時充電資料以修改下一個設定點S4,j以及隨後設定點以增加電動車輛之電池組壽命,同時允許電動車輛為針對其規劃路線維持全部功能性。若設定點維持於充電設定點表或其它資料表示中時,可考量此等改變而更新表內的多個設定點。
圖4中所示之充電及消耗演算法亦可併入選用之程序,其中對於隨後充電機會之充電設定點經調整以修改充電速率分佈。例如,圖14係展示根據本發明之一實施例的電動車輛之行駛的兩個充電設定點分佈之圖表。充電分析藍本1與充電分析藍本2兩者併入三個不同的充電事件。在充電分析藍本1中,電動車輛在伴隨充電事件1及2之駕駛循環期間處於有限行駛,此要求在伴隨之駕駛循環期間電池組電池僅充電至30%及40% SOC。但是,例如,由於急劇增加之需求,第三駕駛循環中之路線改變或其他因素,充電事件3之後的電動車輛行駛可要求電池組電池充電至容量之90%以允許電動車輛完成其規劃路線。若電動車輛僅具有完成其充電事件之固定持續時間,則可在充電事件3期間要求高充電速率以在分配之時間量內使電池組電池充電至所需容量。取決於用於電池組電池之特定化學成分之特性,使用高充電速率(或c-rate)可減少電池組電池之壽命。例如,許多電池組電池在較高充電速率下展現壽命之非線
性降級。但是,修改之設定點調整程序可用於修改充電設定點,以允許電動車輛完成其規劃線路路線,同時亦最大化電池組電池之壽命。
圖14係展示根據本發明之一實施例之設定點調整程序的簡化流程圖。在步驟302中,獲得電池組電池資訊。例如,此資訊可包括電池組電池中使用之化學成分、取決於充電速率之電池組電池的降級曲線或關於電池組之當前狀態的資訊。在步驟304中,決定規劃充電設定點之間的差值。此可藉由產生或存取差量設定點表或其它類似資料結構來執行,差量設定點表或其它類似資料結構包含規劃設定點並且可透過差量設定點表或其它類似資料結構,(例如)依據充電設定點之階梯高度來決定充電設定點之差值。例如,步驟304亦可考慮規劃之將來充電事件,包含考量由於一個或多個長期或短期修改項(諸如對於電成本之高需量費率)而略過之充電事件。在步驟306中,執行計算以決定將允許電動車輛完成其規劃路線之潛在充電分佈。此可藉由對表資料執行統計分析來完成以產生多種充電分析藍本。例如,充電分析藍本1及充電分析藍本2係亦具有不同充電分佈以達到所要設定點之不同設定點分佈之兩項實例。如先前所討論,充電分析藍本1可在第三充電事件中要求使用高充電速率而導致可負面影響電池組壽命之較寬充電分佈。比較之下,使用充電分析藍本2將允許對於所有三個充電事件使用較低充電速率充電,此可導致電池組電池能在其等「最適點」內循環而改進其等壽命。
儘管第三充電事件僅將減少之充電量添加至電池組包,但是充電分析藍本2中之前兩個充電事件中添加之增加之充電量將允許電動車輛完成伴隨第三充電事件之駕駛循環。在本發明之特定實施例中,需要將較窄之分佈維持於充電速率之間。例如,步驟306可用於採取增加之步驟以最小化完成規劃駕駛循環所要之充電速率,該步驟將維持充電事件之間的充電速率分佈上之嚴緊帶。例如,以下公式可用於判定是否應修改規劃[設定點]。
△(i+1)-i<△(i+2)-i÷2<△(i+3)-I÷3,接著調整Si,j根據此計算,若跨多個充電事件量測時,充電速率分佈之改變較小,則充電設定點可經調整直至可減少跨充電事件之充電速率分佈之變化。
儘管將來略過一個或多個充電事件,由於增加之充電量為初期充電事件所需以允許電動車輛行駛,所以步驟306亦可經修改以適應規劃之將來充電事件。例如,若電動車輛在其定期排程下通常每小時進行充電一次,但是歸因於對電之高需量費率,經排程以在中午12點及下午1點錯過充電事件,則儘管錯過該等充電事件,在初期充電事件中額外充電可添加至電動車輛之電池組包以允許車輛繼續行駛。並非單獨在早上11點充電事件使電池組包充電至較高位準,步驟306中之計算可提供替代充電位準,其中電池組包在若干初期充電事件期間充電至較高位準以最小化充電速率分佈且增加電池組包之壽命。在以上描述之實例中,電池組包可在早上9點、早上10點及早上11點充電至
較高位準,而非在早上9點及早上10充電至常規位準,但是在早上11點急劇增加充電量以允許車輛在其規劃路線上行駛。
在步驟308中,選擇充電設定點分析藍本以最大化電池組包之壽命。在大多數情況下,需要跨充電事件最小化充電速率分佈。但是,不同電池組化學成分或電池組設置可反而使以按另一方式(例如藉由產生更寬之充電速率分佈)修改充電速率分佈來改進電池組電池之壽命而有利。可藉由選擇導致最寬充電速率分佈之充電設定點之分佈在步驟306中執行此等修改。例如,若較寬充電速率分佈將改進電池組電池,則對比於充電分析藍本2,選擇充電分析藍本1。
圖15中所示之設定點調整程序可(例如)作為步驟112整合至圖4中所示之充電及消耗演算法。或者,充電及消耗演算法可獨立於設定點調整程序運算而無需考慮充電速率分佈。雖然關於圖14描述之實例描述使用兩個充電分析藍本,但是可從具有基於該時接收之輸入針對實施方案所選之最佳充電速率分佈之充電分析藍本方面考慮較大數量之充電分析藍本。可利用即時修改電池組包之充電策略之新資訊不斷地修改設定點調整程序。例如,在充電分析藍本1中,若第二充電事件之前之規劃消耗急劇減少,則第二及第三充電事件之充電速率可經修改以維持隨後充電之較窄充電速率分佈。在本發明之另一實施例中,圖14中所示之圖表亦可經修改以在代替% SOC之Y軸上顯示每個充電
事件之充電的充電速率。例如,因為較窄之充電速率分佈可提供增加之電池組壽命,所以在一些實例中不太需要在三個連續充電事件內以2C、2C及4C使電池組包充電,而是在三個連續充電事件內以2.67C、2.67C及2.67C使電池組包充電。
可完全於電動車輛機載來實施本發明之實施例;透過一個或多個通信方法遠離電動車輛實施且傳輸至電動車輛來實施本發明之實施例;或在部分於電動車輛機載連同一些部分遠端實施之情況下實施本發明之實施例。例如,本發明之實施例可實施於BMS管理系統內、實施於分離之充電控制系統中、整合於電動車輛系統之其他現有元件內或以上一些組合。或者,本發明之實施例可在能夠接收及傳輸關於電動車輛之行駛之充電參數及其他資訊或前述一些組合之遠端位置處透過位於用於使電動車輛之電池組電池充電之固定充電裝置上或附近的控制系統之使用遠端地實施於(例如)連同一隊電動車輛之行駛一起使用的車輛管理系統中。例如,可藉由機載硬體獲得關於電動車輛之行駛之資訊,包含SOC資訊、當前使用者負載、電池組包健康狀況(health)及其他者。但是,可藉由一個或多個遠端系統獲得其他資訊,包含天氣資訊、智慧型儀錶速率改變、來自其他電動車輛之客運公司行駛資料及其他者。根據本發明之實施例的此資訊之處理可:完全於車輛機載內執行;透過一個或多個通信方法(諸如3G/4G、Wifi、藍芽或其他)於遠端位置執行且傳輸至車輛;或以上述一些組合執行。
熟悉此項技術者將瞭解除了本文描述之實施方案之外的額外實施方案,且預期本發明亦將涵蓋此等修改、變動及等效例。
本發明之實施例可涉及電動車輛或充電裝置內使用之其他組件之使用以符合充電需求,如美國專利申請案第61/328,143號及第61/289,755號中名稱分別為「Fast Charge Stations for Electric Vehicles in Areas with Limited Power Availability」及「Charging Stations for Electric Vehicles」中描述,該等案全文以引用的方式併入本文。例如,能夠快速充電之BMS亦可整合至電池組包及/或模組以對電池組串內之較弱電池組電池的潛在問題給定初期警報。BMS可給定關於模組內之電池電壓及溫度之準確回饋以確保健康電池組包且可經調適以在迅速充電程序期間監測增加之電壓。若特定電池組串有任何問題,則將該等模組從服務中自動移除且車輛可以在減少之容量下行駛直至當日結束時(若必要的話)。若偵測到故障,則BMS可與電池組串斷開連接。即使整個電池組串斷開連接,車輛仍能夠行駛。BMS可為特定電池、模組、電池組包或電池組串之問題的主要偵測方法。BMS可偵測故障何時發生且可指導電池組總成以使已出現故障之電池組總成之部分(諸如個別電池組串)斷開連接而防止電池組總成之其他部分受到損壞且允許車輛之連續行駛。BMS可與每個電池組包通信及在每個電池組包內通信以達成所要層級之偵測及管理。
本發明之實施例可實施於模組、電池組包或電池組串層
級。例如,圖16展示根據本發明之一實施例的模組之一實例。模組之外殼可由易於加工及非常迅速製造之ABS材料製成。在其他實施方案中,模組之外殼可由其他材料(諸如複合材料、玻璃纖維或碳纖維)製成。在一些實例中,外殼可由提供某種級別之隔離之材料(諸如在曝露於電弧時不會燃燒之材料)製成。可包含前端焊接板以將端子準確地定位及保持至外殼中來減少電池突片中之疲勞應力破裂。在一些案例中,電池突片可由金屬(諸如鋁)製成。BMS連接器可整合至模組之前端以快速連接機外BMS。端子可偏移及分接以用來附接螺栓之垂直安裝且易於組裝。
