CN1513180A - 磁光记录介质 - Google Patents

磁光记录介质 Download PDF

Info

Publication number
CN1513180A
CN1513180A CNA028084403A CN02808440A CN1513180A CN 1513180 A CN1513180 A CN 1513180A CN A028084403 A CNA028084403 A CN A028084403A CN 02808440 A CN02808440 A CN 02808440A CN 1513180 A CN1513180 A CN 1513180A
Authority
CN
China
Prior art keywords
burr
groove
recording medium
mentioned
magnetooptic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA028084403A
Other languages
English (en)
Inventor
����һ
西川幸一郎
桥本母理美
ʷ
锦织圭史
尾留川正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Panasonic Holdings Corp
Original Assignee
Canon Inc
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, Matsushita Electric Industrial Co Ltd filed Critical Canon Inc
Publication of CN1513180A publication Critical patent/CN1513180A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/1055Disposition or mounting of transducers relative to record carriers
    • G11B11/10576Disposition or mounting of transducers relative to record carriers with provision for moving the transducers for maintaining alignment or spacing relative to the carrier
    • G11B11/10578Servo format, e.g. prepits, guide tracks, pilot signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor

Abstract

提供一种磁光记录介质,可获得稳定的跟踪伺服信号、降低串扰及串写的影响的窄道距,其包括:多个记录再生用的光道;以及采样伺服用的一对摆动凹坑,上述摆动凹坑分别设置于互相分开的邻接的光道之间,且在邻接的光道中共用。

Description

磁光记录介质
技术领域
本发明涉及在磁性薄膜上记录信息的磁光记录介质,特别涉及将记录的信息通过磁壁移动再生方式进行再生的磁光记录介质。
背景技术
作为磁光记录介质的可改写的高密度记录方式,现在存在利用半导体激光的热能在磁性薄膜上写入磁畴而进行信息记录并利用磁光效应读出信息的方式。近年来,进一步提高采用这种方式的磁光记录介质的记录密度来实现大容量的记录介质要求日益高涨。
作为磁光记录介质的光盘的线记录密度,与再生光学系统的激光波长和物镜的数值孔径关系密切。但是,再生光学系统的激光波长及物镜的数值孔径的改进是有限度的。因此,通过对记录介质的结构及读取方法进行研讨,正在开发改进记录密度的技术。
作为这种技术的例子,有在日本专利特开平6-290496号公报中公开的技术。利用这种技术,在具有磁性结合的磁壁移动层和记录保持层的多层膜结构中,信息是记录于记录保持层中。于是,在信息再生时,利用光束照射所产生的温度梯度,可以不使记录于记录保持层中的信息改变而使磁壁记录层的记录标志的磁壁移动。于是,通过使磁壁移动层磁化来使光束点的一部分区域得到同样的磁化而检测出光束反射光的偏振面的变化,可使光的衍射极限以下的记录标志再生。
