CN1532167A - 具有钙钛矿结构的陶瓷粉末及其制法、电子部件及电容器 - Google Patents

具有钙钛矿结构的陶瓷粉末及其制法、电子部件及电容器 Download PDF

Info

Publication number
CN1532167A
CN1532167A CNA2004100086418A CN200410008641A CN1532167A CN 1532167 A CN1532167 A CN 1532167A CN A2004100086418 A CNA2004100086418 A CN A2004100086418A CN 200410008641 A CN200410008641 A CN 200410008641A CN 1532167 A CN1532167 A CN 1532167A
Authority
CN
China
Prior art keywords
ceramic powder
less
powder
crystal lattice
perovskite structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004100086418A
Other languages
English (en)
Other versions
CN100344579C (zh
Inventor
川村知荣
棚田淳
茶园广一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Publication of CN1532167A publication Critical patent/CN1532167A/zh
Application granted granted Critical
Publication of CN100344579C publication Critical patent/CN100344579C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/639Additional means for holding or locking coupling parts together, after engagement, e.g. separate keylock, retainer strap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5481Monomodal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24926Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including ceramic, glass, porcelain or quartz layer

Abstract

本发明提供一种可以获得结晶性高而且介电特性优良的陶瓷粉末的新型制造方法。该方法是将作为原料的碳酸钡(BaCO3)粉末与氧化钛(TiO2)粉末按Ba/Ti摩尔比等为1.0进行称量及混合,然后将其在1000℃的温度下煅烧,利用固相法进行合成来获得钛酸钡(BaTiO3)粉末。然后,将合成后的钛酸钡粉末投入装有pH7或7以上的水或氢氧化钡水溶液的密闭容器中,在温度维持在80℃或80℃以上的状态下,进行60分钟热处理,从而获得钛酸钡粉末。

