CN1646669A - 处理碳质材料的方法 - Google Patents

处理碳质材料的方法 Download PDF

Info

Publication number
CN1646669A
CN1646669A CNA038088428A CN03808842A CN1646669A CN 1646669 A CN1646669 A CN 1646669A CN A038088428 A CNA038088428 A CN A038088428A CN 03808842 A CN03808842 A CN 03808842A CN 1646669 A CN1646669 A CN 1646669A
Authority
CN
China
Prior art keywords
carbonaceous material
acid
sulfur
hydrofluorosilicic
hydrofluorosilicic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038088428A
Other languages
English (en)
Other versions
CN1296465C (zh
Inventor
R·劳埃德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karalee Research Pty Ltd
Original Assignee
Karalee Research Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karalee Research Pty Ltd filed Critical Karalee Research Pty Ltd
Publication of CN1646669A publication Critical patent/CN1646669A/zh
Application granted granted Critical
Publication of CN1296465C publication Critical patent/CN1296465C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/02Treating solid fuels to improve their combustion by chemical means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明述及能使碳质材料中的含硫杂质量减少的方法。一种方法包括将材料与不含氢氟酸的氢氟硅酸水溶液在至少能使一些含硫杂质与氢氟硅酸反应形成反应产物的条件下进行接触和将反应产物与碳质材料分离。另一种方法包括将材料与不含氟化氢的氢氟硅酸水溶液在至少能使一些含硫杂质与氢氟硅酸反应形成反应产物的条件下进行接触;将反应产物和氢氟硅酸与碳质材料分离,之后将碳质材料用包括氢氟硅酸和氟化氢水溶液的氟酸溶液进行处理。还有一种方法包括将碳质材料用包括氢氟硅酸和氟化氢水溶液的氟酸溶液进行处理,将氢氟硅酸和氟化氢水溶液与碳质材料分离,然后将碳质材料与一种能溶解元素硫的有机溶剂进行接触。