利用这一技术,可使光的衍射极限以下的记录标志再生,可以实现大幅度提高记录密度及传送速度的磁光记录介质及其再生方法。
另外,在这种磁光记录介质中,由于利用光束照射所产生的温度梯度易于引起记录标志的磁壁移动,通过对中间夹着信息再生光道的两邻接凹槽照射高功率的激光而对凹槽进行高温退火处理,来实施使凹槽部分的记录介质层变质的退火处理。通过这种退火处理,可以得到不使形成记录标志的磁壁成为封闭磁畴的效果。由此,因为可以减小磁壁的矫顽力的作用,所以可以获得更稳定的磁壁的移动。利用这种退火处理可以得到更好的再生信号。
此外,最近,正盛行有关为了实现更进一步的高密度化,不需要进行退火处理,也可以将凹槽部分作为光道使用的磁光盘的研究。利用这种磁光盘,可以在相对磁光盘的光道的垂直方向上实现高密度化。
比如,在特开平11-191245号公报中,通过规定基板的表面粗糙度,可以实现所谓的凸纹凹槽记录介质。
另外,比如,在特开平11-120636号公报中,通过加大沟部的侧壁的锥形角,可以实现凸纹凹部记录介质。
另外,比如,在特开平11-195265号公报中,通过控制基板的表面粗糙度,可以实现深沟的凸纹凹槽记录介质。
这样,现在磁光记录介质的凸纹可以做到大约0.5μm的窄道距化。通过实验,利用道距0.6μm的深沟(沟深约为100nm)的凸纹凹槽基板,在实用水平上确认线记录密度为0.11μm/bit的记录再生。这相当于记录密度为10Gbit/英寸2
下面对现有的磁壁移动型磁光盘的再生动作予以说明。
此处以记录保持层、磁壁移动层及切换层的三层结构的场合为例予以说明。记录保持层保持记录标志。磁壁移动层用于磁壁移动再生信息。切换层,对记录保持层及磁壁移动层的结合状态进行切换。另外,此处,如前所述,对中间夹持信息再生光道的两邻接凹槽照射高功率的激光而对凹槽部分进行高温退火处理而实施使凹槽的磁性层变质的退火处理。
切换层,在比温度Ts低的温度区域中,是交换结合的状态,是记录保持层及磁壁移动层相结合的状态。在信息再生时,以光束进行照射,磁光记录介质,被加热到磁壁移动层的磁壁移动的温度Ts。
如果磁光记录介质加热到Ts温度以上,切换层达到居里点,磁壁记录层及记录保持层的结合变为切断状态。因此,如果记录标志的磁壁的温度达到温度Ts,就对信息记录光道的两邻接凹槽进行退火处理,使磁壁移动层的磁壁移动。此时,磁壁移动层的磁壁,横切凸纹而瞬时移动到对于温度梯度在能量上稳定存在的位置,即由于光照射使温度上升的线密度方向的最高温度点。因为通过磁壁的移动使再生光束覆盖的大部分区域的磁化状态变为一样,可以从通常的光束再生原理不可能再生的微小记录标志得到再生信号。
在上述的现有的磁光记录介质中,在以退火处理为前提的场合,没有进行介质沟结构(沟形状)及退火处理条件等的最优化。
因此,在现有的磁光记录介质中,在道距窄化的场合,不能得到稳定的跟踪伺服信号。并且,在现有的磁光记录介质中,在道距窄化的场合,在信息再生时,来自邻接光道的信号漏入的所谓的串扰增大。并且,在现有的磁光记录介质中,在道距窄化的场合,有时不能确保进行稳定的磁壁移动再生的光道。并且,在现有的磁光记录介质中,在道距窄化的场合,在信息记录时,对邻接光道的信号造成损害的所谓的串写增大。
另外,在现有的磁光记录介质中,在进行凸纹凹槽记录时,由于入射光在附近的摆动,在对凸纹进行跟踪时和在对凹槽进行跟踪时形成的温度分布不同。特别是,在凸纹跟踪时,必须具有比凹槽跟踪时强度更高的光。如果将光的强度针对对凸纹记录进行最优化,有时在对凸纹写入信息时就会产生对凹槽的串写。
发明内容
本发明的目的在于提供一种可以获得稳定的跟踪伺服信号并且减小串扰及串写的影响的狭窄跟踪道距的磁光记录介质。
为了实现上述目的的结构的一例如下。
一种磁光记录介质,其特征在于
包含多个记录再生用光道、及
采样伺服器用的摆动凹坑,
上述摆动凹坑的每一个设置于邻接的两条光道之间,为邻接的光道所共用。
附图说明
图1为示出本发明的一实施方式的磁光盘的特征的概念图。
图2为本发明的一实施方式的磁光盘的圆周方向的一部分的扩大示意图。
图3A及3B为示出本发明的一实施方式的磁光盘的记录再生时的状态的概念图。
图4为本发明的实施方式的退火用光头光学系统的示意图。
