CN1552017B - 三维造型的材料和方法 - Google Patents

三维造型的材料和方法 Download PDF

Info

Publication number
CN1552017B
CN1552017B CN028096924A CN02809692A CN1552017B CN 1552017 B CN1552017 B CN 1552017B CN 028096924 A CN028096924 A CN 028096924A CN 02809692 A CN02809692 A CN 02809692A CN 1552017 B CN1552017 B CN 1552017B
Authority
CN
China
Prior art keywords
thermoplastic resin
ppsu
resin
propping
potpourri
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN028096924A
Other languages
English (en)
Other versions
CN1552017A (zh
Inventor
W·R·J·普列德曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stratasys Inc
Original Assignee
Stratasys Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stratasys Inc filed Critical Stratasys Inc
Publication of CN1552017A publication Critical patent/CN1552017A/zh
Application granted granted Critical
Publication of CN1552017B publication Critical patent/CN1552017B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/40Plastics, e.g. foam or rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/36Feeding the material on to the mould, core or other substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • B29C2071/022Annealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/005Using a particular environment, e.g. sterile fluids other than air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/52Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2055/00Use of specific polymers obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of main groups B29K2023/00 - B29K2049/00, e.g. having a vinyl group, as moulding material
    • B29K2055/02ABS polymers, i.e. acrylonitrile-butadiene-styrene polymers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49019Machine 3-D slices, to build 3-D model, stratified object manufacturing SOM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

公开了用熔融堆积造型技术建造三维模型及其支撑物使用的高性能热塑性材料。用于建造模型(26)的造型材料由热挠曲温度高于120℃的热塑性树脂组成。能自层合的和造型材料粘合较弱的无定形热塑性树脂具有与造型材料类似的热挠曲温度,抗张强度在34-83MPa(5000psi-12000psi)之间,组成用于建造支撑结构(28)的支撑材料。在优选方案中,组成支撑材料的热塑性树脂选自聚亚苯基醚和聚烯烃的混合物、聚苯砜和无定形聚酰胺的混合物、聚苯砜和聚砜以及无定形聚酰胺的混合物组成的组中。