Description

处理碳质材料的方法
技术领域
本发明涉及对碳质材料进行处理来脱除或显著减少其中非碳杂质量的方法
发明背景
美国专利4780112述及一种对碳进行处理来减少其中灰分的方法。该方法包括用氢氟硅酸(H2SiF6)和氢氟酸(HF)水溶液来处理碳,由此使碳中的金属氧化物转化为金属氟化物和/或金属氟硅酸盐,然后与碳分离。美国专利4780112所述方法能从碳中有效脱除金属氧化物,但本发明人意外发现,当采用美国专利4780112的方法处理包括含硫杂质的碳时,纯化后的碳仍有硫杂质,本发明人惊奇地发现,残留的硫是以元素硫形式存在的,将碳置于显微镜下观测时某些情况下可以看见。
要用做燃料的碳中不希望存在硫,因为碳的燃烧将导致硫转化为氧化硫。这样,若要避免将氧化硫释放到环境中,则在碳燃烧所产生的废气被排放到大气之前要将其洗涤或将氧化硫基本除去。
因此,需要一种处理碳质材料来降低其中非碳杂质量的改进方法,特别是需要一种能脱除或至少能显著减少碳质材料中硫量的改进方法。
本发明人惊奇地发现,通过采用一种包括用氢氟硅酸或一种能溶解元素硫的有机溶剂来处理碳质材料的方法可使碳质材料中的含硫杂质量显著减少。
发明概述
按照本发明的第一方案,提供一种减少碳质材料中的含硫杂质量显著的方法,包括(a)将该材料与氢氟硅酸水溶液在不存在氟化氢和至少能使一些含硫杂质与氢氟硅酸反应形成反应产物的条件下进行接触,和(b)将反应产物与碳质材料分离。
按照本发明的第二方案,提供一种减少碳质材料中的含硫杂质量显著的方法,包括
(a)将该材料与氢氟硅酸水溶液在不存在氟化氢和至少能使一些含硫杂质与氢氟硅酸反应形成反应产物的条件下进行接触;
(b)将反应产物和氢氟硅酸与碳质材料分离,之后
(c)将碳质材料用包括氢氟硅酸和氟化氢水溶液的氟酸溶液进行处理。
按照本发明的第三方案,提供一种减少碳质材料中的含硫杂质量显著的方法,包括将碳质材料用包括氢氟硅酸和氟化氢水溶液的氟酸溶液进行处理,将氢氟硅酸和氟化氢水溶液与碳质材料分离,然后将碳质材料与能溶解元素硫的有机溶剂进行接触。
这里所用的术语“碳质材料”可以理解为是指主要由元素碳构成的材料。碳质材料的实例包括褐煤、焦炭、褐煤、无烟煤、木炭、炭精等。
除非内容里有明确指出,这里所用的词“包括”或其变通说法将理解为是指所述的整体或整群包括在内,但并不一定排除其它整体存在其中。
发明详述
在本发明的第一和第二方案中,将材料与氢氟硅酸水溶液在至少能使一些含硫杂质与氢氟硅酸反应形成反应产物的条件下进行接触的步骤中氢氟硅酸的浓度在27%-37%(w/v或w/w或v/w)范围内。将材料与氢氟硅酸水溶液在至少能使一些含硫杂质与氢氟硅酸反应形成反应产物的条件下进行接触的步骤中氢氟硅酸的浓度一般在28%-36%范围、更典型约为32%(w/v或w/w或v/w)。本方法通常在大气压下实施,但压力也可大气压之上或之下。温度可在28-75℃范围。温度一般在30-70℃范围内,更通常是30-40℃。反应时间可在8-120分钟范围。反应时间一般从10到100分钟、更通常是15-30分钟、更加常用的是12-16分钟。氢氟硅酸水溶液的最少用量一般为足以使其与碳质材料的混合物能在酸中进行搅拌。碳质材料通常是与至少为其重量两倍的氢氟硅酸水溶液混合。氢氟硅酸水溶液的存在量更通常为混合物总重量的约70-90%(重)、更加常用的是约为混合物总重量的约70-80%(重)。
本发明第一和第二方案的方法步骤(a)中,碳质材料中存在的许多金属氧化物和一些金属至少部分被转化为相应的金属氟硅酸盐,另外的产物为水。被转化为其氟硅酸盐的金属或金属氧化物的实例是镍、铝、钙和汞及其氧化物。所存在的硫化合物在反应条件下转化为二氧化硫和/或四氟化硫。
本发明第一和第二方案的方法步骤(a)之后,较纯的碳质材料仍与含已溶解金属氟硅酸盐的水溶液混合在一起。可将此碳质材料和金属氟硅酸盐的混合物适当进行过滤或离心分离来分离出较纯的碳质材料。任选将过滤后的较纯碳质材料用氢氟硅酸水溶液进一步处理,一般氢氟硅酸的浓度为32%(重),将任何残留的金属氟硅酸盐洗出。从水相中分离出剩余的碳质材料并任选将碳质材料洗涤,得到半纯化的碳质材料,其硫和金属含量要比原材料低。在此阶段,半纯化碳质材料中存在的主要杂质一般是氧化硅和硫化铁。
半纯化碳质材料可进一步纯化来脱除步骤(a)中未能除去的其它杂质。因此,本发明第二方案的方法就提供了这样一个过程。在第二方案的方法中,步骤(c)一般是一个按美国专利4780112的过程,此处引入该专利所公开内容作为参考。与此类似,第三方案的方法中,用包括氢氟硅酸和氟化氢水溶液的氟酸溶液处理碳质材料以及将碳质材料从氢氟硅酸和氟化氢的水溶液分离出来的步骤可以是一个按美国专利4780112所述的过程。
在第二方案方法的步骤(c)和第三方案的方法中,氟酸溶液具有下述范围内的组成:4%w/w H2SiF6、92%w/w H2O、4%w/w HF到35%w/wH2SiF6、30%w/w H2O、35%w/w HF。在第二方案方法步骤(c)和第三方案的方法中,氟酸溶液一般具有下述范围内的组成:5%w/w H2SiF6、90%w/w H2O、5%w/w HF到34%w/w H2SiF6、32%w/w H2O、34%w/w HF。氟酸溶液的组成更典型为约25%w/w H2SiF6、50%w/w H2O、25%w/w HF。如美国专利4780112所述,该步骤能很方便地在两个阶段实施。即第一阶段适宜在搅拌式反应器内在约100KPa的压力和40-60℃的温度下实施,第二阶段适宜在管式反应器内约340-480KPa范围的压力和65-80℃、更通常是约70℃的温度下实施。一般来说,通过碳质材料中的氧化硅与氟化氢反应放出的热量来维持温度达到该值。在步骤(c)中,氟酸溶液的最少用量一般为足以能使其与碳质材料的混合物进行搅拌。碳质材料通常是与至少为其重量两倍的氟酸溶液混合。氟酸溶液的存在量更通常为混合物总重量的约70-90%(重)、更加常用的是约为混合物总重量的约70-80%(重)。
本发明第二方案方法的步骤(c)和第三方案的方法中,碳质材料与氢氟硅酸和氟化氢水溶液混合之后,碳质材料和氟酸溶液的混合物适宜按美国专利4780112所述进行超声波搅动,以使任何未反应的硫化亚铁(对HF和SiF4相对惰性)或其它密度较大的杂质能够与较纯的碳质材料主体(其密度低于硫化亚铁)和水相分离。可将纯化的碳质材料与水相分离,任选用H2SiF6水溶液进行洗涤、分离、干燥以除去过量水(约100-110℃),并在应用于任何期望用途如用做燃料之前,将其加热到约250-400℃或280-340℃范围内、一般约为310℃的温度以便将留在碳质材料上的氢氟硅酸残余物蒸发掉,一般是在此干燥阶段放出HF和SiF4气体和水。
与碳质材料接触后再与其分离的氟酸水溶液较之与碳质材料接触之前的氟酸溶液,其SiF4量相对较高且HF量较少,如下面的反应结果:
                 