图5为示出本发明的一实施方式中对磁光盘进行退火处理时的状况的概念图。
图6为表示磁壁移动再生时的光道宽度和抖动值的关系的曲线图。
图7为示出反射光量与凹槽深度的依赖关系的曲线图。
图8为示出前置凹坑信号振幅与凹坑深度的依赖关系的曲线图。
图9为示出凹槽深度和前置凹坑深度的关系的示图。
图10A及10B为示出退火处理区域的宽度的概念图。
图11为示出实施方式2的磁光盘的退火处理时的状况的概念图。
图12为实施方式2的退火用光头光学系统的示意图。
图13A及13B为光束从基板侧向凸纹入射时的光的吸收情况的示图。
图14A及14B为从膜面侧向凸纹5入射光束时的光的吸收情况的示图。
图15为示出物镜数值孔径NA=0.90的退火处理时的温度分布在半径方向上的温度梯度的研讨结果的曲线图。
图16A及16B为示出实施方式3的磁光盘的退火处理时的特征部分的概念图。
图17A、17B及17C为用于说明实施方式3的磁光盘的形状的一例的说明图。
图18为用于说明实施方式3的磁光盘的积层薄膜的形成方法的说明图。
图19为示出实施方式4的磁光盘的记录再生时的状态的概念图。
具体实施方式
下面参照附图对本发明的实施方式予以详细说明。另外,虽然下面示出的实施方式是本发明的最佳实施方式的一例,但本发明并不受限于这些实施方式。
(实施方式1)
图1为示出本发明的一实施方式的磁光盘的特征的概念图。
在图1中,磁光盘1具有基板2、磁性层3及保护膜4。
磁性层3至少包括在基板2上形成的磁壁移动层、切换层及记录保持层。
保护膜4设置于磁性层3的上面。
在基板2上设置有凸纹5与凹槽6。凹槽6,是以规定的道距Tp重复设置,用作记录再生用的光道。
另外,图中虽然未示出,但在基板2和磁性层3之间形成有反射率调整用的介电体薄膜。并且,图中虽然未示出,但在磁性层3和保护膜4之间设置有热结构调整用的散热层。
图2为磁光盘1的圆周方向的一部分的扩大示意图。
在本实施方式的磁光盘1中存在不设置凹槽6而设置前置凹坑的区域。在图2中示出在磁光盘1上没有凹槽6的区域。
前置凹坑包括时钟凹坑、摆动凹坑、地址凹坑等,在图2中,设置有摆动凹坑7和地址凹坑8。
摆动凹坑7,以距离Tp×2的间隔设置于凹槽6间的凸纹5的延长线上。一个摆动凹坑7,为邻接的两个光道的采样伺服器所共用。通过共用一个摆动凹坑7,使得窄道距的跟踪伺服器成为可能。
地址凹坑8设置于凹槽6的延长线(图2中的虚线)之上。
图3A及3B为示出磁光盘的记录再生时的状态的概念图。
图3A示出在记录再生时的磁光盘1的剖面。光点直径(半值宽度)D的记录再生用光束9是通过基板2照射到凹槽6上。
在实施方式1中,记录再生装置(未图示)的光学规格为波长λ大约为650nm,物镜数值孔径NA=0.60。所以,此时的光点直径(半值宽度)D大约为0.57μm。波长λ=650nm在现在的记录再生光学系统中是用作主流的波长。
图3B为示出在记录再生时的磁光盘1的上视图。记录再生用光束的光点10照射到凹槽6上。
如图3A及3B所示,此处道距Tp比记录再生用光束的光点10的光点直径D小。与上述前置凹坑相比较可实现磁光盘1的道距窄化和高密度化。磁光盘1的良好道距为道距Tp=0.54μm。此道距Tp的值,是对磁光盘1的结构上的种种参数进行最优化而求得的,下面对其求得方法予以说明。
如果对本实施方式的磁光盘1的结构的最优化予以说明,在将凹槽6或凸纹5作为导槽进行跟踪伺服的推挽法中,一般采用大致Tp>1.2×D作为道距Tp。不过,在本实施方式中,因为是采用利用摆动凹坑的采样伺服法,即使是比其狭窄的道距跟踪伺服也是稳定的。
另外,在本实施方式中,由于邻接的两个光道可以共用一个摆动凹坑7,可以采用光点直径D的0.8~1倍作为图2所示的摆动凹坑7的宽度dw。这样,就可以获得高品质的采样伺服的跟踪误差信号。
但是,本实施方式采用的磁壁移动检出,如前所述,由于利用产生温度梯度的磁壁的移动,所以使由再生光束形成的温度分布适合凹槽宽度具有极为重要的意义。上述的记录再生用光点直径和凹槽宽度的关系,如图6所示,是通过实验求得的,采用温度分布作为决定该关系的参数是自不待言的。
下面对本发明的实施方式的凸纹5的退火处理予以说明。
作为现有技术,如前所述,在信息再生时,作为退火处理,以强度比信息记录时高的光束照射凸纹5使磁性变质而对邻接的凹槽6之间进行磁性分断。
图4为本实施方式的退火用光头光学系统的示意图。
