CN1622219A - 自刷新振荡器 - Google Patents

自刷新振荡器 Download PDF

Info

Publication number
CN1622219A
CN1622219A CNA2004100558137A CN200410055813A CN1622219A CN 1622219 A CN1622219 A CN 1622219A CN A2004100558137 A CNA2004100558137 A CN A2004100558137A CN 200410055813 A CN200410055813 A CN 200410055813A CN 1622219 A CN1622219 A CN 1622219A
Authority
CN
China
Prior art keywords
self
pass transistor
nmos pass
oscillator
refresh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004100558137A
Other languages
English (en)
Other versions
CN100433185C (zh
Inventor
李钟天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Intellectual Discovery Co Ltd
Original Assignee
Hynix Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hynix Semiconductor Inc filed Critical Hynix Semiconductor Inc
Publication of CN1622219A publication Critical patent/CN1622219A/zh
Application granted granted Critical
Publication of CN100433185C publication Critical patent/CN100433185C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/023Generators characterised by the type of circuit or by the means used for producing pulses by the use of differential amplifiers or comparators, with internal or external positive feedback
    • H03K3/0231Astable circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40615Internal triggering or timing of refresh, e.g. hidden refresh, self refresh, pseudo-SRAMs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40626Temperature related aspects of refresh operations
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/147Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/18Address timing or clocking circuits; Address control signal generation or management, e.g. for row address strobe [RAS] or column address strobe [CAS] signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/401Indexing scheme relating to cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C2211/406Refreshing of dynamic cells
    • G11C2211/4065Low level details of refresh operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Dram (AREA)

Abstract

本发明涉及一种自刷新振荡器,包括在一输入端与一输出端之间串联连接的多个反相器;用于根据该输出端的电平对第一节点进行充电的一上拉驱动器;用于将该第一节点的电位与一参考电压进行比较,并输出比较结果至该输入端的一比较器;以及根据该输出端的电平进行操作,并根据温度将一定数量的放电电流调节到第一节点的地的一周期调节单元。