若将此废水相再循环到与较纯碳质材料接触的步骤中使用,则往往会达到SiF4的饱和点,在此点处进一步反应所产生的更多SiF4会以气体形式释放。氟酸溶液于较纯碳质材料进行接触的反应器包括一个能将SiF4移出的装置。来自该步骤的废水相适合被送到一个处理容器中,使任何过量的SiF4由此排出。通过将HF和SiF4的气体混合物送入到容器内,借此使HF被吸收而SiF4穿过来提高废水相中的HF浓度。排出的SiF4适宜送到水解装置,用水处理来按下面的反应式产生H2SiF6和SiO2
                 
这样生成的SiO2可通过过滤或任何便利的手段与酸分离。按此途径生成的酸适宜用于第一和第二方案方法的步骤(a)中。
最好是将本发明方法各相关工艺步骤中产生的含或不含氢氟酸的氢氟硅酸水流送到酸蒸馏器中将料流合并并蒸馏。自蒸馏器馏出水、HF和SiF4的气态混合物,这些物质比32%w/w氢氟硅酸水溶液共沸混合物更易挥发。可将水、HF和SiF4的气态混合物送到脱水系统中脱除水,然后通过将得到的脱水HF和SiF4气态混合物送到一个含有被SiF4饱和的H2SiF6溶液的处理容器使它们分离。
水、HF和SiF4气态混合物的脱水步骤适合包括将气体与足量无水金属氟化物如AlF3接触来吸收全部存在水的步骤。可用的其它金属氟化物包括氟化锌和氟化亚铁。按此方式可得到基本无水的气体连同水合金属氟化物,可将后者与无水气体分离并加热再生成基本无水的金属氟化物,使之循环用于脱水步骤。
在第一和第二方案方法的一种形式中,步骤(b)中与碳质材料分离的反应产物是由二氧化硫和溶解或悬浮于H2SiF6水溶液的金属氟硅酸盐组成。还有可能存在衍生自碳质材料中的无机或有机氯化物的气态HCl。适合将这些反应产物送到一个蒸馏器中,将它们加热以释放出气态HF、SiF4水蒸气、HCl和二氧化硫,并使存在的任何金属氟硅酸盐浓缩到它们的溶度极限并以固体形式分离,从蒸馏器移出以进一步处置或再生。离开此蒸馏器的气态混合物适合通过采用如上所述的与无水氟化铝接触的方法进行脱水处理,然后经过活性炭过滤器脱除二氧化硫和HCl。将剩下的干燥和无二氧化硫的HF和SiF4送到处理来自第二方案方法的步骤(c)的废水相的容器中。
在第三方案的方法中,工艺过程在分离步骤后进一步包括:
将碳质材料洗涤以除去任何残留酸;和
在接触之前任选将碳质材料干燥。
可用水进行洗涤。干燥步骤可在100-120℃范围内、一般在110℃的温度下进行。
在第三方案的方法中,能够溶解元素硫的有机溶剂一般是乙醇、苯、二硫化碳、乙醚或四氯化碳,或是两或多种这些或其它溶解元素硫的适用混合溶剂。溶剂一般是乙醇。碳质材料与有机溶剂接触的步骤一般是在室温和大气压条件下进行,但也可采用升温(如在30-90℃范围)或升压(如1.01-5atm或1.2-2.5atm)条件,或者二者兼用。所用溶剂量不严格限定,但实际采用的最少量应足以使混合物能搅拌或搅动的量。
在第三方案的方法中,有机溶剂与碳质材料的接触时间适合是足以使碳质材料用氟酸溶液处理步骤之后其中存在的至少一部分元素硫溶解。此后,适宜将溶剂与碳质材料分离,并蒸馏处理来尽可能多地回收再用。也可以对处理后的碳质材料进行处理来脱除任何残留的溶剂,若溶剂不包括卤素或硫原子,则可省略该步骤。可通过任何便利的手段如吹风或加热(如在30-100℃范围的温度下,所选温度取决于溶剂)的方法来脱除溶剂。
本发明方案中的分离步骤可以包括过滤、离心分离或其它适用发分离手段。
本发明方法提供若干优于先有方法之处。除了能提供其中的硫含量比美国专利4780112方法得到的处理后碳质材料显著降低的碳质材料外,本发明方法还能够脱除或部分脱除碳质材料中的其它不期望物质如氧化硅、金属氧化物和金属硫化物、诸如汞和放射性元素的金属和无机氯化物。例如,若煤中含有约8wt%的硫,则可通过将煤经一次(或多次)第一到第三方案方法的循环处理使这些硫脱除到叫低水平(如约为或低于2wt%或是约为或低于1wt%或是约为或低于0.5wt%)。特别是采用第二方案的方法对无机氯化物、汞和放射性元素的脱除比美国专利4780112更为有效。并且,本发明的方法可降低碳质材料中结合氧的含量,在应用于煤的情况时,一般可使其热值提高3-4%。
在第一到第三方案中,处理步骤之前可将碳质材料破碎为粒径约4、3、2、1.75、1.5、1.25、1或0.75mm的颗粒形式。例如至少约80%、85%、90%或95%(重量)的颗粒是在5-0.25mm、4-0.25mm、3-0.25mm、2-0.25mm或1-0.25mm的范围内。或者碳质材料就以原料形式进行处理。若碳质材料含过量潮气,则可在处理之前进行干燥(如在60-120℃或100-120℃条件下),以便除去过量潮气。干燥过程可持续进行到例如使碳质材料内所含的潮气在3-8%w/w、更通常为3-5%w/w范围内。一些含水量很高的煤如褐煤通常在处理之前必须进行预干燥。处理之前,例如可通过将热空气经碳质材料穿过的方法对碳质材料进行空气干燥(如在60-120℃或100-120℃条件下)。干燥碳质材料所用热空气的温度要低于能引起碳质材料燃烧的温度。
附图简介
图1是一个合并有按本发明方法的碳质材料纯化和燃烧系统的方框示意图。
图2是一个用来处理本发明第一或第二方案方法的步骤(a)所生成的水溶液或悬浮液的蒸馏器和相关设备的方框示意图。
图3是一个作为本发明第三方案方法一部分的用溶剂处理碳质材料来脱除元素硫系统的方框示意图。
实施本发明的最佳方法
图1以方框示意图的形式例示说明一个合并有按本发明方法的碳质材料纯化和燃烧系统10。
参照图1,系统10包括一个装有已破碎为颗粒形式、优选为基本圆形颗粒且优选粒径小于2mm的不纯碳质材料的料斗20。与料斗20连接的是一个用来将碳质材料从料斗20输送到纯化反应器30的进料单元25。
