CN1622824A - 微生物表达的用于动物饲料的耐热植酸酶 - Google Patents

微生物表达的用于动物饲料的耐热植酸酶 Download PDF

Info

Publication number
CN1622824A
CN1622824A CNA028284003A CN02828400A CN1622824A CN 1622824 A CN1622824 A CN 1622824A CN A028284003 A CNA028284003 A CN A028284003A CN 02828400 A CN02828400 A CN 02828400A CN 1622824 A CN1622824 A CN 1622824A
Authority
CN
China
Prior art keywords
phytase
heat
animal
stable phytase
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028284003A
Other languages
English (en)
Other versions
CN100406561C (zh
Inventor
M·B·拉纳汉
E·克普夫
K·克雷茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enzyme Co ltd AB
Original Assignee
Syngenta Participations AG
Diversa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Syngenta Participations AG, Diversa Corp filed Critical Syngenta Participations AG
Publication of CN1622824A publication Critical patent/CN1622824A/zh
Application granted granted Critical
Publication of CN100406561C publication Critical patent/CN100406561C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K40/00Shaping or working-up of animal feeding-stuffs
    • A23K40/20Shaping or working-up of animal feeding-stuffs by moulding, e.g. making cakes or briquettes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/030083-Phytase (3.1.3.8)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/14Pretreatment of feeding-stuffs with enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/189Enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K40/00Shaping or working-up of animal feeding-stuffs
    • A23K40/25Shaping or working-up of animal feeding-stuffs by extrusion
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/30Feeding-stuffs specially adapted for particular animals for swines
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/70Feeding-stuffs specially adapted for particular animals for birds
    • A23K50/75Feeding-stuffs specially adapted for particular animals for birds for poultry
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • A23L11/30Removing undesirable substances, e.g. bitter substances
    • A23L11/33Removing undesirable substances, e.g. bitter substances using enzymes; Enzymatic transformation of pulses or legumes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/06Enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/195Proteins from microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/20Removal of unwanted matter, e.g. deodorisation or detoxification
    • A23L5/25Removal of unwanted matter, e.g. deodorisation or detoxification using enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)