Description

自刷新振荡器
本申请案要求于2003年11月25日申请的韩国专利申请案第2003-0083899号的优先长权,其所有内容以引用的方式并入本文中。
技术领域
本发明涉及一种自刷新振荡器,具体地说,涉及一种可借由根据温度变化而改变自刷新周期从而能够减少功耗的自刷新振荡器。
背景技术
一般而言,储存在DRAM单元中的数据可因漏电而被抹除,因此,该单元中的数据得以被感知并放大,并得以被重新写入到该单元中。该操作被称之为刷新。
有三种方法可供执行刷新操作,其一是借由输入自外部的行地址而加以执行;另一种(CBR刷新方法)是借由输入自外部的刷新控制信号(即CAS-Before-Ras(CBR)信号)而且产生要刷新的地址,并接着刷新内部上的该地址;而第三是已知的隐蔽刷新方法,其是与正常操作相配合执行CBR刷新。
近来,虽然施加外部控制信号于恒定状态中的装置并保持该信号而不作任何改变,但是可以在该装置中周期性地设置CBR状态以执行刷新操作。此方法称为「自刷新」。
必须在单元中执行刷新操作以便防止单元中的数据因单元中产生的漏电而完全被抹除。漏电与温度紧密相关(即只要温度增加10℃,漏电即增加二倍),并在确定刷新周期方面起主要作用。
当制造存储器装置时,即使在极端情形下其电路都必须安全操作。例如,能将数据保持在单元中的时间因温度增加10℃而减少一半,和因温度增加50℃而减少1/32。
例如,若即使在高温情况下亦应于安全恒定周期中执行刷新操作而不管温度变化,这意味着在室温或在相对低温情况下将执行许多而且为不必要的刷新操作。
换言之,为了在具有不管温度变化的恒定刷新周期情况下数据的安全、即即使在高温情况下,仍使存储器装置安全操作,可在室温下执行许多刷新操作,这意味着即使在相对低温情况下亦会消耗许多且不必要的功率。
图1示出了根据现有技术的自刷新振荡器的电路。
图1示出了根据现有技术的五个自刷新振荡器的电路,并采取由5级反相器组成为一个整体的环形振荡器的形式。各反相器由与VSS连接的一PMOS晶体管以及与VDD连接的一NMOS晶体管组成,并且这些晶体管作为导通电阻器用于调节振荡器的周期。信号OSC_ON是一个控制振荡器导通/截止的信号,而信号OSC及OSB为输出信号。
在此电路中,当信号OSC_ON变为高电平时,环型振荡器开始运行并输出具有恒定周期的波形的脉冲信号。
该电路的问题在于振荡器的特征根据温度而保持恒定,因此,没有明显地反映DRAM单元的基本温度特征。
图2示出了根据DRAM单元的温度的刷新特征的曲线图,可以看出,当温度较低时刷新特征良好,而当温度较高时刷新特征并非良好。因此,必须藉由增加低温情况下的刷新时间来减少所消耗电流的数量。然而,在低温情况下产生于环形振荡器中的脉冲周期与在高温情况下相同,因此在现有技术中在低温情况下会消耗更多的刷新操作电流。
由于DRAM中刷新操作消耗的电流的数量与执行刷新操作的频率之间具有比例关系,所以用于刷新操作的时间周期被加长得越多,在DRAM中所消耗的电流的数量被减少得越少。然而,若将刷新周期延长为大于DRAM单元的最初刷新的有效值,则可能会破坏单元中的数据,因此重要的是设定适当的刷新时间,接着确定数据并未遭受损失而且所需电流较小的时间点。
现有技术已将重点放在数据损失的预防上,并且即使在低温情况下仍保持当有效数值并不良好时已在高温情况下使用的设定数值,因此现有技术并未利用该单元在相对低温情况下具有用于刷新的良好有效值的特征。换言之,现有技术的电路不能实施可在高温情况下缩短刷新周期并在低温情况下相对延长刷新周期的方法。
图3示出了一种现有技术。图3披露的技术使用三级振荡器,其使用插入在这些级每一级之间的PMOS晶体管以及NMOS晶体管(T1及T4)的子阈值漏电流。
图4示出了根据现有技术另一自刷新振荡器的电路,当仿真DRAM单元中漏电流的电容器(VCP)的电位低于参考电压(VREF)时,该电路图仿真DRAM单元并执行全部单元的刷新操作。
如上所述,该现有技术还存在该振荡器的特征根据温度而保持恒定的问题,因此,没有明显反映DRAM单元的基本温度特征。
发明内容
因此,本发明涉及一种在低温情况下比在高温情况下具有增加刷新时间以解决以上问题的自刷新振荡器。
根据本发明,解决上述目的的自刷新振荡器包括:在输入端与输出端之间串联连接的多个反相器;用以根据该输出端的电平对第一节点进行充电的上拉驱动器;用以将第一节点的电位与参考电压进行比较、并输出比较结果给该输入端的比较器;以及用以根据输出端的电平进行操作,并根据温度将一定数量的放电电流调节到第一节点的地的周期调节单元。
附图说明
借由参考以下结合附图所作的说明,可更全面地理解本发明,其中:
图1显示根据现有技术的自刷新振荡器的电路图;
图2显示用以解释图1的温度特征的曲线图;
图3及图4显示根据现有技术的自刷新振荡器的电路图;
图5显示根据本发明的第一具体实施例的自刷新振荡器的电路图;
图6显示根据本发明的第二具体实施例的自刷新振荡器的电路图;
图7显示根据本发明的第三具体实施例的自刷新振荡器的电路图;
图8显示根据本发明的第四具体实施例的自刷新振荡器的电路图;以及
图9至14显示用以解释根据本发明的自刷新振荡器的特征的曲线图。
附图符号说明
T1、T2               PMOS晶体管
T3、T4、MN1-MN10     NMOS晶体管