退火用光头光学系统,包括半导体激光器31、分束器32、功率监视传感器33、准直器34、物镜35、磁光盘36、传感器透镜37及信号传感器38。
从半导体激光器31出射的光束,经分束器32分离,一部分透射,一部分反射。分束器32产生的反射光由功率监视传感器33受光。分束器32产生的透射光经准直器34变为平行光,聚光于物镜35上之后照射到磁光盘36的记录面上。
来自磁光盘36的反射光的一部分,由分束器32反射并由传感器透镜37聚光于信号传感器38。伺服用信号从信号传感器38输出。
由于摆动凹坑是为凹槽地址而设置的,利用采用推挽法的连续伺服,进行用于凸纹的跟踪伺服。
此处,半导体激光器31,是比记录再生用的半导体激光器短的波长的激光器。并且,另外的光学元件,是和记录再生用光头同等的结构,其波长与半导体激光器31的波长一致,而与记录再生用光头不同。
图5为示出本实施方式的对磁光盘1进行退火处理时的状况的概念图。半导体激光器31的波长,大致是λ=405nm,物镜数值孔径为NA=0.60。所以,光点直径(半值宽度)大致为D’=φ0.36μm。
于是,如图5所示,利用光束11对凸纹5进行退火处理。因为藉助利用波长比记录再生用的波长短的半导体激光器31形成的小光点进行退火处理,可以使退火处理区域的宽度很窄。
下面对道距窄化的磁光盘的凸纹5及凹槽6的宽度及道距的最优化予以说明。另外,此处各宽度是称为半值宽度的参数。
在波长大致为λ=405nm,而物镜数值孔径为NA=0.60时,为了利用推挽法得到充分的跟踪误差信号,从实验可知,凸纹的宽度dl必须为0.1μm以上。就是说,必须使dl≥0.1μm。
因此,此处,以尽可能的道距窄化为目的,使凸纹宽度dl≈0.1μm。
图6为表示磁壁移动再生时的光道宽度和抖动值的关系的曲线图。另外,作为光学参数,波长λ=650nm,物镜数值孔径(NA)为0.60。
纵轴表示抖动值σ以数据时钟的窗口宽度Tw相除的值,一般希望其数值在大约14%以下。
记录再生信息,是以(1-7)RLL调制最短标志长度为0.12μm的凸纹信号,在邻接的光道上记录信息。
如果以σ/Tw<14%的条件参照图6的曲线,可知在磁壁移动再生时,光道宽度必须为约0.37μm以上。就是说,凹槽的宽度dg必须≥0.37μm。
如前所述,因为记录再生用光束的光点直径D≈φ0.57m,可以说凹槽宽度dg必须超过记录再生用光点直径D的2/3。
另一方面,作为今后的动向,记录再生光学系统的波长在于从650nm向着405nm的方向,可以认为,在不久的将来,405nm将成为记录再生光学系统的波长的主流。所以,作为磁光盘,最好是能够对650μm和405μm两者都可以进行良好的信息再生。
根据基于矢量解析的光点形状及薄膜的光学吸收分布的解析,以及进一步,基于利用该解析结果的热扩散方程式的温度分布的解析,如果可以以波长405nm的记录再生光学系统进行再生,光点的半值宽度D≈φ0.36μm,形成的温度分布的磁光盘在半径方向上的半值宽度大约为0.5μm。凹槽宽度dg也必须小于此温度分布。
于是,为了利用波长405nm、NA=0.60的记录再生用光头进行良好的磁壁移动再生,作为凹槽宽度dg,必须使凹槽宽度dg<0.5μm左右。因为记录再生用光束的光点直径D,如前所述,必须≈φ0.57μm,可以说,凹槽宽度dg,最好是小于记录再生用光点直径D的7/8。或是,如上所述,因为凸纹宽度dl≈0.1μm,凹槽宽度dg<D-0.1μm。
根据上述,在波长650~405nm的范围内,良好的凹槽宽度dg是0.37μm<dg<0.50μm。即,2/3D<dg<7/8D。
根据上述,可知,最好是凸纹宽度dl≈0.1μm,凹槽宽度dg≈0.37~0.50μm,而作为道距Tp,最好是Tp=0.46~0.6μm。
于是,在最大时,道距Tp最好是接近记录再生用光点直径D。就是说,Tp=(0.8×D)~D。
这样一来,在本实施方式中,从道距窄化和磁壁移动再生信号品质的平衡出发,可决定最佳道距Tp=0.54μm。于是,如前所述,因为凸纹宽度dl≈0.1μm,凹槽宽度dg≈0.44μm,可以导出dl∶dg≈2∶9。
就是说,在作为本发明的对象的介质结构中,在记录再生用光点大小以下的道距中,凸纹宽度∶凹槽宽度=2∶9是合适的。
另外,因为摆动凹坑7的宽度dw,如前所述,是光点直径D的0.8~1倍,与凸纹宽度dl的约4~6倍相应。