Abstract

本发明提供了制造和使用耐热植酸酶的方法,如在饲料和食品加工过程中利用耐热植酸酶的方法,还提供了含有耐热植酸酶的饲料和食品。

Description

微生物表达的用于动物饲料的耐热植酸酶
                      相关申请
本申请要求2001年12月28日提交的申请No.60/344523的优先权,该申请在此引入作为参考。
                      发明领域
总体上说,本发明涉及的是分子生物学领域,更具体地说,是涉及耐热植酸酶的使用。
                      发明背景
植酸酶(肌醇六磷酸酶(myo-inositol hexakisphosphatephosphohydrolase),EC3.1.3.8)是一类能将植酸盐(肌醇六磷酸盐)水解成肌醇和无机磷酸盐的酶。已知这种酶是有价值的饲料添加剂。在二十世纪末,植酸酶作为动物饲料添加剂每年的销售额估计超过1亿美元,而且还在增长。
家禽和猪的食物现在主要是谷类食品,豆类食品和含油种子。这些饲料中大约2/3的磷是以植酸盐形式存在的,而植酸盐是植酸的盐类物质(肌醇六磷酸盐,InsP6)(Jongbloed等人,1993)。植物中的植酸磷是植酸的钙-镁-钾盐混合物,在植物中以螯合物的形式存在,溶解度很低(Pallauf和Rimbach,1997)。这种形式的磷很难被单胃动物如人、猪和家禽消化/利用。
为了利用植酸盐中的磷、矿物质和结合在植酸复合物上的微量元素,用植酸酶将植酸上的酯类结合磷酸基团进行水解是有必要的(Rimbach等人,1994)。植酸酶是一类特殊的磷酸酶,它能将植酸盐水解成一系列的低级的肌醇磷酸酯和磷酸盐。已知了两类植酸酶:3-植酸酶和6-植酸酶,从而表明了最初最容易受到攻击的磷酸酯键。尽管单胃动物缺乏足够的植酸酶来利用植酸盐中的磷,但可以将许多能产生植酸酶的真菌、细菌和酵母补充到动物的口粮中。
添加植酸酶对磷消化率和动物的生长性能产生有利的影响,这在许多文献中已经被很好地证明了(Mroz等人,1994;Kornegay等人,1996;Rao等人,1999;Ravindran等人,1999)。然而,绝大部分制造商做的研究都是出于一个特别的目的,它们只是肤浅地把提供这种酶作为一种市场战略。任何酶制剂的效力不仅取决于酶的类型,内含物等级(inclusion rate),和出现的活性水平,也取决于酶在不同条件下保持其活性的能力,这些不同条件包括在整个胃肠道中遇到的不同条件和在食品和饲料制剂前处理中采用的不同条件。
尽管许多植酸酶都可以用作补充物,但这类酶中的许多都有某些缺陷。例如,许多现在使用的植酸酶在饲料粒化过程中由于热处理而失去活性。此外,许多现在使用的酶在磷酸钙补充水平低的食物中的量不足。
因此,我们需要的是在动物饲料和食品加工过程性质改进的植酸酶。
                      发明概述
因此,本发明提供了制备和使用核酸分子(多聚核苷酸)的方法,这些核酸分子编码耐热植酸酶,即在大约60℃,30分钟后还能保持至少40%活力的植酸酶,而且这种植酸酶有高的比活性,即在37℃和酸性pH,如pH4.5时,其比活性至少是200U/mg。在一个实施方案中,本发明提供了制备耐热植酸酶的方法。方法包括:在微生物宿主细胞中表达表达盒,该表达盒含有启动子,它可操作地连接在核酸分子上,该核酸分子编码耐热植酸酶,耐热植酸酶在大约60℃,30分钟后还能保持至少40%的活力,而且这种植酸酶在pH4.5和37℃时,比活性大于200U/mg。微生物宿主细胞可以是原核细胞,如细菌细胞(如埃希氏菌属,假单胞菌,乳酸菌和杆状菌),酵母(如酵母菌属,裂殖酵母属,毕赤酵母属或hansuela)或真菌(如曲霉菌或木霉菌)细胞。在一个优选的实施方案中,用来制备重组耐热植酸酶的微生物细胞产生的是重组耐热植酸酶的糖基化形式。
优选的是将编码耐热植酸酶的多聚核苷酸(第一多聚核苷酸)可操作地连接到至少一个调控元件如启动子,增强子,内含子,终止序列,或它们的组合序列上,或者,也可任选地将第一多聚核苷酸连接到第二多聚核苷酸上,第二多聚核苷酸编码信号肽,它能指导第一多聚核苷酸编码的酶到特定的细胞位置上,如胞外。启动子可以是组成型的,也可以是诱导型(有条件的)的启动子。如本发明介绍的那样,对编码植酸酶的亲本(细菌的)多聚核苷酸进行突变,能产生变异(合成的)的DNAs,它编码的植酸酶相对亲本多聚核苷酸编码的植酸酶而言,性质有了改进。在一个实施方案中,将许多变异DNAs上的突变结合制备一个合成的多聚核苷酸,相对亲本多聚核苷酸来说,它编码的植酸酶耐热性和胃稳定性增强,具有相似或更高的比活性。获得亲本多聚核苷酸的来源包括植物,细菌或真菌核酸,可以采用任何方法从选择的亲本多聚核苷酸中制备本发明的合成多聚核苷酸,这些方法如组合诱变,回归诱变和/或DNA重排。
因此,在本发明的一个实施方案中,和对应(用作参考的)的耐热植酸酶相比,这种耐热植酸酶有一或多个氨基酸取代,这种取代和植酸酶在60℃或高于60℃时活力的保持相关。优选的是,这种耐热植酸酶在大约60℃,30分钟后还能保持至少40%的活力,更优选的是,在大约65℃,30分钟后还能保持至少40%的活力,更进一步优选的是,在大约70℃,30分钟后还能保持至少35%的活力,而且,这种植酸酶在37℃和酸性pH,如pH5.0,更优选的是少于4.0和大于1.5的情况下,至少有400U/mg的比活力,更优选的是至少有600U/mg的比活力,更进一步优选的是至少有800U/mg的比活力。SEQID NO:1中提供的是本发明典型的耐热植酸酶的例子。
本发明也提供了载体和转化的微生物细胞,载体含有本发明表达盒或多聚核苷酸,而微生物细胞含有本发明多聚核苷酸、表达盒或载体。本发明载体编码多个多肽,或编码融合多肽,其中多肽包括多个植酸酶,而融合多肽含有本发明的耐热植酸酶,转化的微生物细胞可能包括一或多个本发明的载体。本发明的转化细胞用来制备本发明的重组耐热植酸酶。因此,本发明提供从本发明转化的微生物细胞中分离出来的耐热植酸酶,以及合成的植酸酶。
本发明进一步提供的是配制耐热植酸酶、植酸酶制剂或酶混合物的方法。重组的耐热植酸酶或其制剂可以在食品或饲料加工之前、加工过程中、或之后加入,作为食品或饲料的一种添加剂或成分。优选的是,本发明的重组制酸酶可以在加热(如蒸汽)之前或加热过程中加入制片机(pellet mill)中的饲料成分的混合物中。因此,本发明包括制造和使用耐热植酸酶的方法。
在饲料配制过程中,因为本发明的植酸酶能够耐受商用制片机的加热,所以本发明进一步提供的是一种制造动物饲料,如含有耐热植酸酶的饲料硬颗粒的方法。饲料制造方法包括:混合配制的植酸酶和动物饲料成分;设定制片机中混合物蒸汽应达到的条件:经过预热处理,至少保持50%的酶活力;并且通过pellet dye将饲料挤压出来。因此,除了可以和维生素,矿物质,别的饲料酶,农业上的副产品(如粗小麦粉或玉米蛋白粉),或它们的组合物一块添加到动物饲料中外,植酸酶也可单独用作动物饲料的补充料。粉状食物,即没通过制粒机的食物中也可添加这种酶。
现在通过商业途径获得的植酸酶不耐热,因此一般都是在粒化后添加,一般都是将这种酶溶液喷洒到粒化的饲料上。伴随喷洒方法出现的问题是只有百分比很小的颗粒能和酶联系,而这酶只是存在于有涂层的颗粒表面,此外饲料厂还必须购买和操作复杂的喷洒机器。相反,本发明的耐热植酸酶,它的比活力比别的在商业上获得的植酸酶要高8倍,可以在粒化之前加入,从而使饲料产品中这种酶的分布状况得到改善。此外,因为喷洒过程中要带入一些湿气,而贮存期间这种湿气会支持真菌和细菌的生长,因此,和用喷洒植酸酶方法获得的饲料相比,含有本发明植酸酶的的饲料具有更长的保存限期。进一步说,由于本发明耐热植酸酶的比活力更高,这样饲料制造商可以显著降低饲料中磷酸盐的水平。例如,在补充有商用植酸酶食物中,目前推荐使用的基本无机磷酸盐水平是0.45%。而本发明耐热植酸酶在使用时,补充的无机磷酸盐水平更低,例如,在家禽饲料中是约0.225%。
因此,本发明提供了制备动物饲料的方法,包括如下步骤:提供含有一或多种饲料成分的混合物以及含有本发明耐热植酸酶的制剂,然后在合适的温度和湿度条件下处理该混合物,这样就能水解混合物中的植酸。本发明也提供了用这种方法制备的动物饲料。本发明进一步提供了含组合物的耐热植酸酶的制备方法,包括:将含有本发明耐热植酸酶的液体溶液和面粉如大豆面粉混合,然后将该混合物冻干,得到冻干的组合物,它可用于饲料配制。
本发明进一步提供了一种方法,在这种方法中,含有动物饲料成分的混合物和含有本发明耐热植酸酶的制剂用热处理,这样就得到热处理过的动物饲料混合物。本发明也提供了用这种方法制备的热处理动物饲料。植酸酶制剂可以是液体制剂,也可以是固体制剂,优选的植酸酶制剂含有不超过约1%的无机磷酸盐。在一个实施方案中,将含有本发明耐热植酸酶的液体溶液和面粉混合,然后将该混合物冻干。这种混合物,优选的是含有不到0.45%的无机磷酸盐,也可以还包括至少一种维生素,矿物质,别的非耐热植酸酶的酶,有机酸,原生物(probiotic)产品,精油(essential oil)或谷物加工的副产品。热处理的饲料可以进一步加工,例如,用制片机挤压这种热处理的饲料,可以得到粒化的动物饲料。也提供了含有本发明耐热植酸酶的动物饲料组合物,含有这种耐热植酸酶的酶饲料添加剂或食品添加剂。
本发明也提供了一种方法,这种方法能降低饲料的转化率,提高用含有耐热植酸酶饲料饲喂的动物的重量。本发明进一步提供了一种方法,这种方法能减少动物食品中磷,如无机磷的需求。该方法包括:用含有本发明植酸酶的饲料饲喂动物,饲喂量能有效地增加磷的生物利用度,优选的是无机磷的生物利用度。本发明也提供一种能增加动物饲料中磷利用率的方法,这种方法包括:用含有本发明植酸酶的饲料饲喂动物,饲喂量能有效地增加饲料中磷的生物利用度。
此外,本发明也提供了一种方法,这种方法能降低动物排泄物中的磷水平,它包括:给动物饲喂无机磷含量少于0.45%,并且含有一定量的本发明耐热植酸酶的饲料,从而能有效地降低动物排泄物中的磷水平。
本发明提供了一种改进动物饲料和人类食品营养价值的方法。该方法包括:在动物饲料或人类食品制备过程中,添加本发明的耐热植酸酶。本发明也提供了制备人类食品的方法,包括:提供食品成分的混合物以及含有本发明耐热植酸酶的制剂;并且在合适的温度和湿度条件下处理这种混合物,促进混合物中植酸的水解。
本发明范围内的动物包括多胃动物,如小牛,以及单胃动物,如猪,家禽(如小鸡,火鸡,鹅,鸭,雉,松鸡,鹌鹑和鸵鸟),马,绵羊,公山羊,犬和猫,以及鱼和甲壳动物。饲料或食品中植酸酶的水平优选的是约50-5000U/kg,更优选的是100-1200U/kg,或300-1200U/kg。
                      附图简述
图1A说明的是不同温度下,含有野生型或突变型植酸酶基因的大肠杆菌细胞热处理1小时后残余的植酸酶活力。利用Diversa公司开发的Gene Site Saturation Mutagenesis(“GSSM”)制备的,并具有特异氨基酸取代的突变体命名为1x-4x,4x11,5x-7x(它有一个突变,或至多8个独立的氨基酸取代)和NOV9X(它具有全部8个氨基酸取代,参看SEQ ID NO:1)。
图2所示的是在含水溶液中,在不同的时间,随着温度的上升,野生型和突变型NOV9X(SEQ ID NO:1)植酸酶的活性。
图3A说明的是含水溶液在不同的温度下加热30分钟后,野生型和突变型NOV9X酶残余的植酸酶活力。
图3B说明的是含水溶液在100℃最多加热到8分钟时,野生型和突变型NOV9X酶残余的植酸酶活力。
图4所示的是在不同宿主中表达的突变型NOVX9X溶液在95℃加热5分钟后,胃稳定性半寿期和残余的活力。
图5说明的是小鸡的饲料转化效率,这种小鸡饲喂了添加了不同水平突变NOV9X酶或Natuphos(一种曲霉菌植酸酶)的饲料,该饲料中含不同水平的无机磷。
图6所示的是小鸡的重量数据,该小鸡饲喂了颗粒饲料,这种饲料含有来自不同重组宿主的NOV9X酶或Natuphos。
图7所示的是Nov9X植酸酶和Natuhos利益的最小均方图,这是对9个试验的数据进行累积综合的结果。FCReff最小均方是酶使用过程中,FCR点的平均利益值。如果模型的FCReff=截矩,那Coli和Nat就有显著不同的P=0.0291,应用了酶(coli和natuphos),剂量,对照FCR,玉米的百分含量,食物的代谢能含量,食物钙含量,脂肪含量(动物脂肪和植物脂肪),饲养密度。R方=0.92,模型p=<0.0001。
Zymetrics Nov9x植酸酶(Coli)和Natuphos(Nat)利益的最小均方图是9次试验数据累计综合的结果。Gneff最小均方是使用酶的过程中的平均收益,用体重克数表示。如果模型获得效果=截矩的话,Coli(收益109克)和Nat(收益63克)和0显著不同,而且互相也不同,应用了酶(coli和natuphos),剂量,对照FCR,玉米的百分含量,小麦的百分含量,食物的代谢能含量,食物的总磷含量,以及光照计划。R方=0.94,模型p=<0.0001。
                      发明详述
定义:
本发明使用的“微生物”细胞指的是细菌,酵母和真菌。
“改变的水平”指的是转化或转基因细胞或生物中的表达水平,和正常或未转化细胞或生物的不同。
“反义抑制”指的是反义RNA的转录产物能抑制内源基因或转基因的表达。
“嵌合的”用来表示由多种来源不同的DNA序列组成的DNA序列,如载体或基因,这些来源不同的DNA序列通过重组DNA技术融合在一起,形成嵌合DNA,这种DNA不是天然的。术语“嵌合基因”可以指任何基因,包括1)DNA序列,包括调节和编码序列,这些序列在天然情况下是不连在一起的,或2)编码蛋白部分的序列,这种序列在天然情况下也不是邻接在一起的,或3)启动子部分,这部分在天然情况下也不是邻接在一起的。因此,嵌合基因可以包括来源不同的调控序列和编码序列,或包括相同来源的调控序列或编码序列,但和天然发现的排列方式不同。
“染色体整合”指的是外源基因或构建好的DNA通过共价键整合到宿主DNA中。在这个术语中,该基因并不是“染色体整合的”,而是瞬时表达的。基因的瞬时表达指的是并没有整合到宿主染色体中去的基因的表达,这个基因独立的发挥功能,既可作为自主复制质粒的一部分,也可作为表达盒的一部分,如可作为另一个生物系统如病毒的一部分。
典型的“克隆载体”包括一个或少量的限制性内切酶识别位点,外源DNA序列以可决定的方式从这些位点插入,不会损害载体的生物功能,也可作为标记基因,适合用于对转化了克隆载体的细胞进行鉴定和筛选。典型的标记基因能提供抗生素如四环素,潮霉素或氨苄青霉素抗性,或提供别的用于筛选转化细胞的手段。
“编码序列”指的是编码特定氨基酸序列DNA或RNA序列,不包括编码序列5’和3’的非编码序列。如在cDNA中,它可以构成“没间断的编码序列”,即缺乏内含子,或者它也包括用合适的剪切连接结合的一或若干内含子。内含子是RNA序列,它包含于初级转录本中,但在细胞中通过对RNA进行剪切和再连接,可以将它去掉,得到成熟的mRNA,这种mRNA可以翻译成蛋白质。
“组成型表达”指的是用组成型的或调节型的启动子进行的表达。“条件表达”和“调控表达”指的是由可调控启动子控制的表达。
术语“接触”指的是任何已知的或已介绍的用于将核酸片段导入细胞的方法。
“表达”指的是内源基因或转基因在宿主细胞中的转录和/或翻译。例如,如果构建的是反义核酸时,表达只指反义DNA的转录。此外,表达指的是正义RNA(mRNA)或有功能的RNA的转录和稳定的积累。表达也可指产生蛋白。
本发明使用的“表达盒”指的是一种DNA序列,它能指导特定核酸序列在合适的宿主细胞中表达,包括启动子,它可操作地连接在目的核酸序列上,而目的序列又可操作地连接在终止信号上。典型的“表达盒”也包括核酸序列正确翻译所必需的序列。包括目的核酸序列的表达盒可以是嵌合的,意思是指和它至少一个别的成分相比,至少有一个成分是外源的。表达盒也可以是天然存在的,但以重组形式用于异源表达。表达盒中的核酸序列的表达可以在组成型启动子,也可以在诱导型启动子控制之下进行,这些启动子只有在宿主细胞受到某些特定的外部刺激之下才能起始转录。启动子的“表达类型”(有或没有增强子)是表达水平的类型。一套启动子的表达类型据说是互补的,一个启动子的表达类型和别的启动子的表达类型几乎没有交迭。启动子表达水平可以通过检测转录报告mRNA的“稳定期”浓度来确定。这种检测是间接的,因为报告mRNA的浓度不仅依靠它的合成速率,而且依靠它的降解速率。因此,稳定状态水平是合成速率和降解速率综合的结果。
然而,当转录序列完全一样的时候,降解速率被认为是以固定速率进行的,因此这个速率可以作为合成速率的检测值。当启动子以这种方式进行比较时,本领域普通技术人员可以获得的技术是杂交S1-RNase分析,Northern杂交和竞争性RT-PCR。这列出来的几种技术绝不是代表所有的技术,但却是用来分析mRNA转录活性和表达水平的共用程序。
对几乎所有启动子的转录起始位点进行分析说明转录通常不是从一个碱基处开始,而是或多或少有成簇的起始位点,这些起始位点的每一套都是mRNA的一些起始位点。因为启动子和启动子的分布是变化的,因此每个种群中报告mRNA是互相有差异的。因为每种mRNA或多或少会被降解,对于不同的报告mRNAs不能指望有单一的降解速率。有证据表明起始位点附近(起始子)不同的真核启动子序列在确定RNA表达水平中发挥了重要的作用,RNA的表达是由这种特异启动子指导的。这也包括部分转录序列。因此,将启动子和报告序列直接融合将会导致不是最理想的转录水平。
“5’非编码区”指的是位于编码序列5’端(上游)的核酸序列。它位于充分加工的mRNA起始密码子上游,并且能影响mRNA初级转录产物的加工,mRNA稳定性或翻译效率(Turner等人,1995)。
术语“基因”用得广泛,指的是和一定生物功能相关的核酸片段。因此,基因包括编码序列和/或它们表达所需的调控序列。例如,基因指的是能表达mRNA,或特定蛋白的核酸片段,包括调控序列。基因也包括非表达的DNA片段,例如这些片段能形成别的蛋白的识别序列。基因可以从不同包括来源获得,包括从目的来源中克隆,或根据已知或预测的序列合成,并且基因还包括被设计具有所需参数的序列。
“遗传稳定”和“可遗传的”指的是染色体整合的遗传元件能稳定地在宿主细胞中保持,并通过连续的继代在后代中遗传。
“基因组”指的是生物体中全部的遗传物质。
本发明使用的“异源DNA序列”,“外源DNA片段”或“异源多核酸”,都指的是来源于特定宿主外源的序列,或者如果这些片段是来自相同的宿主,那这些片段是从原始形式经过修饰而来的。因此,宿主细胞的异源基因包括从该宿主细胞内生的,但经过修饰,如DNA重排的基因。这个术语也包括天然DNA序列的非天然多拷贝序列。因此,这个术语指的是宿主细胞外来或异源的DNA片段,或者也指和宿主细胞同源,但位于宿主细胞核酸中该元件平常不出现的位置上。外源DNA片段表达生成外源多肽。
“诱导型启动子”指的是那些可调控的启动子,它们在外来物质,如化学物质,光,激素,胁迫或病原菌的刺激下能被打开。
“起始位点”位于转录序列第一个核苷酸处,位置被定义为+1。就这个位点而言,基因的所有别的序列和它的控制区都被计数。下游序列(即按3’方向进一步的蛋白编码序列)被命名为正数,而上游序列(主要是5’方向的控制区)被命名为负数。
术语“胞内定位序列”指的是编码胞内定位信号的核酸序列。“胞内靶向信号”是氨基酸序列,它和蛋白一起翻译,并指导蛋白到特定的亚细胞位置。“内质网停止运送信号”指的是多肽的羧基端延伸,它和多肽一块翻译,引起进入分泌途径的蛋白潴留在内质网。“内质网停止运送序列”指的是编码内质网靶向信号的序列。
本发明包括分离的或基本上纯的核酸或蛋白组合物。在本发明的上下文,“分离的”或“纯化的”多核酸(多聚核苷酸)片段或多肽指的是被人为的从天然环境分离的多核酸片段或多肽,因此,它们并不是天然产物。分离的多核酸或多肽可以纯化的形式存在,或存在于非天然的环境如转基因宿主细胞中。例如,“分离的”或“纯化的”的多核酸片段或蛋白,或其具生物活性部分,如果用重组技术生产的话,基本上没有别的细胞物质或培养基,而如果是化学合成的话,则基本上没有化学前体或别的化学物质。优选的“分离的”多核酸没有生物体基因组DNA的侧翼(即位于核酸5’和3’端的序列)序列(优选的是蛋白编码序列),而该多核酸是从该生物中分离出来的。例如,在不同的实施方案中,分离的核酸分子包括少于5kb,4kb,3kb,2kb,1kb,0.5kb或0.1kb的核酸序列,它们在天然情况下位于细胞基因DNA核酸分子的侧翼,核酸分子就是从细胞中衍生出来。基本上没有细胞物质的蛋白包括蛋白或多肽制剂,这些制剂中含有少于30%,20%,10%或5%(干重)的污染蛋白。当本发明的蛋白,或其具生物活性的片段(如催化活性)是通过重组技术制造的,优选的培养基含有少于30%,20%,10%或5%(干重)的化学前体或非目的蛋白化学物质。公开的核苷酸序列片段和变异序列以及其编码的蛋白或部分蛋白序列也包括在本发明。“片段”的意思是多聚核苷酸序列的一部分,或者氨基酸序列的一部分,因此,多肽或蛋白的部分就是由这个片段编码的。