IV1、IV2、IV3        反相器
具体实施方式
图5示出了根据本发明第一具体实施例的自刷新振荡器的电路。
比较器CMP1将给定的参考电压Ref与节点Node1的电压进行比较。反相器IV1、IV2及IV3传送比较器CMP1的输出给PMOS晶体管MP1以及NMOS晶体管MN3。PMOS晶体管MP1根据反相器IV3的输出被导通并作为开关用以对节点Node1进行充电,而NMOS晶体管MN3作为开关用以根据反相器IV3的输出对节点Node1的电压进行放电。串接在NMOS晶体管MN3与节点Node1之间的NMOS晶体管MN1及MN2被用作二极管。电容器C1暂存节点Node1的电压。
将参考电压设定为两个NMOS晶体管NM1及MN2的阈值电压Vt的和值的近似值。输出OUT在最初阶段变为低电平以导通PMOS晶体管MP1,然而,若NMOS晶体管MN3被截止,则将电容器C1充电至电平VDD。如果当在电容器C1中充电的电位增加时节点Node1的电位高于参考电压Ref的电位,如图9所示,则比较器CMP1输出低电平,并借由反相器IV1至IV3将比较器CMP1的输出转换为高电平。从此时起,开始经过NMOS晶体管MN1至MN3对在节点Node1中充电的电压进行放电。
节点Node1的放电特征示出了当节点Node1的电平比NMOS晶体管MN1及MN2的阈值电压Vt的和值高甚多时,放电较快;而当节点Node1的电平变得比较接近于阈值电压Vt的和值时,放电即迅速减慢。当Node1节点的电平变得低于预定参考电压Ref时,比较器CMP1的输出会将其状态从低电平改变为高电平。由于利用反相器IV1至IV3将比较器CMP1的输出反相为低电平,所以利用电压VDD对电容器进再次行充电。
重复此操作以振荡输出信号OUT,和本发明的原理就是根据温度变化而改变节点Node1的漏电时间。
图10的曲线示出了在诸如图5所示NMOS晶体管MN1和MN2的NMOS晶体管的栅极和漏极之间彼此互连以用做二极管的情况下电流与温度之间的关系。如图10所示,与温度相对较高时的情况相比,当温度变低时,在低Vgs情况下电流Ids的数量变得较小。此特征与当随着温度变低而使NMOS晶体管导通时,阈值电压会增加的情况相同。
因此,在本发明中,使NMOS晶体管工作于低Vgs区域(即接近电压Vt的区域)中,由此,当温度较高时,许多电流使刷新周期更短;而当温度较低时,少数电流使刷新周期更长。换言之,如图9所示,当将参考电压Ref设定为使作为漏电通道的所有NMOS晶体管MN1及MN2工作于接近于它们的阈值电压的电平时,可在明显地看出NMOS晶体管MN1及MN2的温度特征。做为参考,图9示出了在25℃及85℃情况下参考电压Ref及节点Node1的电平。
图6示出了根据本发明第二具体实施例的自刷新振荡器的电路。
图6与图5的区别在于:利用NAND门ND1取代了图5的反相器IV2,并且使NAND门ND1根据振荡器使能信号OSC_On反相所输入的信号。换言之,当振荡器使能信号OSC_On为低电平时,可将输出OUT固定为低电平,以便停止振荡操作;然而当振荡器使能信号OSC_On为高电平时,可执行正常振荡操作。
图7示出了根据本发明第三具体实施例的自刷新振荡器的电路。
图7与图6的区别在于:电容器C2及C3分别被插入在比较器CMP1的输出与地之间以及NAND门ND1的输出与地之间,以保证节点Node1的充分预充电时间。换言之,当节点Node1的电压电平高于参考电压Vref的电压电平时,通过确保PMOS晶体管MP1的充分导通时间,用于延迟的电容器C2及C3可使节点Node1的电平能充分地增加至VDD电平。
图8示出了根据本发明第四具体实施例的自刷新振荡器的电路。
图8是图6的修改范例。为简化解释,NMOS晶体管MN1至MN3被称之为第一周期调节单元。
在第四具体实施例中,通过将多个周期调节单元并联到第一周期调节单元上,可轻易地调节振荡周期。
第一周期调节单元的NMOS晶体管的尺寸不同于与之并联的周期调节单元的NMOS晶体管的尺寸。换言之,周期调节单元的NMOS晶体管的每个尺寸互不相同。
在图8中,当控制信号SEL0为高电平时,第一周期调节单元开始操作,而当控制信号SEL1为高电平时,由NMOS晶体管MN5至MN7组成的周期调节单元开始操作;以及当控制信号SELn为高电平时,由NMOS晶体管MN8至MN10组成的周期调节单元操作,借此以调节振荡周期。
图11至14示出了用以比较并解释根据本发明及现有技术的自刷新振荡器的特征之曲线图。
图11及图12的曲线用于解释根据现有技术的振荡器的特征,并且如图11所示在85℃情况下振荡器输出的周期为16μs,而如图12所示,在25℃情况下该周期为17μs。这意味着振荡器的输出与温度无关几乎没有变化。
图13及图14的曲线用于解释根据本发明的振荡器的特征,并且在图13中在85℃情况下振荡器输出的周期为18μs,而在图14中在25℃情况下该周期为75μs。因此,可以看出当温度变得较高时,振荡器的输出周期会变短,反之亦然。
如上所述,当DRAM刷新的有效值增加时,通过根据本发明适当地调节要被延长的自刷新周期,可减少电流消耗。换言之,DRAM单元中刷新的有效值在很大程度上受温度的影响,因此当温度变低时该数值会增加。然而借助于本发明的电路,当温度较低时刷新周期会变长,因此可减少消耗的电流,而同时电路可不受温度的影响。