下面对凹槽6的深度及前置凹坑的深度的最优化予以说明。
图7为示出反射光量与凹槽深度的依赖关系的曲线图。图8为示出前置凹坑信号振幅与凹坑深度的依赖关系的曲线图。
参照图7,纵轴的Ig/Io,是将在凹槽上有光点时由磁光盘反射而返回光头的光量(Ig)以没有凹槽时的光量(Io)进行归一化的值。图中,实线示出的是波长为650nm的场合,而虚线示出的是波长为405nm的场合。
由图7可知,为了在采用现在的主流的650nm作为记录再生光学系统的波长的场合和在不久的将来可能成为主流的405nm作为记录再生光学系统的波长的场合这两种情况下都能获得充分的光量,凹槽的深度最好是为约60nm以下。如果获得充分的光量,对于外围电路的噪声可以得到高S/N比,即可得到良好的磁壁移动再生信号。
另外,为了在退火处理时,利用推挽法获得伺服信号,凹槽深度最好是在λ/8附近这一点是众所周知的。
如果考虑基板的折射率约为1.6,退火处理用光束的波长为405nm,则最好是凹槽的深度在30nm附近。
但是,因为在退火处理时,最好不要向凹槽传热,所以也必须是凹凸结构。
所以,综合考虑以上所述,凹槽深度hg最好是20nm<hg<60nm。
参照图8,纵轴的Pit信号振幅,示出利用前置凹坑得到的相对信号振幅。图中,实线示出的是波长约为650nm的场合,而虚线示出的是波长约为405nm的场合。
一般,前置凹坑信号与磁光信号相比,信号电平大,S/N非常好。所以,由图8可知,为了在采用现在的主流的650nm作为记录再生光学系统的波长的场合和在不久的将来可能成为主流的405nm作为记录再生光学系统的波长的场合这两种情况下都能获得充分的前置凹坑信号振幅,前置凹坑深度hp在45nm以上较好,最好是在大约60~110nm的范围。
根据以上的参照图7及图8的说明,如图9所示,至少可以说凹槽深度hg≤前置凹坑深度hp是优选的。
在本实施方式中,采用的凹槽深度hg≈40nm、hp≈80nm。因此可以得到良好的跟踪误差信号和磁壁移动再生信号。
下面对凸纹5的斜面(凸纹斜面)的最优化予以说明。
参照图5可知凸纹5的斜面12具有宽度ds。
由于是以磁光盘1的道距窄化为目标,凸纹5的斜面12的宽度ds,为了确保光道宽度,最好是尽可能的窄。另一方面,在以像本实施方式这样的狭窄道距形成凸纹宽度也狭窄的基板时,凸纹5的斜面12的宽度ds,从实验了解到,必须为凸纹宽度dl的0.8倍以上。在凸纹5的倾斜宽度ds为凸纹宽度dl的0.8倍以上时,可以在维持良好的凸纹及凹槽结构的再现性的同时对基板成型。
于是,在本实施方式中,考虑到确保狭窄道距的凹槽6的平坦部的宽度较宽,使凸纹5的斜面的宽度ds≈80nm。利用这种基板,可以以狭窄道距得到良好的磁壁移动再生。
下面对退火处理区域14的宽度的最优化予以说明。
图10A及10B为示出退火处理区域14的宽度(退火宽度)da的概念图。
如图10A所示,在退火处理中,调整光输出使退火处理用光束光点13比凸纹5的宽度大。在本实施方式中,如图10B所示,实施退火处理以便只使凹槽6的平坦部保留。就是说,退火宽度da>凸纹宽度dl。
在本实施方式中,如前所述,因为凸纹宽度dl大约为0.1μm,退火宽度da大致在0.12~0.20μm的范围。
另外,凹槽斜面与凹槽的平坦部相比较,由于基板的表面性不佳,所以在其上成膜的凹槽斜面的磁性膜的面的表面性也不佳。因此,如果将记录标志扩展到凹槽斜面,则该处的磁壁移动将变为不规则,噪声将会漏进再生信息之中。因此,由于凸纹宽度dl≈0.1μm,凹槽斜面的宽度ds≈80nm,在本实施方式中,退火宽度da最好是da≈0.20μm。这样一来,只在平坦部上发生磁壁移动,所以在记录时,不会对邻接的光道的记录信息造成伤害,并且,在再生时,可以抑制从邻接光道漏进的信息,可以获得良好的磁壁移动再生。
下面对有关利用退火处理使物理性质性质变质的区域的研究结果予以说明。
经过退火处理的凸纹5,发生光学变化,变为反射率比凹槽6低的状态。由此,记录于凹槽上的信息可藉助磁壁移动而得到良好的再生,可以使来自邻接光道的信息漏进(串扰)降低。
此外,至少使切换层的磁性消失,切断记录保持层和磁壁移动层的交换结合,使磁壁移动层变成为面内磁化的状态。或者是,至少使磁壁移动层的垂直磁性各向异性消失,形成大致面内磁化膜。另外,使切换层的磁性消失,而且使磁壁移动层的垂直磁性各向异性消失也可以。