“标记基因”编码选择或筛选标记。
术语“成熟”蛋白指的是翻译后加工的多肽,它没有信号肽。“前体”蛋白质指的是mRNA的初级翻译产物。“信号肽”指的是多肽的氨基末端延伸,它和多肽一起翻译形成前体肽,它是进入分泌途径所必需的。术语“信号序列”指的是编码信号肽的核苷酸序列。
术语“天然基因”指的是未转化细胞基因组中的基因。
“天然存在的”是用来介绍一个物体,它在自然界发现的形式和人造的形式不一样。例如,生物(包括病毒)的蛋白或核酸序列,它能从自然来源中分离出来,并且没被人在实验室故意进行修饰,这样的就是天然存在的。
术语“多聚核苷酸”,“核酸”,“多核酸”或“多核酸片段”指的是去氧核糖核酸或核糖核酸以及其以单链或双链形式存在的多聚体,多体包括单体(核苷酸),单体含有糖,磷酸和碱基,碱基可以是嘌呤碱或嘧啶碱。除非特别限制,该术语包括的核酸含有天然核苷酸的已知的同系物,它和参考的核酸具有相似的结合特性,以一种和天然存在的核苷酸相似的方式代谢。除非有别的说明,特定的核酸序列也含蓄地包括其保守修饰的变异序列(如简并密码取代),和互补序列以及明白表示的序列。具体而言,简并密码取代就是用混合碱基和/或脱氧肌苷残基取代序列一或多个选择的密码子(或全部密码子)的第三个位置(Batzer等人,1991,Ohtsuka等人,1985,Rossolini等人,1994)。
NOV9X和Nov9X在本申请中交替使用。
“核酸片段”是给定核酸分子的部分。脱氧核糖核酸(DNA)是遗传物质,而核糖核酸(RNA)参与了从DNA到蛋白的信息传递。“基因组”是生物体每个细胞中包含的全部遗传物质。术语“核苷酸序列”指的是DNA或RNA的多聚体,它可以是单链或双链,任选地含有合成的,非自然的或变化的核苷酸碱基,能整合到DNA或RNA多聚体中。术语“核酸”或“核酸序列”也可以和基因,cDNA,DNA和基因编码的RNA交替使用(Batzer等人,1991,Ohtsuka等人,1985,Rossolini等人,1999)。用来将本发明植酸酶编码开放阅读框导入宿主细胞的表达盒优选的是含有和开放阅读框相连的起始区。可以提供这种带许多限制性位点的表达盒,用来插入开放阅读框和/或别的DNA,如转录调控区和/或选择标记基因。
在微生物细胞中,按5’-3’转录方向,转录盒包括转录和翻译起始区,目的DNA序列,以及转录和翻译终止功能区。转录终止区可以和转录起始区一起是天然的,可以和目的DNA序列一起是天然的,也可以是从别的来源衍生而来的。
术语“开放阅读框”和“ORF”指的是氨基酸序列,它是由编码序列翻译起始和终止密码子之间的序列编码。术语“起始密码子”和“终止密码子”指的是编码区中,三个相邻核苷酸(“密码子”)组成的单位,它的特点分别是起始和终止蛋白合成(mRNA翻译)。
“可操作地连接”当和核酸一块使用时,意思是指连接作为同一核酸分子的一部分,在启动子起始转录过程中,放置合理并且定向准确。可操作地连接到启动子上的DNA是在启动子的“转录起始调控下”。编码序列可以正义或反义的方向可操作地连接到调控序列上。当和多肽一块使用时,“可操作地连接”意思是指连接作为同一多肽的一部分,即通过肽键。
“过表达”指的是转基因细胞或生物的表达水平超出了正常或未转化细胞或生物中的表达水平。
聚合酶链式反应“PCR”已知的方法包括,但不限于使用配对引物,嵌套引物,单特异性引物,简并引物,基因特异引物,载体特异引物,部分错配引物等的方法,参看Innis等人,1995和Gelfand,1995;和Innis和Gelfand,1999。
“启动子”指的是核苷酸序列,通常位于编码序列的上游(5’),它通过提供RNA聚合酶识别位点和别的正确转录所必需的因素,控制编码序列的表达。“启动子”包括一个最小的启动子,它是短的DNA序列,包括TATA-盒和别的识别转录起始位点的序列,调控元件加在这些序列上,控制表达。“启动子”也指包括最小启动子和调控元件的核苷酸序列,它能控制编码序列或功能RNA的表达。这种类型的启动子序列包括近端或更远的上游元件,后者经常指的是增强子。因此,“增强子”是能刺激启动子活性的DNA序列,并且可能是启动子或异源元件的天然元件,其中插入的异源元件能增强启动子的组织特异性。它能在两个方向发挥作用(正常的或跳跃式的),它即便是在启动子上游或下游都能发挥功能。增强子和其他上游启动子元件结合序列特异的DNA结合蛋白,这些蛋白能介导它们的作用。启动子可以整体衍生自天然基因,也可以由衍生自天然存在的不同启动子的不同元件构成,甚至于包括合成DNA片段。启动子也可以包括参与结合蛋白因子的DNA序列,这些蛋白因子控制转录起始的效率,转录起始是对生理或发育状况的反应。
在上游没有激活元件的情况下,失活或者能显著降低启动子活性的启动子元件,具体说是TATA元件被称作“最小或核心启动子”。在一个或许多合适的转录因子存在的情况下,最小启动子的功能是允许转录。因此,“最小或核心启动子”仅仅包括所有的转录必需的基本元件,例如TATA盒和/或起始子。
术语“蛋白”,“肽”和“多肽”在本申请中交替使用。
“受调控的启动子”指的是以时空调控的方式,而不是组成型的方式指导基因表达的启动子,并且包括组织特异的或可诱导的启动子。它包括合成的或天然的序列。不同的启动子可以指导基因在不同的组织或细胞中表达,或在发育的不同阶段表达,或是对不同环境条件的反应。
“可调控的序列”和“适合调控的序列”每一个指的都是核苷酸序列,位于编码序列上游(5’非编码区),内部或下游(3’非编码区),而且它能影响转录,RNA加工或稳定性,或相关编码序列的翻译。可调控序列包括增强子,启动子,翻译前导序列,内含子,和多聚腺苷酸信号序列。它们包括天然和合成的序列,以及合成与天然序列的组合序列。如上面提及的那样,术语“适合调控的序列”并不限于启动子。用于本发明的一些适合调控序列包括,但不限于组成型启动子,诱导型启动子和病毒启动子。
术语“RNA转录”指的是DNA序列被RNA聚合酶催化产生的产物。当RNA转录产物是正确的DNA序列的互补拷贝时,RNA转录产物被称作初级转录产物,或者它可以是从初级转录产物经过转录后加工衍生而来的RNA序列,这时它被称作成熟RNA。“信使RNA”(mRNA)指的是没有内含子的RNA,它可以被细胞翻译成蛋白。“cDNA”指的是单链或双链DNA,它和mRNA互补或衍生自mRNA。
“稳定转化的”指的是细胞,它转化后能从培养基中挑选出来,并能再生。
“3’非编码序列”指的是位于编码序列3’端的(下游)核苷酸序列,包括多聚腺苷酸信号序列和别的能影响mRNA加工或基因表达的序列编码调控信号。多聚腺苷酸信号的特点是影响多聚腺苷酸向mRNA前体3’端的添加。
“转录终止片段”指的是含有一或多个调控信号的核苷酸序列,如多聚腺苷酸信号序列,它能终止转录。
术语“转化”指的是将核酸片段转移到宿主细胞的基因组中。含有这个转化核酸片段的宿主细胞被称作“转基因细胞”。
“转化的”,“转基因的”和“重组的”指的是导入了异源核酸分子的宿主细胞,如细菌。通过本领域众所周知的方法将核酸分子稳定地整合到基因组中,这些方法在Sambrook等人1989的文献中公开了。例如,“转化的”,“转化子”,和“转基因”细胞经历了转化程序,含有外源基因,而外源基因可以诸如附加体元件或整合到宿主染色体中的方式存在于转化细胞中。术语“未转化的”指的是没有经历转化程序的细胞。
“转基因”指的是通过转化已经导入基因组的基因,它能稳定地保持。转基因包括,例如和将要转化的特定宿主细胞基因异源或同源的基因。此外,转基因包括插入非天然生物的天然的基因,或嵌合基因。术语“内源基因”指的是在生物体基因组的自然位置上的天然基因。“外源”基因指的是正常情况下在宿主细胞中找不到的,但通过基因转化导入的基因。
“瞬时转化”指的是在细胞中,表达盒,多聚核苷酸或转基因已经导入了细胞,但没被选择用于稳定保持。
术语“翻译前导序列”指的是基因的启动子和编码序列之间的DNA序列部分,它被转录成RNA,位于充分加工的mRNA翻译起始密码子上游(5’)。翻译前导序列可以影响mRNA的初级转录产物的加工,mRNA稳定性或翻译效率。
“翻译终止片段”指的是含有1或多个调控信号的核苷酸序列,如在所有三个开放框中的一或多个终止密码子,能终止翻译。在编码序列5’端起始密码子附近或相邻处插入翻译终止片段会导致不翻译或错误的翻译。通过位点特异性重组剪切掉翻译终止片段将会在编码序列中留下一个位点特异的序列,它不会干扰利用起始密码子进行的正确翻译。
表示出“植酸酶”活性的多肽或酶或“植酸酶”的意思包括任何能把无机磷酸盐或磷从不同的肌醇磷酸盐中释放出来的酶。这种肌醇磷酸盐(植酸酶的底物)的例子有植酸及其盐类物质,如植酸钠或植酸钾,或盐的混合物。肌醇的单-,双-,三-,四-或五磷酸盐也可以作为植酸酶的底物。根据上面的定义,可以用使用了上述底物的实验来确定植酸酶的活性。本发明的耐热植酸酶包括衍生自特定耐热植酸酶的变异多肽,变异多肽的方式有:在天然蛋白的N-末段和/或C-末端缺失或添加1或多个氨基酸,在天然蛋白的一或多个位点缺失或添加1或多个氨基酸,或在耐热植酸酶的1或多个位点取代1或多个氨基酸。例如,这种变异多肽可以由人为操作引起。这种操作方法是本领域众所周知的。例如,多肽的氨基酸变异序列可以通过对DNA进行突变进行制备。诱变和核苷酸序列改变的方法是本领域众所周知的。例如,参看Kunkel,1985;Kunkel等人,1987;美国专利No.4873192;Walker和Gaastra,1983,以及这篇文献中的参考文献。可以从Dayhoff等人,1978年的原文中找到进行氨基酸取代,却不影响目的蛋白生物功能的指南,这篇文献引作本申请的参考文献。用具相似特征的氨基酸和另一个氨基酸交换这样的保守取代是优选的。
因此,本发明的耐热植酸酶基因和核酸序列包括天然的序列以及突变序列。同样地,本发明的耐热植酸酶多肽包括天然的蛋白以及它的变异或修饰形式。这种变异序列将会继续保持所需的活性。我们不希望本申请中对多肽序列进行的缺失,插入和取代会从根本上改变多肽的性质。然而,本领域的熟练的技术人员将会意识到可以用常规的筛选试验评估这种效果。通过优化本发明的核酸分子,可以增加其在目的宿主细胞中的表达。应该认识到,基因序列的所有或任何部分都可以被优化或合成。换句话说,合成的或部分优化的序列也可以被使用。变异的核酸序列和蛋白也可以包括衍生自诱变和重组如DNA重组产生的序列和蛋白。用这样的方法,对一或多个不同的编码序列进行操作,可以得到新的具有所需性质的多肽。用这样的方式,可以通过一群相关的序列多聚核苷酸构建重组多核酸文库,其中相关的多聚核苷酸包括具有基本的序列同一性,并且体外或体内都能进行同源重组的序列区。DNA重排的方法是本领域众所周知的。例如,参看Stemmer,1994;Stemmer,1994;Crameri等人,1997;Moore等人,1997;Zhang等人,1997;Crameri等人,1998;和美国专利Nos.5605793和5837458。
“变异序列”是基本上类似的序列。对于核苷酸序列,由于存在遗传密码简并性,变异序列包括的序列编码的参考蛋白氨基酸序列是相同的。这些天然的等位突变序列可以用众所周知的分子生物学技术进行确定,如用聚合酶链式反应(PCR)和杂交技术。变异的核酸序列也包括合成的核酸序列,如那些通过定点诱变产生的,编码参考蛋白的序列,以及那些编码具有氨基酸取代的序列。一般地,本发明的核酸序列和天然的核酸序列基于类别有至少40%,50%,60%,优选是70%,更优选的是80%,进一步更优选的是90%,最优选的是99%,和单单位百分比(single unit percentage)的同一性。例如71%,72%,73%等,最多至少是90%类别。变异序列也包括对应于确定的基因片段的全长基因。
“载体”的定义包括任何质粒,粘粒,噬菌体或别的单链或双链的线形或环形形式存在的载体,它们能自我遗传和移动,也有的不能,它们可以转化真核或原核的宿主,整合到细胞基因组或存在于染色体外(如具有复制起点的自主复制质粒)。
本发明优选的构建的质粒和宿主细胞
本发明优选的是提供了一个表达盒,它包括的核酸序列(启动子)在体外或体内都能指导编码耐热植酸酶的多聚核苷酸表达。制备和/或确定耐热植酸酶的方法包括诱变,如回归诱变,和/或选择或筛选,如选择和筛选在高于60℃的温度下有活性的植酸酶。用于诱变和核酸序列改变的方法是本领域众所周知的。例如,参看Kunkel,1985;Kunkel.等人,1987;美国专利No.4873192;Walker和Gaastra,1983和这些文献中引用的参考文献;以及Arnold等人,1996。
A.转化的DNA和宿主细胞
用于转化细胞的载体,质粒,粘粒,YACs(酵母人工染色体),BACs(细菌人工染色体)和DNA片段一般都含有植酸酶编码DNA,以及别的DNA,如cDNA,基因或想导入细胞的基因。这些构建好的DNA进一步包括诸如启动子,增强子,多接头位点或甚至于所需的调控基因等结构。导入胞内的DNA片段或基因编码的蛋白通常能在这些转化细胞(重组)中表达,这样使得转化细胞具有可筛选或可选择的特征,并且/或者能使转化细胞的表型增强。然而,这种事并不总能发生,本发明也包括整合了不能表达的转基因的转化细胞。
导入细胞的DNA包括那些从任何来源衍生或分离出来的DNA,那些在随后根据结构,大小和/或功能,化学变化以及后来导入细胞来描绘特征的DNA。衍生自某种来源的DNA在某个给定的生物中被确定为有用的片段,并且可以基本上纯的形式进行化学合成。从某种来源中“分离”出来的DNA序列是从某种来源中通过化学手段剪切或取出的,例如,通过限制性内切核酸酶,这样为了用在本发明,可通过遗传工程方法对其进行进一步操作,如扩增。这样的DNA一般称作“重组DNA”。
因此,有用的DNA包括完全合成的DNA,半合成的DNA,从生物材料中分离出来的DNA,从导入的RNA中衍生出来的DNA。一般地,导入的DNA最初并不是在容纳DNA的基因型中,而是在本发明的范围中,从给定的基因型中分离一个基因,随后将这个基因的多个拷贝导入同样的基因型中,例如,增加给定基因产物的产量。
导入的DNA包括但不限于来自细菌,酵母,真菌或病毒基因的DNA。导入的DNA可以包括修饰或合成的基因,基因部分,或嵌合基因,嵌合基因包括的基因来自相同或不同的基因型。术语“嵌合基因”或“嵌合DNA”被定义为基因或DNA序列或片段,它包括至少两个DNA序列或片段,这些DNA序列和片段来自不同的物种,而这些物种在天然情况下是不能将这些DNA结合在一起的,或者DNA序列或片段放置或连接的方式和未转化细胞中天然的正常方式不一样。
用于本申请转化的导入DNA可以是环形或线形的,双链或单链的。一般地,该DNA是以嵌合DNA如质粒DNA形式存在,这种嵌合DNA包括编码区,编码区两翼是调控序列,调控序列能促进转化细胞中的重组DNA的表达。例如,该DNA自身可能包括或由启动子组成,启动子在细胞中有活性,该细胞衍生自除了那种细胞之外的别的来源,或者该DNA可以利用细胞中已有的启动子,而该细胞是转化的目标。
一般地,导入的DNA相对比较小,即少于约30kb,这样就能将对物理,化学或酶降解的易感性降低到最少,而已知当DNA大小增加时,物理,化学或酶降解是上升的。导入细胞的蛋白,RNA转录产物,或它们的混合物数是预选择和限定的,例如,导入DNA可以形成1到大约5-10个这样的产物。
选择合适的表达载体取决于宿主细胞。典型的表达载体包括(1)原核DNA元件,编码细菌复制起点和抗生素抗性基因,为表达载体在细菌宿主中提供扩增和选择。(2)控制转录起始的DNA元件,如启动子,(3)控制转录加工的DNA元件,如内含子,转录终止序列/多聚腺苷酸序列,和(4)目的基因,它可操作地连接到控制转录起始的DNA元件上。使用的表达载体是能在上述宿主细胞中自主复制或整合进染色体的载体,最初包含的启动子位于能使连接的植酸酶基因转录的位点上。
假如原核生物如细菌被用作宿主,优选的植酸酶表达载体是能在微生物中自主复制的载体,它包括启动子,核糖体结合序列,新的植酸酶基因,以及转录终止序列。载体也可以包括调控启动子的基因。
酵母或真菌表达载体可以包括复制起点,合适的启动子和增强子,以及任何必须的核糖体结合位点,多聚腺苷酸位点,拼接供体和受体位点,转录终止序列,以及5’侧翼非转录序列。
合适的载体包括下列例子:用于细菌的载体,pQE70,pQE60,pQE9(Qiagen),pBluescriptII(Stratagene),pTRC99a,pKK223-3,pDR540,pRIT2T(Pharmacia);用于真核细胞的载体,pXT1,pSG5(Stratagene),pSVK3,pBPV,pMSG,pSVLSV40(Pharmacia)。这样的可从商业上获得的载体包括,如pKK223-3(Pharmacia Fine Chemical,Uppsala,Sweden)和GEM1(Promega Biotec,Madison,Wis.,USA)。然而,任何别的质粒或载体也可以使用,只要它们在宿主中能复制和存活。
尽管别的宿主也可以作为一种选择,但作为合适的宿主细胞的代表,它们应该被提及:细菌细胞,如大肠杆菌,链霉菌,枯草芽孢杆菌,以及埃希氏菌属,假单胞菌属,沙雷氏菌属,链霉菌属,棒状杆菌属,短杆菌属,杆菌属,微小杆菌属和葡萄球菌属中不同的种;属于曲霉菌属,根霉菌属,木霉菌属,脉孢菌属,毛霉菌属,青霉菌属等中的真菌,如属于克鲁维酵母菌属,酵母菌属,裂殖酵母属,丝孢酵母属,许旺氏酵母等的酵母。
根据本公开内容,和本发明一起使用的载体的构建是本领域普通技术人员所熟知的(例如,参看Sambrook等人,1989;Gelvin等人,1990)。本发明的表达盒可以包括一或许多限制性位点,从而可以将编码耐热植酸酶的多聚核苷酸至于调控序列的调节之下。表达盒也包括终止信号,它可操作地连接到多聚核苷酸以及调控序列上,而调控序列是多聚核苷酸转录所必需的。含有本发明多聚核苷酸的表达盒可以是嵌合的,意思是指就至少一种别的成分而言,它的至少一种成份是异源的。表达盒中的多聚核苷酸的表达可以受到组成型启动子,诱导型启动子,可调控启动子,病毒启动子或合成的启动子的控制。
按5’-3’转录的方向,表达盒包括,转录和翻译起始区,本发明的多聚核苷酸以及转录和翻译终止区,它们在体内和/或体外都有功能。终止区可以和转录起始区一起是天然的,也可以和多聚核苷酸一起是天然的,或从别的来源衍生而来。调控序列位于编码序列的上游(5’非编码序列),内部(内含子),或下游(3’非编码序列),并且影响转录,RNA加工或稳定性,和/或相关编码序列的翻译。调控序列包括,但不限于增强子,启动子,阻遏蛋白结合位点,翻译前导序列,内含子,以及多聚腺苷酸信号序列。它们包括天然和合成的序列,以及合成与天然序列的组合序列。
用于本发明的载体也包括用于扩增表达的合适序列。
B.调控序列
启动子是核苷酸序列,它通过提供RNA聚合酶识别位点以及其它为正确翻译所必需的因素控制编码序列的表达。启动子包括最小启动子,仅有转录起始所必需的所有基本元件组成,如TATA盒和/或起始子,起始子是一个短的DNA序列,它包括TATA盒以及别的识别转录起始位点的序列,调控序列添加到转录起始位点,从而控制表达。启动子可以整体衍生自天然的基因,或由衍生自天然发现的不同启动子的不同元件组成,或者甚至于由合成的DNA片段组成。启动子含有参与结合蛋白因子的DNA序列,这些蛋白因子控制转录起始的效率,这种转录起始是对生理或发育条件的反应。启动子也包括最小启动子加上调控元件或能控制编码序列或功能RNA表达的元件。这类启动子序列含有近端和更远端元件,后者通常指的是增强子。
有代表性的启动子包括,但不限于在原核或真核细胞或它们的病毒中控制基因表达的已知启动子。具体的细菌启动子包括大肠杆菌lac或trp启动子,噬菌体λPL启动子,lacI,lacZ,T3,T7,gpt和λPR启动子。
任何能在酵母中表达的启动子也可用作启动子。其实施例包括糖分解途径中己糖激酶基因启动子等,以及诸如gal1启动子,gal10启动子,热激蛋白启动子,MFa-1启动子和CUP1启动子等启动子。
任何在丝状真菌中表达的启动子都可以使用。实施例包括淀粉或纤维素强烈诱导的启动子,如曲霉菌属葡糖淀粉酶或α-淀粉酶启动子,或木霉菌属纤维素酶(纤维二糖水解酶)启动子,糖分解途径中的酶启动子,如磷酸甘油酸激酶(pgk)和甘油醛3-磷酸脱氢酶(gpd)等的启动子。