Claims (10)

1.一种自刷新振荡器,其包括:
多个反相器,其是串联连接在一输入端与一输出端之间;
一上拉驱动器,用于根据该输出端的一电平对一第一节点进行充电;
一比较器,用于比较该第一节点的一电位与一参考电压,并输出比较结果至该输入端;以及
一周期调节单元,用于根据该输出端的一电平而操作,并根据一温度将一定量的放电电流量调节到第一节点的地。
2.如权利要求1所述的自刷新振荡器,其中,使该周期调节单元在一低温情况下具有放电电流的一数量,其少于在一高温情况下的数量。
3.如权利要求1所述的自刷新振荡器,其中,该周期调节单元包括串联连接在该地与该第一节点之间的第一、第二及第三NMOS晶体管,该第一及第二NMOS晶体管被连接为一二极管形状,以及根据该输出端的该电平导通该第三NMOS晶体管。
4.如权利要求3所述的自刷新振荡器,其中,将该参考电压设定为所述第一及第二NMOS晶体管的阈值电压的和值。
5.如权利要求1所述的自刷新振荡器,其进一步包括连接在该接地与该第一节点之间的第一电容器。
6.如权利要求1所述的自刷新振荡器,其中,将该参考电压设定为所述第一及第二NMOS晶体管的阈值电压的和值的近似值。
7.如权利要求1所述的自刷新振荡器,其进一步包括一NAND门,其被连接在所述多个反相器之间并根据一振荡器使能信号操作。
8.如权利要求1所述的自刷新振荡器,其进一步包括:
一NAND门,其被连接在所述多个反相器之间并根据一振荡器使能信号操作;以及
第二及第三电容器,分别连接在所述输入端与该接地之间以及在该NAND门的该输出端与该接地之间。
9.如权利要求1所述的自刷新振荡器,其中,该周期调节单元是由相互并联连接的多个周期调节单元组成,并且根据一控制信号有选择地操作。
10.如权利要求9所述的自刷新振荡器,其中,所述周期调节单元中的每一个都由串联连接在该第一节点与该接地之间的第一、第二、第三以及第四NMOS晶体管组成:
所述第一及第二NMOS晶体管被连接为二极管形状,该第三NMOS晶体管是根据该控制信号导通,并且该第四NMOS晶体管根据该输出端的该电平被导通;以及
所述多个周期调节单元的每一个的尺寸彼此不同,以便确定每个周期调节单元中彼此互不相同的周期。
CNB2004100558137A 2003-11-25 2004-08-04 自刷新振荡器 Expired - Fee Related CN100433185C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR83899/2003 2003-11-25
KR83899/03 2003-11-25
KR1020030083899A KR100549621B1 (ko) 2003-11-25 2003-11-25 셀프 리프래쉬용 오실레이터

Publications (2)

Publication Number Publication Date
CN1622219A true CN1622219A (zh) 2005-06-01
CN100433185C CN100433185C (zh) 2008-11-12

Family

ID=34588039

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100558137A Expired - Fee Related CN100433185C (zh) 2003-11-25 2004-08-04 自刷新振荡器