Description

三维造型的材料和方法
技术领域
本发明涉及使用加成法造型技术(additive process modelingtechniques)的三维物体的生产。更特别地,本发明涉及以预定图案堆积第一种可固化材料形成三维物体,同时堆积第二种可固化材料为正建造的三维物体提供支撑结构。
背景技术
加成法造型机器根据计算机辅助设计(CAD)系统提供的设计数据积累造型介质制成三维模型。三维模型被用来提供包括审美判断、检验数学CAD模型、形成硬加工(forming hard tooling)、研究干扰和空间分配以及试验功能的功能。一种技术是根据CAD系统提供的设计数据以预定图案堆积可固化造型材料,多层累积形成模型。
转让给本发明的受让人即Stratasys公司的Valavaara的美国专利4,749,347号、Crump的美国专利5,121,329号、Batchelder等人的美国专利5,303,141号、Crump的美国专利5,340,433号、Batchelder等人的美国专利5,402,351号、Crump等人的美国专利5,503,785号、Batchelder等人的美国专利5,764,521号、Danforth等人的美国专利5,900,207号、Batchelder等人的美国专利5,968,561号和Stuffle等人的美国专利6,067,480号描述了堆积多层从挤出头出来的可固化造型材料制成三维模型的设备和方法的实例。造型材料可以固体形式供应给挤出头,例如以缠在供应轴上的柔韧细丝形式或以固体棒的形式,如美国专利5,121,329号所公开的那样。如美国专利4,749,347号描述的,造型材料也可以以液体形式从存储器中抽出。在任何情况下,挤出头从一个喷嘴挤出熔融的造型材料到底部上。挤出的材料在CAD模型定义的区域上一层一层地堆积。被用作造型材料的可固化材料在固化时以足够的粘合力粘附在前面一层。发现热塑性材料特别适合这些堆积造型技术。
用加成法技术创造三维物体时,例如堆积多层可固化材料,无一例外地,必须在造型材料本身不能直接支撑的建造中的建筑物体的突出部分下面或洞里使用支撑层或结构。例如,如果物体是一个地下空洞内部的模型,空洞的原型是从地层到天花板进行建筑的,这时钟乳石状物将需要一个临时支撑物直到天花板完成。同样因其它原因也需要支撑层或结构,例如把模型从底部移出,抵抗部分完成时模型的变形趋势,抵抗建筑过程施加给部分完成的模型的力量。
支撑结构可以使用堆积造型材料的相同堆积技术和设备建成。设备在合适的软件控制下为用作正形成的物体的悬空或自由空间部分的支撑结构生产附加几何形状。支撑材料或者从造型设备内的一个独立分配头堆积,或者用堆积造型材料的同一分配头堆积。选择支撑材料使其能粘合在造型材料上。将模型锚定在这样的支撑结构上解决了建造模型的问题,但是产生了另外的问题,即如何在不损坏模型的情况下从完成的模型中移开支撑结构。
除去支撑结构的问题已通过在模型和支撑结构之间形成弱的易碎结合解决,例如美国专利5,503,785号描述的。5,503,785号专利公开了一种方法,选择能和造型材料形成弱的易碎结合的材料作为支撑或脱离材料。支撑材料堆积在物体及其支撑结构的界面,或以层状方式堆积形成支撑结构,无论哪种情况,在物体成型后都使支撑结构脱离开。
现有技术中
Figure B028096924D00021
三维造型机使用丙烯腈-丁二烯-苯乙烯(ABS)热塑组分或蜡材料作造型材料。用作支撑材料的材料是高冲击聚苯乙烯。现有技术的细丝供料的
Figure B028096924D00022
三维造型机中,造型材料(或支撑材料)的细丝束由发动机驱动的一对供料轴推动前进进入挤出头携带的液化器。在液化器里,细丝被加热到一个可流动温度。供料轴将细丝束泵入液化器而使液化器加压。细丝束本身起活塞作用,形成一个泵。当供料轴继续推动细丝进入挤出头,进来的细丝束的力量将可流动材料从分配喷嘴挤出来,在分配喷嘴上堆积在可移到建筑平台上的底板上。
美国专利6,067,480号公开了一种分层堆积高强度工程聚合物加工耐用的三维物体的设备和方法。聚合物的原料棒用放置在缸内的活塞从挤出缸里挤出,提供低熔体流动和长链长的聚合物的高压挤出供应。6,067,480号公开,聚碳酸酯、聚芳基醚酮(polyaryletherkotone)和聚甲基丙烯酸甲酯的原料棒用挤出缸设备成功地挤出。6,067,480号专利没有公开支撑材料。
分层堆积高强度的工程热塑性塑料的设备和方法在PCT申请US00/17363号中公开。‘363号申请公开了用高温热塑性塑料建造模型。没有教导支撑材料。
仍然需要用高性能工程热塑性塑料建造模型,改进模型强度和质量。需要和造型方法相适应的材料为这些高性能材料建造成的模型提供合适的支撑结构。
发明内容
本发明是用于用熔融堆积造型技术(fused deposition modelingtechniques)建造模型及其支撑物的高性能热塑性材料。热挠曲温度(heatdeflection temperature)高于120℃的无定形热塑性树脂组成造型材料。在优选方案中,组成造型材料的热塑性树脂选自聚碳酸酯树脂、聚苯砜树脂和聚碳酸酯/丙烯腈-丁二烯-苯乙烯树脂组成的组中。自层合(self-laminate)的无定形热塑性树脂和造型材料粘合较弱,具有类似于造型材料的热挠曲温度的热挠曲温度,抗张强度在34MPa(5000psi)和83MPa(12000psi)之间,该材料包括支撑材料。在优选方案中,组成支撑材料的热塑性树脂选自聚亚苯基醚和聚烯烃的混合物、聚苯砜和无定形聚酰胺的混合物、聚苯砜和聚砜以及无定形聚酰胺的混合物组成的组中。
附图简要说明
图1是表示用分层挤出技术形成的模型及其支撑结构的图形说明。
具体实施方式
参照图1所示类型的堆积造型系统描述本发明。图1表示建造本发明的支撑结构28支撑的模型26的挤出设备10。挤出设备10包括挤出头12、材料接收底部14和材料供应18。相对于以垂直的Z方向移动的底部14,挤出头12以X和Y方向移动。材料供应18给挤出头12供应材料的原料。在描述的方案中,材料的固体原料供应给挤出头12,在挤出头12携带的液化器22中熔融。液化器22加热原材料至稍高于其固化点的温度,使其还原为熔融状态。熔融材料通过液化器22的喷嘴24挤出到底部14上。原料可以是连续的细丝、棒、块、球、粒等形式。
控制挤出头的移动将材料以多种路径和层堆积在底部14上建造三维模型26,进一步建造支撑结构28,限定支撑结构28以实质支撑正建造的模型26。在环境能控制的促进热固化的建造膛(未表示出)里在底部14上建成模型26及其支撑结构28。堆积材料的第一层粘附在底部14上形成地基,以后的每层材料相互粘结。
分配造型材料A形成模型26,相应于分配造型材料A,分配支撑材料B形成支撑结构28。为了方便,挤出设备10仅表示出一个材料供应18。但是应该理解,在本发明的实施中,造型材料A和支撑材料B从各自的材料供应供应给挤出设备10以各自的原材料。挤出设备10可以适应两种不同材料的分配:(1)配置两个挤出头12,一个供应有造型材料A,一个供应有支撑材料B(例如Batchelder的‘561专利公开的);(2)配置单一挤出头,所述单一挤出头供应有造型材料A和支撑材料B,用单一喷嘴分配两种材料(例如Crump的‘329专利的图6所示);或(3)配置单一挤出头供应两种材料,每种材料用各自的喷嘴分配(例如Crump的‘785专利的图6所示)
在描述的方案中,造型材料A和支撑材料B从挤出头出来以水平层状按实质上连续的路径堆积,以固体形式供应给挤出头。本领域熟练的人员可以理解本发明能有利地用多种其它型号的造型机实施,材料也可以以液体形式供应给挤出头。
本发明提供玻璃化转变温度高于120℃、从液体转变为固体时没有明显收缩的高性能工程热塑性树脂作为造型材料A。优选的热塑性树脂选自聚碳酸酯树脂、聚碳酸酯/丙烯腈-丁二烯-苯乙烯树脂和聚苯砜树脂组成的组中。本发明的支撑材料B是耐热性和收缩性类似于造型材料A、并且较弱地层合到模型上使其能在材料界面脱离的自层合热塑性树脂。另外,支撑材料B足够强以支撑模型。本发明的热塑性材料和目前用于熔融堆积造型的材料相比具有更高的冲击强度、更大的刚性、更高的热挠曲温度和更高的化学稳定性。如本领域熟练人员意识到的,本发明的造型和支撑材料可以包括填充物和其它添加剂,可提高热塑性树脂的其它性质。
造型和支撑材料的流变学
造型材料A和支撑材料B必须满足使用它们的特殊造型系统的大量造型标准,一般涉及热性质、强度、粘度和粘着力。
造型材料A和支撑材料B必须具有适合于造型过程的熔融粘度。理想地,用于熔融堆积造型的材料具有低的熔融粘度。熔融粘度在挤出温度必须足够低,使其总体上以连续的条道(road)或珠挤出。而且挤出温度下的熔融粘度必须足够低使材料的堆积的条道或珠几乎没有熔融强度,使其平展开,而不是卷起。增加挤出材料时的温度降低熔融粘度。但是挤出温度太高会引起受热的材料在挤出机里无用而分解。如果分解,在没有正切割装置(positive cut-off mechanism)的抽丝挤压机的情况下,材料将无法控制地从液化器排出进入建造袋里,出现一种称为“软泥”的情形。而且低的挤出温度减少能量消耗,减少热量产生和减少降解聚合物材料的几率。
在理论上,熔融体的粘度和材料的分子量有关,当它接近临界分子量时,性质消失。因此熔融粘度的低限值定义为临界分子量的粘度,但是实际上所有的商业级聚合物超过临界分子量表现出良好的物理性质。
熔融粘度用其相反的参数熔体流动测定。在带抽丝挤压机的
Figure B028096924D00051
Figure B028096924D00052
造型机中制造模型使用的材料在挤出温度下必须具有高的熔体流动,以便于在相当低的压力约21MPa(3000psi)或以下以连续的珠挤出。抽丝型挤压机堆积的材料需要的高熔体流动大于约5gms/10min,在挤出温度和1.2kg的负荷下用ASTM D1238测定。最优选地,熔体流动在5-30g/10min之间。较低的熔体流动(高粘度)适合高压挤出,例如用美国专利6,067,480号公开的设备。
为了适当地支撑建造中的模型,支撑材料B必须自身粘合(自层合)。支撑材料B必须和造型材料A(共碾压)形成弱的易分开的粘合,使其能不伤害模型地和完成的模型分离开。当支撑结构从底部建起时,支撑材料B必须另外和底部粘合。