两个用于控制表达的主要方法是已知的,即过表达和表达过低。通过插入一或多个选择基因的额外拷贝,可以实现过表达。对于表达过低,在本领域有两个原则性的方法,公称为“反义下调”和“正义下调”。一般地,这些过程都被称作“基因沉默”。这两种方法都会抑制靶基因的表达。
若干诱导型启动子都是本领域众所周知的。许多都在Gatz(1996)(参看Gatz,1997)的综述中介绍了。实施例包括四环素抑制子系统,Lac阻遏蛋白系统,铜诱导系统,水杨酸盐诱导系统(如PR1a系统),糖皮质激素诱导系统(Aoyama T.等人,1997)和蜕皮激素诱导系统。苯磺酰胺诱导系统(美国专利No.5364780)和乙醇诱导系统(WO97/06269和WO97/06268)以及谷胱甘肽S-转移酶启动子也包括在内。
嵌合反式作用病毒复制蛋白的可调控表达可被别的遗传方法进一步调控。例如,Odell等人,1990介绍的Cre介导的基因激活。因此,含有3’调控序列的DNA片段可以通过Cre介导的剪切去掉,从而导致顺式作用复制基因的表达,而3’调控序列是通过lox位点结合在启动子和复制蛋白编码序列之间,该编码序列能阻碍启动子对嵌合复制基因表达的调控。在这种情况下,嵌合的Cre基因,嵌合的顺式作用复制基因,或这两种基因都能受到发育特异或可诱导启动子的控制。另外一个替代的遗传方法是使用tRNA阻遏蛋白基因。例如,tRNA阻遏蛋白基因的可调控表达可以有条件地控制顺式作用复制蛋白编码序列的表达,而顺式作用复制蛋白编码序列含有如Ulmasov等人,1997年所介绍的合适的终止密码子。此外,无论是嵌合的tRNA阻遏蛋白基因,嵌合的顺式作用复制基因,还是这两种基因,都受到发育特异的或可诱导启动子的控制。
除了使用具体的启动子,别的类型的元件也能影响转基因的表达。具体而言,内含子已经表现出了增强转基因表达活性的能力。
别的元件包括那些能被内源或异源试剂调控的元件,如锌指蛋白,包括天然的锌指蛋白或嵌合的锌指蛋白。例如,参看美国专利No.5789538,WO99/48909,WO99/45132;WO98/53060,WO98/53057,WO98/53058,WO00/23464,WO95/19431和WO98/54311。
增强子是DNA序列,它能刺激启动子的活性,并且是启动子的固有元件或外源插入用来增强特定启动子水平或组织特异性的元件。增强子能在两个方向发挥作用(相对于目的基因编码序列的5’-3’和3’-5’方向),而且甚至在位于启动子上游或下游时都能发挥功能。无论是增强子还是别的上游启动子元件都能结合序列特异的DNA结合蛋白,这些结合蛋白能介导它们的作用。
本发明构建的载体包括增强子元件。本发明构建的载体也包括目的基因以及3’端DNA序列,3’端DNA序列可以充当终止转录和给产生的mRNA加上多聚腺苷酸尾巴的信号。
因为介于转录起始位点和编码序列起始密码子之间的DNA序列,即不翻译的前导序列能影响基因表达,人们希望采用一种特定的前导序列。考虑的优选前导序列应该包括:经预测能指导粘附基因表达优化的序列,即包括优选的共有前导序列,这种前导序列能增加或保持mRNA的稳定性,并能抑制翻译的错误起始。根据本发明来选择这种序列是本领域技术员人员众所周知的。
C.标记基因
为了提高鉴定转化子的稳定性,除了可表达的目的基因外,还需要采用选择或筛选用的标记基因。“标记基因”是基因,它能将不同的表型带给能表达该基因的细胞,从而将这种转化细胞和不含这种标记的细胞区别开来。这样的基因既可编码选择,也可编码筛选标记,取决于这种标记是否给与一种特性,而人们可以根据这种特性,利用化学方法进行选择,如通过使用选择试剂(如抗生素等),或取决于这种标记是否是一种简单的特征,人们能通过这种特征观察或检测,即进行“筛选”。当然,许多合适的标记基因都是本领域众所周知的,并且能用于本发明的实践中。
编码“分泌标记”基因也包括在术语可选择的或可筛选的基因中,而分泌标记的分泌可作为一种鉴定或选择转化细胞的工具。实施例包括编码可分泌抗原的标记,它的检测是通过和抗体相互作用,或者甚至于包括编码可分泌酶的标记,它的检测是通过它们的催化活性进行的。分泌的蛋白分成许多类,包括小的,可扩散的蛋白,它可通过诸如ELISA这样的方法进行检测,还包括可在胞外溶液中检测到的小的,有活性的酶。
用在原核生物中的选择标记包括四环素或氨苄青霉素抗性基因。可以应用的筛选标记包括,但不限于b-葡糖醛酸酶或uidA基因(GUS),它编码一种酶,这种酶的不同显色底物是已知的;β-内酰胺酶基因(Sutcliffe,1978),它编码一种酶,这种酶的不同显色底物是已知的(如PADAC,一种呈色的头孢菌素);xylE基因(Zukowsk等人1983),它编码邻苯二酚双加氧酶,这种酶能转化呈色的邻苯二酚;α淀粉酶基因(Ikuta等人,1990);酪氨酸酶基因(Katz等人,1983),它编码一种酶,这种酶能将酪氨酸氧化成DOPA和多巴昆,后者浓缩形成容易检测的化合物黑色素;β-半乳糖苷酶基因,它编码一种具有很多呈色底物的酶;荧光素酶(lux)基因(Ow等人,1986),它允许进行生物发光检测;或者甚至于是水母发光蛋白基因(Prasher等人,1985),它可用于钙敏感的生物发光检测,或者绿色荧光蛋白基因(Niedz等人,1995)。
转化
表达盒,或构建好的含有表达盒的载体,可以插入细胞。细胞可以附加体的形式携带表达盒或构建好的载体,或者将其整合到细胞基因组中,如SV40衍生物,细菌质粒,噬菌体DNA,杆状病毒,酵母质粒,衍生自质粒和噬菌体DNA组合物的载体,病毒DNA如牛痘,腺病毒,禽痘病毒,以及假狂犬病。然而,任何载体都可以使用,只要它们在宿主中能复制和存活。
本领域的技术人员可以利用熟知的不同技术将构建好的载体导入宿主细胞。利用聚乙二醇,CaCl2,病毒感染,DEAE葡聚糖,噬菌体感染,电穿孔以及别的本领域熟知的方法进行微生物转化。真菌的转化根据Gonni等人(1987)进行。利用诸如电穿孔,使用球状体,乙酸锂等方法将重组载体导入酵母。任何可以将DNA导入动物细胞的方法都可以使用,例如电穿孔,磷酸钙,脂转染法等。
重组酶
为了制备重组酶,将载体转化合适的宿主,并使宿主菌株,如细菌或酵母宿主生长到合适的细胞密度,然后用合适的方法诱导启动子(如温度改变或化学诱导),并将细胞再培养一个时期产生重组酶。然后通过离心收集细胞,用物理或化学方法破碎细胞,保留得到的粗提取物作进一步纯化。
用于蛋白表达的微生物细胞可用任何常规的方法破碎,包括冷冻-解冻循环,超声波破碎法,机械破碎,或使用细胞裂解试剂,这些方法都是本领域普通技术人员众所周知的。
通过诸如硫酸铵或乙醇沉淀,酸抽提,阴离子和阳离子交换层析,磷酸纤维素层析,疏水作用色谱,亲和层析,羟磷灰石层析和凝集素层析方法可以从重组细胞中回收和纯化酶。作为一种必要的步骤,在完成成熟蛋白构型的过程中,要进行蛋白再折叠。最后,在最终的纯化中应用高效液相色谱(HPLC)。
本发明的酶可以是化学合成过程的产物,也可以通过重组技术从微生物宿主中(如通过培养基中细菌,酵母,和真菌细胞)制造。本发明的酶是还是不采用糖基化进行共价修饰,取决于重组生产过程采用的宿主。在真核细胞中,分泌蛋白糖基化能调节蛋白折叠,保持构象和热稳定性,以及抵抗蛋白酶的水解。如果具体使用植酸酶,糖基化的植酸酶比非糖基化的形式要优选。例如,动物饲料中使用糖基化的植酸酶能保护这种酶在饲料粒化过程中热变性,还能防止它在通过动物胃时被蛋白水解失活,这样就能帮助将有活性的酶运送到肠管和作用位点。对于食品加工,仅在加工工程需要酶活性,而在终产物中是不需要酶活性的,因此一种非糖基化的,不耐热的,而且对蛋白水解敏感的植酸酶是优选的。通过在不同的宿主中生产本发明的植酸酶,耐热性和对蛋白水解的易感性都改变了。例如,当在大肠杆菌中生产本发明的植酸酶时,它在人造胃液的半寿期是8.4分钟,而在巴斯德毕赤酵母和粟酒裂殖酵母中表达时,半寿期分别上升到10.4和29.2分钟。大肠杆菌没有糖基化蛋白的机制,而粟酒裂殖酵母中糖基化的程度要高于巴斯德毕赤酵母。相似的,随着糖基化程度的上升,在95℃加热5分钟后残余活性也上升。在大肠杆菌中检测到了10%的残余活性,而在巴斯德毕赤酵母和粟酒裂殖酵母中残余活性分别上升到30和50%。本发明的酶可以也可以不包括最初的甲硫氨酸。
本发明的酶可以用于任何目的,只要这种酶的活性是必须或所需的。在一个优选的实施方案中,这种酶被用来催化动物饲料中植酸的水解。在另一优选的实施方案中,这种酶被用来催化食物中植酸的水解。
植酸酶组合物
一般而言,植酸酶组合物是液体或干粉形式。液体形式的组合物除了植酸酶外不含有任何东西,优选的是高度纯化的形式。然而,可以加入诸如甘油,山梨醇或单丙二醇这样的稳定剂。液体组合物还可以包括别的添加剂,如盐,糖,防腐剂,pH调节剂,蛋白和肌醇六磷酸(植酸酶底物)。典型的液体组合物是水或油悬浮液。液体组合物在对食物或饲料进行随意的粒化之前或之后加入。
干粉组合物可以是冻干或喷雾干燥的组合物,在这两种组合物中,除了以干粉形式存在的植酸酶之外,不必再含有任何别的物质。干粉组合物可以做成颗粒,这样它就能容易地和诸如食物或饲料成分混合,或更优选的,可以形成预混合料的一种成份。酶颗粒的大小优选的是能和混合物中其它成分的大小相容。这样就提供了一种安全和方便的方法,它能将酶整合进诸如加工过的食物或动物饲料中去。
例如,稳定的植酸酶制剂制备方法如下:冷冻含有诸如破碎的大豆粕这样的膨化剂的酶溶液,然后将混合物冻干。在制造配合饲料的过程中,湿气的减少以及植酸酶和膨化剂的相互作用可以保护酶免受外界因素如遭受的极限温度的影响。通过减少潜在的蛋白水解酶活性,干燥制剂能进一步增强稳定性,而蛋白水解酶是制造靶酶的液体发酵混合物的副产品。本发明得到的干粉酶--大豆粉混合物能经受住高的极限温度。例如,在96℃加热120分钟后,干粉酶制剂保持最初的97.8%的酶活性。配制的酶混合物可以用作饲料添加剂,用在家禽和猪的饲养中。例如,往1kg标准的玉米-大豆家禽饲料中加入500单位本发明的耐热植酸酶,能使目前在动物营养中添加的无机磷水平下降,即从0.45%到0.225%。用添加了配制的植酸酶的0.225%磷酸饲料饲养的小鸡以及饲喂了含0.45%磷酸盐的标准食物的鸟做试验。然而,添加的磷酸盐减少导致磷酸盐污染水平下降,这样能显著减轻强烈的商用动物生产对环境的冲击。
一旦获得干燥的酶制剂,就可以在高速搅拌混合器中利用结块技术制备结块的颗粒,在这个过程中,填充材料和酶共凝集成颗粒。利用一个载体材料核心去吸收酶/被酶包被,制备吸收颗粒。典型的填充材料是盐,如硫酸二钠。别的填充材料包括高岭土,滑石,硅酸镁铝和纤维素纤维。诸如糊精这样的粘合剂也可任选地包括在成块的颗粒中。
典型的载体物质包括淀粉,例如,以木薯,玉米,马铃薯,水稻和小麦的形式。也可以使用盐。
颗粒也可以任选地用涂覆混合物包被。这样的混合物包括涂覆剂,优选的是疏水的涂覆剂,如氢化棕榈油和牛脂,而如果需要的话,也可以添加别的物质如碳酸钙或高岭土。
此外,植酸酶组合物也可包括别的成分,如着色剂,香味化合物,稳定剂,维生素,矿物质,别的饲料或食品增强酶等。具体而言,这就是所谓的预混合料。
“食品或饲料添加剂”是基本上纯的化合物,或者是多种成分的组合物,是打算或者适合于添加到食品或饲料中。具体而言,根据它使用的意图,它是一种将要成为食物或饲料成分的物质,或者是能影响食物或饲料特征的物质。因此,植酸酶添加剂可以理解成这样一种植酸酶,它不是饲料和食物的天然成分,或者在饲料和食物中不是以天然浓度存在,例如,这种植酸酶是单独加入饲料,或者和别的饲料添加剂一道加入饲料。一种典型的添加剂通常包括一或多种化合物,如维生素,矿物质或饲料增强酶以及合适的载体和/或赋型剂。
“容易使用”的植酸酶添加剂在本发明的定义是一种添加剂,它不是在动物饲料或加工的食品中原位产生的。容易使用的植酸酶添加剂可以直接饲喂给人或动物,优选的是在和别的饲料或食物成分混合后直接饲喂。例如,根据本发明的这个方面,饲料添加剂可以和别的饲料成分结合形成饲料。别的饲料成分包括一或多个酶补充物(优选的是耐热的),维生素饲料添加剂,矿物质饲料添加剂以及氨基酸饲料添加剂。产生的饲料添加剂(组合的)可能包括若干不同类型的化合物,它和别的饲料成分如谷类和蛋白补充物以适当数量混合,形成动物饲料。利用目前使用的任何加工器械如double-pelleting machine,湿法制粒机,膨化机和挤压机把这些成分加工成动物饲料。
相似地,组合本发明这方面的食品添加剂和别的食品成分,加工成食品。别的这种食品成分包括一或多个别的酶补充物(优选的是耐热的),维生素食品添加剂和矿物质食品添加剂。产生的食品添加剂(组合的)可能包括若干不同类型的化合物,它和别的食品成分如谷类和植物蛋白补充物以适当数量混合,形成加工食品。利用目前使用的任何加工器械把这些成分加工成食品。
在一个优选的实施方案中,本发明的植酸酶组合物另外还包括效应数量的一或多个饲料或食品增强酶,具体而言饲料或食品增强酶选自下列类型:α-半乳糖苷酶,β-半乳糖苷酶,尤其是乳糖酶,别的植酸酶,β-葡聚糖酶,尤其是β-1,4-内切葡聚糖酶和β-1,3(4-)内切葡聚糖酶,纤维素酶,木糖苷酶,半乳糖酶,尤其是阿拉伯半乳糖β-1,4-内切半乳糖苷酶和阿拉伯半乳糖α-1,3-内切半乳糖苷酶,内切葡聚糖酶,尤其是β-1,2-内切葡聚糖酶,α-1,3-内切葡聚糖酶和β-1,3-内切葡聚糖酶,果胶降解酶,尤其是果胶酶,果胶脂酶,果胶裂解酶,多聚半乳糖醛酸酶,arabinanase,rhamnogalacturonase,鼠李糖半乳糖醛酸聚糖乙酰酯酶,鼠李糖半乳糖醛酸聚糖-α-鼠李糖苷酶,果胶酸脂裂解酶以及α-galacturonisidase,甘露聚糖酶,β-甘露糖苷酶,甘露聚糖乙酰酯酶,木聚糖乙酰酯酶,蛋白水解酶,木聚糖酶,arabinoxylanase和脂解酶如脂肪酶,磷脂酶和角质素分解酶。
本发明的动物饲料添加剂在进食之前或与食物一道补充进动物。优选的是,本发明的动物饲料和食物一道补充进动物。
食物或饲料中的植酸酶的有效数量是大约10-20000FTU/kg,优选的是大约10-15000FTU/kg,更优选的是大约10-10000FTU/kg,具体是大约100-5000FTU/kg,特别是大约100-2000FTU/kg饲料或食物。
在人类食物或动物饲料的加工和制造过程中使用植酸酶也是本发明的范围。放入人类食物中的谷物和面粉用植酸酶进行酶处理,降低这些物质中植酸钙镁的含量。降低植酸钙镁的水平,能提高必须矿物质如铁,钙和锌的养分有效性,从而提高食物的质量。除了提高食物的营养品质,在食品加工过程中使用植酸酶能提高食品生产方法的综合效力。例如,在大豆蛋白分离制造过程中,往白色的大豆粕中添加植酸酶能显著地提高抽提蛋白的产量和质量。在食品加工过程中,植酸酶只在制造和加工中有活性,在终产物中是没有活性的。例如,这方面和生面团的制造和烘烤是相关的。相似地,动物饲料谷物如烤大豆粕或菜籽粕在配合饲料生产之前用植酸酶进行预加工。在配合饲料生产之前去掉动物饲料成分中的抗滋养因子,能获得营养品质更好,更有价值的动物饲料成分。在这种植酸酶加工过程中,植酸酶在饲料制造过程中有活性,而在摄取处理的饲料后,植酸酶在动物的消化道中可能有或没有活性。
植酸酶除了能帮助食品加工外,本发明的范围还包括利用植酸酶作为人补充的助消化剂。在进食时,吞咽药片样的植酸酶,把有活性的酶传送到受体的胃肠道。消费者将在体内获得营养,获得的营养和食品加工过程中不能用植酸酶处理的食物一道被吸收。
本发明的范围还包括,在食品和饲料或添加剂制备过程中,利用本发明的植酸酶,即植酸酶只有在制造中有活性,而在食品或饲料的终产品中是没有活性的。例如,这方面和生面团的制造和烘烤以及别的容易进食的谷类食品特别相关。
在单胃动物以及多胃动物,尤其是小牛中使用植酸酶也是有好处的。鱼和甲壳类动物的食物中也可添加植酸酶,能进一步提高饲料的转化率,降低强烈的生产系统中排泄的磷酸盐的水平。根据本发明,饲料也可以提供给动物,如家禽,包括火鸡,鹅,鸭子,以及猪,马,牛,绵羊,公山羊,犬科动物和猫科动物,以及鱼和甲壳类动物。然而,特别优选的是饲料提供给猪或家禽,包括但不限于肉鸡,母鸡,尤其是下蛋的母鸡,火鸡和鸭子。
饲料组合物和使用的方法
本发明的植酸酶(用前述的方法制备)可以和别的成分结合,产生新的具特殊优点的饲料组合物。
例如,优选的是开展集约化畜禽养殖,它可以限制由饲养的动物粪便带来的磷酸盐污染。食物中的磷酸盐量和动物对食物中磷酸盐的利用率是影响动物粪便中排泄出来的磷酸盐的主要因素。目前,因为磷酸盐主要以植酸的形式存在,因此对存在于大豆粕,玉米粒(以及别的饲料)中的植物或谷物衍生的磷酸盐的利用率低。为了使动物的生长效率最大化,往饲料中加入无机磷酸盐,从而使获得的饲料组合物中含有足够的可利用的磷。然而,配制的这些饲料中含有太多的总磷,会导致磷污染。
尽管目前商业上获得的植酸酶能导致更高的磷利用率,但还是建议和添加高水平无机磷一块使用。本发明的植酸酶有活性,它们能用来创造新的动物饲料配方,这些配方具有a)显著降低的无机磷水平,和b)有较好的饲料转化率,并且相对正常的食物,它能提高重量。目前,商业上获得的植酸酶使动物不能从不含无机磷的饲料中增重。
具体而言,本发明的动物饲料包含本发明的植酸酶和动物饲料成分的组合物,它们能形成一种饲料,它无机磷的水平基本上很低。在一个优选的实施方案中,本发明的饲料组合物包括典型的饲料成分,微量营养素,维生素等,以及效应数量的耐热植酸酶和无机磷酸盐,其中,植酸酶的数量是50-20000单位植酸酶每千克饲料,而无机磷的数量少于0.45%,优选的是100-10000单位植酸酶每千克饲料以及少于0.225%的无机磷,具体而言是150-10000单位植酸酶每千克饲料以及少于0.15%的无机磷,或尤其是250-20000单位植酸酶每千克饲料以及不外加无机磷。
此外,提高和畜产相关的重量以及饲料转化率(FCR)的方法也包括在本发明范围之内。本发明植酸酶能提高重量和FCR,尤其是当和无机磷含量低的食物组合使用时。具体而言,这是一种通过给动物饲喂一种含本发明植酸酶以及无机磷水平等于或低于0.45%的食物,提高FCR或增重的方法。优选的是,该方法包括:饲喂一种食物,它含有植酸酶和少于0.225%的无机磷,或最优选的是,该方法包括饲喂一种食物,它含有植酸酶但不添加无机磷。
单胃动物或多胃动物都可以使用本发明的动物饲料。本发明的动物饲料可以饲喂家禽,或猪,或小牛,或诸如狗或猫或马这样的伴侣动物。这种饲料的实施例以及这种饲料的使用在实施例3种提供了。
本发明也提供了畜牧业的方法,这种方法能显著地降低环境中磷的负荷。该方法包括:给整群的饲养动物饲喂一种饲料,这种饲料包括本发明的植酸酶,以及数量降低的无机磷(少于0.45%)。更优选的是,这方法包括给整群的饲养动物饲喂一种饲料,这种饲料包括本发明的植酸酶,以及数量显著降低的无机磷(少于0.225%)。最优选的是,这方法包括给整群的饲养动物饲喂一种饲料,这种饲料包括本发明的植酸酶但不含无机磷。这种方法既能保持高密度的动物,又能将农场释放到环境中的磷减到最小。
本发明将在下面的实施例中进一步介绍,这并不是用任何方式限制本发明的范围。
                       实施例1
      制备和鉴定耐热植酸酶重组表达的例示性方法
对于黑曲霉中的表达,根据Passamontes等人(1997)介绍的方法转化A.Niger NW205(ura-arg-nic-),并筛选产生植酸酶的转化子。
对于酿酒酵母中的表达,将植酸酶基因克隆进2μm质粒衍生的载体,如含有截短的gap(FL)启动子和pho5终止子(Janes等人,1990)以及选择标记的载体。植酸酶基因克隆到EcoRI-BamHI钝末端表达盒的gap(FL)启动子下游。转化酿酒酵母YMR4(urg-his-leu-pho3-pho5-)。单个转化子最初在基本培养基上培养1-2天。随后在YPD培养基上培养,培养2-3天后检测植酸酶的产量。
对于在汉逊酵母中的表达,植酸酶基因以EcoRI片段克隆到汉逊酵母表达载体pFP(Gellisen等人,1991)甲酸脱氢酶(FMD)启动子(EPA299108)下游的相应位置上。将获得的质粒转化汉逊酵母RB11。将转化子单个接种到基本培养基上(含2%葡萄糖的YNB)。经过若干次选择以后,促使表达质粒多次整合到汉逊酵母的基因组中,挑选单个稳定的克隆检测植酸酶的活性。
对于在毕赤酵母中的表达,根据制造商的指导(Invitrogen),通过电穿孔将编码植酸酶的PIcaA载体转化巴斯德毕赤酵母菌株X33。转化的细胞在YPD-Zeocin琼脂培养基上培养,而阳性克隆则在含甘油(BMGY)的基本培养基上培养24小时。当酵母细胞的密度达到2.5×108细胞/ml(OD600=5)时,将细胞离心,悬浮在0.5%的甲醇培养基中(BMMY)诱导基因表达。
蛋白纯化