模組必須彼此隔離以保護模組使其等免於潛在電路短路。此可透過仔細的材料選擇及散熱片之後處理來完成。若透過BMS偵測到短路,則系統可使電池組串中之每個電池組包斷開連接,而此可使故障隔離。倘若隔離系統出現主要崩潰或故障,則包含此安全層級。
圖17展示根據本發明之實施例之可用於不同電荷容量之系統的若干不同的迅速充電組態。左側之第一充電組態使用具有相對較少過量SOC之LTO電池組化學成分,此導致在每個迅速充電期間幾乎完全填充充電組態。第二充電組態使用LFP電池組化學成分,但是第二充電組態類似於第一充電組態,此係因為在第一充電組態與第二充電組態之間SOC循環範圍類似,所以允許使用如第一充電組態中使用之類似設定充電規劃。SOC循環範圍可設定為可最大化電池組壽命且減少擁有成本的儲能系統中使用之電池組電
池的「最適點」。例如,最佳循環範圍可取決於儲能系統中使用之電池組電池及特定組態而為從10%至40%之總電荷、從20%至60%之總電荷或另一範圍。第二充電組態確實具有可或不可在系統行駛期間使用之更多過量SOC。第三充電組態將SOC循環範圍轉變至更高總充電位準,此可在電動車輛是否必須返回以再充電方面允許更大的靈活性。第四充電組態係具有較少電荷容量之較小系統,該第四充電組態具有類似於第一及第二充電組態之SOC循環範圍,但是過量SOC的量小於第二充電組態。除了其他因素外,亦可取決於系統之總電荷容量,系統之所要使用及系統之特定組態等等,根據本發明之實施例使用其他充電組態。例如,儘管歸因於系統之較小容量而具有減少之較低SOC限制,但是類似於第三充電組態之組態的充電組態可用於80 kWh系統。
圖18展示顯示根據本發明之一實施例之固定路線上電動車輛之每小時充電的設定排程之SOC循環之圖表。在每個預定週期(在此例項為一小時)內,電動車輛在其路線上行進且其儲能系統之SOC從SOC循環範圍之頂部的位準耗盡至路線結束處之較低位準。車輛每小時可循環通過SOC範圍之下半部分之約30%至40%的其SOC。路線完成之後,電動車輛迅速再充電至其SOC循環位準之頂部且可在其路線上繼續具有類似於其先前路線開始期間的SOC。可選擇SOC循環範圍以匹配可最大化電池組電池壽命的儲能系統中使用之電池組電池之「最適點」。因為電動車輛在一整
天可使用單個充電排程且無需額外充電排程,所以使用設定充電排程之額外優點係易於使用。如下文更詳細地描述,此可減少充電所需之程式化的複雜度。
圖19展示顯示根據本發明之一實施例之固定路線上電動車輛之每小時充電的可變排程之SOC循環之圖表。電動車輛之過量SOC容量可允許在何時發生SOC循環以及是否每小時發生充電事件方面有一些靈活性。例如,可在晚上使電動車輛充滿電,如電動車輛處於峰值電荷的早上6:00充電組態中所示。早上6:00充電組態展示不可用SOC之最小量,其中可根據需要週期性使用大SOC下限以延伸車輛之最大行程而無需返回再充電。例如,大能量容量可允許電動車輛在晚上充滿電且在凌晨時間行駛而SOC循環在其範圍之上半部分內。隨著歸因於增加之公用事業電網負載而使白天期間電之需量費率增加,電動車輛可利用機載過量SOC以最小化或避免在峰值時間充電,藉此使SOC循環轉變至其範圍之下半部分,直至電動車輛返回充電或在當日結束時結束其路線。相較於電的需量費率較高時之白天期間一致使車輛充電,此可藉由利用晚上(當需量較小時)的較低電費率來減少電動車輛之擁有者的行駛成本。
在本發明之另一實施例中,當電費率尤其高時,電動車輛之儲存系統中攜帶之電荷亦可在峰值需求時賣回給公用事業電網。此要求電動車輛在其等充電站停駐且適當的基礎結構及換流器存在以允許電荷賣回至公用事業電網中。由於任何過量SOC可在較高電費率之峰值需求時返回至公
用事業電網,此給電動車輛之擁有者或運營商及充電系統提供額外靈活性,如此降低電動車輛之總行駛成本。對於未設計成具有其等行駛需求之過量SOC的電動車輛,此選項可能不存在,且需要使用所有其等SOC來完成其等正常運輸路徑,其中少許過量SOC可用於賣回至公用事業電網。
圖20展示具有可應用於根據本發明之一實施例的電動車輛之即時充電的不同考慮之決策矩陣。電動車輛可使用充電及連接系統,如美國專利申請案第61/328,152號名為「Systems and Methods for Automatic Connection and Charging of an Electric Vehicle at a Charging Station」中描述,該案以引用的方式併入本文中。本發明之實施方案使用在來自駕駛員之最少輸入或無來自駕駛員之輸入下控制電動車輛之充電的自動電池組充電程序控制系統。電池組充電程序控制系統可位於使用無線或有線信號與充電站通信之電動車輛上。或者,電池組充電程序控制系統亦位於充電站中,該充電站與電動車輛之機載的信號發射器及傳輸器通信。
當決定使儲能系統充多少電及充得多快時,即時充電決策矩陣可考慮許多不同因素。首先,可考慮當日時間及天氣預報。較高溫度可導致增加之效能,但是會有縮短電池組電池壽命之風險,而電池組電池之操作範圍內的較低溫度可允許增加之電池組電池壽命。來自天氣預報及當日時間之外部熱效果可成為充電計算之因素,其中考量當天期
間稍後減少之電池組壽命,若預報炎熱天氣或在晚上期間或清晨,則發生額外充電。相反地,當溫度通常較低時,或若預測涼爽天氣,則可在接近當日結束時執行較少充電。改進之熱管理可藉由將電池組電池之操作溫度維持於最佳範圍(其可在約10℃、15℃、20℃、25℃、30℃、35℃之較窄範圍或其他範圍)而急劇改進電池組電池壽命。天氣預報亦有助於預測車輛HVAC負載以及車輛之估計最大行程。
即時充電決策矩陣亦在決定充多少電及充得多快中考慮需量費率及公用事業電網上之負載。如上文關於圖19所描述,電池組充電程序控制系統可避免在需量費率為高時之充電以減少行駛成本且反而使電動車輛在包含於超大型儲能系統內之過量SOC下運行。此外,當充電事件必需於存在高需量費率下發生時,可藉由限制每個特定時間段中充電之能量來減輕峰值平均充電速率數量。若預報炎熱天氣且電網之需量費率為高,則電池組充電過程控制系統可減少在每個站之充電量或根本不充電直至在當天期間稍後充電。例如,若電動車輛之預測最大行程不足以到達下一個充電站,則基於剩餘SOC、天氣預報條件、預測消耗及其他因素作出在對公用事業電網之峰值需量週期期間充電之決策。若車輛可到達下一個充電站,則可避免較高成本之充電事件。
在決定是否應使電動車輛充電及充電量中亦可考慮剩餘SOC。例如,電動車輛可併入充電控制器或其他電路以監
測及決定系統中剩下之剩餘SOC。SOC量可傳達至電池組充電程序控制系統以決定是否應使電動車輛充電及適當充電參數。若儲能系統中剩下之剩餘SOC為少許,則可使電動車輛迅速充電以將SOC位準再充至可用容量。若剩餘大量SOC,則電池組充電程序控制系統可決定使系統再充電以將SOC維持於高位準來對當天期間稍後之行駛提供額外靈活性,或決定不使儲能系統充電或僅使其充較少量之電。在一些實例中,剩餘SOC可作為車輛儀錶板上以類似於油量計之方式指示電池組SOC之顯示傳達至車輛之駕駛員。例如,在充電之後,可顯示滿油量計。
在一些實施方案中,可考慮直至下一個充電機會之預測消耗。例如,可基於對車輛之能量消耗之歷史瞭解來定製總需要電荷(kWh)。歷史使用、預測之將來需求及對電費及費率排程之瞭解可被考慮且用於調整充電速率及車輛充電頻率二者以最小化或減少電需量費及使機載能量儲存之使用最有效。例如,若預測車輛之下一個預測充電將在短時間間隔中發生且電池組之電荷狀態足夠高,則僅需要對車輛提供最小充電。在另一實例中,若預測將在較長時間間隔之後發生下一個充電,則需要使車輛充更多的電。亦可考慮電動車輛之路線特性,諸如標高改變、當日不同時間期間之交通。
可藉由使用即時充電決策矩陣(而非使用設定充電排程)來得到若干優點。首先,可藉由最佳化迅速充電程序以在峰值時間放棄充電且在公用事業電網上之需量費率及負載
為低時充電來獲得較低成本。在無需使用迅速充電時(諸如晚上,因電動車輛通常在白天期間行駛),亦可藉由使用其他充電方法(諸如緩慢充電、分開充電(split charging)、脈衝充電、排氣充電(burp charging)、迅速充電或其他充電機制)來達成增加之電池組壽命及較低資本成本。在電動車輛開始較長路線時,或在下一個充電機會之前的預測能量消耗為高時,亦藉由使電動車輛充滿電來獲得增加之行進最大行程。並非意指本文所列之優點具排他性,且可獲得對熟悉此項技術者而言顯而易見之其他優點。