为了生产尺寸精确的模型,造型和支撑材料必须在建造袋的条件下冷却时几乎没有收缩。支撑材料B的任何收缩必须匹配造型材料A。材料的收缩差别将沿模型/支撑结构接合点引起应力和粘合失败。根据ASTM喷射造型试验标准,无定形聚合物固化时典型地具有低于或等于0.01cm/cm(0.010inch/inch)的收缩。对于堆积造型目的无定形聚合物的收缩特性是可以接受的,然而结晶聚合物对于堆积造型来说收缩太高。可以向材料中添加填充物减小收缩。可以向本发明的材料中添加晶体添加剂,只要以足够小的量添加使得材料继续具有无定形聚合物的收缩特性。
根据完成模型的特殊应用可以选择特殊的造型材料A。支撑材料B必须在固体形式时具有足够的机械强度以便在模型的制造中支撑模型。支撑材料B必须抵抗造型材料A的力量,否则模型将有不需要的卷缩和变形。
造型材料A和支撑材料B,当以细丝或棒状形式供应时,必须足够强使其能无破裂地运输。当以细丝形式供应时,材料还必须具有能形成细丝、缠绕和解绕以及经挤出设备无破裂地供应的强度和挠性。类似地,以细丝形式供应的材料必须具有足够的刚性,经挤出设备供应时不被压缩力产生变形。
至于热性质,造型材料A和支撑材料B应该具有类似的热挠曲性质,使得两种材料能成功地挤出到同一建造膛中。如美国专利5,866,058号叙述的,在一个温度加热到高于热塑性或其它可热固化的造型材料的固化温度的膛里建造模型,接着逐渐冷却,释放出材料的应力。应力从正建造的模型中释放出使得完成的模型无应力、几乎无变形。如‘058号专利进一步叙述的,造型材料应该具有高于建造膛温度的玻璃化转变温度(Tg),使得模型不会太软而下垂。因此建造膛的优选温度在造型材料A的固化温度和其蠕变松弛温度(蠕变松弛温度定义为应力松弛模数从其低温度限值降低10倍的点)之间的范围内。同样地,支撑材料B的玻璃化转变温度应该高于建造膛的温度,这样,支撑结构不变形,维持其支撑的模型的结构逼真性。经过试验发现支撑材料B的玻璃化转变温度(或热挠曲温度)应该在造型材料A的玻璃化转变温度(或热挠曲温度)的约20℃以内,优选15℃内。向材料中添加填充物可以起提高材料玻璃化转变温度的作用。实际上,玻璃化转变温度以热挠曲温度表示。这儿公开的代表性的材料的热挠曲温度用材料的DMA软化点测定。
造型和支撑材料的组成
用PCT申请US01/41354号和PCT申请US00/17363号公开的型号的细丝供料分层堆积造型机试验本发明的材料。给出造型材料A和支撑材料B的下面的实例证实满足上面讨论的流变学标准。
实例1
造型材料:造型材料A为聚碳酸酯树脂。一个具体的示例性聚碳酸酯树脂为
Figure B028096924D00071
(可从General ElectricPlastics获得)。这种树脂具有156℃的热挠曲温度,在1.2kg的负荷下300℃时熔体流动在20-30gms/10min范围内。聚碳酸酯树脂成功地从温度约320℃的液化器中挤出到温度约135℃的建造膛内。
支撑材料:支撑材料B是包含聚亚苯基醚和聚烯烃,例如高冲击聚苯乙烯,的混合物的树脂。所需的重量百分比范围为约50-90%的聚亚苯基醚和约10-50%的聚烯烃。一个具体的树脂例子是75wt%的聚亚苯基醚和25wt%的高冲击聚苯乙烯(每种都可从General Electric Plastics获得)的混合物。这种树脂具有178℃的热挠曲温度和类似于造型材料的熔体流动。这种材料从温度约360℃的液化器中挤出,成功地形成使用聚碳酸酯树脂建造的模型的支撑结构。
实例2
造型材料:造型材料A为聚碳酸酯/丙烯腈-丁二烯-苯乙烯树脂。为了给材料提供聚碳酸酯的增强强度和韧性,树脂应该包含至少约50wt%的聚碳酸酯。一种特别的优选的聚碳酸酯/丙烯腈-丁二烯-苯乙烯树脂为
Figure B028096924D00074
(可从General Electric Plastics获得)。这种树脂具有143℃的热挠曲温度,在1.2kg的负荷下280℃时熔体流动在10-20gms/10min范围内。聚碳酸酯/丙烯腈-丁二烯-苯乙烯树脂成功地从温度约320℃的液化器中挤出到温度约110℃的建造膛内。
支撑材料:支撑材料B是包含聚亚苯基醚和聚烯烃,例如高冲击聚苯乙烯,的混合物的树脂。所需的重量百分比范围为约40-80%的聚亚苯基醚和约20-60%的聚烯烃。一个具体的树脂例子是(可从General Electric Plastics获得)聚亚苯基醚/聚苯乙烯混合物。这种树脂具有156℃的热挠曲温度和类似于造型材料的熔体流动。这种材料从温度约340℃的液化器中挤出,成功地形成使用聚碳酸酯/丙烯腈-丁二烯-苯乙烯树脂建造的模型的支撑结构。
实例3
造型材料:造型材料A为聚苯砜树脂。一种具体的聚苯砜树脂的例子为
Figure B028096924D00082
(可从BP Amoco获得)。这种聚苯砜树脂具有236℃的热挠曲温度,在1.2kg的负荷下400℃时熔体流动在20-30gms/10min范围内。聚苯砜树脂成功地从温度约400℃的液化器中挤出到温度约200℃的建造膛内。
支撑材料:支撑材料B是包含聚苯砜和无定形聚酰胺混合物的树脂。该材料可以进一步包含聚砜。所需的重量百分比范围为约60-90wt%的聚苯砜和约10-40wt%的无定形聚酰胺的混合物,或约60-90wt%的聚苯砜、约1-40wt%的聚砜和约10-40wt%的无定形聚酰胺的混合物。一个具体的示例性树脂是50wt%的
Figure B028096924D00083
聚苯砜(可从BP Amoco获得)、25wt%的
Figure B028096924D00084
聚砜(可从BP Amoco获得)和25wt%的EMS TR70无定形聚酰胺(可从瑞士的EMS-Chemie AG获得)的混合物。这种树脂具有224℃的热挠曲温度和类似于造型材料的熔体流动。这种材料从温度约350℃的液化器中挤出,成功地形成使用聚苯砜树脂建造的模型的支撑结构。使用聚合物化学中的常规技术复合该组分材料到支撑材料B。
上面实例中给出的每种材料具有34MPa(5000psi)到83MPa(12000psi)的抗张强度、无定形聚合物的典型收缩(低于0.01cm/cm(0.010inch/inch))。上面实例的建造模型的每种材料和目前用于熔融堆积造型的材料相比具有更高的冲击强度、更大的韧性、更高的热挠曲温度和更好的化学稳定性。发现实例3建造模型的材料的韧性、冲击强度、耐热性和化学稳定性超过现有技术的任何迅速造型方法(rapidprototyping method)。
如上面提及的,造型材料A和支撑材料B可以包含惰性和/或活性填充材料。根据得到的模型的预定用途,填充物可以提供增强的材料性质。例如填充物能提供RF防护、传导、或无线电不穿透性质(对一些医疗应用有用)。填充物能选择性降低材料性质,但是这对一些应用是可接受的。例如向造型材料A或支撑材料B添加廉价的填充物可以降低这些材料的成本。填充物也能改变材料的热特性,例如填充物可以增加材料的耐热性,填充物可以减少材料在热固化时的收缩。典型的填充物包括玻璃纤维、碳纤维、炭黑、玻璃微球、碳酸钙、云母、滑石、硅土、氧化铝、碳化硅、钙硅石、石墨、金属和盐。在不出现不可接受地降低模型质量下向造型材料A和支撑材料B添加填充物材料的量的上限值为约20wt%。
技术熟练的人员将认识到在本发明的造型和支撑材料中也可以使用无数的其它添加剂修整特定应用所需要的性质。例如添加增塑剂将降低材料的耐热性和熔体流动。添加染料和颜料可以改变材料的颜色。添加抗氧化剂减慢材料在挤压机中的热降解。而且可以向本发明的材料中添加少量的其它聚合物。在维持本发明的造型和支撑材料的基本流变学时填充物和其它添加剂的总量可以达到约30wt%。
造型和支撑材料A和B可以浇铸成棒状、粒状或其它形状用作造型原料,或可以在没有预先固化的情况下以液体原料使用。或者,混合物可以固化然后磨成粒状。粒状原料组合物可以经普通的挤出设备加工形成连续柔韧的细丝。希望地,这些细丝以连续的长度缠绕在线轴上,干燥。细丝一般直径很小,约0.178cm(0.070英寸),直径可以小到0.003cm(0.001英寸)。本发明的造型材料A和支撑材料B成功地形成造型细丝,在细丝供料堆积造型机中使用。
要注意本发明的造型材料A和支撑材料B对水分敏感。已经证实这些材料暴露在潮湿的环境里将明显降低模型质量,因此维持干燥的条件是重要的。为了用熔融堆积技术将本发明的材料建造精确坚固的模型,材料必须干燥。引入本申请作为参考的PCT申请号US01/41354和PCT申请号US00/17363公开了使用本发明的高温、水分敏感的材料建造三维物体的特别合适的设备。‘363申请公开了一种带有高温建造膛的造型机,‘354申请公开了一种防潮细丝盒和在细丝供料堆积造型机中供应水分敏感造型细丝的细丝通道。
对于本发明的造型材料A和支撑材料B,可接受的水分含量(例如模型质量不被损坏的水平)为低于700ppm水含量的水平(使用Karl Fischer方法测定)。‘354申请公开了在细丝盒里供应细丝时干燥细丝的技术。一种干燥材料的方法为将包含材料的盒子放在真空、合适温度(一般在175-220°F)的炉子里直到达到需要的干度,此时要密封盒子不让水分进入。然后盒子被真空密封在不渗透水分的袋子里直至装到机器中。希望的干燥时间为4-8小时达到低于300ppm的水含量。另一种方法为将干燥剂的袋子放在盒子里干燥材料,不使用炉子。已经证实,将包含Tri-Sorb-分子筛和氧化钙(CaO)干燥剂的袋子放在盒子里,将盒子密封在不渗透水分的袋子里,干燥材料至水分含量低于700ppm,和干燥材料至优选范围100-400ppm。合适的Tri-Sorb-分子筛干燥剂包括下列这些:NaA沸石、KA沸石、CaA沸石、NaX沸石和铝硅酸镁。
用本发明的材料制成的模型比现有技术使用的材料制成的模型更加有用。例如用本发明的材料制成的模型可以用作动力工具和家用电器的功能部件,其强度和韧性是很重要的;汽车应用的功能部件,其强度、韧性、高耐热性和化学稳定性是很重要的;医疗和牙科设备的功能部件,该部件在重复的蒸汽消毒后必须保持关键性质;一些需要低的可燃性和发烟性的应用的功能部件。
应该注意,虽然这里将本发明的材料称为“造型”或“支撑”材料,但是这些材料可以相互转变,用所谓的“支撑”材料制成模型,用所谓的“造型”材料制成模型的支撑结构。这里描述为造型材料的材料的性质对大部分应用来说比支撑材料优异。例如,用这里作为造型材料介绍的材料建成的模型比用这儿作为支撑材料介绍的材料建成的模型更强更坚固。根据材料的预期的典型使用,为了方便指定,将这里的材料分类为“造型”或“支撑”材料。
尽管本发明参照优选方案描述本发明,本领域的熟练人员将认识到在不脱离本发明发明的精神和范围的情况下可以进行形式和细节上的改变。