Country Status (4)

Country Link
US (1) US6998901B2 (zh)
KR (1) KR100549621B1 (zh)
CN (1) CN100433185C (zh)
TW (1) TWI266314B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102075184A (zh) * 2009-11-03 2011-05-25 Arm有限公司 运行参数监控电路和方法
CN107342736A (zh) * 2017-07-10 2017-11-10 长沙方星腾电子科技有限公司 一种振荡器电路
CN111145807A (zh) * 2019-12-10 2020-05-12 深圳市国微电子有限公司 一种3d堆叠存储器的温控自刷新方法及温控自刷新电路

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100631167B1 (ko) * 2004-12-30 2006-10-02 주식회사 하이닉스반도체 셀프 리프레쉬 주기 발생장치 및 그 오실레이션 신호발생방법
US7564274B2 (en) * 2005-02-24 2009-07-21 Icera, Inc. Detecting excess current leakage of a CMOS device
KR100733471B1 (ko) * 2005-02-28 2007-06-28 주식회사 하이닉스반도체 반도체 기억 소자의 지연 고정 루프 회로 및 그 제어 방법
US20070069789A1 (en) * 2005-09-29 2007-03-29 Hynix Semiconductor Inc. Flip-flop circuit
JP4832096B2 (ja) * 2006-02-09 2011-12-07 株式会社 日立ディスプレイズ 表示装置
KR101046994B1 (ko) * 2008-12-23 2011-07-06 주식회사 하이닉스반도체 리프레쉬 주기조절회로
US8710820B2 (en) 2010-03-31 2014-04-29 Crane Electronics, Inc. Switched capacitor hold-up scheme for constant boost output voltage
EP2678930B1 (en) 2011-02-24 2020-04-08 Crane Electronics, Inc. Ac/dc power conversion system and method of manufacture of same
US8885308B2 (en) 2011-07-18 2014-11-11 Crane Electronics, Inc. Input control apparatus and method with inrush current, under and over voltage handling
US8829868B2 (en) 2011-07-18 2014-09-09 Crane Electronics, Inc. Power converter apparatus and method with output current sensing and compensation for current limit/current share operation
US8890630B2 (en) * 2011-07-18 2014-11-18 Crane Electronics, Inc. Oscillator apparatus and method with wide adjustable frequency range
US8824167B2 (en) 2011-07-18 2014-09-02 Crane Electronics, Inc. Self synchronizing power converter apparatus and method suitable for auxiliary bias for dynamic load applications
CN103650345A (zh) 2011-07-22 2014-03-19 辉达公司 部件分析系统及方法
US9425772B2 (en) 2011-07-27 2016-08-23 Nvidia Corporation Coupling resistance and capacitance analysis systems and methods
US8952705B2 (en) 2011-11-01 2015-02-10 Nvidia Corporation System and method for examining asymetric operations
US9448125B2 (en) 2011-11-01 2016-09-20 Nvidia Corporation Determining on-chip voltage and temperature
KR101900378B1 (ko) * 2012-05-25 2018-11-02 에스케이하이닉스 주식회사 리프레쉬회로
KR101948899B1 (ko) * 2012-05-25 2019-02-18 에스케이하이닉스 주식회사 주기신호생성회로
KR20130132186A (ko) * 2012-05-25 2013-12-04 에스케이하이닉스 주식회사 주기신호생성회로
US8866551B2 (en) 2012-09-10 2014-10-21 Crane Electronics, Inc. Impedance compensation for operational amplifiers used in variable environments
CN103983809A (zh) 2013-02-08 2014-08-13 辉达公司 Pcb板及其在线测试结构以及该在线测试结构的制造方法
KR102193790B1 (ko) * 2014-02-13 2020-12-21 에스케이하이닉스 주식회사 주기신호 생성회로를 포함하는 반도체 장치 및 이를 이용한 반도체 시스템
US9378802B2 (en) * 2014-06-18 2016-06-28 SK Hynix Inc. Oscillator and memory device including the same
US9831768B2 (en) 2014-07-17 2017-11-28 Crane Electronics, Inc. Dynamic maneuvering configuration for multiple control modes in a unified servo system
US9041378B1 (en) 2014-07-17 2015-05-26 Crane Electronics, Inc. Dynamic maneuvering configuration for multiple control modes in a unified servo system
US9230726B1 (en) 2015-02-20 2016-01-05 Crane Electronics, Inc. Transformer-based power converters with 3D printed microchannel heat sink
US9160228B1 (en) 2015-02-26 2015-10-13 Crane Electronics, Inc. Integrated tri-state electromagnetic interference filter and line conditioning module
US9293999B1 (en) 2015-07-17 2016-03-22 Crane Electronics, Inc. Automatic enhanced self-driven synchronous rectification for power converters
US9780635B1 (en) 2016-06-10 2017-10-03 Crane Electronics, Inc. Dynamic sharing average current mode control for active-reset and self-driven synchronous rectification for power converters
US9742183B1 (en) 2016-12-09 2017-08-22 Crane Electronics, Inc. Proactively operational over-voltage protection circuit
US9735566B1 (en) 2016-12-12 2017-08-15 Crane Electronics, Inc. Proactively operational over-voltage protection circuit
US9979285B1 (en) 2017-10-17 2018-05-22 Crane Electronics, Inc. Radiation tolerant, analog latch peak current mode control for power converters
US10425080B1 (en) 2018-11-06 2019-09-24 Crane Electronics, Inc. Magnetic peak current mode control for radiation tolerant active driven synchronous power converters