雖然已在重型電動車輛中使用之電動車輛充電系統之背景內容中描述本發明之實施例,但是本發明之其他實施例可適用於要求儲能系統之迅速充電的任何應用。除了運輸系統中之使用之外,應用之實施例亦可在涉及所有權建議之總成本、在固定路線上運行、受益於迅速充電或較不關注車輛之最初購買價格之任何車輛應用中使用。
應從上文理解,雖然已繪示及描述特定實施方案,但是可對其等進行多種修改且本文預期多種修改。亦不期望本發明受到說明書內提供之特定實例限制。雖然已參考前述說明文描述本發明,但是並不意指在限制意義上解釋本文之較佳實施例之描述及繪示。此外,應理解,本發明之所有態樣並不限於取決於各種條件及變數的本文提出之特定描繪、組態或相對性質。熟悉此項技術者將瞭解呈本發明之實施例之形式及細節的多種修改。因此,預期本發明亦
應涵蓋任何此等修改、變動及等效例。
本發明之所有概念可與電池組管理之其他系統及方法合併或整合,該等其他系統及方法包含(但不限於)全文以引用的方式併入本文中的美國專利申請案第2008/0086247號(Gu等人)中描述之系統及方法。
雖然已經在本文中展示及描述本發明之較佳實施例,但是熟悉此項技術者清楚此等實施例僅藉由實例提供。熟悉此項技術者知道可在不脫離本發明下進行許多變動、改變及代替。應理解,可在實踐本發明中採用本文描述的本發明之實施例之多種替代例。期望以下請求項定義本發明之範疇且此等請求項及其等等效例之範疇內之方法及結構由其等涵蓋。
本文描述之系統及方法之態樣可實施為程式化至包含可程式化邏輯器件(PLD)(諸如場可程式化閘陣列(FPGA)、可程式化陣列邏輯(PAL)器件、電可程式化邏輯)及記憶體器件與基於標準元件器件以及特定應用積體電路(ASIC)的任何各種電路中之功能性。用於實施系統及方法之態樣的一些其他可能性器件包含:具有記憶體之微控制器、嵌入式微處理器、韌體、軟體等等。此外,系統及方法之態樣可體現於具有基於軟體之電路模擬、離散邏輯(循序及組合)、客製化器件、模糊(類神經網路)邏輯、量子器件及任何以上器件類型之混合的微處理器中。當然,可以各種組件類型(例如,類似互補金屬氧化物半導體(CMOS)之金屬氧化物半導體場效電晶體(MOSFET)技術、類似射極耦合
邏輯(ECL)之雙極技術、聚合物技術(例如,矽共軛聚合物及金屬共軛聚合物金屬結構)、混合類比及數位技術等等)提供基礎器件技術。
應注意,本文揭示之多種功能或程序可依照其等行為、暫存器傳送、邏輯組件、電晶體、佈局幾何及/或其他特性描述為體現於多種電腦可讀媒體中之資料及/或指令。其中可體現此等格式化資料及/或指令之電腦可讀媒體包含(但不限於)呈多種形式(例如,光學、磁性或半導體儲存媒體)之非揮發性儲存媒體及可用於透過無線、光學或有線發信號媒體或其等任何組合傳送此等格式化資料及/或指令的載波。藉由載波之此等格式化資料及/或指令之傳送實例包含(但不限於)在網際網路及/或其他電腦網路上經由一或多種資料傳送協定(例如,HTTP、FTP、SMTP等等)。當經由一個或多個電腦可讀媒體在電腦系統內接收時,根據系統及方法之組件及/或程序的此類基於資料及/或指令之表達式可由電腦系統內之處理實體(例如,一個或多個處理器)連同一個或多個其他電腦程式之執行來處理。
除非從以下討論明白以別的方式明確陳述,否則應瞭解,遍及說明書,使用諸如「處理」、「演算」、「計算」、「決定」或類似物之術語的討論係指將表示為系統暫存器及/或記憶體內之實體(諸如電子)量之資料操縱及/或轉變為類似地表示為系統記憶體、暫存器或其他此等資訊儲存、傳輸或顯示器件內之實體量之其他資料的處理器、電
腦或計算系統或類似電子計算器件之動作及/或程序的全部或部分。熟悉此項技術者亦應瞭解,本文提及之術語「使用者」可為個人以及公司及其他法人實體。此外,本文呈現之程序並非固有地關於任何特定電腦、處理器件、物品或其他裝置。將從以下描述明白用於各種此等系統之結構實例。此外,並不參考任何特定處理器、程式設計語言、機器碼等等描述本發明之實施例。應理解,各種程式設計語言、機器碼等等可用於實施本文描述之本發明之教示。
除非背景內容以別的方式清楚地要求,否則遍及描述及請求項,單詞「包括」、「包含」及類似物係在包含意義上,而排他或詳盡意義上;即,在「包含,但不限於」意義上進行解釋。使用單數或複數之單詞亦分別包含複數或單數。此外,單詞「本文」、「下文」、「以上」、「以下」及類似意思之單詞係指作為整體之本申請案且並非指本申請案之任何特定部分。當參考兩個或更多個項之列表使用單詞「或」時,該單詞涵蓋單詞之所有以下解釋:列表中之任何項、列表中之所有項及列表中之項之任何組合。
並不期望系統之所示實施例之以上描述為詳盡或將系統及方法限於揭示之精確形式。熟悉相關技術者將認識到,雖然本文為了繪示的目的描述系統及方法之特定實施例及用於系統及方法之實例,但是在系統及方法之範疇內,多種等效修改係可行的。本文提供之系統及方法之教示可應用於其他處理系統及方法,而並非僅用於以上描述之系統
及方法。
以上描述之多種實施例的元件及動作可經組合以提供進一步實施例。可按照以上詳細描述對系統及方法作出此等及其他改變。
通常,在以下請求項中,使用之術語不應解釋為將系統及方法限於說明書及請求項中揭示之特定實施例,而是應解釋為包含根據請求項行駛之所有處理系統。因此,系統及方法並不由本發明所限制,而是相反,將完全由請求項決定系統及方法之範疇所限制。
雖然下文以某些請求項形式呈現系統及方法之某些態樣,但是發明者預期呈任何數量之請求項形式的系統及方法之多種態樣。因此,發明者保留在申請專利案之後添加額外請求項以為系統及方法之其他態樣實行此等額外請求項形式之權力。
102‧‧‧步驟
104‧‧‧步驟
106‧‧‧步驟
108‧‧‧步驟
110‧‧‧步驟
112‧‧‧步驟
114‧‧‧步驟
202‧‧‧步驟
204‧‧‧步驟
206‧‧‧步驟
208‧‧‧步驟
302‧‧‧步驟
304‧‧‧步驟
306‧‧‧步驟
308‧‧‧步驟
圖1係展示根據本發明之一實施例的具有多種特徵之巴士的示意圖。
圖2係展示根據本發明之一實施例之固定路線上電動車輛之行駛的例示性充電及消耗循環之圖表。
圖3係展示根據本發明之一實施例之固定路線上電動車輛之行駛的轉變之充電及消耗循環之圖表。
圖4係展示根據本發明之一實施例之充電及消耗演算法之簡化流程圖。
圖5係展示用於獲得根據本發明之一實施例的電動車輛
之估計消耗之程序的流程圖。
圖6係根據本發明之一實施例之電動車輛之行駛的基本消耗表。
圖7係根據本發明之一實施例的已對長期修改項進行調整之基本消耗表。
圖8係展示根據本發明之一實施例的依據放電深度之估計消耗的基本消耗表。
圖9係展示根據本發明之一實施例之不同條件期間固定路線上電動車輛之行駛的規劃之充電及消耗循環之圖表。
圖10係用於圖4及圖9中所示之充電及消耗演算法的變數及因數列表。
圖11係展示根據本發明之一實施例之用於圖4中所示之消耗演算法及圖9中之例示性圖表的計算之圖表。
圖12係展示根據本發明之一實施例之用於不同時間及充電機會之不同設定點值的設定點表。
圖13係展示根據本發明之一實施例之不同條件期間固定路線上電動車輛之行駛期間之充電及消耗循環的圖表。
圖14係展示根據本發明之一實施例的電動車輛之行駛的兩個充電設定點分佈之圖表。
圖15係展示根據本發明之一實施例之設定點調整程序的簡化流程圖。
圖16展示根據本發明之一實施例的模組的一實例。
圖17展示根據本發明之實施例之可用於不同電荷容量之系統的若干不同的迅速充電組態。
圖18展示顯示根據本發明之一實施例之固定路線上電動車輛之每小時充電的設定排程之SOC循環之圖表。
圖19展示顯示根據本發明之一實施例之固定路線上電動車輛之每小時充電的可變排程之SOC循環之圖表。
圖20展示具有可應用於根據本發明之一實施例的電動車輛之即時充電的不同考慮之決策矩陣。
102‧‧‧步驟
104‧‧‧步驟
106‧‧‧步驟
108‧‧‧步驟
110‧‧‧步驟
112‧‧‧步驟
114‧‧‧步驟
Claims (20)
- 一種使一電動車輛之一儲能系統充電的方法,該方法包括:決定在不同時間該電動車輛之一特定路線的估計消耗;基於該儲能系統之一最小充電位準狀態設定該儲能系統之一目標終點;基於該目標終點及該決定之估計消耗決定該儲能系統之充電設定點;決定該電動車輛在該給定路線上行駛之後的該儲能系統之實際終點;比較該實際終點與該目標終點且決定該實際終點與該目標終點之間的該儲能系統之電荷狀態的差值;及使用該實際終點與該目標終點之間的該差值以調整該儲能系統之該等充電設定點。
- 如請求項1之方法,其中決定該估計消耗進一步包括:建立該電動車輛之行駛的一消耗表;從一個或多個資料連接構件接收對該消耗表之修改項;基於該等修改項調整該消耗表;及使用該消耗表以決定一特定週期內該電動車輛之該估計消耗。