Claims (14)

1.一种制造三维物体的方法,在第一个挤出温度下以预定图案分配熔融的第一种可热固化的材料以限定所述三维物体,配合以在第二个挤出温度下分配熔融的第二种可热固化的材料以限定用于所述三维物体的支撑结构,其特征在于包括以下步骤:
提供包含第一种热塑性树脂且热挠曲温度大于120℃的造型材料作为第一种可热固化的材料;
提供一种包含选自聚亚苯基醚和聚烯烃的混合物、聚苯砜和无定形聚酰胺的混合物、聚苯砜和聚砜以及无定形聚酰胺的混合物组成的组中的第二种热塑性树脂的支撑材料作为第二种可热固化的材料,所述支撑材料是自层合的、形成与造型材料的弱的易分开的粘合、并且具有在造型材料的热挠曲温度的20℃内的热挠曲温度,所述粘合使得能够将支撑材料从所述三维物体中分离出来而不损害所述三维物体。
2.根据权利要求1的方法,其特征在于,支撑材料包含至少70wt%的第二种热塑性树脂。
3.根据权利要求1或2的方法,其特征在于,组成造型材料的第一种热塑性树脂选自聚碳酸酯树脂、聚苯砜树脂、聚碳酸酯/丙烯腈-丁二烯-苯乙烯树脂组成的组中。
4.根据权利要求3的方法,其特征在于,造型材料包含至多20wt%的填充物。
5.根据权利要求1的方法,其特征在于,支撑材料包含至少70wt%的第一种热塑性树脂。
6.根据权利要求1的方法,其特征在于,第二种热塑性树脂为聚亚苯基醚和聚烯烃的混合物,第一种热塑性树脂选自聚碳酸酯树脂和聚碳酸酯/丙烯腈-丁二烯-苯乙烯树脂组成的组中。
7.根据权利要求6的方法,其特征在于,第二种热塑性树脂为聚亚苯基醚和高冲击聚苯乙烯的混合物。
8.根据权利要求6的方法,其特征在于,支撑材料包含50-90wt%的聚亚苯基醚和10-50wt%的聚烯烃,造型材料包含至少70wt%的聚碳酸酯树脂。
9.根据权利要求6的方法,其特征在于,支撑材料包含40-80wt%的聚亚苯基醚和20-60wt%的聚烯烃,第一种热塑性树脂为聚碳酸酯/丙烯腈-丁二烯-苯乙烯树脂。
10.根据权利要求1的方法,其特征在于,第二种热塑性树脂选自聚苯砜和无定形聚酰胺的混合物、聚苯砜和聚砜以及无定形聚酰胺的混合物组成的组中,第一种热塑性树脂为聚苯砜树脂。
11.根据权利要求10的方法,其特征在于,第二种热塑性树脂为聚苯砜、聚砜和无定形聚酰胺的混合物,包含60-90wt%的聚苯砜、1-40wt%的聚砜和10-40wt%的无定形聚酰胺,其中上述组分的总含量为100wt%。
12.根据权利要求10的方法,其特征在于,第二种热塑性树脂为聚苯砜和无定形聚酰胺的混合物,包含60-90wt%的聚苯砜和10-40wt%的无定形聚酰胺。
13.根据权利要求1的方法,其特征在于,造型材料在第一挤出温度和1.2kg的负荷下的熔体流动在5-30gms/10min范围内,支撑材料在第二挤出温度和1.2kg的负荷下的熔体流动在5-30gms/10min范围内。
14.根据权利要求1的方法,其特征在于,支撑材料的抗张强度在34-83MPa之间。
CN028096924A 2001-05-11 2002-04-15 三维造型的材料和方法 Expired - Lifetime CN1552017B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/854,220 2001-05-11
US09/854,220 US6645412B2 (en) 1999-04-20 2001-05-11 Process of making a three-dimensional object
PCT/US2002/011714 WO2002093360A1 (en) 2001-05-11 2002-04-15 Materials and method for three-dimensional modeling

Publications (2)

Publication Number Publication Date
CN1552017A CN1552017A (zh) 2004-12-01
CN1552017B true CN1552017B (zh) 2010-10-06

Family

ID=25318067

Family Applications (1)

Application Number Title Priority Date Filing Date
CN028096924A Expired - Lifetime CN1552017B (zh) 2001-05-11 2002-04-15 三维造型的材料和方法

Country Status (7)