Description

具有钙钛矿结构的陶瓷粉末及其制法、电子部件及电容器
技术领域
本发明涉及具有钙钛矿结构的陶瓷粉末的制造方法、具有钙钛矿结构的陶瓷粉末、陶瓷电子部件及其制造方法、叠层陶瓷电容器及其制造方法。
背景技术
具有钙钛矿结构的陶瓷粉末例如钛酸钡(BaTiO3)粉末,作为用于叠层陶瓷电容器等陶瓷电子部件的介电材料被广泛应用。近年来,人们要求陶瓷电子部件实现小型化,例如,为了使叠层陶瓷电容器实现小型化,必然要求电介质层的薄层化,即坯料薄片的薄层化,为了实现该薄层化,很重要的一点是在使作为浆料构成材料的陶瓷粉末微细化的同时提高晶格的结晶性。
作为用于获得具有钙钛矿结构的陶瓷粉末的合成法,已知有水热法、水解法、固相法、草酸盐法、柠檬酸法、气相法等。近年来,虽然使用各种合成法也能获得粒径为0.2μm或0.2μm以下的陶瓷粉末,但是一般而言,在这些合成法中,主要使用可以获得更微细的陶瓷粉末的水热法或水解法,即所谓的湿法。
已知专利文献1——特开2002-234771号公报
已知专利文献2——特开2001-316114号公报
然而,对于上述的湿法而言,由于在合成过程中在晶格内引入了OH基,因此存在结晶性降低,难以获得充分的介电特性之类的缺点。为了克服这类缺点,现有方法是将合成后的陶瓷粉末在大气中再次进行热处理以除去残留的OH基,但是,由于进行该再次热处理而引起晶粒成长,虽然提高了晶格的结晶性和介电特性,但另一方面在颗粒内存在OH基的部分形成空位,从而使与介电常数无关的体积比例增加,结果出现了介电常数相对下降的不良情况。
发明内容
本发明是鉴于上述情况而完成的,其目的是提供一种能够获得晶格的结晶性高而且介电特性优良的陶瓷粉末的制造方法、按照该制造方法获得的陶瓷粉末、使用该陶瓷粉末制成的陶瓷电子部件及其制造方法、使用上述陶瓷粉末制成的叠层陶瓷电容器及其制造方法。
为了达到上述目的,本发明中所述具有钙钛矿结构的陶瓷粉末的制造方法的特征在于,利用非湿式处理来合成陶瓷粉末,将合成后的陶瓷粉末置于液体中进行热处理。
另外,本发明中所述具有钙钛矿结构的陶瓷粉末是晶格为正方晶系的陶瓷粉末,其特征在于,其粒径为0.2μm或0.2μm以下,晶格的c/a轴比为1.006或1.006以上,在1个颗粒内空位所占的面积为5%或5%以下。
进而,本发明中所述具有钙钛矿结构的陶瓷粉末是晶格为立方晶系的陶瓷粉末,其特征在于,其粒径为0.2μm或0.2μm以下,其晶格的XRD峰(111)半值宽度为0.270°或0.270°以下,在1个颗粒内空位所占的面积为5%或5%以下。
再者,本发明中所述陶瓷电子部件的特征在于,该电子部件具有将以上述陶瓷粉末为主成分的成型体烧结而获得的电介质部。
另外,本发明中所述陶瓷电子部件的制造方法的特征在于,该方法具有将以上述陶瓷粉末为主成分的成型体烧结而获得电介质部的步骤。
进而,本发明中所述叠层陶瓷电容器的特征在于,该电容器具有如下部分:以上述陶瓷粉末为主成分的电介质部;在与电介质部不同的表面上以端部边缘交替露出的方式埋设的多个内部电极;以与内部电极的露出端连接的方式在电介质部的表面上形成的一对外部电极。
再者,本发明中所述叠层陶瓷电容器的制造方法的特征在于,该方法具有如下步骤:使用以上述陶瓷粉末为主成分的浆料制成坯料薄片的步骤;在坯料薄片上形成规定排列的未烧结内部电极层的步骤;通过将已形成未烧结内部电极层的坯料薄片叠层并压接来获得未烧结叠层物的步骤;通过将未烧结叠层物切割成芯片大小,将其烧结而获得在相对的端面上交替地露出烧结后的内部电极的单元芯片的步骤;以与内部电极的露出端连接的方式在单元芯片的表面上形成一对外部电极的步骤。
附图说明
图1是叠层陶瓷电容器的剖面图。
附图标记说明:1、电介质部;2、内部电极;3、外部电极
具体实施方式
本发明中所述的具有钙钛矿结构的陶瓷粉末的制造方法具有如下步骤:
(1)利用非湿式处理来合成陶瓷粉末的第1步骤;
(2)在液体中对合成后的陶瓷粉末进行热处理的第2步骤。
具有钙钛矿结构的陶瓷粉末除了常用作介电材料的钛酸钡(BaTiO3)粉末之外,还包括BaTiO3中Ba位点(site)的一部分或全部被Sr、Ca、Pb、Y、稀土类元素等取代的物质的粉末,或BaTiO3中Ti位点的一部分或全部被Sn、Zr、Nb、W、Sb等取代的物质的粉末。即,具有钙钛矿结构的陶瓷粉末是以ABO3表示的氧化物,包括其中A位点由Ba、Sr、Ca、Pb、Y、稀土元素等构成,而B位点由Ti、Sn、Zr、Nb、W、Sb等构成的材料。
上述第1步骤中的非湿式处理不是如称为湿法的水热法或水解法那样在水等溶剂体系的反应环境中合成陶瓷粉末的处理,而是在非溶剂体系的反应环境中合成陶瓷粉末的处理。具体而言是指湿法中所不包括的固相法、草酸盐法、柠檬酸法和气相法中的任一种合成方法。
以钛酸钡为例进行说明,上述固相法是将碳酸钡(BaCO3)粉末与氧化钛(TiO2)粉末混合后通过将其在800℃或800℃以上的温度下进行煅烧来获得钛酸钡粉末的方法,可以用下述反应式来表示:
另外,以钛酸钡为例进行说明,上述草酸盐法是使含有钡(Ba)和钛(Ti)的水溶液与草酸((COOH)2)反应以生成含有钡和钛等的复盐,然后通过将该复盐加热分解来获得钛酸钡粉末的方法,含有钡和钛等的复盐的生成可以用下述反应式来表示:
进而,以钛酸钡为例进行说明,上述柠檬酸法是使柠檬酸钡水溶液与柠檬酸钛水溶液反应以生成含有钡和钛等的复盐,然后通过将该复盐加热分解来获得钛酸钡粉末的方法。
再者,以钛酸钡为例进行说明,上述气相法是将钡(Ba)和钛(Ti)各自的醇盐溶液与氧气或空气一同雾化并吹入到高温的燃烧室中以将其加热分解来获得钛酸钡粉末的方法,可以用下述反应式来表示:
上述第2步骤中的热处理是指为了提高合成后的陶瓷粉末晶格的结晶性而进行的处理,具体而言,在晶格为正方晶系时,是指为了提高晶格的正方晶性而进行的处理;在晶格为立方晶系时,是指为了提高晶格的立方晶性而进行的处理。该热处理可以通过将合成后的陶瓷粉末投入到水(H2O)或规定的水溶液等液体中,以液体为介质向陶瓷粉末赋予热能来实现。
热处理温度优选为80℃或80℃以上,如果不足80℃,则无法过多地期望达到提高晶格结晶性的效果。对热处理的时间无特别限制,只要为60分钟或60分钟以上,就可以进行充分的热处理。另外,热处理时的压力只要为0.1Mpa或0.1Mpa以上,就可以期待获得充分的效果。
利用该热处理能够提高晶格的结晶性的原因虽然尚未确定,但是根据下述的实验和检测可以确认在晶格为正方晶系的陶瓷粉末例如钛酸钡粉末时,热处理前后陶瓷粉末中晶格的c/a轴比增加。在晶格为正方晶系时,晶格的c/a轴比小于1.003,接近于立方晶,无法获得强介电性,但是,利用上述热处理,就可以使原来不足1.003的c/a轴比提高至1.006或1.006以上,晶格的正方晶性提高,显示出充分的强介电性。
另一方面,在晶格为立方晶系的陶瓷粉末例如钛酸锶粉末的情况下,可以确认在热处理前后在陶瓷粉末中晶格的XRD峰(111)半值宽度有所减少。半值宽度变得狭窄意味着结晶性变得良好(变形减小)或者结晶尺寸增大。另外,在结晶性良好的情况下,可以确认介电损失有减小的倾向。如果晶格的XRD峰(111)半值宽度大于0.275°,则介电损失增加,作为产品使用时会出现问题。但通过进行上述热处理,数值高于0.275°的XRD峰(111)半值宽度降至0.270°或0.270°以下,其介电损失降低,成为电特性优良的产品。