- 如請求項2之方法,其中在該建立之一消耗表程序中進一步包括:決定該電動車輛完成該路線所需之電荷量。
- 如請求項2之方法,其中該等修改項係長期修改項。
- 如請求項2之方法,其中該等長期修改項係電之需量費率之一增加。
- 如請求項2之方法,其中該等修改項係短期修改項。
- 如請求項1之方法,其中該儲能系統中之電池組包使用鋰離子化學成分。
- 如請求項1之方法,其中基於該目標終點及該決定之估計消耗決定該儲能系統之充電設定點的該程序考量一個或多個錯過的充電事件。
- 如請求項1之方法,其中決定不同時間該電動車輛之一特定路線的該估計消耗包含:決定該電動車輛之將來規劃之充電事件。
- 如請求項1之方法,其進一步包括:獲得關於在該儲能系統中使用之電池組電池的電池組特性化資訊;決定充電設定點之間的該等差值;決定充電速率分佈以符合該等充電設定點;基於該電池組特性化資訊選擇該等充電速率分佈之一者;及基於該選擇之充電速率分佈修改該等充電設定點。
- 如請求項10之方法,其中該電池組特性化資訊包含該等電池組電池之一較佳電荷狀態(SOC)充電範圍。
- 如請求項10之方法,其中該電池組特性化資訊包含關於一充電事件之持續時間資訊。
- 一種電腦程式產品,其包括:一電腦可用媒體,其具有體現於其中之一電腦可讀程式碼,該電腦可讀程式碼經調適以經執行來實施使一電動車輛的一儲能系統充電之一方法,該方法包括:決定該電動車輛之一給定路線的估計消耗;基於該儲能系統之一最小充電位準狀態設定該儲能系統之一目標終點;基於該目標終點及該決定之估計消耗決定該儲能系統之一充電設定點;決定該電動車輛在該給定路線上行駛之後的該儲能系統之實際終點;比較該實際終點與該目標終點且決定該實際終點與該目標終點之間的該儲能系統之電荷狀態的差值;及使用該實際終點與該目標終點之間的該差值以調整該儲能系統之該等充電設定點。
- 如請求項13之方法,其中決定不同時間該電動車輛之一特定路線的該估計消耗包含:決定該電動車輛之將來規劃之充電事件。
- 一種用於一電動車輛之充電系統,該系統包括:一儲能系統,其包括複數個電池組電池,該儲能系統位於該電動車輛內;一充電裝置,其可分離地與該電動車輛耦合以使該複數個電池組電池充電;用於接收影響該等電池組電池之充電參數的一個或多 個因數之構件;及一充電控制系統,其用於該等儲能系統及充電裝置,該充電控制系統包含:用於決定在不同時間該電動車輛之一特定路線的估計消耗之邏輯;用於基於該儲能系統之一最小充電位準狀態設定該儲能系統之一目標終點之邏輯;用於基於該目標終點及該決定之估計消耗決定該儲能系統之充電設定點之邏輯;用於決定該電動車輛在該給定路線上行駛之後的該儲能系統之實際終點之邏輯;用於比較該實際終點與該目標終點且決定該實際終點與該目標終點之間的該儲能系統之電荷狀態的差值之邏輯;及用於使用該實際終點與該目標終點之間的該差值以調整該儲能系統之該等充電設定點之邏輯。
- 如請求項15之方法,其中該充電控制系統位於該電動車輛上。
- 如請求項15之系統,其中該充電控制系統在該電動車輛之外部。
- 如請求項15之系統,其中該充電控制系統部分位於該電動車輛上且部分位於該電動車輛之外部。
- 如請求項15之系統,其中用於決定在不同時間該電動車輛之一特定路線的該估計消耗之該邏輯包含:決定該電 動車輛之將來規劃之充電事件。
- 一種使一儲能系統選擇性充電之方法,該方法包括:提供一儲能系統及一充電裝置;接收與影響該儲能系統之充電參數之一個或多個因數有關的資訊;及利用該充電裝置使該儲能系統充電,該充電裝置使用與影響該儲能系統之充電條件之一個或多個因數有關的該資訊,其中影響該儲能系統之充電條件的該等因數包含以下至少一者:該儲能系統之行駛的當日時間;該儲能系統之行駛之區域的天氣預報;該儲能系統之行駛之該區域的交通改變;該儲能系統之行駛之該區域中計劃之特殊事件;該儲能系統之行駛之該區域中的道路施工;該儲能系統之該行駛的排程之改變;供應至該充電裝置之電需量費率;耦合至該充電裝置之公用事業電網上之負載;該儲能系統內之剩餘充電位準;或在可重複使該儲能系統充電之該步驟之前的該儲能系統之預測消耗。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161545550P | 2011-10-10 | 2011-10-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201331066A true TW201331066A (zh) | 2013-08-01 |
Family
ID=48082410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101137362A TW201331066A (zh) | 2011-10-10 | 2012-10-09 | 在固定路線應用程式下用於電池壽命最大化的系統及方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8975866B2 (zh) |
EP (1) | EP2766216B1 (zh) |
CA (1) | CA2851503C (zh) |
TW (1) | TW201331066A (zh) |
WO (1) | WO2013055830A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107757407A (zh) * | 2017-10-30 | 2018-03-06 | 中车株洲电力机车有限公司 | 一种智能充电方法、系统、设备及计算机可读存储介质 |
CN109844653A (zh) * | 2016-05-13 | 2019-06-04 | 维利通阿尔法公司 | 使用预测来控制目标系统 |
CN111279155A (zh) * | 2017-11-30 | 2020-06-12 | 艾茵里德有限公司 | 电池组优化运输规划方法 |
TWI813034B (zh) * | 2021-10-06 | 2023-08-21 | 勤力合實業股份有限公司 | 智能充電裝置管理系統與方法 |
Families Citing this family (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9744873B2 (en) * | 2011-10-12 | 2017-08-29 | Volkswagen Ag | Method and control device for charging a battery of a vehicle |
DE102012209645A1 (de) * | 2012-06-08 | 2013-12-12 | Siemens Aktiengesellschaft | Verfahren zur Steuerung des Ladebetriebs in einem Elektro-Kraftfahrzeug |
US10121158B2 (en) * | 2013-04-26 | 2018-11-06 | General Motors Llc | Optimizing vehicle recharging to limit use of electricity generated from non-renewable sources |
US10279697B2 (en) * | 2013-08-29 | 2019-05-07 | Honda Motor Co., Ltd. | System and method for estimating a charge load |
JP6301730B2 (ja) * | 2013-10-04 | 2018-03-28 | 株式会社東芝 | 電動車両の運行管理装置及び運行計画立案方法 |
CN106415976A (zh) * | 2014-04-29 | 2017-02-15 | 魁北克电力公司 | 用于电动车辆的双向充电系统 |
US10552923B2 (en) * | 2014-05-08 | 2020-02-04 | Honda Motor Co., Ltd. | Electric vehicle charging control system |
CA2871242C (en) * | 2014-05-29 | 2020-10-27 | Addenergie Technologies Inc. | Method and system for managing power demand of a plurality of charging stations sharing the same portion of an electrical network |