Country Link
US (1) US6645412B2 (zh)
EP (1) EP1388051B1 (zh)
JP (1) JP4256170B2 (zh)
KR (1) KR100890598B1 (zh)
CN (1) CN1552017B (zh)
HK (1) HK1067905A1 (zh)
WO (1) WO2002093360A1 (zh)

Families Citing this family (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754807B2 (en) * 1999-04-20 2010-07-13 Stratasys, Inc. Soluble material and process for three-dimensional modeling
US6776602B2 (en) * 1999-04-20 2004-08-17 Stratasys, Inc. Filament cassette and loading system
US7314591B2 (en) * 2001-05-11 2008-01-01 Stratasys, Inc. Method for three-dimensional modeling
US6722872B1 (en) * 1999-06-23 2004-04-20 Stratasys, Inc. High temperature modeling apparatus
US6866807B2 (en) * 2001-09-21 2005-03-15 Stratasys, Inc. High-precision modeling filament
CA2378922C (en) * 2002-01-16 2009-01-27 Rutgers, The State University Of New Jersey Compositions and methods of making plastic articles from polymer blends containing polyethylene
DE60324332D1 (de) 2002-12-03 2008-12-04 Objet Geometries Ltd Verfahren und vorrichtung für dreidimensionales drucken
ES2299764T5 (es) * 2002-12-17 2013-03-22 Solvay Specialty Polymers Usa, Llc. Composiciones de polisulfonas de 4,4'-bifenol, procedimiento para preparar las mismas, y artículos fabricados a partir de las mismas
US6869559B2 (en) * 2003-05-05 2005-03-22 Stratasys, Inc. Material and method for three-dimensional modeling
GB2415374A (en) * 2004-06-25 2005-12-28 Leuven K U Res & Dev Targeted delivery of biologically active substances using iron oxide/gold core-shell nanoparticles
US7236166B2 (en) * 2005-01-18 2007-06-26 Stratasys, Inc. High-resolution rapid manufacturing
US20080020049A1 (en) * 2005-02-25 2008-01-24 Andrew Darling Super-sparger microcarrier beads and precision extrusion deposited poly-epsilon-caprolactone structures for biological applications
US7341214B2 (en) * 2005-06-30 2008-03-11 Stratasys, Inc. Cassette spool lock
US7384255B2 (en) * 2005-07-01 2008-06-10 Stratasys, Inc. Rapid prototyping system with controlled material feedstock
JP4807005B2 (ja) * 2005-08-19 2011-11-02 テクノポリマー株式会社 Fdm方式またはsls方式による造形用熱可塑性樹脂組成物および造形物
US7604470B2 (en) * 2006-04-03 2009-10-20 Stratasys, Inc. Single-motor extrusion head having multiple extrusion lines
US7680555B2 (en) * 2006-04-03 2010-03-16 Stratasys, Inc. Auto tip calibration in an extrusion apparatus
US7403833B2 (en) * 2006-04-03 2008-07-22 Stratasys, Inc. Method for optimizing spatial orientations of computer-aided design models
US20100209875A1 (en) * 2006-04-12 2010-08-19 Heraeus Method and device(s) for production of dental prostheses
US20080006966A1 (en) * 2006-07-07 2008-01-10 Stratasys, Inc. Method for building three-dimensional objects containing metal parts
US7910041B1 (en) * 2006-11-27 2011-03-22 Stratasys, Inc. Build materials containing nanofibers for use with extrusion-based layered depositions systems
US8765045B2 (en) * 2007-01-12 2014-07-01 Stratasys, Inc. Surface-treatment method for rapid-manufactured three-dimensional objects
US7891964B2 (en) * 2007-02-12 2011-02-22 Stratasys, Inc. Viscosity pump for extrusion-based deposition systems
US20090295032A1 (en) * 2007-03-14 2009-12-03 Stratasys, Inc. Method of building three-dimensional object with modified ABS materials
US8050786B2 (en) * 2007-07-11 2011-11-01 Stratasys, Inc. Method for building three-dimensional objects with thin wall regions
US7625200B2 (en) * 2007-07-31 2009-12-01 Stratasys, Inc. Extrusion head for use in extrusion-based layered deposition modeling
US7897074B2 (en) * 2008-04-30 2011-03-01 Stratasys, Inc. Liquefier assembly for use in extrusion-based digital manufacturing systems
US7896209B2 (en) 2008-04-30 2011-03-01 Stratasys, Inc. Filament drive mechanism for use in extrusion-based digital manufacturing systems
US8155775B2 (en) * 2008-10-02 2012-04-10 Stratasys, Inc. Support structure packaging
US8246888B2 (en) * 2008-10-17 2012-08-21 Stratasys, Inc. Support material for digital manufacturing systems
US20100161105A1 (en) * 2008-12-22 2010-06-24 Stratasys, Inc. Combined process for building three-dimensional models
WO2010108076A2 (en) 2009-03-19 2010-09-23 Jeffrey Jacob Cernohous Biobased polymer compositions
CN102596543B (zh) * 2009-06-23 2014-09-17 斯特拉塔西斯公司 具有自定义特征的消耗材料
CN102149859B (zh) 2009-06-25 2015-08-26 北京阿迈特医疗器械有限公司 用于制备三维多孔管状支架的方法及设备
US8349239B2 (en) 2009-09-23 2013-01-08 Stratasys, Inc. Seam concealment for three-dimensional models
US8439665B2 (en) * 2009-09-30 2013-05-14 Stratasys, Inc. Ribbon liquefier for use in extrusion-based digital manufacturing systems
US8221669B2 (en) 2009-09-30 2012-07-17 Stratasys, Inc. Method for building three-dimensional models in extrusion-based digital manufacturing systems using ribbon filaments
US8236227B2 (en) * 2009-09-30 2012-08-07 Stratasys, Inc. Method for building three-dimensional models in extrusion-based digital manufacturing systems using tracked filaments
US20110117268A1 (en) * 2009-11-19 2011-05-19 Stratasys, Inc. Consumable materials having encoded markings for use with direct digital manufacturing systems
EP2501535B1 (en) 2009-11-19 2017-11-15 Stratasys, Inc. Encoded consumable filaments for use in additive manufacturing systems
US9592539B2 (en) * 2010-01-05 2017-03-14 Stratasys, Inc. Support cleaning system
US8983643B2 (en) * 2010-01-15 2015-03-17 Stratasys, Inc. Method for generating and building support structures with deposition-based digital manufacturing systems
US9022769B2 (en) 2010-07-22 2015-05-05 Stratasys, Inc. Multiple-zone liquefier assembly for extrusion-based additive manufacturing systems
WO2012037329A2 (en) 2010-09-17 2012-03-22 Stratasys, Inc. Semi-crystalline consumable materials for use in extrusion-based additive manufacturing systems
US8920697B2 (en) 2010-09-17 2014-12-30 Stratasys, Inc. Method for building three-dimensional objects in extrusion-based additive manufacturing systems using core-shell consumable filaments
US8647098B2 (en) 2010-09-22 2014-02-11 Stratasys, Inc. Liquefier assembly for use in extrusion-based additive manufacturing systems
US8815141B2 (en) 2010-09-22 2014-08-26 Stratasys, Inc. Method for building three-dimensional models with extrusion-based additive manufacturing systems
US8663533B2 (en) 2010-12-22 2014-03-04 Stratasys, Inc. Method of using print head assembly in fused deposition modeling system
WO2012088257A1 (en) 2010-12-22 2012-06-28 Stratasys, Inc. Print head assembly and print head for use in fused deposition modeling system
US9238329B2 (en) 2010-12-22 2016-01-19 Stratasys, Inc. Voice coil mechanism for use in additive manufacturing system
US8419996B2 (en) 2010-12-22 2013-04-16 Stratasys, Inc. Print head assembly for use in fused deposition modeling system
US8460755B2 (en) 2011-04-07 2013-06-11 Stratasys, Inc. Extrusion-based additive manufacturing process with part annealing
US9359499B2 (en) 2011-05-05 2016-06-07 Stratasys, Inc. Radiation curable polymers
DE102011075540A1 (de) * 2011-05-10 2012-11-15 Evonik Röhm Gmbh Mehrfarbiger Fused Deposition Modeling Druck
US8459280B2 (en) 2011-09-23 2013-06-11 Stratasys, Inc. Support structure removal system
US9114571B2 (en) * 2011-10-27 2015-08-25 Solidscape, Inc. Method for reducing stress in three dimensional model
US9050788B2 (en) 2011-12-22 2015-06-09 Stratasys, Inc. Universal adapter for consumable assembly used with additive manufacturing system
US9321608B2 (en) 2011-12-22 2016-04-26 Stratasys, Inc. Spool assembly with locking mechanism for additive manufacturing system, and methods of use thereof
US9073263B2 (en) 2011-12-22 2015-07-07 Stratasys, Inc. Spool assembly for additive manufacturing system, and methods of manufacture and use thereof
US8985497B2 (en) 2011-12-22 2015-03-24 Stratasys, Inc. Consumable assembly with payout tube for additive manufacturing system
JP5772668B2 (ja) * 2012-03-08 2015-09-02 カシオ計算機株式会社 3次元造形方法及び造形物複合体並びに3次元造形装置
US9050753B2 (en) 2012-03-16 2015-06-09 Stratasys, Inc. Liquefier assembly having inlet liner for use in additive manufacturing system
US9364986B1 (en) * 2012-05-22 2016-06-14 Rapid Prototype and Manufacturing LLC Method for three-dimensional manufacturing and high density articles produced thereby
US9708457B2 (en) 2012-06-28 2017-07-18 Stratasys, Inc. Moisture scavenger composition
US9636868B2 (en) 2012-08-16 2017-05-02 Stratasys, Inc. Additive manufacturing system with extended printing volume, and methods of use thereof
US10029415B2 (en) 2012-08-16 2018-07-24 Stratasys, Inc. Print head nozzle for use with additive manufacturing system
US9168697B2 (en) 2012-08-16 2015-10-27 Stratasys, Inc. Additive manufacturing system with extended printing volume, and methods of use thereof
US11020899B2 (en) 2012-08-16 2021-06-01 Stratasys, Inc. Additive manufacturing system with extended printing volume, and methods of use thereof
US9327350B2 (en) 2012-08-16 2016-05-03 Stratasys, Inc. Additive manufacturing technique for printing three-dimensional parts with printed receiving surfaces
US9511547B2 (en) 2012-08-16 2016-12-06 Stratasys, Inc. Method for printing three-dimensional parts with additive manufacturing systems using scaffolds
US9174388B2 (en) 2012-08-16 2015-11-03 Stratasys, Inc. Draw control for extrusion-based additive manufacturing systems
JP2016501137A (ja) * 2012-11-09 2016-01-18 エボニック インダストリーズ アクチエンゲゼルシャフトEvonik Industries AG 押出成形をベースとする3dプリンティング法のためのコーティングされたフィラメントの使用及び製造
US9744722B2 (en) 2012-11-21 2017-08-29 Stratasys, Inc. Additive manufacturing with polyamide consumable materials
US9592530B2 (en) 2012-11-21 2017-03-14 Stratasys, Inc. Additive manufacturing with polyamide consumable materials