另外,热处理用液体的pH值可以为7,但是如果使用pH值大于7的碱性液体,则可以使得平均粒径小的微细粉末例如粒径不足0.01μm的粉末在热处理过程中溶解,从而使粒度分布(标准偏差/平均粒径)变窄,具体而言,可以获得粒度分布不足30%的陶瓷粉末。而如果使用pH值为8或8以上的液体,则可使粒度分布进一步变窄,从而可以获得粒径齐整的陶瓷粉末。
进而,热处理用的液体也可以是水,但是,优选使用按规定浓度含有以上述ABO3表示的陶瓷粉末的A位点金属离子的水溶液,更优选的是使用其中所含A位点金属的摩尔数为处理粉末中所含A位点金属的摩尔数的0.1倍或0.1倍以上的水溶液。由此,可以抑制热处理过程中陶瓷粉末的A位点金属离子溶出到液体中,从而可以防止陶瓷粉末的组成发生变化。
下面对本发明用于钛酸钡(BaTiO3)粉末制造的具体例进行说明。需要说明的是由于钛酸钡的晶格为正方晶系,因此,下文有关结晶性的变化通过晶格的c/a轴比的变化来评价。
具体实施方式
实施例1
首先,按照Ba/Ti的摩尔比为1.0来称取作为原料的碳酸钡(BaCO3)粉末和氧化钛(TiO2)粉末并将其混合,然后在900℃的温度下将其煅烧,利用固相法进行合成,获得钛酸钡粉末。顺便说明,合成后的钛酸钡粉末的粒径为0.2μm或0.2μm以下,粒度分布(标准偏差/平均粒径)为40%,晶格的c/a轴比为1.003。
然后,将合成后的钛酸钡粉末加入到装有氢氧化钡水溶液的密闭容器中,所述氢氧化钡水溶中所含钡(Ba)的摩尔数为处理粉末中所含钡的摩尔数的0.2倍,并且pH值调节为12。接着在使温度分别维持在60℃、70℃、80℃、90℃、100℃的状态下进行60分钟热处理,获得钛酸钡粉末。
对由此获得的钛酸钡粉末的粒度分布和晶格的c/a轴比的数值进行判定,结果一并示于表1中。
顺便说明,上述的粒度分布利用下述方法求出,即测定获得的粉末的粒径,然后将标准偏差除以平均值,算出其比值。粒径的测定方法如下:用扫描式电子显微镜(SEM)观察所获粉末,按放大5万倍来拍摄图面尺寸为7.3cm×9.5cm的照片,根据照片上的颗粒总数来测定Feret径。当被测定的颗粒数小于300时,可以拍摄数张其他视野的SEM照片,以便使被测定的颗粒数达到300或300以上。需要说明的是Feret径是指按照将夹持颗粒的两条平行切线之间的距离来定义的特定方向的切线直径(粉体工学会编《颗粒计测技术》日刊工业新闻社,P7(1994))。
另外,上述晶格的c/a轴比按照如下方法求出:对所获得的粉末进行粉末X射线衍射测定,然后对由此得到的曲线进行Rietveld分析,由此进行拟合,算出晶格常数(F.Izumi and T.Ikeda,Mater.Sci.Forum,321-324(2000)198)。
表1
  试样编号    处理液的温度(℃)   处理液的pH值   处理液的Ba摩尔比   处理时间(分)   粒度分布(标准偏差/平均粒径)   结晶性(c/a轴比) 评价
  1-1     60     12     0.2     60     36%   1.004   ×
  1-2     70     12     0.2     60     35%   1.004   ×
  1-3     80     12     0.2     60     21%   1.006   ○
  1-4     90     12     0.2     60     21%   1.007   ○
  1-5     100     12     0.2     60     20%   1.008   ○
如表1所示,对于处理温度为80℃或80℃以上的试样编号1-3、1-4、1-5而言,其晶格的c/a轴比上升至1.006或1.006以上,因此可以确认处理粉末的结晶性得到提高。与此相反,对于处理温度为70℃或70℃以下的试样编号1-1、1-2而言,可以确认虽然其晶格的c/a轴比略有提高,但是未获得如试样编号1-3~1-5所示的效果。
实施例2
首先,与实施例1同样,利用固相法进行合成,获得钛酸钡粉末。
然后,将合成后的钛酸钡粉末加入到装有氢氧化钡水溶液的密闭容器内,所述氢氧化钡水溶液的pH值分别调节为6、7、8、9、10、11、12、13、且其所含钡(Ba)的摩尔数为处理粉末中所含钡的摩尔数的0.2倍。在液体温度维持于100℃的状态下进行60分钟热处理,获得钛酸钡粉末。上述的pH调制液是通过向水中添加不影响钛酸钡粉末物性的乙酸、氨水或氢金属氧化物而制得的。
判定由此获得的钛酸钡粉末的粒度分布和晶格的c/a轴比的数值,的结果一并示于表2中。需要说明的是粒度分布和晶格的c/a轴比的计算方法与实施例1相同。
表2
  试样编号   处理液的温度(℃)   处理液的pH值   处理液的Ba摩尔比   处理时间(分)   粒度分布(标准偏差/平均粒径)   结晶性(c/a轴比) 评价
  2-1     100     6     0.2     60     40%   1.003   ×
  2-2     100     7     0.2     60     33%   1.008   ○
  2-3     100     8     0.2     60     29%   1.008   ○
  2-4     100     9     0.2     60     27%   1.008   ○
  2-5     100     10     0.2     60     22%   1.008   ○
  2-6     100     11     0.2     60     21%   1.009   ○
  2-7     100     12     0.2     60     20%   1.009   ○
  2-8     100     13     0.2     60     20%   1.009   ○
如表2所示,对于液体的pH为8或8以上的试样编号2-3、2-4、2-5、2-6、2-7、2-8而言,其粒度分布变窄至低于30%,因此可以确认处理粉末的粒度分布提高。另外还可以确认虽然液体的pH值为7的试样编号2-2与试样编号2-3~2-8相比程度稍差,但是在粒度分布方面也能够获得同样的效果。与此相反,可以确认液体的pH为6(酸性)的试样编号2-1在粒度分布方面无变化,未获得试样编号2-3~2-8那样的效果。
实施例3
首先,与实施例1同样,利用固相法进行合成,获得钛酸钡粉末。
然后,将合成后的钛酸钡粉末加入到装有氢氧化钡水溶液的密闭容器内,所述氢氧化钡水溶液所含钡(Ba)的摩尔数为处理粉末中所含钡的摩尔数的0倍、0.1倍、0.2倍、0.3倍、0.4倍且pH值调节至12。在液体温度维持于100℃的状态下进行60分钟热处理,获得钛酸钡粉末。调制成上述Ba摩尔数的溶液是通过向水中添加氢氧化钡(Ba(OH)2)或氯化钡(BaCl2·2H2O)而制成的。
判定由此获得的钛酸钡粉末的粒度分布和晶格的c/a轴比的数值,结果一并示于表3中。需要说明的是粒度分布和晶格的c/a轴比的计算方法与实施例1相同。
表3