此时,至少在磁壁移动层中,垂直磁性各向异性常数Ku变为2πMs2以下,或是1×105erg/cc以下。此处,Ms是接近室温时的饱和磁化。
或者,此时,至少在磁壁移动层中,最好是磁壁能量大概为0.05erg/cm。
这样,可使凸纹5的磁壁移动层的垂直磁性各向异性极力减小,变成微小记录磁畴不可能稳定存在的状态。另外,与此同时,使在凸纹5中的磁壁移动层的磁壁能量减小。由此,通过使磁壁的移动难以发生可使凹槽6中的磁壁的移动平滑,良好的磁壁移动再生成为可能。
另外,其结果,通过使磁壁移动层变成面内磁化膜的状态,可使克尔(Kerr)旋转角在大约0.01以下,可以抑制来自凸纹5的磁光再生信号的漏入。
此外,最好是至少使凸纹5的磁壁移动层的剩余磁化Mr为10emu/cc。这样一来,可以排除妨碍凹槽6中的磁壁移动的磁力。
如上所述,在本实施方式中,在设置跟踪伺服用的前置凹坑的同时,可使凸纹、凹槽及前置凹坑的结构最优化。此外,通过采用波长比在凸纹部分预先记录再生用光束的波长短的光束进行照射的退火处理,可使退火处理区域的宽度变窄。并且,因为通过使凸纹上的物性变质而使在凹槽中的磁壁移动更平滑,可以确保狭窄道距中的性能。据此,可以提供可进行高密度信息记录的磁光介质。
(实施方式2)
下面介绍采用与实施方式1不同的退火处理方法的实施方式2。除了特别指出外,实施方式2的磁光盘的结构与实施方式1的相同。
图11为示出本发明的实施方式2的磁光盘的退火处理时的状况的概念图。
在实施方式2中,与示于图5的实施方式1不同,不是从基板2一侧,而是从膜面侧(从图11中的上方)对磁性层3照射退火处理用光束15。另外,此时,在必需散热层时,在退火处理后成膜。
图12为本发明的实施方式2中采用的退火用光头光学系统的示意图。图12的退火用光头光学系统只在示于图4的在实施方式1中采用的退火用光头光学系统和物镜上有差别。在应用于实施方式2中的退火用光头光学系统中,设置物镜39代替图4的物镜35。
在实施方式2中,与实施方式1一样,利用推挽法的连续伺服,进行用于跟踪地址的跟踪伺服。
如图11所示,因为从膜面侧进行的退火处理,是通过与基板2相比极薄的保护膜4进行的,容易高NA化。
因此,物镜39的数值孔径NA,比图4的物镜35的NA=0.60更大,相应于退火处理区域的宽度,从NA=0.60~0.90的范围中选择。
此处,在设置散热层的场合,在磁性层3和散热层之间设置保护层代替保护膜4,光束经过此保护层进行照射。
在物镜的数值孔径NA=0.60~0.90时,光点直径D”(半值宽度)可以从大致为D”=φ0.24~0.36μm的范围中选择。
表示本实施方式的磁光盘的结构的各个数值如下。
凸纹5的宽度dl大约为0.44μm。凹槽6的dg大约为0.10μm。凸纹斜面宽度dw=0.08μm。凹槽6的深度hg大约为0.04μm。
下面对光束从基板侧向凸纹5入射的场合和光束从膜面侧入射的场合进行比较研讨的结果予以说明。
图13A及13B为光束从基板侧向凸纹5入射时的光的吸收情况的示图,图13A是示出光吸收分布的示图,横轴表示以凸纹5的中心为0的位置V,纵轴表示相对发热量。在参照图13A和13B时,在光束从基板2一侧入射到凸纹5上时,从光束观察在凹部邻接的边缘(图13B中的黑点)处光的吸收强。另外,图13B中的箭头表示光束的入射方向。由此表示光的能量分散到凸纹5的两侧的倾向。
图14A及14B为从膜面侧向凸纹5入射光束时的光的吸收情况的示图,图14A为示出光吸收分布的示图,横轴表示以凸纹5的中心为0的位置V,纵轴表示相对发热量。在参照图14A和14B时,在光束从膜面侧入射到凸纹5上时,从光束的入射侧观察在凹部的边缘(图14B中的黑点)处光的吸收强。另外,图14B中的箭头表示光束的入射方向。由此可知光的能量封闭在凸纹5内。
从上述可知,如果光束从膜面侧入射进行退火处理,容易采用高NA。另外可知,如果光束从膜面侧入射进行退火处理,光的能量可以封闭在凸纹5之内。
就是说,可知根据光束从膜面侧入射的退火处理方法,很容易只对凸纹5进行退火处理。
因为退火用光点直径(半值宽度)小,如果考虑和退火宽度的关系,则从研讨的结果可知,在物镜的数值孔径NA=0.90时,退火用光点的直径是退火宽度的大约2倍为好。就是说,对于退火用光点直径大约为φ0.24,退火宽度大约是0.12~0.14μm为好。