US9527242B2 (en) 2012-11-21 2016-12-27 Stratasys, Inc. Method for printing three-dimensional parts wtih crystallization kinetics control
US12064917B2 (en) 2012-11-21 2024-08-20 Stratasys, Inc. Method for printing three-dimensional parts with cyrstallization kinetics control
US9321609B2 (en) 2012-12-07 2016-04-26 Stratasys, Inc. Filament drive mechanism for use in additive manufacturing system
US9233506B2 (en) 2012-12-07 2016-01-12 Stratasys, Inc. Liquefier assembly for use in additive manufacturing system
US9090428B2 (en) 2012-12-07 2015-07-28 Stratasys, Inc. Coil assembly having permeable hub
US9216544B2 (en) 2012-12-21 2015-12-22 Stratasys, Inc. Automated additive manufacturing system for printing three-dimensional parts, printing farm thereof, and method of use thereof
US8961167B2 (en) 2012-12-21 2015-02-24 Stratasys, Inc. Automated additive manufacturing system for printing three-dimensional parts, printing farm thereof, and method of use thereof
US10093039B2 (en) 2013-03-08 2018-10-09 Stratasys, Inc. Three-dimensional parts having interconnected Hollow patterns, method of manufacturing and method of producing composite part
US9399320B2 (en) 2013-03-08 2016-07-26 Stratasys, Inc. Three-dimensional parts having interconnected hollow patterns, and method for generating and printing thereof
US9421713B2 (en) 2013-03-08 2016-08-23 Stratasys, Inc. Additive manufacturing method for printing three-dimensional parts with purge towers
US10022889B2 (en) 2013-03-14 2018-07-17 Stratasys, Inc. Ceramic support structure
US9527240B2 (en) 2013-03-15 2016-12-27 Stratasys, Inc. Additive manufacturing system and method for printing three-dimensional parts using velocimetry
US9802360B2 (en) 2013-06-04 2017-10-31 Stratsys, Inc. Platen planarizing process for additive manufacturing system
US9523934B2 (en) 2013-07-17 2016-12-20 Stratasys, Inc. Engineering-grade consumable materials for electrophotography-based additive manufacturing
US9714318B2 (en) 2013-07-26 2017-07-25 Stratasys, Inc. Polyglycolic acid support material for additive manufacturing systems
US10179853B2 (en) 2013-09-11 2019-01-15 Toray Industries, Inc. Material for fused deposition modeling type three-dimensional modeling, and filament for fused deposition modeling type 3D printing device
US9950474B2 (en) 2013-09-13 2018-04-24 Statasys, Inc. Additive manufacturing system and process with precision substractive technique
US10086564B2 (en) 2013-10-04 2018-10-02 Stratsys, Inc. Additive manufacturing process with dynamic heat flow control
US10201931B2 (en) 2013-10-04 2019-02-12 Stratasys, Inc. Additive manufacturing system and process with material flow feedback control
US10131131B2 (en) 2013-10-04 2018-11-20 Stratasys, Inc. Liquefier assembly with multiple-zone plate heater assembly
US9327447B2 (en) 2013-10-04 2016-05-03 Stratasys, Inc. Liquefier assembly for additive manufacturing systems, and methods of use thereof
JP6588901B2 (ja) * 2013-10-30 2019-10-09 ライング オーローク オーストラリア プロプライエタリー リミテッド 対象物の製造方法
US10843401B2 (en) 2013-11-01 2020-11-24 Kraton Polymers U.S. Llc Fuse molded three dimensional article and a method for making the same
US9744730B2 (en) 2013-11-22 2017-08-29 Stratasys, Inc. Magnetic platen assembly for additive manufacturing system
EP3083825B1 (de) 2013-12-18 2019-03-27 INEOS Styrolution Group GmbH Verwendung von formmassen basierend auf vinylaromat-dien-blockcopolymeren für den 3d druck
US20150183159A1 (en) * 2013-12-30 2015-07-02 Chad E. Duty Large scale room temperature polymer advanced manufacturing
CN103756236B (zh) * 2014-01-06 2017-01-11 朱叶周 用于制备三维打印快速成型的软性打印材料的热塑性弹性体组合物
US9650537B2 (en) 2014-04-14 2017-05-16 Ut-Battelle, Llc Reactive polymer fused deposition manufacturing
KR20170018891A (ko) * 2014-06-16 2017-02-20 사빅 글로벌 테크놀러지스 비.브이. 선택된 용융 지수를 갖는 열가소성 물질을 사용한 적층 가공 방법
KR102368335B1 (ko) * 2014-07-22 2022-02-28 바스프 에스이 융합 필라멘트 제조 공정에 사용하기 위한 혼합물
US10059053B2 (en) 2014-11-04 2018-08-28 Stratasys, Inc. Break-away support material for additive manufacturing
WO2016084928A1 (ja) * 2014-11-28 2016-06-02 キヤノン株式会社 粉末、熱可塑性組成物、および立体物の製造方法
JP6700745B2 (ja) 2014-11-28 2020-05-27 キヤノン株式会社 粉末、熱可塑性組成物、および立体物の製造方法
US9694545B2 (en) 2014-12-18 2017-07-04 Stratasys, Inc. Remotely-adjustable purge station for use in additive manufacturing systems
WO2016095059A1 (de) * 2014-12-19 2016-06-23 Hirschberg Engineering Verfahren und vorrichtung zu schichtweisen aufbau von formkörpern
US9610733B2 (en) 2015-01-06 2017-04-04 Stratasys, Inc. Additive manufacturing with soluble build sheet and part marking
WO2016115046A1 (en) * 2015-01-12 2016-07-21 Polyone Corporation Support material for 3d printing of polymer compounds
US10400080B2 (en) 2015-03-16 2019-09-03 Sabic Global Technologies B.V. Fibrillated polymer compositions and methods of their manufacture
JP2016203633A (ja) 2015-04-20 2016-12-08 Mcppイノベーション合同会社 材料押出式3次元プリンター成形用フィラメント及び成形体の製造方法
JP6570662B2 (ja) 2015-06-19 2019-09-04 ストラタシス,インコーポレイテッド 付加製造に使用される水分散性ポリマー
CN107896491B (zh) 2015-06-25 2020-12-29 3M创新有限公司 制造金属粘结磨料制品的方法和金属粘结磨料制品
CN105150542A (zh) * 2015-09-29 2015-12-16 合肥中加激光技术有限公司 一种fdm三维打印机挤出喷头结构
US10399326B2 (en) 2015-10-30 2019-09-03 Stratasys, Inc. In-situ part position measurement
BR112018009758B1 (pt) 2015-11-12 2021-06-01 3M Innovative Properties Company Método para construção de um objeto dentário
EP3375598A4 (en) 2015-11-13 2018-12-26 Ricoh Company, Ltd. Three-dimensional modeling material set, method for producing three-dimensional model, and device for producing three-dimensional model
JP6603807B2 (ja) * 2015-12-03 2019-11-06 ブキャナン エル.スティーブン 放射線不透過性3d印刷インク
JP2018536565A (ja) * 2015-12-11 2018-12-13 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ 層間接着を改善する付加製造方法
US20180361657A1 (en) * 2015-12-11 2018-12-20 Sabic Global Technologies B.V. Method of additive manufacturing to make objects having improved and tailored properties
US10144011B2 (en) 2015-12-17 2018-12-04 United Technologies Corporation System for powder heat treatment and classification via fluidized bed
CN109071802B (zh) * 2016-04-01 2021-07-13 索尔维特殊聚合物美国有限责任公司 用于制造三维物体的方法
US10427353B2 (en) * 2016-05-13 2019-10-01 Ricoh Company, Ltd. Additive manufacturing using stimuli-responsive high-performance polymers
CN109563213B (zh) 2016-06-24 2022-05-27 埃万特公司 用于3d打印的coc聚合物配混物
CN107803982B (zh) * 2016-09-06 2020-05-12 珠海赛纳打印科技股份有限公司 一种具有悬空结构的3d物体的打印方法及装置
CN109996665A (zh) * 2016-09-22 2019-07-09 斯特拉塔西斯公司 用于固体自由成型制造的方法和系统
JP6802368B2 (ja) 2016-09-22 2020-12-16 ストラタシス リミテッド 固体自由形状製作のための配合物、方法、及びシステム
US11440261B2 (en) 2016-11-08 2022-09-13 The Boeing Company Systems and methods for thermal control of additive manufacturing
US10084615B2 (en) * 2016-11-14 2018-09-25 Electronics And Telecommunications Research Institute Handover method and control transfer method
WO2022031639A1 (en) * 2020-08-03 2022-02-10 Chromatic 3D Materials, Inc. Method for three dimensional printing using lead-in and lead-out blocks
US20200070404A1 (en) * 2017-03-02 2020-03-05 Bond High Performance 3D Technology B.V. Object made by additive manufacturing and method to produce said object
USD888115S1 (en) 2017-03-16 2020-06-23 Stratasys, Inc. Nozzle
WO2018197156A1 (en) 2017-04-24 2018-11-01 Solvay Specialty Polymers Usa, Llc Method of making a three-dimensional object using ppsu
EP3615314B1 (en) 2017-04-24 2021-05-19 Solvay Specialty Polymers USA, LLC Method of making a three-dimensional object using ppsu
DE102017210146A1 (de) * 2017-06-19 2018-12-20 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung und Verfahren zur additiven Herstellung eines Formteils aus Granulat
US11851763B2 (en) * 2017-06-23 2023-12-26 General Electric Company Chemical vapor deposition during additive manufacturing
WO2019063740A1 (en) * 2017-09-28 2019-04-04 Rhodia Operations METHOD FOR MANUFACTURING THREE-DIMENSIONAL OBJECT USING POLYAMIDE-BASED SUPPORT MATERIAL
EP3694939A1 (en) 2017-10-10 2020-08-19 Stratasys, Inc. Water-dispersible thermoplastic material comprising sulfonated copolymer for use in additive manufacturing
JP7184079B2 (ja) * 2018-04-26 2022-12-06 三菱ケミカル株式会社 ポリアミド系3次元プリンタ用材料
US11247387B2 (en) 2018-08-30 2022-02-15 Stratasys, Inc. Additive manufacturing system with platen having vacuum and air bearing
WO2020077127A1 (en) 2018-10-10 2020-04-16 Stratasys, Inc. Water dispersible sulfonated thermoplastic copolymer for use in additive manufacturing
WO2023130059A1 (en) 2021-12-30 2023-07-06 Saint-Gobain Abrasives, Inc. Abrasive articles and methods for forming same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1050886A (zh) * 1989-10-13 1991-04-24 出光兴产株式会社 苯乙烯聚合物组合物
US5059266A (en) * 1989-05-23 1991-10-22 Brother Kogyo Kabushiki Kaisha Apparatus and method for forming three-dimensional article
CN1139611A (zh) * 1995-07-04 1997-01-08 斯特拉特西斯公司 用于立体模注的支承拆分的方法和装置
US5738817A (en) * 1996-02-08 1998-04-14 Rutgers, The State University Solid freeform fabrication methods
US5932055A (en) * 1997-11-11 1999-08-03 Rockwell Science Center Llc Direct metal fabrication (DMF) using a carbon precursor to bind the "green form" part and catalyze a eutectic reducing element in a supersolidus liquid phase sintering (SLPS) process
US6119567A (en) * 1997-07-10 2000-09-19 Ktm Industries, Inc. Method and apparatus for producing a shaped article
US6165406A (en) * 1999-05-27 2000-12-26 Nanotek Instruments, Inc. 3-D color model making apparatus and process
US6214279B1 (en) * 1999-10-02 2001-04-10 Nanotek Instruments, Inc. Apparatus and process for freeform fabrication of composite reinforcement preforms
US6228923B1 (en) * 1997-04-02 2001-05-08 Stratasys, Inc. Water soluble rapid prototyping support and mold material