试样编号   处理液的温度(℃)    处理液的pH值    处理液的Ba摩尔比   处理时间(分) 粒度分布(标准偏差/平均粒径)   结晶性(c/a轴比)   处理前后的Ba/Ti比变化(摩尔比)  评价
 3-1     100     12     0     60     21%   1.006     0.010  ○
 3-2     100     12     0.1     60     21%   1.008     0.005  ○
 3-3     100     12     0.2     60     20%   1.009     0.000  ○
 3-4     100     12     0.3     60     20%   1.009     -0.001  ○
 3-5     100     12     0.4     60     20%   1.009     -0.003  ○
如表3所示,对于液体中所含钡(Ba)的摩尔数为0.1倍或0.1倍以上的试样编号3-2、3-3、3-4、3-5而言,热处理前后的Ba/Ti比(摩尔比)变化为0.005或0.005以下,因此可以确认抑制了处理粉末A位点金属钡的溶出。
根据以上的实验和检测,可以判断上述第2步骤中的热处理温度优选为80℃或80℃以上,另外,处理液pH值优选为7或7以上的碱性。另外,可以判断当处理液中所含Ba的摩尔数为0.1倍或0.1倍以上时,能够期待良好的结果。
下面说明将本发明用于钛酸锶(SrTiO3)粉末制造的具体例。需要说明的是由于钛酸锶的晶格为立方晶系,因此,其结晶性的变化通过其晶格的XRD峰(111)半值宽度的变化来评价。
实施例4
首先,使以原料氯化锶(SrCl2)和氯化钛(TiCl4)为溶质的水溶液与草酸((COOH)2)反应以生成SrTiO(C2O4)2·4H2O,然后将其在800℃下煅烧,利用草酸盐法进行合成,获得钛酸锶粉末。顺便说明,合成后的钛酸锶粉末的粒径为0.2μm或0.2μm以下,其粒度分布(标准偏差/平均粒径)为46%,晶格的(111)面的峰半值宽度为0.280°。
然后,将合成后的钛酸锶粉末加入到装有氢氧化锶水溶液的密闭容器中,所述氢氧化锶水溶液中含有的锶摩尔数为处理粉末中所含锶摩尔数的0.2倍,并且pH值调节至12。接着在使温度分别维持在60℃、70℃、80℃、90℃、100℃的状态下进行60分钟热处理,获得钛酸锶粉末。
判定由此获得的钛酸锶粉末的粒度分布和晶格的XRD峰(111)半值宽度的数值,结果一并示于表4中。
顺便说明,上述粒度分布按照与实施例1同样的方法进行检测。另外,上述晶格的XRD峰(111)半值宽度即(111)面的XRD峰半值宽度按照下述方法求出:对所获得的粉末进行粉末X射线衍射测定,对由此测得的曲线进行Rietveld分析,由此进行拟合而算出(F.Izumi and T.Ikeda,Mater.Sci.Forum,321-324(2000)198)。
表4
  试样编号   处理液的温度(℃)  处理液的pH值   处理液的Sr摩尔比   处理时间(分)   粒度分布(标准偏差/平均粒径)   结晶性((111)半值宽度)  评价
  4-1     60     12     0.2     60     35%   0.280°   ×
  4-2     70     12     0.2     60     34%   0.275°   ×
  4-3     80     12     0.2     60     23%   0.239°   ○
  4-4     90     12     0.2     60     21%   0.230°   ○
  4-5     100     12     0.2     60     21%   0.228°   ○
如表4所示,对于处理温度为80℃或80℃以上的试样编号4-3、4-4、4-5而言,其晶格的(111)面峰的半值宽度降低至0.240°或0.240°以下,因此可以确认处理粉末的结晶性得到提高。与此相反,对于处理温度为70℃或70℃以下的试样编号4-1、4-2而言,其晶格(111)面峰的半值宽度高于0.270°,因此可以确认无法获得试样编号4-3~4-5那样的效果。
实施例5
首先,与实施例4同样,利用草酸盐法进行合成,获得钛酸锶粉末。
然后,将合成后的钛酸锶粉末加入到装有氢氧化锶水溶液的密闭容器内,所述氢氧化锶水溶液的pH值分别调节为6、7、8、9、10、11、12、且其所含锶的摩尔数为处理粉末中所含锶(Sr)的摩尔数的0.2倍。在液体温度维持于100℃的状态下进行60分钟热处理,获得钛酸锶粉末。上述的pH调制液是通过向水中添加不影响钛酸锶粉末物性的氢氧化锶或乙酸而制成的。
判定由此获得的钛酸锶粉末的粒度分布和晶格的XRD峰(111)半值宽度的数值,结果一并示于表5中。需要说明的是粒度分布和晶格的XRD峰(111)半值宽度的计算方法与实施例4相同。
表5
  试样编号   处理液的温度(℃)  处理液的pH值  处理液的Sr摩尔比   处理时间(分) 粒度分布(标准偏差/平均粒径)   结晶性((111)半值宽度) 评价
  5-1     100     6     0.2     60     44%   0.280°   ×
  5-2     100     7     0.2     60     29%   0.246°   ○
  5-3     100     8     0.2     60     27%   0.242°   ○
  5-4     100     9     0.2     60     26%   0.236°   ○
  5-5     100     10     0.2     60     25%   0.233°   ○
  5-6     100     11     0.2     60     23%   0.230°   ○
  5-7     100     12     0.2     60     21%   0.228   ○
如表5所示,对于液体的pH值为7或7以上的试样编号5-2、5-3、5-4、5-5、5-6、5-7而言,其粒度分布变窄至低于30%,因此可以确认处理粉末的粒度分布提高。与此相反,对于液体的pH值为6(酸性)的试样编号5-1而言,其粒度分布无较大变化,因此可以确认无法获得试样编号5-2~5-7那样的效果。
实施例6
首先,与实施例4同样,利用草酸盐法进行合成,获得钛酸锶粉末。
然后,将合成后的钛酸锶粉末加入到装有氢氧化锶水溶液的密闭容器内,所述氢氧化锶水溶液中所含锶的摩尔数分别为处理粉末中所含锶(Sr)的摩尔数的0倍、0.1倍、0.2倍、0.3倍、0.4倍且将pH值调节至12,在液体温度维持于100℃的状态下进行60分钟的热处理,获得钛酸锶粉末。调制成上述(Sr)摩尔数的溶液是通过向水中添加氢氧化锶(Sr(OH)2·8H2O)、氯化锶(SrCl2·6H2O)或醋酸锶(Sr(CH3COO)2·1/2H2O)而制成的。
判定由此获得的钛酸锶粉末的粒度分布和晶格的XRD峰(111)半值宽度的数值,结果一并示于表6中。需要说明的是粒度分布和晶格的XRD峰(111)半值宽度的计算方法与实施例4相同。
表6