WO2015197094A1 (en) * | 2014-06-27 | 2015-12-30 | Volvo Truck Corporation | A method for controlling state of charge of a plug-in hybrid vehicle |
DE102014214806A1 (de) * | 2014-07-29 | 2016-02-04 | Bayerische Motoren Werke Aktiengesellschaft | Laden an Ladestationen zur Reichweitenverlängerung |
FR3025663B1 (fr) * | 2014-09-10 | 2017-12-29 | Renault Sas | Procede de gestion de la plage d'utilisation d'une batterie |
EP3001497A1 (de) * | 2014-09-23 | 2016-03-30 | HILTI Aktiengesellschaft | Intelligentes Ladeende |
DE102014115709A1 (de) * | 2014-10-29 | 2016-05-04 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Elektrische Anschlussleitung |
US9643510B2 (en) | 2014-11-25 | 2017-05-09 | Atieva, Inc. | Battery pack charging protocol selection system |
US9463700B2 (en) * | 2014-11-25 | 2016-10-11 | Atieva, Inc. | Method of selecting a battery pack charging protocol |
KR101628564B1 (ko) * | 2014-12-09 | 2016-06-21 | 현대자동차주식회사 | 하이브리드 차량의 배터리 soc 리셋 방법 |
JP2016220450A (ja) * | 2015-05-22 | 2016-12-22 | 三菱重工業株式会社 | 電源制御装置、電源システム、電源制御方法およびプログラム |
WO2016202360A1 (en) * | 2015-06-15 | 2016-12-22 | Volvo Bus Corporation | Adapting a vehicle control strategy based on historical data related to a geographical zone |
US10488209B2 (en) | 2015-09-08 | 2019-11-26 | Ford Global Technologies, Llc | Method and apparatus for recommending power-saving vehicular utilization changes |
US9713962B2 (en) | 2015-09-29 | 2017-07-25 | Toyota Motor Engineering & Manufacturing North America, Inc. | Systems and methods for reducing the cost of vehicle charging based on route prediction |
EP3187361A1 (en) * | 2015-12-31 | 2017-07-05 | MARCO-SYSTEM Mieszko Cleplinski | Battery charging system and method |
US20170271984A1 (en) | 2016-03-04 | 2017-09-21 | Atigeo Corp. | Using battery dc characteristics to control power output |
WO2017190099A1 (en) * | 2016-04-28 | 2017-11-02 | Atigeo Corp. | Using forecasting to control target systems |
US10899247B2 (en) * | 2016-06-08 | 2021-01-26 | Ford Global Technologies, Llc | System and method for online vehicle battery capacity diagnosis |
US10099569B2 (en) * | 2016-09-29 | 2018-10-16 | GM Global Technology Operations LLC | Adaptive system and method for optimizing a fleet of plug-in vehicles |
US9955428B1 (en) | 2016-10-24 | 2018-04-24 | International Business Machines Corporation | Optimizing scheduled charging of battery enabled devices based on a predicted battery consumption factor for an area |
US9955314B1 (en) | 2016-10-24 | 2018-04-24 | International Business Machines Corporation | Specifying a map of available locations for recharging battery enabled devices based on a schedule of predicted locations for a user |
US9867017B1 (en) | 2016-10-24 | 2018-01-09 | International Business Machines Corporation | Scheduling optimized charging of battery enabled devices based on battery usage impact factors and predicted usage received from multiple sources |
US9955313B1 (en) | 2016-10-24 | 2018-04-24 | International Business Machines Corporation | Scheduling optimized charging of battery enabled devices based on power usage impact data received from multiple sources |
US10583826B2 (en) | 2016-11-17 | 2020-03-10 | Cummins Inc. | Hybrid vehicle drive cycle optimization based on route identification |
US10780885B2 (en) * | 2016-11-18 | 2020-09-22 | Ford Global Technologies, Llc | Vehicle systems and methods for electrified vehicle battery thermal management based on anticipated power requirements |
US10220718B2 (en) | 2017-04-07 | 2019-03-05 | Honda Motor Co., Ltd. | System and method for creating a charging schedule for an electric vehicle |