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3445570A1 (de) * 1984-12-14 1986-06-19 Basf Ag, 6700 Ludwigshafen Selbstverloeschende thermoplastische polyesterformmassen
JP2597778B2 (ja) * 1991-01-03 1997-04-09 ストラタシイス,インコーポレイテッド 三次元対象物組み立てシステム及び組み立て方法
JPH06122815A (ja) * 1992-10-13 1994-05-06 Sanko Chem Co Ltd ポリアミド樹脂組成物
US5503785A (en) 1994-06-02 1996-04-02 Stratasys, Inc. Process of support removal for fused deposition modeling
JPH08281808A (ja) * 1995-04-17 1996-10-29 Ricoh Co Ltd 立体形状の製造方法
CN1202131A (zh) * 1995-09-27 1998-12-16 3D系统公司 形成三维物体和支撑的局部沉积成型的方法和设备
US6067480A (en) 1997-04-02 2000-05-23 Stratasys, Inc. Method and apparatus for in-situ formation of three-dimensional solid objects by extrusion of polymeric materials
US6070107A (en) 1997-04-02 2000-05-30 Stratasys, Inc. Water soluble rapid prototyping support and mold material
TW500765B (en) * 1998-05-13 2002-09-01 Sumitomo Chemical Co Thermoplastic resin composition and heat-resistant tray for IC
US6322728B1 (en) 1998-07-10 2001-11-27 Jeneric/Pentron, Inc. Mass production of dental restorations by solid free-form fabrication methods
KR100291953B1 (ko) * 1999-03-15 2001-06-01 윤덕용 가변 용착 적층식 쾌속조형방법 및 쾌속조형장치
WO2000062994A1 (en) 1999-04-20 2000-10-26 Stratasys, Inc. Soluble material and process for three-dimensional modeling
JP3995933B2 (ja) 1999-06-23 2007-10-24 ストラタシス・インコーポレイテッド 高温模型製作装置
JP4451942B2 (ja) * 1999-08-26 2010-04-14 ダイセル化学工業株式会社 スチレン系樹脂組成物
JP2001098172A (ja) * 1999-09-29 2001-04-10 Sumitomo Chem Co Ltd 熱可塑性樹脂組成物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059266A (en) * 1989-05-23 1991-10-22 Brother Kogyo Kabushiki Kaisha Apparatus and method for forming three-dimensional article
CN1050886A (zh) * 1989-10-13 1991-04-24 出光兴产株式会社 苯乙烯聚合物组合物
CN1139611A (zh) * 1995-07-04 1997-01-08 斯特拉特西斯公司 用于立体模注的支承拆分的方法和装置
US5738817A (en) * 1996-02-08 1998-04-14 Rutgers, The State University Solid freeform fabrication methods
US5900207A (en) * 1996-02-08 1999-05-04 Rutgers, The State University Old Queens Solid freeform fabrication methods
US6228923B1 (en) * 1997-04-02 2001-05-08 Stratasys, Inc. Water soluble rapid prototyping support and mold material
US6119567A (en) * 1997-07-10 2000-09-19 Ktm Industries, Inc. Method and apparatus for producing a shaped article
US5932055A (en) * 1997-11-11 1999-08-03 Rockwell Science Center Llc Direct metal fabrication (DMF) using a carbon precursor to bind the "green form" part and catalyze a eutectic reducing element in a supersolidus liquid phase sintering (SLPS) process
US6165406A (en) * 1999-05-27 2000-12-26 Nanotek Instruments, Inc. 3-D color model making apparatus and process
US6214279B1 (en) * 1999-10-02 2001-04-10 Nanotek Instruments, Inc. Apparatus and process for freeform fabrication of composite reinforcement preforms