试样编号   处理液的温度(℃)     处理液的pH值   处理液的Sr摩尔比   处理时间(分)   粒度分布(标准偏差/平均粒径)   结晶性((111)半值宽度)   处理前后的Sr/Ti比变化(摩尔比)  评价
 6-1   100     12     0     60     23%   0.238°     0.010  ○
 6-2   100     12     0.1     60     22%   0.231°     0.006  ○
 6-3   100     12     0.2     60     21%   0.228°     0.000  ○
 6-4   100     12     0.3     60     22%   0.227°     -0.001  ○
 6-5   100     12     0.4     60     21%   0.228°     -0.002  ○
如表6所示,对于溶液中所含锶(Sr)的摩尔数为0.1倍或0.1倍以上的试样编号6-2、6-3、6-4、6-5而言,热处理前后Sr/Ti比(摩尔比)的变化为0.006或0.006以下,因此可以确认抑制了处理粉末A位点金属锶的溶出。
根据以上的实验和验证,可以判断上述第2步骤中的热处理温度优选为80℃或80℃以上,另外,处理液的pH值优选为7或7以上的碱性。另外,可以判断当处理液中所含Sr的摩尔数为0.1倍或0.1倍以上时,能够期待获得良好的结果。
对经过上述第1、第2步骤而制得的陶瓷粉末进行干燥和粉碎步骤,获得最终的材料粉末,该陶瓷粉末可作为叠层陶瓷电容器等陶瓷电子部件的电介质部构成材料使用。
图1示出了具有以上述陶瓷粉末为原料制成的电介质部的叠层陶瓷电容器,该叠层陶瓷电容器具有如下部分:以上述陶瓷粉末为原料制成的电介质部1;在电介质部1纵向的两个端面上以交替地露出端部边缘的方式埋设的多个内部电极2;在电介质部1纵向的两个端部表面上以与内部电极2的露出端连接的方式形成的一对外部电极3。
在制造该叠层陶瓷电容器时,首先,在上述陶瓷粉末中加入聚乙烯丁缩醛树脂等粘合剂、乙醇等有机溶剂和根据需要添加的增塑剂或分散剂,将其混合以制成浆料。然后,使用金属型涂料机或刮刀等将上述浆料按规定厚度涂布在聚对苯二甲酸乙二醇酯等树脂薄膜上以制成坯料薄片,并将其干燥。然后利用丝网印刷或凹版印刷等方法,以m×n排列(m、n为整数)和规定的厚度在坯料薄片上印刷含有Ni等贱金属粉末的电极糊料,形成未烧结内部电极层,然后使其干燥。接着将印刷了电极层的坯料薄片按包括m×n排列的未烧结内部电极层的尺寸切割并剥离,将剥离后的薄片与不具有电极层的薄片一同按所需的片数叠合并将其压接,从而获得未烧结叠层物。然后,将该未烧结叠层物切割成芯片大小,将其烧结,获得立方体形的单元芯片。顺便说明,在单元芯片纵向的两个端部上交替地露出烧结后的内部电极层。然后,在单元芯片纵向的两个端部上与上述同样地涂布电极糊料并将其烧结,从而形成一对外部电极。需要说明的是也可以在将单元芯片烧结之前,在单元芯片纵向的两个端部上涂布电极糊料,然后同时进行单元芯片和外部电极用糊料的烧结。
利用上述制造方法获得的陶瓷粉末是晶格的结晶性高而且介电特性优良的粉末,可以确保以该陶瓷粉末为原料制成的电介质部(单元芯片)具有高电容率,因此可以显著地提高按上述方法获得的叠层陶瓷电容器的品质。另外,即使在为了适应近年来小型大容量化的要求而制成厚度为1μm的坯料薄片的情况下,只要陶瓷粉末的粒径为0.2μm或0.2μm以下,就能在薄片厚度方向存在更多的粒界,因此可以使寿命延长。
陶瓷粉末的粒径并非越小越好,因为已知如果粒径小于0.05μm,则难以获得所期望的介电特性,因此,在进行坯料薄片的薄层化时,实用的粒径范围是0.05~0.2μm。
按照上述制造方法获得的陶瓷粉末的最大粒径依赖于在第1步骤中按非湿式处理法合成得到的陶瓷粉末的粒径,如下述表7中试样编号7-6~7-15所示,在按固相法合成钛酸钡时,通过选择原料的比表面积(m2/g),能合成出粒径为0.2μm或0.2μm以下、或0.1μm或0.1μm以下的陶瓷粉末,因此,按照上述制造方法,可以容易地获得粒径在0.05~0.2μm范围内的陶瓷粉末。
表7
    试样编号     原料的比表面积(m2/g) 合成后的BaTiO3粒径(μm)
    BaCO3     TiO2
    7-1     5     7     >0.2
    7-2     10     7     >0.2
    7-3     10     20     >0.2
    7-4     14     7     >0.2
    7-5     14     20     >0.2
    7-6     14     30     ≤0.2
    7-7     14     40     ≤0.2
    7-8     20     20     ≤0.2
    7-9     20     30     ≤0.2
    7-10     20     40     <0.1
    7-11     20     50     <0.1
    7-12     30     20     ≤0.2
    7-13     30     30     <0.2
    7-14     30     40     ≤0.1
    7-15     30     50     <0.1
另外,对于具有电介质部的叠层陶瓷电容器等陶瓷电子部件而言,必须尽可能地排除成为电介质部介电常数降低原因的颗粒内空位。在上述制造方法中,由于在第1步骤中陶瓷粉末的合成采用非湿式处理,因此,在合成过程中,基本上不会在颗粒内产生空位,但是由于第2步骤的热处理条件可能导致颗粒内产生空位,故在所述情况下要加以注意。
例如,在每单位体积钛酸钡的填充率为100%时,介电常数的降低基本为零,但是如果颗粒内存在空位,填充率降低,则导致介电常数大幅度降低。根据计算,填充率为99.5%时,介电常数降低4%;填充率为99.0%时,介电常数降低7%;填充率为98.5%时,介电常数降低11%。
介电常数的降低值(含误差在内)优选为5%或5%以下,因此,为了实现这一目标,在1个颗粒内空位所占的面积希望为5%或5%以下。顺便说明,此处所说的面积比率如下求出:用透射式电子显微镜(TEM)观察陶瓷粉末,求出空位相对于以二维图像表示的颗粒面积的比例。
如上文的详细说明所述,根据本发明所述具有钙钛矿结构的陶瓷粉末的制造方法,可以制得晶格的结晶性高且介电特性优良的陶瓷粉末,在晶格为正方晶系陶瓷粉末的情况下,可以获得粒径为0.2μm或0.2μm以下、晶格的c/a轴比为1.006或1.006以上、1个颗粒内空位所占的面积为5%或5%以下的陶瓷粉末。另外,在晶格为立方晶系的陶瓷粉末的情况下,可以获得粒径为0.2μm或0.2μm以下、晶格的XRD峰(111)半值宽度为0.270°或0.270°以下、1个颗粒内空位所占的面积为5%或5%以下的陶瓷粉末。
另外,由于上述陶瓷粉末晶格的结晶性高且介电特性优良,因此,在将其作为陶瓷电子部件的电介质部例如叠层陶瓷电容器的电介质部的构成材料使用时,可以获得高容量、高品质的叠层陶瓷电容器,并且也能在很大程度上有利于叠层陶瓷电容器的小型大容量化。