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06169237A (ja) * 1991-09-13 1994-06-14 Mitsubishi Electric Corp リングオシレータ回路
JP2998944B2 (ja) * 1991-12-19 2000-01-17 シャープ株式会社 リングオシレータ
JP2787639B2 (ja) * 1992-08-07 1998-08-20 三菱電機株式会社 パルス信号発生回路および半導体記憶装置
US5345195A (en) 1992-10-22 1994-09-06 United Memories, Inc. Low power Vcc and temperature independent oscillator
JPH06252642A (ja) 1993-02-25 1994-09-09 Tdk Corp デジタル制御温度補償型水晶発振器の周波数特性の制御回路
JP3026474B2 (ja) 1993-04-07 2000-03-27 株式会社東芝 半導体集積回路
JPH07141865A (ja) 1993-06-28 1995-06-02 Mitsubishi Electric Corp 発振回路および半導体記憶装置
US5455801A (en) 1994-07-15 1995-10-03 Micron Semiconductor, Inc. Circuit having a control array of memory cells and a current source and a method for generating a self-refresh timing signal
KR0123827B1 (ko) 1994-12-12 1997-11-25 김주용 반도체 소자의 셀프 리프레쉬 주기조절장치
JP3780030B2 (ja) 1995-06-12 2006-05-31 株式会社ルネサステクノロジ 発振回路およびdram
US5990753A (en) * 1996-01-29 1999-11-23 Stmicroelectronics, Inc. Precision oscillator circuit having a controllable duty cycle and related methods
US5694090A (en) * 1996-04-18 1997-12-02 Micron Technology, Inc. Voltage and temperature compensated oscillator frequency stabilizer
US5659644A (en) 1996-06-07 1997-08-19 Lucent Technologies Inc. Fiber light source with multimode fiber coupler
US5760657A (en) * 1996-09-30 1998-06-02 Intel Corporation Method and apparatus employing a process dependent impedance that compensates for manufacturing variations in a voltage controlled oscillator
JP3535963B2 (ja) * 1997-02-17 2004-06-07 シャープ株式会社 半導体記憶装置
JPH1188127A (ja) 1997-09-04 1999-03-30 Texas Instr Japan Ltd 発振回路
US6281760B1 (en) 1998-07-23 2001-08-28 Texas Instruments Incorporated On-chip temperature sensor and oscillator for reduced self-refresh current for dynamic random access memory
KR100363103B1 (ko) * 1998-10-20 2003-02-19 주식회사 하이닉스반도체 셀프 리프레쉬 발진기
US6157180A (en) * 1999-03-04 2000-12-05 National Semiconductor Corporation Power supply regulator circuit for voltage-controlled oscillator
US6411157B1 (en) * 2000-06-29 2002-06-25 International Business Machines Corporation Self-refresh on-chip voltage generator
WO2002013384A1 (fr) * 2000-08-04 2002-02-14 Nec Corporation Circuit de minuterie et memoire a semi-conducteur dans laquelle est incorpore ce circuit de minuterie
DE10106486C2 (de) * 2001-02-13 2003-02-27 Infineon Technologies Ag Oszillatorschaltung
JP2003132676A (ja) * 2001-10-29 2003-05-09 Mitsubishi Electric Corp 半導体記憶装置
KR100476891B1 (ko) * 2002-04-18 2005-03-17 삼성전자주식회사 반도체 메모리 장치의 동작 모드에 따라 가변적인리스토어 시간을 갖는 리프레쉬 회로 및 그 리프레쉬 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102075184A (zh) * 2009-11-03 2011-05-25 Arm有限公司 运行参数监控电路和方法
CN102075184B (zh) * 2009-11-03 2015-01-07 Arm有限公司 运行参数监控电路和方法
CN107342736A (zh) * 2017-07-10 2017-11-10 长沙方星腾电子科技有限公司 一种振荡器电路
CN111145807A (zh) * 2019-12-10 2020-05-12 深圳市国微电子有限公司 一种3d堆叠存储器的温控自刷新方法及温控自刷新电路