纯化反应器30处在能接受来自进料单元25的碳质材料的位置。纯化反应器30还装配有管线24,使来自水解塔32的约32%w/w的H2SiF6水溶液得以进入。纯化反应器30可以是流动式反应器或是搅拌或旋转式反应器。纯化反应器30一般是一个转鼓式反应器。反应器还装有管线26,可在碳质材料与H2SiF6水溶液接触适当时间后,用来将反应器30的物料转送到过滤器50。过滤器50适宜是一个带式过滤器并装配有一条用来将分离后的液体带离过滤器50的管线51和一个可用来将分离后的固体从过滤器50输送到脱氧化硅反应器55的输送机52。反应器55装配有一条可将来自HF吸收塔54的HF和H2SiF6氟酸水溶液送入的管线58和一条与水解塔32联通的排气管线59。
反应器55的底部出料管线经由泵56和管线57与一个两段管式反应器65A、65B相联,第一段65A能够采用超声波搅动。反应器65B的末端流入分离器16,分离器16靠近上部和下部处分别装配有出料管线66和67。上部处料管线66与一个能将固体碳质材料与水溶液分离的离心分离机或带式过滤器70相联。离心分离机或带式过滤器70的液体出料一侧装配有管线69,通向HF吸收塔54,离心分离机或带式过滤器70的固体出料一侧进到一个混合器和分离器系统用于洗涤。
混合器/分离器系统是由三个混合罐71、73和75和三个分离器如离心分离机或带式过滤器72、74和76构成,设备布置成能使碳质材料依次从混合罐71流到分离器72,然后流到混合罐73接着是分离器74,然后是混合罐75和分离器76。该系统布置成水相与固体基本是逆向流动。
最后一个分离器76的固体出料管线连接到一个由混合器77、管式反应器78和固体分离器79组成的干燥系统。混合器/分离器系统的液体出料管线来自分离器72并与蒸馏器80相联。分离器79有一个蒸气出料管线,也与蒸馏器80相联,蒸馏器80装配有夹套加热器、蒸气出料管线81和通向固体分离器98的底部出料管线。
任选在分离器76的固体出料管线和混合器77之间安装一个如下参照图3所述的溶剂萃取系统,如图1的虚线所示。
蒸馏器80的蒸气出料管线81经由一个压力风机82和混合器83连接到脱水反应器84。混合器83也装有一条使热气体得以进入的管线(未示出)。脱水反应器84的下游是分离器86,其无水气体排出管线87连接到HF吸收塔54。分离器86也连接到固体输送管线88,其与氟化物干燥器89联通。氟化物干燥器89装有移水管线91a、91b和用来将基本无水的金属氟化物从干燥器89输送到混合器83的氟化物供料管线90。
当系统10运转时,来自料斗20的碳质材料经由进料单元25输送到反应器30中。碳质材料经由进料单元25进行的输送过程适合通过一个管或管子内多盘片的系统实现,这些盘片约为管或管子的内径,它们通过纲缆连接起来以使其能从管或管子抽出。适用的系统是新南威尔士Leichardt的GPM Australia Pty Ltd出售的名为“Floveyer”的产品。碳质材料的输送可以是连续或分批的。还借助管线24向反应器30提供来自水解塔32的H2SiF6水溶液。反应器30一般处于约30℃的温度和大气压下。
碳质材料与H2SiF6水溶液在反应器30内的接触时间应足以使碳质材料中任何含硫杂质的至少一些发生反应和溶解。流动式反应器可通过控制反应物水溶液的流速而使其在反应器30内有足够停留时间来达到这一目的。或者,该过程可以间歇方式进行,使每批反应有足够的停留时间。适宜的反应时间一般为10-100分钟,更典型为15-30分钟、更加典型为12-16分钟。
从反应器30出来的酸水溶液和碳质材料经管线26被输送到过滤器50,其中水相含有氢氟硅酸水溶液和溶解的金属氟硅酸盐等,将其与半纯化的碳质材料分离。水相经管线51被输送到蒸馏塔110(图1未示出),按下面参照图2所做的更详细描述将金属氟化物分离出来。
半纯化的碳质材料借助输送机52被送到反应器55,在其中与包括氢氟硅酸和氢氟酸水溶液的氟酸水溶液混合,使来自反应器30的半纯化碳质材料继续与氟酸水溶液接触足够的时间,将半纯化碳质材料中任何氧化硅的至少一部分溶解。反应器55一般维持约100-135kPa范围的压力和约70℃的温度。碳质材料在反应器55内的停留时间一般从10到20分钟、更典型为约15分钟。
从反应器55出来的碳质材料与氟酸水溶液的混合物借助泵56送到第一段管式反应器65A,再由此进入第二段65B。管式反应器65A和65B的温度一般约为70℃且压力一般是从350到500kPa。在第一段反应器65A中,将碳质材料在酸水溶液中的悬浮液充分搅动,以使所存在的任何FeS和其它密度较大物质能够在第二段反应器65B末端的分离器16处分离出来。在第二段管式反应器65B中,不对混合物做超声波搅动。富含FeS的固体淤浆液自分离器16的下部经管线67移出。碳质材料于氢氟硅酸水溶液中的淤浆液从分离器16的上部经管线66移出并被送到离心分离机或带式过滤器70,在此将酸水溶液移出,剩下的碳质材料被送到洗涤塔/分离器系统。
在此系统中,用与碳质材料逆向流经体系的氢氟硅酸水溶液将碳质材料进行洗涤。即将新鲜氢氟硅酸水溶液供料自水解塔32提供给混合罐75,在此与碳质材料混合并在分离器76进行分离。水相自分离器76送到混合罐73,在此与进入该混合罐的碳质材料混合并在分离器74分离出来。分离器74分离出的水相被送到混合罐71,在此与来自离心分离机或带式过滤器70的碳质材料混合。混合罐71内的固体和液体在分离器72进行分离,固体被送到混合罐73,液体被送到蒸馏器80。这样离开分离器76的固体就是洗涤后的固体,离开分离器72的液体则较为不纯。
离开系列容器最后一个分离器76的碳质材料可进入(任选经由一个溶剂萃取系统)一个由混合器77和钢管反应器78组成的干燥系统。进入混合器77的碳质材料与贫氧燃气混合并被送到反应器78内,于惰性气氛、一般约310℃条件下焙烧处理,脱除碳质材料表面残存的氢氟硅酸。氢氟硅酸以气态氟化氢和四氟化硅连同蒸气的形式移出,在气体与干燥固体在分离器79分离后,气体被送入蒸馏器80。从分离器79出来的干燥固体是适合用作燃料的纯化碳质材料。系统10进一步包括碳质材料储存容器93,干燥碳质材料可由此供给炉子和燃气轮机系统95。任选系统10在分离器79和容器93之间包括一个下面参照图3描述的溶剂萃取工段,如图1虚线所示。