图15为示出物镜数值孔径NA=0.90的退火处理时的温度分布在半径方向上的温度梯度的研讨结果的曲线图。
图15的横轴表示磁光盘半径方向上与凸纹5的中心的距离。从图15可知,在半径位置0.06μm处温度梯度最大。就是说,作为退火宽度,最好是0.12μm左右。
如果在实施方式1中的退火宽度=0.12~0.20μm,物镜的数值孔径NA最好是等于0.72~0.90。
因此,如果以这种温度分布和退火宽度进行退火处理,退火处理区域和非退火处理区域的边界陡峻,可以进行良好的抑扬处理。并且,即使是退火处理的光输出发生改变,退火处理区域宽度的变动也很小,可以进行非常良好的退火处理。
另外,即使是在退火时发生一定程度的脱离跟踪,也不会发生退火处理扩展到凹槽平坦部的问题。
由此可知,对于上述介质结构,作为实施方式2,在采用物镜的数值孔径NA等于0.90时,可以进行良好的退火处理。
如上所述,根据实施方式2,通过从膜面侧以高NA的光束进行退火处理,可以得到将光的能量封闭的效果。因此,在实施方式2中,与实施方式1相比较,可以进行稳定的退火处理,可以提供使狭窄道距高性能(即可以很好地抑制串扰、串写的影响)的磁壁移动再生成为可能的磁光盘。
(实施方式3)
下面介绍对实施方式1及2中的基板2的诸条件进行最优化的实施方式3的磁光盘。除了特别指出外,实施方式3的磁光盘的结构与实施方式1及2的相同。
表1为示出实施方式3的磁光盘的最优化的诸条件的数据表。
表1
  1   Ra(G)≤Ra(L)
  2   1 nm≤Ra(L)≤1.5nm
  3   Ra(G)≤0.6nm
  4   Ra(T)≤1nm
  5   在凹槽上不设置平坦部
  6   30nm≤r(L)≤60nm
  7   30nm≤r(G)
  8   30°≤θ(G)
  9   I(G)/I(M)≥0.95
  Ra(G):凹槽的表面粗糙度Ra(L):凸纹的表面粗糙度Ra(T):凹槽斜面的表面粗糙度r(L):凸纹边缘的曲率半径(参照图17C)r(G):凹槽边缘的曲率半径(参照图17C)θ(G):凹槽斜面的角度I(G):凹槽面的光束反射率I(M):镜面的光束反射率
凸纹5的表面粗糙度Ra(L)与退火处理条件无相关性,与进行磁壁移动动作的凹槽6的表面粗糙度Ra(G)相比较,最好是Ra(G)≤Ra(L)。根据本实施方式,因为在凹槽6内的磁壁的移动可以平滑进行的同时,可以抑制磁壁向着凸纹5的移动和抑制串扰,所以可以实现狭窄道距。
此外,对于表面粗糙度Ra(G)及表面粗糙度Ra(L),最好是Ra(G)≤0.6nm,并且1nm≤Ra(L)≤1.5nm。
凹槽6的表面粗糙度Ra(G)≤0.6nm是优选的,是已经在特开平11-191245号公报中公开的良好的磁壁移动再生的必要条件。
凸纹5的表面粗糙度Ra(L)之所以最好是1nm以上,是因为抑制凹槽6内的磁壁溢出到凸纹5。另外,作为凸纹5的表面粗糙度Ra(L)最好是1.5nm以下,这是因为可以抑制对凹槽6的记录再生信息发生影响的不需要噪声。
此外,通过使凹槽斜面的表面粗糙度Ra(T)为1nm以下,可使凹槽内的磁壁移动再生动作良好。
如上所述,凸纹5及凹槽斜面的表面粗糙度影响凹槽6的磁壁移动再生动作。
另外,凸纹5的形状也影响再生动作。
凸纹5的前端部分最好是接近圆形的形状。具体言之,如果在凸纹5上存在平坦部,就会成为对凹槽6中的磁壁移动的记录再生信号的噪声的原因。所以,如果将这一重要条件表现在凸纹5的边缘的曲率半径r(L)上,则当凸纹5的边缘的曲率半径r(L)为30nm以上时,可以获得抑制噪声的效果。另一方面,在利用推挽信号进行退火处理时,最好是凸纹5的边缘的曲率半径r(L)为60nm以下。这是因为如果凸纹5的边缘的曲率半径r(L)大于60nm时,难以得到推挽信号,就是说,难以实施跟踪伺服。
另外,如果凹槽6的边缘的曲率半径r(G)过小,则成为产生噪声的原因。具体地,凹槽6的边缘的曲率半径r(G)优选为30nm以上。
另外,在采用波长λ≈400nm、物镜数值孔径NA=0.6~0.9等的短波长且高NA的光束进行凸纹5的退火处理时,通过使凹槽6的斜面的角度为30°以上,最好为40°以上,可以采用推挽法进行跟踪伺服。另外,可以降低对凹槽6的磁壁移动再生信号(通常再生;记录再生时的光束的波长λ=650nm,物镜数值孔径NA=0.6)的噪声。