Claims (15)

1、一种具有钙钛矿结构的陶瓷粉末的制造方法,其特征在于,按照非湿式处理法合成陶瓷粉末,将合成后的陶瓷粉末在液体中进行热处理。
2、如权利要求1所述的具有钙钛矿结构的陶瓷粉末的制造方法,其特征在于,非湿式处理是选自固相法、草酸盐法、柠檬酸法和气相法中的任一种合成法。
3、如权利要求1或2中所述的具有钙钛矿结构的陶瓷粉末的制造方法,其特征在于,热处理温度为80℃或80℃以上。
4、如权利要求1~3任一项中所述的具有钙钛矿结构的陶瓷粉末的制造方法,其特征在于,在热处理中使用的液体的pH>7。
5、如权利要求1~4任一项中所述的具有钙钛矿结构的陶瓷粉末的制造方法,其特征在于,在热处理中使用的液体按规定浓度含有以ABO3表示的陶瓷粉末的A位点金属离子。
6、一种具有钙钛矿结构的陶瓷粉末,是按权利要求1~5任一项中所述的制造方法获得的晶格为正方晶系的陶瓷粉末,其特征在于,所述陶瓷粉末的粒径为0.2μm或0.2μm以下,晶格的c/a轴比为1.006或1.006以上,在1个颗粒内空位所占的面积为5%或5%以下。
7、一种具有钙钛矿结构的陶瓷粉末,是按权利要求1~5任一项中所述的制造方法获得的晶格为立方晶系的陶瓷粉末,其特征在于,所述陶瓷粉末的粒径为0.2μm或0.2μm以下,晶格的XRD峰(111)半值宽度为0.270°或0.270°以下,在1个颗粒内空位所占的面积为5%或5%以下。
8、如权利要求6或7所述的具有钙钛矿结构的陶瓷粉末,其特征在于,以标准偏差/平均粒径表示的粒度分布小于30%。
9、一种具有钙钛矿结构的陶瓷粉末,是晶格为正方晶系的陶瓷粉末,其特征在于,所述陶瓷粉末的粒径为0.2μm或0.2μm以下,晶格的c/a轴比为1.006或1.006以上,在1个颗粒内空位所占的面积为5%或5%以下。
10、一种具有钙钛矿结构的陶瓷粉末,是一种晶格为立方晶系的陶瓷粉末,其特征在于,所述陶瓷粉末的粒径为0.2μm或0.2μm以下,晶格的XRD峰(111)半值宽度为0.270°或0.270°以下,在1个颗粒内空位所占的面积为5%或5%以下。
11、如权利要求9或10中所述的具有钙钛矿结构的陶瓷粉末,其特征在于,以标准偏差/平均粒径表示的粒度分布小于30%。
12、一种陶瓷电子部件,其特征在于,所述陶瓷电子部件具有以权利要求6~11任一项中所述的陶瓷粉末为原料制成的电介质部。
13、一种陶瓷电子部件的制造方法,其特征在于,所述陶瓷电子部件制造方法具有以权利要求6~11任一项中所述的陶瓷粉末为原料制成电介质部的步骤。
14、一种叠层陶瓷电容器,其特征在于,所述叠层陶瓷电容器具有如下部分:以权利要求6~11任一项中所述的陶瓷粉末为原料制成的电介质部;在与电介质部不同的表面上以端部边缘交替露出的方式埋设的多个内部电极;以与内部电极的露出端连接的方式在电介质部的表面上形成的一对外部电极。
15、一种叠层陶瓷电容器的制造方法,其特征在于,该方法具有如下步骤:
使用以权利要求6~11任一项中所述的陶瓷粉末为主成分制得的浆料来制成坯料薄片的步骤;
在坯料薄片上形成规定排列的未烧结内部电极层的步骤;
通过将已形成未烧结内部电极层的坯料薄片叠层并压接来获得未烧结叠层物的步骤;
通过将未烧结叠层物切割成芯片大小后进行烧结,获得在相对的端面上交替地露出烧结后的内部电极的单元芯片的步骤;
以与内部电极的露出端连接的方式在单元芯片的表面上形成一对外部电极的步骤。
CNB2004100086418A 2003-03-24 2004-03-12 具有钙钛矿结构的陶瓷粉末及其制法、电子部件及电容器 Expired - Lifetime CN100344579C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003080407A JP4141298B2 (ja) 2003-03-24 2003-03-24 ペロブスカイト構造を有する誘電体セラミック粉末の製造方法と、セラミック電子部品の製造方法と、積層セラミックコンデンサの製造方法
JP080407/2003 2003-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNA2006101538962A Division CN1951867A (zh) 2003-03-24 2004-03-12 具有钙钛矿结构的陶瓷粉末