从离心分离机或带式过滤器70移出的水相穿过一个HF吸收塔54,使来自干燥器84和分离器86的气体进入该塔用于HF吸收产生氟酸溶液来提供给脱氧化硅反应器55。来自如图2所示且下文将详细描述的系统100的HF和SiF4气体经由管线53也提供给HF吸收塔54。离开HF吸收塔54的气体流经水解器32,将足量水36加入塔内,以生成期望浓度的H2SiF6水溶液用于反应器30。水解器32内产生的氧化硅经底部出口移出。
自分离器72处离开洗涤/分离器系统的酸水溶液被送到蒸馏器80,将其加热到足以使氟化氢和四氟化硅气体从水溶液中释放出来和水相中存在的任何金属氟化物能以固体形式分出的温度(一般为105-110℃)。应该了解的一点是风机82两面的压差将影响蒸馏器80呢的压力进而是其温度。分离出的固体借助分离器98从蒸馏器80移出。蒸馏器80一般用来自气轮机85的废气进行加热。来自混合器77和分离器79的蒸气一般是返回蒸馏器80并提供更多的热源。
离开蒸馏器80的气体经由管线81和压力风机82进入混合器83,在此与基本无水的AlF3混合。混合物进入管式脱水反应器84,脱除气相中基本全部的水,因此而生成基本无水的HF和SiF4气态混合物,将其从脱水反应器84经由管线87送入HF吸收塔54。脱水反应器84中所生成的潮湿AlF3被送入AlF3干燥器89,将潮湿AlF3加热。此加热步骤所产生的水蒸气在91a和91b处移出,将基本无水的AlF3经由管线90循环回混合器83。来自气轮机的95的废气适宜用作加热干燥器89的用途。
图2以方框示意图形式例示说明一个用来处理本发明第一或第二方案方法的步骤(a)所生成的水溶液或悬浮液的系统100,包括一个蒸馏器和相关设备。
参看图2,系统100包括蒸馏器110,配有一条与图1所示过滤器50相联的供料管线115。蒸馏器110还配有夹套加热器112、蒸气出料管线120和一条连接水平控制分离器150的底部出料管线。气体出料管线120经由压力风机125连接脱水系统130,脱水系统130的气体出料管线连接到一对活性炭过滤器135、136,过滤器则连接到蒸气冷凝器140。冷凝器140配有排气管线145和排液管线146。活性炭过滤器135、136分别配有气体出料管线138和139,且连接到蒸气供应管线133。
运转时,自如图1所示的反应器30出来的和过滤器50中与固体分离的水相经由管线115进入蒸馏器110,蒸馏器110被夹套加热器112加热到足够能使包括HF、SiF4、二氧化硫和水蒸气的气体从蒸馏器110中释放出来并借助管线120离开的温度。这些气体被风机125加压,一般是增加到约70-140kPa范围的压力,并进入包含无水氟化铝的脱水系统130,如上文参照图1的描述。蒸馏器110的温度取决于风机125所产生的压力,但一般是105-110℃范围的温度。在脱水系统130中,水蒸气大部分被移出,基本无水的气体离开脱水系统,进入活性炭过滤器135、136之一。当气体穿过活性炭过滤器时,二氧化硫和其它可能存在一些其它气体如HCl被活性炭吸附,产生出HF和SiF4气流,该气流在出气管线138或139处移出并借助管线53送入如图1所示的系统10的HF吸收塔54。活性炭过滤器135、136适宜一前一后地使用,使活性炭过滤器之一处于运转状态并与离开脱水系统130的气体接触,而另一个活性炭过滤器停用并被加热使二氧化硫和其它被吸附的物种如氯化氢解吸。用经管线133进入的蒸气进行加热。将解吸的物种从活性炭过滤器(以此方式清洗)送到蒸气冷凝器140,将蒸气冷凝并连同溶解其中的SO2和任何存在的HCl一起经管线146移出。
蒸馏器110中的液体浓度因加热和气体从其中蒸发出去而变的更高,直到达到液体中溶解的无机物超过其溶度极限的点。蒸馏器110中积聚的无机固体可从蒸馏器底部管线移出并进入一个水平控制分离器150,采用任何适宜的手段将固体与液相分离,并将其送去处置或者送到再生装置从中获取有用物质。分离出的液体可返回到蒸馏器110。
图3图示说明一个按本发明第三方案方法的使用能溶解元素硫的溶剂处理半纯化碳质材料的系统200。
参看图3,系统200包括处理容器210,其配有碳质材料进管215和溶剂进管216,以及能使碳质材料和溶剂从处理容器210送到固体/液体分离器220的出料管线218。分离器220可以是适宜的任何形式分离器如过滤器和离心分离机或沉降罐。分离器220配有一条连接到汽提塔230的固体出料管线和一条连接到蒸馏器(未示出)的液体出料管线225。汽提塔230配有加热器(未示出)、蒸气排出管线237和固体出料管线235。
当系统200运转时,将例如已按美国专利4780112描述的氟酸溶液处理过的碳质材料和溶剂加入到处理容器210中,将它们进行混合并使其保持接触足够的时间,以使碳质材料中存在的任何元素硫至少一部分被溶剂溶解。溶剂一般是乙醇,但也可是任何能溶解元素硫的溶剂,或是这些溶剂的混合物。在处理容器210中的处理过程一般是在室温和大气压下进行。适当接触时间后,将处理容器210中的物料经底部出料管线218送到分离器220,使固相与溶剂相分离。固相被送到汽提塔230,将其加热以使残留溶剂蒸发。加热温度适合为或约为所用溶剂的沸点。经过足以使汽提塔230内碳质材料中残留溶剂基本全部蒸发的时间加热后,将干燥的碳质材料经出料管线235出料去进一步加工或使用。
离开分离器220的液体和离开汽提塔230的蒸气可进入溶剂蒸馏器(未示出),将溶剂馏出以回收或再用。蒸馏器中的其它主要产物是元素硫,可移出去处置或出售。
实施例
将按美国专利4780112所述方法处理的煤样干燥并在电镜下检测。可观察到它们含有两种形式的硫:黄铁矿和元素硫。
将高硫原煤样品用约两倍其重量的32%w/w的氢氟硅酸水溶液室温下处理30分钟,然后干燥并按美国专利4780112所述用氟酸水溶液进行处理,分离出固体后,将它们再次干燥并在电镜下检测。未见元素硫。