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CN 1139611 A,全文.

Also Published As

Publication number Publication date
JP4256170B2 (ja) 2009-04-22
EP1388051B1 (en) 2016-12-21
US6645412B2 (en) 2003-11-11
WO2002093360A1 (en) 2002-11-21
US20020017743A1 (en) 2002-02-14
CN1552017A (zh) 2004-12-01
HK1067905A1 (en) 2005-04-22
KR20040034605A (ko) 2004-04-28
EP1388051A1 (en) 2004-02-11
KR100890598B1 (ko) 2009-03-25
EP1388051A4 (en) 2009-02-11
JP2004532753A (ja) 2004-10-28

Similar Documents

Publication Publication Date Title
CN1552017B (zh) 三维造型的材料和方法
JP4224456B2 (ja) 三次元モデリングのための方法
González-Henríquez et al. Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications
JP2004532753A5 (ja) 3次元モデリングのための方法
US20200181807A1 (en) Core-shell morphology of composite filaments for use in extrusion-based additive manufacturing systems
US10259936B2 (en) 3-D printed fluoropolymer structures
EP1631430B1 (en) Material and method for three-dimensional modeling
Divakaran et al. Comprehensive review on various additive manufacturing techniques and its implementation in electronic devices
KR101727123B1 (ko) 폴리아미드 소모성 재료를 이용한 적층 제조
CN107849309B (zh) 增材制造生物相容性材料的方法和由该方法制造的制品
CN104110115A (zh) 塑木地板及其制造方法
KR101764237B1 (ko) 결정화 폴리락트산 필라멘트, 이의 제조방법, 이를 이용한 출력물 제조를 위한 방법 및 fdm 3d 프린터
CN107825706A (zh) 热塑性高分子材料的3d打印工艺
WO2004003063A8 (de) Thermoplastische schaumstoffe mit nanostrukturierten füllstoffen und verfahren zu ihrer herstellung
KR102473146B1 (ko) 3d 프린팅용 조성물 및 이를 이용한 3d 프린터용 필라멘트
Arrigo et al. Polymers for Additive Manufacturing
Arrigo et al. 10 Polymers Manufacturing for Additive
KR20200039038A (ko) 3d 프린터용 필라멘트

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1067905

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
CI01 Publication of corrected invention patent application

Correction item: Priority

Correct: 09/854,220 20010511 US

Number: 40

Volume: 26

CI03 Correction of invention patent

Correction item: Priority

Correct: O9/854,220 20010511 US

Number: 40

Page: The title page

Volume: 26

ERR Gazette correction

Free format text: CORRECT: PRIORITY; FROM: NONE TO: 09/854,220;20010511;US

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1067905

Country of ref document: HK

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20101006