将培养基(典型的是500-1000ml)离心,去掉细胞,并用Amicon8400(PM30膜;Grace Ag,Wallisellen,Switzerland)和ultra-15离心式过滤器(Biomax-30K;Millipore,Bedfore,Mass)超滤浓缩。浓缩液(典型的是1.5-5ml)用10mM的醋酸钠(pH5.0)作洗脱缓冲液,在Fast Desalting HR10/10或Sephadex G-25 Superfine柱(PharmaciaBiotech,Dubendorf,Switzerland)上去盐。去盐后的样品直接上样到1.7ml Poros HS/M阳离子交换层析柱(PerSeptive Biosystems,Framingham,Mass.)或上样到17ml Poros HQ/M阴离子交换层析柱上。在阴离子交换和阳离子交换层析这两种情况下,通过优化NaCl梯度,能洗脱出纯的植酸酶。
将在诸如酿酒酵母或裂殖酵母中表达的植酸酶经过去盐和上样到1-ml Butyl Sepharose4Fast Flow疏水作用层析柱(Pharmacia Biotech)后,加入到2M的(NH4)2SO4中。溶在20mM醋酸钠中的植酸酶用线性的2至0M(NH4)2SO4梯度洗脱。在突破点将植酸酶洗脱下来,浓缩并上样到120ml Sephacryl S-300凝胶渗透色谱柱上(PharmaciaBiotech)。
对于在毕赤酵母中表达的酶,最初是将酶悬浮在50mM,pH7的Tris-HCl中,并加入25%的硫酸铵达到饱和。将混合物离心后(25000g,20分钟),沉淀悬浮在10ml的25mM,pH7的Tris-HCl中。悬浮液用同样的缓冲液透析过夜,并上样到DEAE-Sepharose柱中(Sigma),用25mM,pH7的Tris-HCl平衡。用200ml 25mM,pH7的Tris-HCl冲洗柱子后,用0.2M NaCl和25mM,pH7的Tris-HCl洗脱蛋白。检测所有收集的部分的植酸酶活性和蛋白浓度(Lowry等人,1951)。整个纯化在4℃进行,收集的部分贮存在-20℃。
植酸酶活性的检测
根据Engelen等人(2001)的方法,通过估计植酸水解释放的无机磷酸盐,确定植酸酶的活性,整个反应在37℃进行。酶活性单位的定义是在实验条件下,每分钟释放1μmol无机磷酸盐的酶量。例如,可以这么检测植酸酶活性:在250mM,pH5.5的醋酸钠缓冲液中加入2.0ml的酶制剂和4.0ml的9.1mM植酸钠,并补充1mM CaCl2,在37℃反应60分钟,。反应后,加入4.0ml的有色终止试剂终止反应,有色终止试剂中含有等量的10%(w/v)的钼酸铵和0.235%(w/v)的钒酸铵贮存液。根据一套磷酸盐标准,在415nm进行分光光度分析,检测释放的磷酸盐。利用产生的磷酸盐标准曲线,根据获得的植酸酶样品A415nm光吸收值,计算植酸酶活性。此外,也可以用植酸酶活性曲线代替磷酸盐标准曲线来确定植酸酶活性,植酸酶活性曲线是通过一个植酸酶参考得到的,该植酸酶参考的活性已经被制造商确证了。特定的活性可以表示成每mg蛋白的酶活性单位。
此外,根据Engelen等人(1994)的方法,通过估计植酸水解释放的无机磷酸盐,确定植酸酶的活性,整个反应在37℃进行。酶活性单位的定义是在实验条件下,每分钟释放1μmol无机磷酸盐的酶量。例如,可以这么检测植酸酶活性:在100mM,pH7.5的醋酸钠缓冲液中加入150ml的酶制剂和600ml 2mM植酸钠,并补充1mMCaCl2,在37℃反应30分钟。反应后,加入750ml 5%的三氯乙酸终止反应。加入1500ml有色试剂(4体积含有1.5%钼酸铵的5.5%硫酸以及1体积2.7%的硫酸亚铁;Shimizu,1992))后,根据一套磷酸盐标准,在700nm进行分光光度分析,检测释放的磷酸盐。此外,可以在实验混合物中检测植酸酶活性,该混合物含有0.5%(大约5mM)的植酸,和200mM的醋酸钠(pH5.0)。在37℃(或介于37-90℃之间)培养15分钟后,加入等体积的15%的三氯乙酸终止反应。通过混合100ml实验混合物,900ml H2O,1ml 0.6M H2SO4-2%抗坏血酸-0.5%钼酸,可以定量释放的磷酸盐离子。在50℃培养20分钟后,检测820nm处的光吸收值。特定的活性可以表示成每mg蛋白的酶活性单位。
pH变化
为了研究pH变化,将植酸酶稀释在200mM,pH5.5的醋酸钠缓冲液中。用下列缓冲液中的一种制备底物溶液:200mM甘氨酸,pH2.0,2.5或3.0;200mM醋酸钠,pH3.5,4.0,4.5,5.0,5.5,6.0或6.5和200mM Tris-HCl,pH7.0,7.5,8.0,8.5或9.0。所有的缓冲液中都添加了1mM CaCl2。底物溶液中含有10mM来自水稻的植酸(C6H6O24Na12;Sigma-Aldrich Chemie GmbH,Steinheim,Germany)。
两毫升的酶制剂在实验温度下,在水槽中预培养5分钟,然后添加4ml的底物缓冲液起始酶反应。因为混合比率轻微地改变了混合物的pH,因此在培养之前要将混合物pH调整到所需pH。混合物在37℃培养一段时间,如60分钟。添加4ml钒酸钼试剂终止反应。试剂根据Engelen等人(1994)的方法制备。然后确定酶的活性。
热分析
为了确定最佳的温度曲线,酶制剂和底物溶液,以及它们的混合比率都如上述。然而,混合物的pH符合确定的最佳pH。混合物在下列温度:30,40,50,55,60,65,70,75,80和100℃下培养一段时间,如60分钟。根据释放的无机正磷酸盐检测酶活性。为了研究水溶液中的热稳定性,植酸酶在逐渐升高的温度中预培养。预培养后,样品在冰上冷却30分钟。再在37℃预培养,然后确定残余的酶活性。
在水溶液中的热稳定性不能正确反映饲料粒化过程的稳定性。对于一种广泛用作饲料添加剂的,有吸引力的酶而言,它应该要能耐受饲料预处理所必需的温度。动物饲料一种通用的预处理是粒化。为了研究饲料混合物中的热稳定性,小麦做主要成分,增加了维生素和矿物质的食物被选来在不同的温度下进行粒化试验。小麦含有可检测到的天然植酸酶,因此,为了检测天然植酸酶活性的失活,将食物首先在不同的温度下粒化。通过调节容器中蒸汽的进入和温度(注意食物中的温度将比容器中的温度上升7-10℃),改变热处理。容器中的温度可以通过整合在容器中的传感器来连续控制。利用孔直径为5mm,长度为15mm的模子进行粒化。每个温度处理得到的总活性减去天然的植酸酶活性,可以计算出添加的植酸酶的残余活性。颗粒随后在冷却器中冷却。分析得到的颗粒样品中残留的植酸酶活性,这是相对于添加到粕中的植酸酶活性而言,并要考虑在每个温度处理下天然的植酸酶活性。绝大部分肉鸡和仔猪食物在大约70℃粒化。
对蛋白水解失活的抵抗
利用猪胃粘膜胃蛋白酶和猪胰腺胰酶制剂调查植酸酶对蛋白水解失活的抗性。胃蛋白酶,SigmaP7012(Sigma-Aldrich Chemie GmbH,Steinheim,Germany)每mg蛋白含有2500-3500活性单位,而胰酶制剂,SigmaP1500,来源相同,含有和United States Pharmacopeia(U.S.P)相同的活性。用0.1M HCl(pH2.0)悬浮胃蛋白酶,而胰酶制剂散布在0.1M NaHCO3(pH7.0)中。
用胃蛋白酶做试验,含3000U/ml胃蛋白酶的新鲜制备的溶液和1ml新鲜制备的植酸酶溶液(在测试植酸酶活性的最后阶段,用缓冲液稀释后变成了0.02和0.08U/2ml)在测试管中混合。混合物在37℃,pH2.0(胃蛋白酶活性的最佳条件)的水槽中培养0-45分钟。培养后,用缓冲液(pH5.5)稀释1ml的这种溶液(1∶9),并彻底混合。2ml的这种溶液和4ml的植酸底物溶液在40℃,pH5.5条件下培养60分钟,确定植酸酶活性。用胰酶制剂做试验,含4.81mg/ml胰酶制剂的新鲜制备的溶液和1m植酸酶溶液混合。混合物在40℃,pH7.0的水槽中培养0-45分钟。检测植酸酶活性所必需的稀释和pH调节和上面介绍的一样。
此外,遵照制造商的指导(Sigma),纯化的植酸酶(2mg/ml)与不同数量的胃蛋白酶和胰蛋白酶培养。胃蛋白酶(800U/mg蛋白)和胰蛋白酶(1500BAEE单位/mg蛋白)分别溶解在10mM HCl中,pH是2(0.1mg/ml)。一个BAEE单位的定义是在pH7.6和25℃时,用BAEE做底物,每分钟253nm光吸收值变化0.001。在100ml的终体积中,10mg的纯化植酸酶(0.08-0.1U)和胰蛋白酶或胃蛋白酶在37℃培养1-120分钟,蛋白酶/植酸酶的比率(w/w)从0.001到0.01。反应在冰上终止,混合物的pH调整到8.0,用来电泳和测试植酸酶的活性。用十二烷基磺酸钠(SDS)-聚丙烯酰胺或尿素-SDS-聚丙烯酰胺凝胶电泳分析消化的蛋白混合物。
在食糜上清中的稳定性
从正在下蛋的母鸡中收集食糜样品。采用颈椎脱臼法杀死鸟,并去掉它们的消化管道。从嗉囊,胃(前胃),十二指肠(幽门到胆管入口),空肠(胆管入口到马克耳氏息室),以及回肠(马克耳氏息室到回盲交点)收集食糜。用数字pH计(Ingol Messtechnik AG,Jrdorf,Switzerland)检测消化样品的pH。嗉囊,胃,十二指肠,空肠以及回肠不同部分的pH读数分别是5.02,2.75,6.28,6.63和6.98。
样品在使用前可以在-20℃冷冻,也可以立即使用。食糜样品以1∶1在蒸馏水中稀释,彻底混合,并在10000g离心10分钟。回收上清,将它们的pH调整到最初的pH,分别对应消化道的不同部分。将回收的食糜上清放在冰/水浴上,直到使用。对于试验,1ml食糜上清和1ml的酶溶液混合,混合物在40℃培养0-20分钟。为了检测残余的植酸酶活性,用缓冲液(pH5.5)稀释1ml溶液(1∶9)。然后将2ml的这种溶液和4ml底物溶液混合,在40℃培养60分钟。
                     实施例2
              耐热植酸酶的分离和鉴定
基因研究和酶的优化,如结合所需的突变和/或通过DNA重排,用来鉴定所需的植酸酶基因。为了所需的活性概况,对耐热植酸酶进行选择和/或优化。这包括,例如,高比活力(例如,在37℃和pH4.5时,≥800U/mg),利用植酸及其衍生物,包括具有1-6个磷酸基团的肌醇作为底物,在特定温度下(如37℃)的活性,在低的pH(如介于2.5-3.5之间或对于猪而言是少于4.0的最适宜pH)下的活性,胃的稳定性(例如在家禽和猪的人造或实际的胃液中的半寿期大于30分钟),加工稳定性(例如,在85℃的配置状态半寿期≥5分钟,通过商业上可接受的粒化过程活性至少保留50%),更低的使用率(例如,少于0.5克酶/吨饲料的有效计量会导致超过75%的磷释放),和/或底物特异性(例如,在一磷酸肌醇上的活性)。
A.新的植酸酶基因
为了确定新的植酸酶基因,采用了许多不同的方法。用一种方法,从14个不同的大肠杆菌K-12菌株中直接克隆了appA基因,得到了两个新的植酸酶基因,每个基因有2个氨基酸的差异。
为了优化大肠杆菌植酸酶(appA)(亲本)基因,作了饱和突变试验,在这个试验中,基因中编码所有氨基酸的每个密码子都被改变。(例如参看WO01/90333,Diversa公司)。加热后(70℃)测试所有突变序列的残余活性。鉴定出了16个单克隆,它们的热稳定性相对于它们的亲本基因增强了。用组合的方式将单个突变组合,测试每个组合制备的克隆和克隆相对野生型大肠杆菌(图1和2)的热耐受性。克隆NOV9X有8个氨基酸取代和一个沉默氨基酸改变,它在不同温度下处理30分钟后的残余活性概况如图3A所示,而在100℃的残余活性概况则如图3B所示。表1概括了不同植酸酶的性质。
                           表1
  性质   AppA   NatuPhos   Nov9x   appA-2*
  SA#   10   1   10   10
  热稳定性   在100℃是3%   ND   在100℃是40%   ND
#相对pH4.5而言。
*2个大肠杆菌基因变异体
在不同宿主细胞中表达的NOV9X植酸酶的胃稳定性和热耐受性如图4所示。可以在三种不同的微生物中制造NOV9X植酸酶:大肠杆菌,巴斯德毕赤酵母和粟酒裂殖酵母。大肠杆菌不能糖基化蛋白,而巴斯德毕赤酵母能把蛋白糖基化到一定程度,粟酒裂殖酵母糖基化的程度更高一些。糖基化程度的上升和胃稳定性程度的增强是相关的。这些数据也表明热耐受性增加和糖基化程度有关。这种效果在别的植酸酶中没发现。例如,Wyss等人(1999)报道差异糖基化程度对真菌植酸酶(A.fumigatus)没作用。相似地,Rodriguez等人(2000)报道对大肠杆菌植酸酶(在巴斯德毕赤酵母中表达)进行遗传修饰,使其糖基化程度更高,但其热稳定性却没增强。因此,植酸酶NOV9X有许多所需的性质,例如热耐受性增强,高的特异活性,以及胃稳定性上升。
关于胃稳定性和糖基化,在文献中只有一些比较研究,结果互相矛盾。Rodriquez等人的论文(1999)公开:在巴斯德毕赤酵母中表达的亲本大肠杆菌植酸酶基因对胃蛋白酶有强的抗性,对胰蛋白酶的水解却很敏感。相反,发现Natuphos对胰蛋白酶有抗性,却对胃蛋白酶敏感。
                         实施例3
     编码具植酸酶和酸性磷酸酶活性的多肽的Nov9X基因
           的构建及其在巴斯德毕赤酵母中的表达
基因来源和蛋白序列:合成编码Nov9X植酸酶氨基酸序列(Nov9X序列参考Diversa专利)的基因,并把它克隆到目的克隆载体pPCR-Nov9X中。基因是利用酵母偏爱密码子设计的,并通过转化的Epicurian Coli XL1-Blue MRF’s细胞(Stratagene,La Jolla,CA)提供。
表达宿主和载体:巴斯德毕赤酵母pPIC9表达载体和巴斯德毕赤酵母GS115菌株从Invitrogen(Carlsberg,CA)公司获得。pPIC9表达载体含有乙醇氧化酶1启动子(AOX1),而且是甲醇诱导的。将Nov9X基因和载体的酿酒酵母α-因子前体肽原分泌信号框式克隆,目的是获得胞外表达的重组蛋白。
巴斯德毕赤酵母转化载体的构建:用限制性内切酶BglII和XbaI(New England Biolabs,Beverly,MA)消化质粒pPCR-Nov9X(Qiaprep Spin Miniprep Protocol,Qiagen,Valencia,CA),将Nov9X目的基因编码区间切下来。典型的限制性消化是在37℃反应60分钟,紧接着在65℃加热20分钟使酶失活。释放1242碱基对的DNA片段通过凝胶进行纯化(QIAquick Gel Extraction Kit,Qiagen,Valencia,CA),然后用作PCR扩增的模板。利用下列的合成的寡聚核苷酸引物1和2(Sigma-Genosys,The Woodlands,TX)以及PFUTurbo DNA聚合酶(Stratagene La Jolla,CA)扩增靶DNA。
上游引物1:5’-gaaggggtat ctctcgagaa aagagaggct caatctgaaccagaattgaa gttggaatct(SEQ ID NO:2)
下游引物2:3’-attattcgcg gccgcctatt acaaggaaca ggctgggatt ct(SEQID NO:3)
通过下列的热循环方案,总共进行30个循环,扩增Nov9X基因:
94℃,5分钟,最初的模板变性
94℃,30秒,变性
61℃,30秒,退火
72℃,90秒,引物延伸
扩增的Nov9X PCR产物(SEQ ID NO:4)通过凝胶纯化(QIAquickGel Extraction Kit,Qiagen,Valencia,CA),并用限制性内切酶Not□和XhoI进行消化(New England Biolabs,Beverl,MA)。巴斯德毕赤酵母表达载体pPIC9(Invitrogen,Carlsbad,CA)也同样用限制性内切酶NotI和XhoI进行消化,并通过凝胶抽提纯化。内切核酸酶酶切的Nov9X PCR产物和线性的pPIC9表达载体在16℃用连接酶(NewEngland Biolabs,Beverl,MA)过夜连接,然后转化大肠杆菌Top10F’感受态细胞(Invitrogen,Carlsbad,CA),从而获得构建的Nov9X酵母转化载体。用NotI和XhoI消化含有目的基因的Nov9X/pPIC9克隆,根据质粒DNA限制图谱进行鉴定。构建的Nov9X转化子的整合可以通过DNA序列分析得到证实。这种克隆方法获得一种构建的载体,在这种载体中,Nov9X基因和载体的酿酒酵母α-因子前体肽原分泌信号框式克隆,目的是进行胞外表达。
用于酵母转化的Nov9X/pPIC9DNA的制备:含有Nov9X/pPIC表达盒的质粒DNA从50ml大肠杆菌Top10F’细胞培养物种纯化出来,这些培养物在加有100μg/ml氨苄青霉素的LB培养基中过夜生长。用限制性核酸内切酶BglII在37℃消化60分钟,将分离出来质粒DNA线性化。紧接着BglII消化,在65℃培养20分钟,进行热失活。首先用苯酚纯化线性化的Nov9X/pPIC9DNA,然后用苯酚-氯仿-异戊醇抽提。利用异丙醇将DNA从提取物的水相中沉淀出来,离心,用70%乙醇洗,然后重悬在TE缓冲液中(10mMTris-HCl,0.1mMEDTA,pH8.0)。
巴斯德毕赤酵母GS115感受态细胞的制备:在YPD琼脂培养基上划板,制备酵母细胞。然后在30℃过夜生长,将酵母单克隆从YPD琼脂培养基上转移到10ml的YPD液体培养基中,并在30℃过夜生长。从这10ml的种子培养基中取出100μl接种到另外500ml的YPD液体培养基中。500ml的培养物在30℃过夜生长,直到595nm的光密度检测为1.25。通过离心收集细胞,重悬,并根据制造商的建议(Invitrogen Pichia Expression Kit Instruction Manual,VersionL,pg59)用一系列水和山梨醇洗涤。
将Nov9X/pPIC9 DNA转化到巴斯德毕赤酵母GS115中:在0.2cm的电击管(Gene Pulser Cuvettes,BioRad,Hercules,CA)中混合BglII限制性消化的Nov9X/pPIC9质粒DNA(4.6μg)和80μl用山梨醇处理的巴斯德毕赤酵母GS115细胞,并在冰上培养5分钟。将电击管放在BioRad Gene Pulser II仪器上,用1.5kV,25μF和200Ω的设置进行电脉冲。在电穿孔混合物中加入冰冻的山梨糖醇(1.0mL),然后把它铺在组氨酸缺陷的,右旋糖基本培养基(MD)平板上。在30℃培养多达3天,可以得到克隆。
筛选表达植酸酶的转化子
从铺在MD平板上的一批初级转化子中接种单克隆到25mL的BMGY培养基中(用甘油缓冲的基本培养基),30℃过夜生长。用YeaStar基因组DNA纯化试剂盒(Zymo Research,Orange,CA)从25mlBMGY液体培养基中取出2ml纯化基因组DNA。用纯化的基因组DNA和前面列出来的寡聚核苷酸引物1和2进行PCR,筛选含有我们所需植酸酶基因的巴斯德毕赤酵母克隆。利用上面列出来的热循环条件测试这批基因组克隆。能产生一条1281碱基对大小PCR片段的克隆通过Nov9X蛋白表达作进一步确定。剩余的来自PCR筛选为Nov9X基因阳性克隆的23mL毕赤酵母培养物在2000rpm离心10分钟,倒掉上清,而细胞沉淀重悬在10mL的BMMY(用甲醇缓冲的基本培养基)中,诱导蛋白表达。在30℃培养已经鉴定好的能表达Nov9X植酸酶的克隆,24小时后,对过滤的发酵培养基进行SDS-PAGE分析。功能活性实验检测的是植酸钠底物中释放的无机磷酸盐,它可以证实植酸酶表达培养物,而植酸酶表达培养物能分泌功能活性蛋白。
                    实施例4
                    饲养试验
粉料(mash feed)
图5说明的是含有NOV9X植酸酶的食物对家禽生长性能的影响,用饲料转换率(FCR)来表示。饲料转换率指的是消耗的饲料数量除以小鸡的净增重量。比率越低说明消耗1单位饲料小鸡增重越大。比率越低说明小鸡能更有效地利用消耗的饲料。使用的是标准的家禽饲料,在饲料中分别加入了两种不同水平的无机磷酸盐:0.45%和0.225%。商用家禽饲料中公用的是0.45%的无机磷水平。在巴斯德毕赤酵母中产生的NOV9X植酸酶用在本研究中。每一栏10只小鸡,每一栏饲喂一种饲料,当许多栏小鸡长到21天大时,减去它们第一天的重量,就得到了它们最终的增重。保留每栏小鸡消耗饲料量的纪录,可以确定平均的饲料消耗量。植酸酶的配置方法是:将酶溶液和膨化剂混合物冷冻,在这里膨化剂指的是磨碎的大豆粕,然后将混合物冻干。配置的植酸酶直接加入食物中。根据制造商的建议使用Natuphos。