Publications (2)

Publication Number Publication Date
CN1532167A true CN1532167A (zh) 2004-09-29
CN100344579C CN100344579C (zh) 2007-10-24

Family

ID=32984931

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB2004100086418A Expired - Lifetime CN100344579C (zh) 2003-03-24 2004-03-12 具有钙钛矿结构的陶瓷粉末及其制法、电子部件及电容器
CNA2006101538962A Pending CN1951867A (zh) 2003-03-24 2004-03-12 具有钙钛矿结构的陶瓷粉末

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNA2006101538962A Pending CN1951867A (zh) 2003-03-24 2004-03-12 具有钙钛矿结构的陶瓷粉末

Country Status (6)

Country Link
US (3) US7271114B2 (zh)
JP (1) JP4141298B2 (zh)
KR (1) KR100707646B1 (zh)
CN (2) CN100344579C (zh)
HK (1) HK1066975A1 (zh)
TW (1) TW200420524A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102035265A (zh) * 2010-12-06 2011-04-27 无锡索垠飞科技有限公司 电容器储能电池无线充电系统
CN102074351A (zh) * 2010-11-12 2011-05-25 无锡索垠飞科技有限公司 电容式储能电池及其制造方法
CN102482136A (zh) * 2009-06-25 2012-05-30 埃斯托股份有限公司 卧式熔凝石英炉以及组件
CN102557615A (zh) * 2010-09-29 2012-07-11 Tdk株式会社 电介质陶瓷组合物和其制造方法以及陶瓷电子部件
CN103030403A (zh) * 2011-10-10 2013-04-10 三星电机株式会社 钙钛矿粉末及其制备方法和多层陶瓷电子元件
CN103360059A (zh) * 2012-03-30 2013-10-23 太阳诱电株式会社 陶瓷粉末和层叠陶瓷电容器
US9093221B2 (en) 2012-03-30 2015-07-28 Taiyo Yuden Co., Ltd. Ceramic powder and multi-layer ceramic capacitor
CN105706199A (zh) * 2013-11-18 2016-06-22 株式会社村田制作所 带有变阻器功能的层叠型半导体陶瓷电容器及其制造方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272295A (ja) * 2004-02-26 2005-10-06 Dowa Mining Co Ltd 正方晶チタン酸バリウム粒子およびその製造方法並びにセラミックコンデンサ
EP1798200B1 (en) * 2004-08-13 2017-03-22 Sakai Chemical Industry Co., Ltd. Process for producing perovskite compound powder
JP4766910B2 (ja) * 2005-04-26 2011-09-07 京セラ株式会社 チタン酸バリウム粉末の製法、チタン酸バリウム粉末、およびチタン酸バリウム焼結体
JP4827011B2 (ja) * 2006-03-10 2011-11-30 Tdk株式会社 セラミック粉末及びこれを用いた誘電体ペースト、積層セラミック電子部品、その製造方法
JP5294201B2 (ja) * 2006-12-25 2013-09-18 独立行政法人物質・材料研究機構 誘電体素子とその製造方法
JP5184333B2 (ja) * 2008-12-25 2013-04-17 サムソン エレクトロ−メカニックス カンパニーリミテッド. 誘電体セラミックス材料の製造方法
JP5233763B2 (ja) * 2009-03-13 2013-07-10 株式会社村田製作所 チタン酸バリウム系誘電体原料粉末、その製造方法、セラミックグリーンシートの製造方法、および積層セラミックコンデンサの製造方法
JP5445412B2 (ja) * 2010-09-17 2014-03-19 株式会社村田製作所 複合酸化物粉末の製造方法
KR101218979B1 (ko) * 2010-12-10 2013-01-04 삼성전기주식회사 페롭스카이트 분말의 제조방법, 그 방법으로 제조한 페롭스카이트 분말 및 적층 세라믹 전자부품
JP5566434B2 (ja) 2012-09-25 2014-08-06 太陽誘電株式会社 積層セラミックコンデンサ
CN102886934A (zh) * 2012-10-29 2013-01-23 哈尔滨工业大学 一种结晶完全且无杂相产生的多铁性薄膜及其制备方法
JP2015109410A (ja) * 2013-10-25 2015-06-11 株式会社村田製作所 セラミック電子部品及びセラミック電子部品の製造方法
CN104045341A (zh) * 2014-06-24 2014-09-17 天津大学 无铅高介电常数多层陶瓷电容器介质材料及其制备方法
JP5874798B2 (ja) * 2014-09-30 2016-03-02 株式会社村田製作所 チタン酸バリウム系セラミック粉末
CN104387088A (zh) * 2014-10-29 2015-03-04 安徽省皖捷液压科技有限公司 一种废橡胶轮胎颗粒/氮化硅复合的陶瓷喷嘴及其制作方法
JP2021141131A (ja) * 2020-03-03 2021-09-16 太陽誘電株式会社 セラミック電子部品の製造方法、および金属導電ペースト
CN112919529A (zh) * 2021-03-31 2021-06-08 成渝钒钛科技有限公司 一种利用含钛高炉渣制备钛酸钡的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2166221A (en) * 1937-06-29 1939-07-18 Du Pont Process for producing pigment titanates
BE478147A (zh) * 1944-04-04
US2976116A (en) * 1958-03-03 1961-03-21 Walter W Malinofsky Method of preparation of barium titanate powder
US4874598A (en) * 1987-01-20 1989-10-17 Mitsubishi Petrochemical Co., Ltd. Process for producing perovskite-type oxides of the ABO3 type
JP3302627B2 (ja) * 1997-07-31 2002-07-15 太陽誘電株式会社 セラミック粉末の製造方法
JP2002519298A (ja) * 1998-07-01 2002-07-02 キャボット コーポレイション チタン酸バリウム粉末の熱水製造法
JP3780851B2 (ja) * 2000-03-02 2006-05-31 株式会社村田製作所 チタン酸バリウムおよびその製造方法ならびに誘電体セラミックおよびセラミック電子部品
CN1219725C (zh) * 2000-05-12 2005-09-21 中国科学院大连化学物理研究所 一种制备高性能复合氧化物粉体的方法
US6409983B1 (en) * 2000-07-11 2002-06-25 Korea Institute Of Science And Technology Process for preparing crystalline barium titanate powder
JP4660935B2 (ja) 2001-02-05 2011-03-30 株式会社村田製作所 正方晶ペロブスカイト構造を有するチタン酸バリウム系セラミック粉末の製造方法
CN1172874C (zh) * 2002-07-10 2004-10-27 清华大学 制备四方相钛酸钡纳米粉体的方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482136B (zh) * 2009-06-25 2014-11-26 埃斯托股份有限公司 卧式熔凝石英炉以及组件
CN102482136A (zh) * 2009-06-25 2012-05-30 埃斯托股份有限公司 卧式熔凝石英炉以及组件
CN102557615A (zh) * 2010-09-29 2012-07-11 Tdk株式会社 电介质陶瓷组合物和其制造方法以及陶瓷电子部件
CN102074351A (zh) * 2010-11-12 2011-05-25 无锡索垠飞科技有限公司 电容式储能电池及其制造方法
CN102035265B (zh) * 2010-12-06 2013-11-20 南京科孚纳米技术有限公司 电容器储能电池无线充电系统
CN102035265A (zh) * 2010-12-06 2011-04-27 无锡索垠飞科技有限公司 电容器储能电池无线充电系统
CN103030403A (zh) * 2011-10-10 2013-04-10 三星电机株式会社 钙钛矿粉末及其制备方法和多层陶瓷电子元件
CN103030403B (zh) * 2011-10-10 2017-04-12 三星电机株式会社 钙钛矿粉末及其制备方法和多层陶瓷电子元件
CN103360059A (zh) * 2012-03-30 2013-10-23 太阳诱电株式会社 陶瓷粉末和层叠陶瓷电容器
US9023311B2 (en) 2012-03-30 2015-05-05 Taiyo Yuden Co., Ltd. Ceramic powder and multi-layer ceramic capacitor
US9093221B2 (en) 2012-03-30 2015-07-28 Taiyo Yuden Co., Ltd. Ceramic powder and multi-layer ceramic capacitor
CN103360059B (zh) * 2012-03-30 2015-12-23 太阳诱电株式会社 陶瓷粉末和层叠陶瓷电容器
US9514883B2 (en) 2012-03-30 2016-12-06 Taiyo Yuden Co., Ltd. Ceramic powder and multi-layer ceramic capacitor
US9536667B2 (en) 2012-03-30 2017-01-03 Taiyo Yuden Co., Ltd. Ceramic powder and multi-layer ceramic capacitor
CN105706199A (zh) * 2013-11-18 2016-06-22 株式会社村田制作所 带有变阻器功能的层叠型半导体陶瓷电容器及其制造方法