Also Published As

Publication number Publication date
KR100549621B1 (ko) 2006-02-03
US20050110592A1 (en) 2005-05-26
US6998901B2 (en) 2006-02-14
KR20050050206A (ko) 2005-05-31
TW200518094A (en) 2005-06-01
TWI266314B (en) 2006-11-11
CN100433185C (zh) 2008-11-12

Similar Documents

Publication Publication Date Title
CN1622219A (zh) 自刷新振荡器
CN1111941C (zh) 不受温度影响的振荡器
US8817553B2 (en) Charge pump control scheme using frequency modulation for memory word line
CN1913036A (zh) 半导体存储器及其刷新时钟信号产生器
CN1538453B (zh) 升压电源电路
US6992942B2 (en) Cell leakage monitoring circuit and monitoring method
CN1725380A (zh) 片内ee-prom编程波形发生
US20070121408A1 (en) Stable temperature adjustment for referesh control
CN101079616B (zh) 产生具有稳定周期的振荡信号的振荡器电路
CN101154440B (zh) 半导体器件的高电压发生器件
US9733655B2 (en) Low dropout regulators with fast response speed for mode switching
US20140028276A1 (en) Internal voltage generator having immunity to ground bouncing
US9378802B2 (en) Oscillator and memory device including the same
CN103426464B (zh) 周期信号发生电路
CN103426463B (zh) 周期信号发生电路
CN114640324A (zh) 一种低功耗周期脉冲产生电路
CN108092501A (zh) 升压电路及具备该升压电路的非易失性存储器
KR100940826B1 (ko) 네거티브 전압 생성 장치
KR101948900B1 (ko) 주기신호생성회로
US9070476B2 (en) Refresh circuits
CN1801394A (zh) 与温度有关的动态随机存取存贮器自刷新电路
KR100904480B1 (ko) 반도체 메모리 소자
KR20100064157A (ko) 내부 전압 생성회로
CN1527484A (zh) 集成电路存储器装置及控制延迟锁定环电路的方法
KR101159680B1 (ko) 반도체 장치의 내부 전압 생성 회로

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: YINGDI CO., LTD.

Free format text: FORMER OWNER: SK HYNIX INC.

Effective date: 20140327

C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee

Owner name: SK HYNIX INC.

Free format text: FORMER NAME: HAIRYOKSA SEMICONDUCTOR CO., LTD.

CP01 Change in the name or title of a patent holder

Address after: Gyeonggi Do, South Korea

Patentee after: Sk Hynix Inc.

Address before: Gyeonggi Do, South Korea

Patentee before: HYNIX SEMICONDUCTOR Inc.

TR01 Transfer of patent right

Effective date of registration: 20140327

Address after: Seoul, South Kerean

Patentee after: INTELLECTUAL DISCOVERY Co.,Ltd.

Address before: Gyeonggi Do, South Korea

Patentee before: Sk Hynix Inc.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081112

Termination date: 20180804

CF01 Termination of patent right due to non-payment of annual fee