对照食物(没有添加酶)明显表示出补充磷酸盐的需要。低的磷酸盐得到1.603的FCR,而对于高的磷酸盐对照而言FCR是1.391。以250,500和1000U/kg的浓度添加NOV9X植酸酶会导致低磷酸盐和高磷酸盐食物FCR的上升。因为加入的植酸酶越多,鸟的生长性能改善的越多,这通过更低的FCR值表示出来。令人惊讶的是,假设低磷食物中磷酸盐显著减少,含有500U/kg NOV9X的低磷食物(1.393)和高磷对照(FCR 1.391)的作用一样好。此外,无论是在高磷还是低磷食物中(Natuphos的制造商建议阳性对照使用0.45%的磷酸盐水平,而且在添加500U Natuphos的同时仅仅减少0.1%磷酸盐),NOV9X植酸酶都比Natuphos(1040U/kg)作用要好。因此,使用本发明耐热植酸酶补充饲料能减少升高FCR所必需的磷酸盐添加水平。
粒化饲料:除了使用粒化的饲料而不是粉碎的饲料之外,又作了一个和上面介绍相似的饲养试验。将饲料成分和NOV0X植酸酶(既可是巴斯德毕赤酵母产生的,也可是栗酒裂殖酵母产生的)或Natuphos混合,然后为了保持状态在85℃使用蒸汽注射进行粒化。许多栏小鸡饲喂了这种食物,并在42天时获得它们的增重。
对照食物没添加植酸酶,含有0.45%的磷酸盐。所有别的食物(含有Natuphos或浓度为100,300和900U/kg的植酸酶)含有0.225%的磷酸盐。增重的数据如图6所示。这些数据表明NOV9X植酸酶从粒化过程幸存下来,并使得食用了这种饲料的小鸡生长性能增强。相对于没添加酶的对照食物而言,增重显著升高,并且大致等于阳性对照(不加酶,含有0.45%高磷酸盐的食物)。这些数据也证实了就热稳定性而言,NOV9X植酸酶要优于Natuphos。
                      实施例5
                      饲养试验
进一步作了7个试验,一些动物是21天大,而另一些动物是42天大。在每个试验中,注入的NOV9X的剂量水平不同,但在绝大部分情况下,可以和Natuphos相比较。从这7个试验以及上述的2个试验中,动物表现数据被输入一个数据表,通过逐步的线性回归方法进行统计分析,确定检查的35个变量(食物,酶和处理变量)中哪个变量能最好地描述这组数据的变异。有意义的增重和FCR模型被描述,并用绘图的形式表示在图7和图8中。酶的来源(即Natuphos或NOV9X)被证明是测量的增重和FCR变异中的一个决定因素。因此,平均而言,根据输入数集的9个试验,就增重和fcr而言,NOV9X要优于Natuphos。这种多因素或整合分析方法在确定产品的相对功效时更可靠,因为避免了一个试验的不可靠性。
总而言之,这个实施例中的数据表明NOV9X植酸酶释放有机磷酸盐是十分有效的,有机磷酸盐存在于饲料的大豆和玉米中。当使用NOV9X时,很明显动物的生长性能可以保持,而添加的无机磷酸盐比使用Natuphos时所必需的磷酸盐要少。这表明当配制食物来利用每种产品的性能时,和Natuphos相比,使用NOV9X时,肥料中磷有一个净减少量。
此外,这些结果表明通过一种地域性很强的方式,这些新的低水平无机磷酸盐复合动物饲料能有效地生产农场动物,而从这些动物排泄物中释放到环境中去的磷酸盐会显著降低。这就意味着生产这些动物的农场对环境的影响将会更小。
参考文献
Batzer等人,核酸研究(Nucleic Acid Res).,19:5081(1991).
Crameri等人,自然生物技术(Nature Biotech).,15:436(1997).
Crameri等人,自然(Nature).,391:288(1998).
Dayhoff等人,蛋白序列和结构图集(Atlas of Protein Sequence andStructure),Natl.Biomed.Res.Found.,Washington,C.D.(1978).
Engelen.A.J等人,J.AOAC.Inter.,77,760(1994).
Engelen.A.J等人,J.AOAC.Inter.,84,629(2001).
Gatz,生物技术新观点(Current Opinion in Biotechnology),7:168(1996).
Gatz,C.,植物生理和植物分子生物学年鉴(Annu.Rev.Plant.Physiol.Plant Mol.Biol).,48:89(1997)
Gelfand,编辑,PCR策略(PCR Strategies)(Academic Press,NewYork(1995)).
Gelvin等人,植物分子生物学手册(Plant Molecular Biology Manual)(1990).
Ikuta等人,Biotech8:241(1990).
Innis和Gelfand编辑,PCR方法手册(Academic出版社,纽约)(1999).
Innis等人,编辑,PCR方案:方法和应用指南(Academic出版社,纽约)(1995).
Jongbloed等人,动物营养中的酶,Proc.of the 1st Symp.KartauseIttingen,Wenk,C.和Boessinger,M(编辑),Switzerland,173-180页(1993).
Katz等人,普通微生物学杂志(J.Gen.Microbiol).,129:2703(1983).
Kornegay,E.T.等人,英国营养杂志(Brit.J.Nutr).,75,839(1996).
Kunkel等人,酶学方法(Methods in Enzymol).,154:367(1987).
Kunkel,美国国家科学院院刊(Proc.Natl.Acad.Sci.U.S.A),82:488(1985).
Moore等人,分子生物学杂志(J.Mol.Biol).272:336(1997).
Mroz等人,动物科学杂志(J.Anim.Sci).,72,126(1994).
Munro等人,细胞(Cell),48,899(1987).
Niedz等人,植物细胞报告(Plant Cell Reports),14:403(1995).
Odell等人,普通遗传分子生物学(Mol.Gen.Genet).,113:369(1990).
Ohtsuka等人,生物化学杂志(J.Biol.Chem).,260:2605(1985).
Ow等人,科学(Science),234:856(1986).
Pallauf,J.和Rimbach,G.,Arch.Anim.Nutr.,50,301(1997).Prasher等人,生物化学与生物物理研究通讯(Biochem.Biophys,Res.Comm).,126:1259(1985).
Rao,R.S.V等人,动物饲料科学技术(Anim.Feed Sci.Technol).,79,211(1999).
Ravindran等人,家禽科学(Poult.Sci).,78,699(1999).
Rodriguez等人,Arch.Biochem.Biophy.,365:262(1999).
Rodriguez等人,Arch.Biochem.Biophy.,382:105(2000).
Sambrook等人,分子克隆:实验室手册(第二版,冷泉港实验室出版社,Plainview,纽约)(1989).
Stemmer,自然,370:389(1994).
Stemer,美国国家科学院院刊(Proc.Natl.Acad.Sci.USA),91:10747(1994).
Turner等人,分子生物技术(Molecular Biotechnology),3:225(1995).
Walker和Gaastra编辑,分子生物学技术,MacMillan出版公司,纽约(1983).
Wyss等人,环境微生物学应用(App.Environ.Micro).65:359(1999).
Zhang等人,美国国家科学院院刊(Proc.Natl.Acad.Sci.USA),94:4504(1997).
Zukowsk等人,美国国家科学院院刊(PNAS USA),80:1101(1983).
所有引用的出版物,专利,专利申请被引作本发明的参考。尽管在前面说明书的某些优选的实施方案中已经介绍了本发明,而且出于例证的目的,许多细节也被提出,但是本发明对另外的实施方案也适用,而且本申请中介绍的某些细节在不偏离本发明基本原则的前提下,会发生显著地变化,这一点对本领域普通技术人员而言是很明显的。
                           序列表
<110>Lanahan,Mike
     Koepf,Edward
     Kretz,Keith
<120>微生物表达的用于动物饲料的耐热植酸酶
<130>70098
<150>60/344,523
<151>2001-12-28
<160>4
<170>PatentIn version 3.1
<210>1
<211>412
<212>PRT
<213>人工序列
<220>
<223>Nov9X植酸酶
<400>1
Met Ala Gln Ser Glu Pro Glu Leu Lys Leu Glu Ser Val Val Ile Val
1               5                   10                  15
Ser Arg His Gly Val Arg Ala Pro Thr Lys Ala Thr Gln Leu Met Gln
            20                  25                  30
Asp Val Thr Pro Asp Ala Trp Pro Thr Trp Pro Val Lys Leu Gly Glu
        35                  40                  45
Leu Thr Pro Arg Gly Gly Glu Leu Ile Ala Tyr Leu Gly His Tyr Trp
    50                  55                  60
Arg Gln Arg Leu Val Ala Asp Gly Leu Leu Pro Lys Cys Gly Cys Pro
65                  70                  75                  80
Gln Ser Gly Gln Val Ala Ile Ile Ala Asp Val Asp Glu Arg Thr Arg
                85                  90                   95
Lys Thr Gly Glu Ala Phe Ala Ala Gly Leu Ala Pro Asp Cys Ala Ile
            100                 105                 110
Thr Val His Thr Gln Ala Asp Thr Ser Ser Pro Asp Pro Leu Phe Asn
        115                 120                 125
Pro Leu Lys Thr Gly Val Cys Gln Leu Asp Asn Ala Asn Val Thr Asp
    130                 135                 140
Ala Ile Leu Glu Arg Ala Gly Gly Ser Ile Ala Asp Phe Thr Gly His
145                 150                 155                 160
Tyr Gln Thr Ala Phe Arg Glu Leu Glu Arg Val Leu Asn Phe Pro Gln
                165                 170                 175
Ser Asn Leu Cys Leu Lys Arg Glu Lys Gln Asp Glu Ser Cys Ser Leu
            180                 185                 190
Thr Gln Ala Leu Pro Ser Glu Leu Lys Val Ser Ala Asp Cys Val Ser
        195                 200                 205
Leu Thr Gly Ala Val Ser Leu Ala Ser Met Leu Thr Glu Ile Phe Leu
    210                 215                 220
Leu Gln Gln Ala Gln Gly Met Pro Glu Pro Gly Trp Gly Arg Ile Thr
225                 230                 235                 240
Asp Ser His Gln Trp Asn Thr Leu Leu Ser Leu His Asn Ala Gln Phe
                245                 250                 255
Asp Leu Leu Gln Arg Thr Pro Glu Val Ala Arg Ser Arg Ala Thr Pro
            260                 265                 270
Leu Leu Asp Leu Ile Lys Thr Ala Leu Thr Pro His Pro Pro Gln Lys
        275                 280                 285
Gln Ala Tyr Gly Val Thr Leu Pro Thr Ser Val Leu Phe Ile Ala Gly
    290                 295                 300
His Asp Thr Asn Leu Ala Asn Leu Gly Gly Ala Leu Glu Leu Asn Trp
305                 310                 315                 320
Thr Leu Pro Gly Gln Pro Asp Asn Thr Pro Pro Gly Gly Glu Leu Val
                325                 330                 335
Phe Glu Arg Trp Arg Arg Leu Ser Asp Asn Ser Gln Trp Ile Gln Val
            340                 345                 350
Ser Leu Val Phe Gln Thr Leu Gln Gln Met Arg Asp Lys Thr Pro Leu
        355                 360                 365
Ser Leu Asn Thr Pro Pro Gly Glu Val Lys Leu Thr Leu Ala Gly Cys
    370                 375                 380
Glu Glu Arg Asn Ala Gln Gly Met Cys Ser Leu Ala Gly Phe Thr Gln
385                 390                 395                 400
Ile Val Asn Glu Ala Arg Ile Pro Ala Cys Ser Leu
                405                 410
<210>2
<211>60
<212>DNA
<213>人工序列
<220>
<223>正向引物
<400>2
gaaggggtat ctctcgagaa aagagaggct caatctgaac cagaattgaa gttggaatct     60
<210>3
<211>42
<212>DNA
<213>人工序列
<220>
<223>反向引物
<400>3
attattcgcg gccgcctatt acaaggaaca ggctgggatt ct                        42
<210>4
<211>1281
<212>DNA
<213>人工序列
<220>
<223>Nov9X基因
<400>4
gaaggggtat ctctcgagaa aagagaggct caatctgaac cagaattgaa gttggaatct     60
gttgtcattg tctccagaca cggtgttaga gctccaacta aggctactca gttgatgcaa    120
gatgttactc cagatgcttg gcctacctgg cctgttaagt tgggtgaatt gactccaaga    180
ggtggtgaat tgattgctta cttgggtcac tactggagac aaagattggt tgctgatggt    240
ttgttgccaa agtgtggttg tccacaatct ggtcaagttg ctatcattgc tgatgttgat    300
gaaagaacta gaaagactgg tgaagccttc gctgccggtt tggccccaga ctgtgctatc    360
actgttcaca ctcaagctga tacttcctct ccagatccat tgttcaaccc attgaagact    420
ggtgtctgtc aattggataa cgctaacgtt actgatgcca tcttggaaag agctggtggt    480
tctatcgctg acttcactgg tcactaccaa actgccttca gagaattgga aagagtcttg    540
aacttcccac aatctaactt gtgtttgaag agagagaagc aagacgaatc ttgttccttg    600
actcaagcct tgccatctga attgaaggtc tctgctgatt gtgtctcctt gactggtgct    660
gtctccttgg cttctatgtt gactgaaatc ttcttgttgc aacaagctca aggtatgcca    720
gaaccaggtt ggggtagaat cactgattct caccaatgga acaccttgtt gtccttgcac    780
aacgctcaat tcgatttgct gcagagaact ccagaagtcg ctagatccag agctactcca    840
ttgttggact tgatcaagac cgctttgact ccacacccac cacagaagca agcttacggt    900
gttaccttgc caacttctgt cttgttcatt gccggtcacg atactaactt ggctaacttg    960
ggtggtgcct tggaattgaa ctggaccttg ccaggtcaac cagataacac tccaccaggt   1020
ggtgaattgg tcttcgaaag atggcgtcga ctgtctgata actctcaatg gattcaagtc   1080
tccttggtct tccaaacctt gcaacaaatg agagacaaga ctccattgtc cttgaacact   1140
ccaccaggtg aagtcaagtt gaccttggct ggttgtgaag aaagaaacgc tcaaggtatg   1200
tgttctttgg ctggtttcac tcaaatcgtc aacgaagcca gaatcccagc ctgttccttg   1260
taataggcgg ccgcgaataa t                                             1281