US10625625B2 (en) | 2017-04-07 | 2020-04-21 | Honda Motor Co., Ltd. | System and method for creating a charging schedule for an electric vehicle |
US20200198472A1 (en) * | 2017-05-04 | 2020-06-25 | Cummins Inc. | Systems and methods for hybrid electric vehicle battery state of charge reference scheduling |
US11027624B2 (en) * | 2017-09-15 | 2021-06-08 | Proterra Inc. | Electric vehicle charging by adjusting charger current based on battery chemistry |
JP6992419B2 (ja) * | 2017-11-08 | 2022-01-13 | トヨタ自動車株式会社 | 電動車両の電費予測方法、サーバおよび電動車両 |
GB2568466B (en) * | 2017-11-13 | 2022-01-05 | Jaguar Land Rover Ltd | Determining a minimum state of charge for an energy storage means of a vehicle |
JP6897528B2 (ja) | 2017-12-05 | 2021-06-30 | トヨタ自動車株式会社 | ハイブリッド車両の制御装置 |
KR102441505B1 (ko) * | 2017-12-11 | 2022-09-07 | 현대자동차주식회사 | 전기 자동차의 배터리 충전 방법 |
US10882411B2 (en) * | 2018-01-18 | 2021-01-05 | Ford Global Technologies, Llc | Smart charging schedules for battery systems and associated methods for electrified vehicles |
JP2019148881A (ja) * | 2018-02-26 | 2019-09-05 | 日本電産シンポ株式会社 | 移動体、移動体を制御する方法およびコンピュータプログラム |
NL2020936B1 (en) * | 2018-05-15 | 2019-11-21 | Jedlix B V | Method of charging an energy storage device |
US10666076B1 (en) | 2018-08-14 | 2020-05-26 | Veritone Alpha, Inc. | Using battery state excitation to control battery operations |
EP3611675A1 (en) | 2018-08-16 | 2020-02-19 | ABB Schweiz AG | Method and device for determining a configuration for deployment of a public transportation system |
US10906426B2 (en) * | 2018-10-03 | 2021-02-02 | Ford Global Technologies, Llc | Variable charging strategy for plugin electric vehicles |
US20200156496A1 (en) * | 2018-11-20 | 2020-05-21 | Cummins Inc. | Method and system for power management of a fleet of electric vehicles |
DE102018219977A1 (de) * | 2018-11-22 | 2020-05-28 | Robert Bosch Gmbh | Ladeverfahren für einen elektrischen Energiespeicher |
US10452045B1 (en) | 2018-11-30 | 2019-10-22 | Veritone Alpha, Inc. | Controlling ongoing battery system usage while repeatedly reducing power dissipation |
US10816949B1 (en) | 2019-01-22 | 2020-10-27 | Veritone Alpha, Inc. | Managing coordinated improvement of control operations for multiple electrical devices to reduce power dissipation |
US11097633B1 (en) | 2019-01-24 | 2021-08-24 | Veritone Alpha, Inc. | Using battery state excitation to model and control battery operations |
US11644806B1 (en) | 2019-01-24 | 2023-05-09 | Veritone Alpha, Inc. | Using active non-destructive state excitation of a physical system to model and control operations of the physical system |
US10953767B2 (en) * | 2019-02-08 | 2021-03-23 | Ford Global Technologies, Llc | System and method for battery-electric vehicle fleet charging |
US11069926B1 (en) * | 2019-02-14 | 2021-07-20 | Vcritonc Alpha, Inc. | Controlling ongoing battery system usage via parametric linear approximation |
KR102586460B1 (ko) * | 2019-03-07 | 2023-10-06 | 현대자동차주식회사 | 배터리 사용 습관 및 배터리 방전 경향 예측 시스템 |
US20230271529A1 (en) * | 2019-03-20 | 2023-08-31 | Volvo Truck Corporation | A method for controlling an energy storage system of a vehicle |
US11218011B2 (en) * | 2019-04-26 | 2022-01-04 | StoreDot Ltd. | Fast charging and power boosting lithium-ion batteries |
JP7314666B2 (ja) * | 2019-07-09 | 2023-07-26 | トヨタ自動車株式会社 | 充電制御装置 |
WO2021069069A1 (en) * | 2019-10-09 | 2021-04-15 | Ejzenberg Geoffrey | A cyber-physical hybrid electric autonomous or semi-autonomous off-highway dump truck for surface mining industry |
US11407327B1 (en) | 2019-10-17 | 2022-08-09 | Veritone Alpha, Inc. | Controlling ongoing usage of a battery cell having one or more internal supercapacitors and an internal battery |