Also Published As

Publication number Publication date
KR100707646B1 (ko) 2007-04-13
US20070104970A1 (en) 2007-05-10
CN100344579C (zh) 2007-10-24
CN1951867A (zh) 2007-04-25
US20040188002A1 (en) 2004-09-30
US7271114B2 (en) 2007-09-18
TWI304056B (zh) 2008-12-11
US20070104640A1 (en) 2007-05-10
HK1066975A1 (en) 2005-03-18
JP4141298B2 (ja) 2008-08-27
US7572406B2 (en) 2009-08-11
TW200420524A (en) 2004-10-16
US7566439B2 (en) 2009-07-28
JP2004284897A (ja) 2004-10-14
KR20040084725A (ko) 2004-10-06

Similar Documents

Publication Publication Date Title
CN1532167A (zh) 具有钙钛矿结构的陶瓷粉末及其制法、电子部件及电容器
US8052954B2 (en) Barium calcium titanate, production process thereof and capacitor
CN1097833C (zh) 介电陶瓷及采用该材料的独石陶瓷电子元件
CN1837058A (zh) 粉末的制造方法、该粉末以及使用该粉末的多层陶瓷电容器
TWI228493B (en) Barium titanate and electronic parts using the same
KR101295161B1 (ko) 복합 산화물 분말의 제조방법
CN103130500A (zh) 钙钛矿粉末及其制备方法以及多层陶瓷电子部件
CN1226235C (zh) 陶瓷的制造方法
JP2013028478A (ja) 誘電体磁器組成物、および電子部品
US20140065308A1 (en) Dielectric composition, method of fabricating the same, and multilayer ceramic electronic component using the same
KR101375601B1 (ko) 페로브스카이트형 복합 산화물 분말의 제조방법
KR101515522B1 (ko) 페로브스카이트형 복합 산화물의 제조방법
JP2004524249A (ja) 誘電体粒子の製造
JP2008222522A (ja) チタン酸バリウム粉末とその製造方法およびそれを用いた積層セラミックコンデンサ
JP2010163313A (ja) 結晶配向セラミックスの製造方法
CN1715243A (zh) 一种制备四方相钛酸钡粉体的方法
JP4375092B2 (ja) セラミック組成物の製造方法
CN100341789C (zh) 钛酸钡和使用该材料的电子元件
KR100711427B1 (ko) 퍼로브스카이트 구조를 갖는 세라믹 분말의 제조 방법과,퍼로브스카이트 구조를 갖는 세라믹 분말과 세라믹 전자부품 및 그 제조 방법과 적층 세라믹 콘덴서 및 그 제조방법
CN114127013B (zh) Me元素置换有机酸氧钛钡、其制造方法和钛系钙钛矿型陶瓷原料粉末的制造方法
JP2006096585A (ja) 誘電体磁器およびその製法
JP2008115042A (ja) チタン酸バリウム粉末の製造方法、チタン酸バリウム粉末およびそれを用いた積層セラミックコンデンサ
WO2015182411A1 (ja) 複合酸化物粉末、複合酸化物粉末の製造方法、及び積層セラミック電子部品
JPH10273360A (ja) 誘電体磁器組成物、該誘電体磁器組成物の原料粉末の製造方法、及び誘電体磁器組成物の製造方法
JP2008247625A (ja) セラミックス粉末およびこのセラミックス粉末を用いたセラミック電子部品の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1066975

Country of ref document: HK

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1066975

Country of ref document: HK

CX01 Expiry of patent term

Granted publication date: 20071024

CX01 Expiry of patent term