Claims (72)

1.制备耐热植酸酶的方法,包括:在微生物宿主细胞中表达一种表达盒,该表达盒包括启动子,所述启动子可操作地连接在编码耐热植酸酶的核酸分子上,所述耐热植酸酶在60℃培养30分钟后能保留至少40%的活性,并且在pH4.5和37℃时,具有大于200U/mg的比活性。
2.权利要求1所述的方法,进一步包括分离耐热植酸酶。
3.权利要求1所述的方法,其中宿主细胞是细菌细胞。
4.权利要求1所述的方法,其中宿主细胞是埃希氏菌,假单胞菌,乳酸菌或杆状菌。
5.权利要求1所述的方法,其中宿主细胞是酵母细胞。
6.权利要求1所述的方法,其中宿主细胞是克鲁维酵母,酵母菌,裂殖酵母,丝孢酵母,许旺氏酵母,毕赤酵母或Hansuel细胞。
7.权利要求1所述的方法,其中宿主细胞是酿酒酵母,巴斯德毕赤酵母,多形汉逊酵母或粟酒裂殖酵母细胞。
8.权利要求1所述的方法,其中宿主细胞是真菌细胞。
9.权利要求1所述的方法,其中宿主细胞是曲霉菌,根霉菌,木霉菌,脉孢菌,毛霉菌或青霉菌细胞。
10.权利要求1所述的方法,其中宿主细胞是黑曲霉细胞。
11.权利要求1所述的方法,其中耐热植酸酶包括SEQ ID NO:1。
12.权利要求1所述的方法,其中耐热植酸酶在pH4.5和37℃时,具有大于400U/mg的比活性。
13.权利要求1所述的方法,其中耐热植酸酶在pH4.5和37℃时,具有大于600U/mg的比活性。
14.权利要求1所述的方法,其中耐热植酸酶在pH4.5和37℃时,具有大于800U/mg的比活性。
15.权利要求1所述的方法,其中核酸分子编码包括耐热植酸酶的融合多肽。
16.权利要求15所述的方法,其中融合多肽包括可操作地连接在耐热植酸酶上的信号序列。
17.权利要求1所述的方法,其中耐热植酸酶在pH大于2.0小于4.0时,在人造胃液中的半寿期大于25分钟。
18.权利要求1所述的方法,其中耐热植酸酶被糖基化。
19.制备动物饲料的方法,包括:
a)提供一种混合物,它含有饲料成分和制备物,所述制备物包含权利要求2所述耐热植酸酶;和
b)在一定温度和湿度条件下处理混合物,所述条件能水解混合物中的植酸,从而产生动物饲料。
20.权利要求19所述的方法制备的动物饲料,其中所述的动物饲料中的植酸含量相对没有处理过的动物饲料中的植酸含量较低。
21.制备动物饲料的方法,包括:
a)提供一种混合物,它含有动物饲料成分和权利要求2所述的耐热植酸酶;和
b)在大于50℃的温度下加热混合物,从而产生热处理的动物饲料混合物。
22.权利要求21所述的方法,其中含有植酸酶的的制备物是液体制备物。
23.权利要求21所述的方法,其中含有植酸酶的的制备物是固体制备物。
24.权利要求21所述的方法,其中混合物a)进一步包括至少一种维生素,矿物质,非耐热植酸酶的酶,有机酸,原生物制品,精油或谷物加工副产品。
25.权利要求21所述的方法,其中含有植酸酶的制备物包括少于约1%的无机磷酸盐。
26.权利要求21所述的方法,其中a)中的混合物含有少于0.45%的无机磷酸盐。
27.热处理的权利要求21所述的方法制造的动物饲料混合物。
28.权利要求21所述的方法,进一步包括通过粒化机挤压热处理的混合物,产生粒化的动物饲料。
29.权利要求28所述的方法制造的粒化动物饲料。
30.包括权利要求2所述耐热植酸酶的动物饲料组合物。
31.权利要求30所述的动物饲料组合物,其中植酸酶在pH4.5和37℃时,具有大于400U/mg的比活性。
32.权利要求30所述的动物饲料组合物,其中植酸酶在pH4.5和37℃时,具有大于600U/mg的比活性。
33.权利要求30所述的动物饲料组合物,其中植酸酶在pH4.5和37℃时,具有大于800U/mg的比活性。
34.权利要求30所述的动物饲料组合物,其中耐热植酸酶在pH大于2.0小于4.0时,在人造胃液中的半寿期大于25分钟。
35.含有权利要求2所述耐热植酸酶的酶饲料添加剂。
36.权利要求35所述的酶饲料添加剂,其中耐热植酸酶在pH4.5和37℃时,具有大于400U/mg的比活性。
37.权利要求35所述的酶饲料添加剂,其中耐热植酸酶在pH4.5和37℃时,具有大于600U/mg的比活性。
38.权利要求35所述的酶饲料添加剂,其中耐热植酸酶在pH4.5和37℃时,具有大于800U/mg的比活性。
39.权利要求35所述的酶饲料添加剂,其中耐热植酸酶在pH大于2.0小于4.0时,在人造胃液中的半寿期大于25分钟。
40.制备用于饲料制品的含耐热植酸酶组合物的方法,包括:
a)将含有权利要求2所述耐热植酸酶的液体溶液和大豆粉混合,得到混合物;和
b)将混合物冻干,得到冻干的组合物。
41.权利要求40所述的方法,进一步包括将冻干的组合物和别的饲料成分混合,得到进一步的混合物。
42.权利要求40所述的方法,其中耐热植酸酶在pH4.5和37℃时,具有大于800U/mg的比活性。
43.权利要求40所述的方法,其中耐热植酸酶在pH大于2.0小于4.0时,半寿期大于25分钟。
44.一种冻干的组合物,它是用权利要求40所述方法制备的。
45.降低饲料转换率和提高动物增重的方法,包括:给动物饲喂一种包含权利要求2所述耐热植酸酶的饲料,其用量足以有效地降低动物的饲料转换率。
46.降低用无机磷酸盐水平低于0.45%的食物饲喂的动物的饲料转换率或提高动物增重的方法,包括:给动物饲喂无机磷酸盐水平低于0.45%,而且包含权利要求2所述耐热植酸酶的饲料,其用量足以有效地降低动物的饲料转换率或提高动物的增重。
47.将动物饮食对无机磷的需求降到最低的方法,包括:给动物饲喂一种包含权利要求2所述耐热植酸酶的饲料,其用量足以有效地提高动物饲料中磷的生物利用率。
48.将动物饮食对磷的需求降到最低的方法,包括:给动物饲喂一种包含权利要求2所述耐热植酸酶的饲料,其用量足以有效地提高动物饲料中磷的生物利用率。
49.增加动物饲料中磷利用率的方法,包括:给动物饲喂一种包含权利要求2所述耐热植酸酶的饲料,其用量足以有效地提高动物饲料中磷的生物利用率。
50.增加动物饲料中来自有机磷源的有机磷酸盐的利用率的方法,包括:给动物饲喂一种包含权利要求2所述耐热植酸酶的饲料,其用量足以有效地提高动物饲料中无机磷酸盐的生物利用率。
51.降低动物排泄物中磷酸盐水平的方法,包括:给动物饲喂一种包含权利要求2所述耐热植酸酶的饲料,其用量足以有效地降低动物排泄物中的磷酸盐水平。
52.降低动物排泄物中磷酸盐水平的方法,包括:给动物饲喂一种无机磷水平低于0.45%,而且包含权利要求2所述耐热植酸酶的饲料,其用量足以有效地降低动物排泄物中的磷酸盐水平。
53.权利要求45-52中任一项的方法,其中饲料是家禽饲料。
54.权利要求45-52中任一项的方法,其中饲料是猪饲料。
55.权利要求45-52中任一项的方法,其中耐热植酸酶包括SEQ IDNO:1。
56.权利要求45-52中任一项的方法,其中耐热植酸酶在动物消化道中的半寿期大约是30分钟。
57.提高动物饲料营养价值的方法,包括:在制备动物饲料过程中添加权利要求2所述的耐热植酸酶,其用量足以有效地提高饲料的营养价值。
58.提高人类食品营养价值的方法,包括:在制备人类食品过程中添加权利要求2所述的耐热植酸酶,其用量足以有效地提高食品的营养价值。
59.含有权利要求2所述耐热植酸酶的食品组合物。
60.制备人类食品的方法,包括:
a)提供一种混合物,它含有食品成分和制备物,所述制备物包括权利要求2的耐热植酸酶;和
b)在一定温度和湿度条件下处理混合物,所述条件能水解混合物中的植酸,从而产生处理过的人类食品。
61.用权利要求60所述方法制备的处理过的人类食品,其中所述的人类食品中的植酸含量相对没有处理过的人类食品中的植酸含量较低。
62.含有权利要求2所述耐热植酸酶的食品添加剂。
63.权利要求62所述的食品添加剂,其中耐热植酸酶在pH4.5和37℃时,具有大于400U/mg的比活性。
64.权利要求62所述的食品添加剂,其中耐热植酸酶在pH4.5和37℃时,具有大于600U/mg的比活性。
65.权利要求62所述的食品添加剂,其中耐热植酸酶在pH4.5和37℃时,具有大于800U/mg的比活性。
66.权利要求62所述的食品添加剂,其中耐热植酸酶在pH大于2.0小于4.0时,半寿期大于25分钟。
67.制备用于食物制品的含耐热植酸酶组合物的方法,包括:
a)将含有权利要求2所述耐热植酸酶的液体溶液和面粉混合,得到混合物;和
b)将混合物冻干,得到冻干的组合物。
68.权利要求67所述的方法,进一步包括将冻干的组合物和别的食品成分混合,得到进一步的混合物。
69.权利要求67所述的方法,其中耐热植酸酶在pH4.5和37℃时,具有大于800U/mg的比活性。
70.权利要求67所述的方法,其中耐热植酸酶在pH大于2.0小于4.0时,半寿期大于25分钟。
71.权利要求62所述方法制备的冻干的组合物。
72.含有权利要求2所述耐热植酸酶的饲料颗粒。
CNB028284003A 2001-12-28 2002-12-30 微生物表达的用于动物饲料的耐热植酸酶 Expired - Lifetime CN100406561C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34452301P 2001-12-28 2001-12-28
US60/344,523 2001-12-28