KR20210078224A (ko) * | 2019-12-18 | 2021-06-28 | 삼성전자주식회사 | 배터리의 수명을 관리하기 위한 전자 장치 및 방법 |
CN111038487B (zh) * | 2019-12-19 | 2021-03-26 | 浙江吉利新能源商用车集团有限公司 | 一种混合动力车辆的电池电量控制方法及控制系统 |
DE102019135315A1 (de) * | 2019-12-19 | 2021-06-24 | Bombardier Transportation Gmbh | Prädiktive Batterieladung für batteriebetriebene Schienenfahrzeuge |
US11529887B2 (en) | 2020-01-24 | 2022-12-20 | Toyota Research Institute, Inc. | System and method for controlling a battery management system |
DE102020209176B3 (de) | 2020-07-22 | 2022-01-20 | Volkswagen Aktiengesellschaft | Verfahren zum Betreiben eines Fahrzeuges |
KR20220062223A (ko) * | 2020-11-06 | 2022-05-16 | 현대자동차주식회사 | 차량 배터리 관리 시스템 및 방법 |
CN114516274B (zh) * | 2020-11-20 | 2023-12-12 | 比亚迪股份有限公司 | 列车充电方法和装置 |
JP7380539B2 (ja) * | 2020-12-16 | 2023-11-15 | トヨタ自動車株式会社 | 運行計画システムおよび運行計画方法 |
DE102021205058A1 (de) | 2021-05-18 | 2022-11-24 | Volkswagen Aktiengesellschaft | Verfahren und Anordnung zur Lade-/Entladesteuerung eines Hochvolt-Batteriesystems |
JP7552521B2 (ja) * | 2021-07-20 | 2024-09-18 | トヨタ自動車株式会社 | 充電量算出装置および充電システム |
US11892809B2 (en) | 2021-07-26 | 2024-02-06 | Veritone, Inc. | Controlling operation of an electrical grid using reinforcement learning and multi-particle modeling |
SE2151127A1 (en) * | 2021-09-14 | 2023-03-15 | Scania Cv Ab | Control system and method for controlling charging of an energy storage device |
US11394061B1 (en) * | 2021-10-06 | 2022-07-19 | Geotab Inc. | Methods for vehicle battery charging around charge-adverse time periods |
WO2023058066A1 (en) * | 2021-10-08 | 2023-04-13 | Ola Electric Mobility Private Limited | Smart charging recommendations for electric vehicles |
DE202022102525U1 (de) | 2022-05-09 | 2023-08-10 | Hofer Powertrain Innovation Gmbh | Stromversorgungssystem für Kraftfahrzeuge, insbesondere Nutzfahrzeuge für elektrisch betriebenen Schwerverkehr |
EP4217223A1 (de) | 2021-11-12 | 2023-08-02 | hofer powertrain innovation GmbH | Traktionsenergieversorungsverfahren, insbesondere unter nutzung eines energieversorgungssystems für kraftfahrzeuge, vorzugsweise für nutzfahrzeuge für elektrisch betriebenen schwerverkehr |
DE102022125116A1 (de) | 2021-11-12 | 2023-05-17 | Hofer Powertrain Innovation Gmbh | Traktionsenergieversorgungsverfahren, insbesondere unter Nutzung eines Stromversorgungssystems für Kraftfahrzeuge, vorzugsweise für Nutzfahrzeuge für elektrisch betriebenen Schwerverkehr |
DE202021106215U1 (de) | 2021-11-12 | 2023-02-14 | Hofer Powertrain Innovation Gmbh | Elektrisches Energieversorgungssystem für Fahrzeuge, insbesondere für Schwerkraftlastwagen, mit Oberleitungsabgriff |
DE202021106214U1 (de) | 2021-11-12 | 2023-02-14 | Hofer Powertrain Innovation Gmbh | Lastkraftwagen mit elektrischem Antrieb, insbesondere in einer streckenweise vorhandenen Oberleitungsinfrastruktur |
EP4372641A1 (en) | 2022-11-17 | 2024-05-22 | Hitachi Energy Ltd | System and method to control electric vehicle fleet charging or microgrid operation considering a heuristic approach to extend battery life |
WO2024105199A1 (en) | 2022-11-17 | 2024-05-23 | Hitachi Energy Ltd | System and method to control electric vehicle fleet charging or microgrid operation considering a heuristic approach to extend battery life |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000287302A (ja) * | 1999-03-31 | 2000-10-13 | Toshiba Battery Co Ltd | 車両用エネルギ管理装置および車両 |
US7653474B2 (en) * | 2004-05-14 | 2010-01-26 | Gm Global Technology Operations, Inc. | Method of determining engine output power in a hybrid electric vehicle |
JP4220946B2 (ja) * | 2004-08-11 | 2009-02-04 | 三菱重工業株式会社 | 電気車両、架線レス交通システム及び架線レス交通システムの制御方法 |
US7849944B2 (en) * | 2007-06-12 | 2010-12-14 | Ut-Battelle, Llc | Self-learning control system for plug-in hybrid vehicles |