Claims (19)

1.一种减少碳质材料中的含硫杂质量的方法,包括:
(a)将所述材料与氢氟硅酸水溶液在不存在氟化氢和至少一些含硫杂质与氢氟硅酸反应形成反应产物的条件下进行接触,和
(b)将反应产物与所述碳质材料分离。
2.一种减少碳质材料中的含硫杂质量的方法,包括:
(a)将所述材料与氢氟硅酸水溶液在不存在氟化氢和至少一些含硫杂质与氢氟硅酸反应形成反应产物的条件下进行接触;
(b)将所述反应产物和所述氢氟硅酸与所述碳质材料分离,之后
(c)将所述碳质材料用包括氢氟硅酸和氟化氢水溶液的氟酸溶液进行处理。
3.一种减少碳质材料中的含硫杂质量的方法,包括:
将所述碳质材料用包括氢氟硅酸和氟化氢水溶液的氟酸溶液进行处理,
将所述氢氟硅酸和氟化氢水溶液与所述碳质材料分离,然后
将所述碳质材料与能溶解元素硫的有机溶剂进行接触。
4.权利要求1或2的方法,其中步骤(a)中氢氟硅酸的浓度在27%-37%(w/v或w/w或v/w)范围内。
5.权利要求1或2的方法,其中步骤(a)中氢氟硅酸的浓度在28%-36%(w/v或w/w或v/w)范围内。
6.权利要求1或2的方法,其中步骤(a)的温度在28-75℃范围内。
7.权利要求1或2的方法,其中步骤(a)的温度在30-70℃范围内。
8.权利要求1或2的方法,其中步骤(a)的反应时间在8-120分钟范围内。
9.权利要求1或2的方法,其中步骤(a)的反应时间在10-100分钟范围内。
10.权利要求1或2的方法,其中步骤(a)中碳质材料与至少约为其重量两倍的氢氟硅酸水溶液混合。
11.权利要求1或2的方法,其中步骤(b)之后将所述分离后的碳质材料用氢氟硅酸水溶液进一步处理,以便将残留的金属氟硅酸盐移出。
12.权利要求2或3的方法,其中氟酸溶液具有下述范围内的组成:4%w/w H2SiF6、92%w/w H2O、4%w/w HF到35%w/w H2SiF6、30%w/w H2O、35%w/w HF。
13.权利要求2或3的方法,其中氟酸溶液具有下述范围内的组成:5%w/w H2SiF6、90%w/w H2O、5%w/w HF到34%w/w H2SiF6、32%w/w H2O、34%w/w HF。
14.权利要求2或3的方法,其中氟酸溶液的组成为约25%w/wH2SiF6、50%w/w H2O、25%w/w HF。
15.权利要求2的方法,其中步骤(c)中碳质材料用至少约为其重量两倍的氟酸溶液进行处理。
16.权利要求3的方法,其中步骤(a)中碳质材料用至少约为其重量两倍的氟酸溶液进行处理。
17.权利要求1方法,其中步骤(b)后包括将分离出的碳质材料用H2SiF6水溶液进行洗涤,和将所述洗涤后的碳质材料在约250-400℃范围的温度下加热以便将保留在碳质材料上的任何残存氢氟硅酸蒸发掉。
18.权利要求3的方法,其中能够溶解元素硫的有机溶剂是乙醇、苯、二硫化碳、乙醚或四氯化碳,或是这些溶剂的两或多种的混合物。
19.权利要求3的方法,其中碳质材料与有机溶剂接触的步骤是在室温和大气压条件下进行。
CNB038088428A 2002-03-05 2003-03-05 处理碳质材料的方法 Expired - Fee Related CN1296465C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPS0911 2002-03-05
AUPS0911A AUPS091102A0 (en) 2002-03-05 2002-03-05 Method for treating carbonaceous materials