Publications (2)

Publication Number Publication Date
CN1622824A true CN1622824A (zh) 2005-06-01
CN100406561C CN100406561C (zh) 2008-07-30

Family

ID=23350879

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028284003A Expired - Lifetime CN100406561C (zh) 2001-12-28 2002-12-30 微生物表达的用于动物饲料的耐热植酸酶

Country Status (14)

Country Link
US (4) US7135323B2 (zh)
EP (1) EP1465655A4 (zh)
CN (1) CN100406561C (zh)
AR (1) AR037987A1 (zh)
AU (1) AU2002364266B2 (zh)
BR (1) BR0215400A (zh)
CA (1) CA2471857C (zh)
EG (1) EG24067A (zh)
MX (1) MX249283B (zh)
MY (1) MY139056A (zh)
NZ (1) NZ533882A (zh)
TW (1) TWI262083B (zh)
WO (1) WO2003057247A1 (zh)
ZA (1) ZA200405092B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010054513A1 (en) * 2008-11-14 2010-05-20 Fujian Fuda Biotech Co. Ltd. A thermotolerant non-k12 escherichia coli phytase and its production
CN103820345A (zh) * 2014-01-17 2014-05-28 北京理工大学 一种提高酿酒酵母耐热性的分子调控方法
CN108460235A (zh) * 2018-04-04 2018-08-28 西南科技大学 一种通过数学模型预测猪饲料磷表观全肠道消化率的方法
CN108753754A (zh) * 2012-02-07 2018-11-06 丹尼斯科美国公司 糖基化作为植酸酶的稳定剂
CN114085825A (zh) * 2013-03-14 2022-02-25 巴斯夫酶有限责任公司 肌醇六磷酸酶制剂

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6451572B1 (en) 1998-06-25 2002-09-17 Cornell Research Foundation, Inc. Overexpression of phytase genes in yeast systems
PT2335501T (pt) 2001-10-31 2016-10-28 Huvepharma Ad Alimento animal contendo fitase e método
MY139056A (en) * 2001-12-28 2009-08-28 Ab Enzymes Gmbh Microbially-expressed thermotolerant phytase for animal feed
CN1833168A (zh) * 2003-07-07 2006-09-13 辛根塔参与股份公司 用于检测饲料酶的试剂、方法和试剂盒
CN101056540A (zh) * 2004-09-27 2007-10-17 诺维信公司 酶颗粒
GB0422052D0 (en) 2004-10-04 2004-11-03 Dansico As Enzymes
DE102004050410A1 (de) * 2004-10-15 2006-06-08 Ab Enzymes Gmbh Polypeptid mit Phytaseaktivität und dieses codierende Nucleotidsequenz
GB0423139D0 (en) 2004-10-18 2004-11-17 Danisco Enzymes
US7658922B2 (en) 2005-06-24 2010-02-09 Ab Enzymes Gmbh Monoclonal antibodies, hybridoma cell lines, methods and kits for detecting phytase
GB0600913D0 (en) 2006-01-17 2006-02-22 Syngenta Ltd Improvements in or relating to organic compounds
US8518926B2 (en) * 2006-04-10 2013-08-27 Knopp Neurosciences, Inc. Compositions and methods of using (R)-pramipexole
JP2009537565A (ja) 2006-05-16 2009-10-29 ノップ ニューロサイエンシーズ、インク. R(+)およびs(−)プラミペキソール組成とそれを利用する方法
EP2069486A2 (en) 2006-08-03 2009-06-17 Cornell Research Foundation, Inc. Phytases with improved thermal stability
ES2531135T3 (es) 2006-09-21 2015-03-11 Basf Enzymes Llc Fitasas, ácidos nucleicos que las codifican y métodos para su producción y uso
DE102006053059A1 (de) 2006-11-10 2008-05-15 Ab Enzymes Gmbh Polypeptid mit Phytaseaktivität und erhöhter Temperaturstabilität der Enzymaktivität sowie dieses codierende Nukleotidsequenz
US8524695B2 (en) * 2006-12-14 2013-09-03 Knopp Neurosciences, Inc. Modified release formulations of (6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine and methods of using the same
US8143046B2 (en) 2007-02-07 2012-03-27 Danisco Us Inc., Genencor Division Variant Buttiauxella sp. phytases having altered properties
AU2008224844B2 (en) 2007-03-14 2012-08-09 Knopp Neurosciences, Inc. Synthesis of chirally purified substituted benzothiazole diamines
CA2704271C (en) * 2007-12-03 2016-07-19 Syngenta Participations Ag Engineering enzymatically susceptible phytases
WO2009100231A2 (en) * 2008-02-06 2009-08-13 The Regents Of The University Of California Short chain volatile isoprene hydrocarbon production using the mevalonic acid pathway in genetically engineered yeast and fungi
DK3118309T3 (da) * 2008-04-18 2020-12-14 Danisco Us Inc Buttiauxella sp. phytasevarianter
EP2140772A1 (en) * 2008-07-03 2010-01-06 Nestec S.A. Temperature-induced delivery of nutrients by micro-organisms in the gastrointestinal tract
EP2334185A4 (en) * 2008-08-19 2011-09-21 Knopp Neurosciences Inc COMPOSITIONS AND METHODS FOR USE OF (R) -PRAMIPEXOL
WO2010051489A1 (en) * 2008-10-31 2010-05-06 Sapphire Energy, Inc. Animal feedstock comprising genetically modified algae
US9695403B2 (en) 2009-05-21 2017-07-04 Syngenta Participations Ag Phytases, nucleic acids encoding them and methods for making and using them
WO2011150221A2 (en) * 2010-05-26 2011-12-01 Knopp Neurosciences, Inc. Compounds and methods of modulating mitochondrial bioenergetic efficiency through an interaction with atp synthase (complex v) and its subunits
ES2758563T3 (es) * 2011-06-09 2020-05-05 Novozymes As Fusión de moléculas bioactivas
WO2013096816A1 (en) 2011-12-22 2013-06-27 Biogen Idec Ma Inc. Improved synthesis of amine substituted 4,5,6,7-tetrahydrobenzothiazole compounds
GB201213801D0 (en) 2012-08-03 2012-09-12 Dupont Nutrition Biosci Aps Feed additive composition
US9662313B2 (en) 2013-02-28 2017-05-30 Knopp Biosciences Llc Compositions and methods for treating amyotrophic lateral sclerosis in responders
ES2961268T3 (es) 2013-03-08 2024-03-11 Biogrammatics Inc Promotores de levadura para la expresión de proteínas
BR112015021753B1 (pt) 2013-03-08 2023-02-23 Keck Graduate Institute Of Applied Life Sciences Ácidos nucleicos isolados de pichia pastoris, vetor de expressão, células hospedeiras de levedura e construto de dna, bem como método para produzir uma proteína
GB201308828D0 (en) 2013-03-12 2013-07-03 Verenium Corp Phytase
PL3019167T3 (pl) 2013-07-12 2021-06-14 Knopp Biosciences Llc Leczenie podwyższonych poziomów eozynofili i/lub bazofili
US9468630B2 (en) 2013-07-12 2016-10-18 Knopp Biosciences Llc Compositions and methods for treating conditions related to increased eosinophils
CN105408492A (zh) 2013-07-25 2016-03-16 巴斯夫酶有限责任公司 肌醇六磷酸酶
ES2871556T3 (es) 2013-08-13 2021-10-29 Knopp Biosciences Llc Composiciones y métodos para el tratamiento de la urticaria crónica
US9642840B2 (en) 2013-08-13 2017-05-09 Knopp Biosciences, Llc Compositions and methods for treating plasma cell disorders and B-cell prolymphocytic disorders
WO2015119681A1 (en) * 2014-02-04 2015-08-13 University Of Florida Research Foundation, Inc. Pteris vittata phytase nucleotide and amino acid sequences and methods of use
CN104928315A (zh) * 2015-07-02 2015-09-23 江南大学 一株表达赖氨酸氨肽酶的重组毕赤酵母的构建及表达方法
CN107353327A (zh) 2017-03-30 2017-11-17 南京百斯杰生物工程有限公司 植酸酶在黑曲霉中表达
EP3453719A1 (en) 2017-09-07 2019-03-13 Huvepharma Eood New thermostable phytases with high catalytic efficacy
CN107488642B (zh) * 2017-09-30 2020-08-18 山东隆科特酶制剂有限公司 一种植酸酶突变体及其应用
CN107586765A (zh) * 2017-10-20 2018-01-16 山东奥博生物科技有限公司 一种植酸酶的工业发酵方法
WO2020008081A1 (es) 2018-07-03 2020-01-09 Fertinagro Biotech, S.L. Aditivo alimentario para piensos y utilización del mismo
CN110042065B (zh) * 2018-11-15 2020-10-02 天津挑战博德生物技术有限公司 甲醇利用慢型毕赤酵母菌株及其制备方法和应用
CN111349576B (zh) * 2018-12-20 2022-05-20 中粮生物科技(北京)有限公司 组成型表达猪胃蛋白酶原a的毕赤酵母工程菌及其应用
EP4076002A1 (en) * 2019-12-19 2022-10-26 DuPont Nutrition Biosciences ApS Diet formulations

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873192A (en) 1987-02-17 1989-10-10 The United States Of America As Represented By The Department Of Health And Human Services Process for site specific mutagenesis without phenotypic selection
US5837458A (en) 1994-02-17 1998-11-17 Maxygen, Inc. Methods and compositions for cellular and metabolic engineering
US5605793A (en) 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
US6358722B1 (en) * 1994-04-25 2002-03-19 Roche Vitamins, Inc. Heat tolerant phytases
DE69535097T2 (de) * 1994-04-25 2006-12-28 Dsm Ip Assets B.V. Polypeptide mit phytase Wirkung
US6291221B1 (en) 1994-04-25 2001-09-18 Roche Vitamins Inc. Heat tolerant phytases
US6699704B1 (en) 1994-04-25 2004-03-02 Roche Vitamins Inc. Heat tolerant phytases
US6238884B1 (en) 1995-12-07 2001-05-29 Diversa Corporation End selection in directed evolution
US6171820B1 (en) 1995-12-07 2001-01-09 Diversa Corporation Saturation mutagenesis in directed evolution
US6358709B1 (en) 1995-12-07 2002-03-19 Diversa Corporation End selection in directed evolution
CN1222195A (zh) * 1996-06-14 1999-07-07 加拿大农业及农业食品部 编码反刍微生物肌醇六磷酸酶的dna序列
NZ330940A (en) 1997-07-24 2000-02-28 F Production of consensus phytases from fungal origin using computer programmes
US6720014B1 (en) * 1997-08-13 2004-04-13 Diversa Corporation Phytase-containing foodstuffs and methods of making and using them
US6855365B2 (en) 1997-08-13 2005-02-15 Diversa Corporation Recombinant bacterial phytases and uses thereof
US6183740B1 (en) 1997-08-13 2001-02-06 Diversa Corporation Recombinant bacterial phytases and uses thereof
US5876997A (en) * 1997-08-13 1999-03-02 Diversa Corporation Phytase
US6451572B1 (en) * 1998-06-25 2002-09-17 Cornell Research Foundation, Inc. Overexpression of phytase genes in yeast systems
BR0009516B1 (pt) 1999-03-31 2013-09-10 vetor recombinante e célula hospedeira microbiana.
US20030101476A1 (en) * 2000-12-12 2003-05-29 Short Jay M. Recombinant phytases and uses thereof
MY139056A (en) * 2001-12-28 2009-08-28 Ab Enzymes Gmbh Microbially-expressed thermotolerant phytase for animal feed
TW200305430A (en) * 2001-12-28 2003-11-01 Syngenta Participations Ag Thermotolerant phytase for animal feed

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010054513A1 (en) * 2008-11-14 2010-05-20 Fujian Fuda Biotech Co. Ltd. A thermotolerant non-k12 escherichia coli phytase and its production
CN102209785B (zh) * 2008-11-14 2013-04-03 福建福大百特科技发展有限公司 一种耐热非-k12大肠杆菌植酸酶及其生产
US8652820B2 (en) 2008-11-14 2014-02-18 Fujian Fuda Biotech Co. Ltd. Thermotolerant Non-K12 Escherichia coli phytase and its production
CN108753754A (zh) * 2012-02-07 2018-11-06 丹尼斯科美国公司 糖基化作为植酸酶的稳定剂
CN114085825A (zh) * 2013-03-14 2022-02-25 巴斯夫酶有限责任公司 肌醇六磷酸酶制剂
CN103820345A (zh) * 2014-01-17 2014-05-28 北京理工大学 一种提高酿酒酵母耐热性的分子调控方法
CN103820345B (zh) * 2014-01-17 2016-07-13 北京理工大学 一种提高酿酒酵母耐热性的分子调控方法
CN108460235A (zh) * 2018-04-04 2018-08-28 西南科技大学 一种通过数学模型预测猪饲料磷表观全肠道消化率的方法

Also Published As

Publication number Publication date
CA2471857A1 (en) 2003-07-17
MX249283B (es) 2007-09-21
WO2003057247A1 (en) 2003-07-17
US20070087410A1 (en) 2007-04-19
US7135323B2 (en) 2006-11-14
NZ533882A (en) 2006-04-28
CA2471857C (en) 2014-02-18
TWI262083B (en) 2006-09-21
MXPA04006388A (es) 2005-07-13
BR0215400A (pt) 2005-03-29
CN100406561C (zh) 2008-07-30
AU2002364266A1 (en) 2003-07-24
AU2002364266B2 (en) 2008-04-24
AR037987A1 (es) 2004-12-22
US7252983B2 (en) 2007-08-07
EP1465655A4 (en) 2005-06-08
US7138260B2 (en) 2006-11-21
EP1465655A1 (en) 2004-10-13
MY139056A (en) 2009-08-28
TW200306203A (en) 2003-11-16
US20030157646A1 (en) 2003-08-21
EG24067A (en) 2008-05-08
US7632668B2 (en) 2009-12-15
US20060183213A1 (en) 2006-08-17
US20080131560A1 (en) 2008-06-05
ZA200405092B (en) 2005-08-31

Similar Documents

Publication Publication Date Title
CN1622824A (zh) 微生物表达的用于动物饲料的耐热植酸酶
CN1093379C (zh) 一种酶饲料添加剂和包含它的动物饲料
CN1195846C (zh) 隔孢伏革菌植酸酶
CN1053013C (zh) 微生物植酸酶的克隆及表达
CN101389645B (zh) 具有木聚糖酶活性的多肽和编码它的多核苷酸
CN100347303C (zh) 具有改良的肌醇六磷酸酶活性的磷酸酶
CN101679986B (zh) 哈夫尼菌属肌醇六磷酸酶
CN1165614C (zh) 含有木聚糖酶的动物饲料添加剂
CN1309699A (zh) 植酸酶变体
CN103224918B (zh) 具有肌醇六磷酸酶活性的多肽和编码它的多核苷酸
CN101035893A (zh) 弗氏柠檬酸杆菌肌醇六磷酸酶及同源物
CN1610510A (zh) 含有肌醇六磷酸酶的动物食物和方法
CN101035892A (zh) 具有肌醇六磷酸酶活性的多肽及编码其的多核苷酸
CN1630719A (zh) 肌醇六磷酸酶变体
CN1622825A (zh) 用于动物饲料的耐热植酸酶
CN1454259A (zh) 篮霉菌木聚糖酶
KR100790918B1 (ko) 에스케리챠 콜리 피타아제의 부위-지향성 돌연변이유발
CN1622761A (zh) 热稳定酶组合物
CN1451039A (zh) 肌醇六磷酸酶、编码肌醇六磷酸酶的核酸及包含有此核酸的载体和宿主细胞
CN1214081A (zh) 具有肌醇六磷酸酶活性的多肽和编码此肽的核酸
CN107072251A (zh) 具有丝氨酸蛋白酶活性的多肽和编码它们的多核苷酸以及它们在动物饲料方面的应用
CN101052715A (zh)
CN101080491A (zh) 具有植酸酶活性的多肽和编码多肽的核苷酸序列
CN1845989A (zh) 抗微生物剂的重组产生
CN101631855B (zh) 具有肌醇六磷酸酶活性且该酶活性的温度稳定性增强的多肽及编码所述多肽的核苷酸序列

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SYNGENTA CO.,LTD.

Free format text: FORMER OWNER: SYNGENTA CO.,LTD.; DIVERSA CORP.

Effective date: 20080627

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20080627

Address after: Basel, Switzerland

Patentee after: SYNGENTA PARTICIPATIONS AG

Address before: Basel, Switzerland

Co-patentee before: Diversa Corp.

Patentee before: SYNGENTA PARTICIPATIONS AG

ASS Succession or assignment of patent right

Owner name: AB ENZYME CO., LTD.

Free format text: FORMER OWNER: SYNGENTA CO.,LTD.

Effective date: 20090821

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20090821

Address after: German Damm schardt

Patentee after: AB Enzyme Co.,Ltd.

Address before: Basel, Switzerland

Patentee before: Syngenta Participations AG

CX01 Expiry of patent term

Granted publication date: 20080730

CX01 Expiry of patent term