JP4442646B2 (ja) * | 2007-06-20 | 2010-03-31 | 株式会社デンソー | 車両用発電制御装置及び制御システム |
US9853488B2 (en) * | 2008-07-11 | 2017-12-26 | Charge Fusion Technologies, Llc | Systems and methods for electric vehicle charging and power management |
WO2010051477A2 (en) * | 2008-10-31 | 2010-05-06 | Levinton Manufacturing Company, Ltd. | System and method for charging a vehicle |
JP5233713B2 (ja) * | 2009-02-06 | 2013-07-10 | 日産自動車株式会社 | バッテリ充電制御装置及びバッテリ充電制御方法 |
JP2010239849A (ja) * | 2009-03-31 | 2010-10-21 | Fujitsu Ten Ltd | 車載装置および車載システム |
US8228035B2 (en) * | 2009-05-29 | 2012-07-24 | GM Global Technology Operations LLC | Regeneration capacity control method for a battery |
JP2011120327A (ja) * | 2009-12-01 | 2011-06-16 | Panasonic Corp | 充電制御装置および充電制御方法 |
JP5051794B2 (ja) * | 2009-12-17 | 2012-10-17 | トヨタ自動車株式会社 | 充電装置 |
-
2012
- 2012-10-09 TW TW101137362A patent/TW201331066A/zh unknown
- 2012-10-10 CA CA2851503A patent/CA2851503C/en active Active
- 2012-10-10 EP EP12840270.8A patent/EP2766216B1/en active Active
- 2012-10-10 WO PCT/US2012/059611 patent/WO2013055830A1/en active Application Filing
-
2014
- 2014-04-09 US US14/249,175 patent/US8975866B2/en active Active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109844653A (zh) * | 2016-05-13 | 2019-06-04 | 维利通阿尔法公司 | 使用预测来控制目标系统 |
CN107757407A (zh) * | 2017-10-30 | 2018-03-06 | 中车株洲电力机车有限公司 | 一种智能充电方法、系统、设备及计算机可读存储介质 |
CN111279155A (zh) * | 2017-11-30 | 2020-06-12 | 艾茵里德有限公司 | 电池组优化运输规划方法 |
TWI797204B (zh) * | 2017-11-30 | 2023-04-01 | 瑞典商安伊萊德公司 | 電池組優化輸送規劃方法 |
CN111279155B (zh) * | 2017-11-30 | 2024-05-07 | 艾茵里德有限公司 | 电池组优化运输规划方法 |
TWI813034B (zh) * | 2021-10-06 | 2023-08-21 | 勤力合實業股份有限公司 | 智能充電裝置管理系統與方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2766216B1 (en) | 2020-05-27 |
CA2851503A1 (en) | 2013-04-18 |
EP2766216A1 (en) | 2014-08-20 |
WO2013055830A1 (en) | 2013-04-18 |
US20140217976A1 (en) | 2014-08-07 |
CA2851503C (en) | 2020-01-07 |
EP2766216A4 (en) | 2015-11-11 |
US8975866B2 (en) | 2015-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201331066A (zh) | 在固定路線應用程式下用於電池壽命最大化的系統及方法 | |
JP5440158B2 (ja) | バッテリの充電方法および充電システム | |
US8527129B2 (en) | Personalized charging management for a vehicle | |
CN108189701B (zh) | 基于电能储存装置热简况调节电动车系统 | |
JP5170272B2 (ja) | 車両用電力制御装置 | |
CN113428048B (zh) | 信息提示系统、服务器、信息提示方法及信息提示装置 | |
US20130229153A1 (en) | Systems and methods for equivalent rapid charging with different energy storage configurations | |
CN111071104B (zh) | 显示装置及具备该显示装置的车辆 | |
US10807493B1 (en) | Vehicle battery pack and battery exchange system | |
WO2010146681A1 (ja) | 電池システム及び電池システム搭載車両 | |
CN112776620A (zh) | 车辆充电控制系统和方法 | |
CN107851997B (zh) | 充放电装置、运输设备及充放电控制方法 | |
US20150314690A1 (en) | Method for charging a plug-in electric vehicle | |
US11862808B2 (en) | Vehicle battery module exchange decision aid | |
GB2550954A (en) | Electric vehicle battery management apparatus and method | |
JP6765208B2 (ja) | 鉄道車両 | |
JP5404754B2 (ja) | 車載電力管理システム | |
CN115071490A (zh) | 控制系统和能量管理方法 | |
CN111071098A (zh) | 显示装置及具备该显示装置的车辆 | |
Chai et al. | An optimal charging and discharging schedule to maximize revenue for electrical vehicle | |
US11603010B2 (en) | Predicting charging time for battery of electrified vehicle | |
Ottensmann et al. | Forecast of the aggregated charging power of electric vehicles in commercial fleets | |
US20230150387A1 (en) | Power system, vehicle, and information processor | |
HÄRKÖNEN | Techno-Economical studies for grid impacts of electric Vehicle fast Charging | |
Antony et al. | Analysis of potential market share of electric vehicles and the demand for electric energy in a metropolitan area |