Publications (2)

Publication Number Publication Date
CN1646669A true CN1646669A (zh) 2005-07-27
CN1296465C CN1296465C (zh) 2007-01-24

Family

ID=3834510

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038088428A Expired - Fee Related CN1296465C (zh) 2002-03-05 2003-03-05 处理碳质材料的方法

Country Status (18)

Country Link
US (1) US20060150474A1 (zh)
EP (1) EP1483360A4 (zh)
JP (1) JP2005519017A (zh)
KR (1) KR20040106285A (zh)
CN (1) CN1296465C (zh)
AU (3) AUPS091102A0 (zh)
BR (1) BR0308198A (zh)
CA (1) CA2477882A1 (zh)
CO (1) CO5611206A2 (zh)
EA (1) EA006065B1 (zh)
IL (2) IL163835A0 (zh)
MX (1) MXPA04008579A (zh)
NO (1) NO20043674L (zh)
NZ (1) NZ535220A (zh)
PL (1) PL205213B1 (zh)
UA (1) UA77769C2 (zh)
WO (1) WO2003074639A1 (zh)
ZA (1) ZA200407112B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993755A (zh) * 2009-08-10 2011-03-30 通用电气公司 包括中和沥滤液的从煤除去杂质的方法
CN102159688A (zh) * 2008-01-08 2011-08-17 卡波恩科斯集团有限公司 用于精炼含碳材料的系统和方法
CN102424769A (zh) * 2011-10-31 2012-04-25 山东科技大学 一种煤的化学脱硫方法
CN108455616A (zh) * 2017-12-20 2018-08-28 湖北瓮福蓝天化工有限公司 一种氟硅酸除氯方法及装置
CN109530075A (zh) * 2017-09-22 2019-03-29 中南大学 一种从含碳质的原料低成本高效分离回收碳质的方法
CN112142044A (zh) * 2020-09-24 2020-12-29 中南大学 一种废旧锂离子电池炭渣的处理方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1976800A1 (en) * 2005-12-14 2008-10-08 Karalee Research PTY Ltd Extraction and purification of minerals from aluminium ores
US8691166B2 (en) 2008-01-08 2014-04-08 Carbonxt Group Limited System and method for activating carbonaceous material
US8617492B2 (en) * 2008-01-08 2013-12-31 Carbonxt Group Limited System and method for making low volatile carboneaceous matter with supercritical CO2
US8628707B2 (en) * 2008-01-08 2014-01-14 Carbonxt Group Limited System and method for making carbon foam anodes
DE102008010746A1 (de) 2008-02-20 2009-09-03 I-Sol Ventures Gmbh Wärmespeicher-Verbundmaterial

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1537286A (en) * 1921-03-23 1925-05-12 Oscar L Barnebey Process for the manufacture of decolorizing carbons
US3926575A (en) * 1971-07-19 1975-12-16 Trw Inc Removal of pyritic sulfur from coal
AU5623680A (en) * 1979-03-16 1980-09-18 Kinneret Enterprises Ltd. De-ashing coal
US4441886A (en) * 1982-11-22 1984-04-10 Southern Illinois University Foundation Process for removing organic sulphur from coal and material resulting from the process
AU2620084A (en) * 1983-03-28 1984-10-04 Oabrand Pty. Ltd. Removal of iron pyrites from coal with hydrofluoric acid
GB2158051A (en) * 1983-08-18 1985-11-06 Barron S Whittingham Method for extracting sulphur from coals and lignatic materials
BR8605483A (pt) * 1985-02-19 1987-04-22 Oabrand Pty Ltd Metodo para a reducao quimica continua e remocao de materia mineral contida em estruturas de carbono

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102159688A (zh) * 2008-01-08 2011-08-17 卡波恩科斯集团有限公司 用于精炼含碳材料的系统和方法
CN101993755A (zh) * 2009-08-10 2011-03-30 通用电气公司 包括中和沥滤液的从煤除去杂质的方法
CN102424769A (zh) * 2011-10-31 2012-04-25 山东科技大学 一种煤的化学脱硫方法
CN109530075A (zh) * 2017-09-22 2019-03-29 中南大学 一种从含碳质的原料低成本高效分离回收碳质的方法
CN109530075B (zh) * 2017-09-22 2021-04-13 中南大学 一种从含碳质的原料低成本高效分离回收碳质的方法
CN108455616A (zh) * 2017-12-20 2018-08-28 湖北瓮福蓝天化工有限公司 一种氟硅酸除氯方法及装置
CN112142044A (zh) * 2020-09-24 2020-12-29 中南大学 一种废旧锂离子电池炭渣的处理方法

Also Published As

Publication number Publication date
IL163835A0 (en) 2005-12-18
AU2003205451A1 (en) 2003-09-16
US20060150474A1 (en) 2006-07-13
JP2005519017A (ja) 2005-06-30
NO20043674L (no) 2004-10-06
EA006065B1 (ru) 2005-08-25
PL205213B1 (pl) 2010-03-31
WO2003074639A1 (en) 2003-09-12
BR0308198A (pt) 2004-12-21
NZ535220A (en) 2005-04-29
EA200401152A1 (ru) 2005-02-24
IL163835A (en) 2007-07-24
AU2009202202A1 (en) 2009-06-25
UA77769C2 (en) 2007-01-15
CN1296465C (zh) 2007-01-24
MXPA04008579A (es) 2004-12-13
KR20040106285A (ko) 2004-12-17
AUPS091102A0 (en) 2002-03-28
CO5611206A2 (es) 2006-02-28
EP1483360A4 (en) 2008-08-20
PL372337A1 (en) 2005-07-11
EP1483360A1 (en) 2004-12-08
ZA200407112B (en) 2006-02-22
CA2477882A1 (en) 2003-09-12

Similar Documents

Publication Publication Date Title
AU2009202202A1 (en) Method for Treating Carbonaceous Materials
US4206186A (en) Refuse pyrolysis
KR101269254B1 (ko) 사불화규소의 제조 방법 및 그것에 이용하는 제조 장치
CA1308232C (en) Method for the continuous chemical reduction and removal of mineral matter contained in carbon structures
CN1152544A (zh) 处理将HCl氧化成氯时的反应气体的方法
FR2753396A1 (fr) Procede et dispositif de traitement d'un gaz contenant de l'hydrogene sulfure et du dioxyde de soufre comportant une etape d'appauvrissement en soufre du solvant recycle
CN1887696A (zh) 低浓度二氧化硫烟气脱硫制硫酸的方法及烟气脱硫系统
CN1206735A (zh) 气体精制方法
WO2010066017A1 (en) Process for purifying waste sulfuric acid
US20090252662A1 (en) Process for purifying inorganic materials
CA2646311A1 (en) Process for purifying waste sulfuric acid
US4482460A (en) Process for removing carbon black from aqueous suspensions
JPS6153102B2 (zh)
CN114772638A (zh) 一种氯化物的除水及纯化方法
CN1150791A (zh) 处理含二氧化硅材料的方法
CN114920206A (zh) 一种连续法除去稀硫酸中硅氧烷的工艺
CN116670068A (zh) 用于回收碘(i2)的方法
JPH11511693A (ja) 水銀化合物により汚染された、硫黄含有活性相を有する触媒を再生する方法
JPH0134922B2 (zh)
JPS6340772B2 (zh)
BE442149A (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070124