另外,凹槽6的记录再生用光束的反射率I(G),在没有凹槽6的部分(反射镜部)的反射率为I(M)时,I(G)/I(M)最好为0.95以上,可以获得良好的磁壁移动型的磁光移动再生记录信号。凹槽6的记录再生用光束的反射率I(G)可通过选择沟深(凹槽深度)和沟宽(凹槽宽度)、沟(凹槽)斜面部的角度等进行调整。
图16A及16B为示出本实施方式的磁光盘的退火处理时的特征部分的概念图。
图16A为在凸纹凹槽基板161的表面上形成磁性层等的积层薄膜162的介质的剖面概念图。
凸纹凹槽基板161,具有凸纹164和凹槽163。另外,凸纹凹槽基板161的道距169(凸纹164的宽度和凹槽163的宽度之和)比记录再生光束168的光束直径小。
图16B为在退火处理后从介质上面方向观察磁光盘的看到的图。在图16B中,示出退火部分166和非退火部分165。非退火部分165是记录信息的部分。
图17A、17B及17C为用于说明本实施方式3的磁光盘的形状的一例的说明图。
参照图17A可知,本实施方式的磁光盘,具有在聚碳酸酯基板171上形成磁性薄膜等的积层薄膜172的形状。
参照图17B可知,聚碳酸酯基板171是凸纹宽度174为0.14μm、凹槽宽度173为0.40μm、道距175为0.54μm、凹槽底部宽度176为0.36μm、沟深179为55nm的凸纹凹槽基板。
其中,凸纹5的平坦部表面的表面粗糙度Ra(L)为1.1nm、凹槽6的底面的表面粗糙度Ra(G)为0.35nm、而凹槽斜面的表面粗糙度Ra(T)为0.82nm。就是说,存在Ra(G)<Ra(L)的关系。具有这种各部的表面粗糙度的磁光盘,可以通过在原盘制作时的抗蚀剂的条件及原盘的烘烤及抛光等的调整或喷射成形的聚碳酸酯基板的热处理而形成。
如图17B所示,由于本实施方式的聚碳酸酯基板171的凸纹177的宽度极窄,前端部为圆形,平坦部几乎不存在。并且,图17C所示的凸纹177的边缘的曲率半径r(L)为45nm,凹槽178的边缘的曲率半径r(G)为40nm。此外,凹槽斜面部的角度为40°。并且,沟的反射率的测定结果为0.96。
图18为用于说明本实施方式的磁光盘的积层薄膜的形成方法的说明图。
下面参照图18对积层薄膜的形成方法予以说明。
作为积层薄膜182的形成方法,首先,在聚碳酸酯基板181上形成厚度为90nm的SiN层作为干涉层(介电质层)183。之后,形成厚度为30nm的GdFeCoAl层作为磁壁移动层184。之后,形成厚度为10nm的TbFeAl层作为切换层185。之后,形成厚度为80nm的TbFeCo层作为记录保持层186。之后,形成厚度为50nm的SiN层作为保护层(介电质层)187。之后,形成厚度为30nm的Al层作为散热层188。这些各层是利用溅射法顺序形成的。
在以上述方式形成的积层薄膜182上形成厚度为2μm的紫外线硬化树脂层作为保护覆盖层189。
之后,只对利用图18说明的方法形成的磁光盘的凸纹164进行激光退火处理。在退火处理中,利用波长比记录再生用光束的波长短的光束从基板里侧或表侧进行照射。在本实施方式的形成方法中,是设定从基板侧照射激光。此处,退火处理的激光的波长为400nm,物镜的数值孔径NA为0.65。顺便说一下,用于包含本实施方式的磁光盘本发明的磁光记录介质的记录再生用激光的波长为650nm,物镜的数值孔径NA为0.6。
另外,退火处理,在达到使作为对象的部分的磁性发生改变的程度,即该部分变成面内磁化膜就可以了。具体言之,激光的功率为4.2mW,介质的旋转相对速度为1.0m/sec左右即可。另外,图18的聚碳酸酯基板181及积层薄膜182,指的是与图16A的凸纹凹槽基板161及积层薄膜162相同的部件。
在本实施方式中,如示例所示,在利用激光从基板侧照射积层薄膜162进行退火处理时,退火部分166和非退火部分165的边界在凹槽163的边缘附近。并且,在利用激光从其相反侧照射进行退火处理时,退火部分166和非退火部分165的边界在凸纹的边缘附近。这是由于在利用激光对凸纹凹槽基板161这样的凹凸基板进行照射时,激光的能量集中于凸纹凹槽基板161的凹凸的边缘部分的现象(光封闭效果)所致。
另外,凸纹凹槽基板161的边缘位置和积层薄膜162的边缘位置,严格讲,相错一个积层薄膜的膜厚的大小。但由于积层薄膜162与凸纹凹槽基板161比较非常薄,这一错位可以忽视。
下面对本实施方式的磁光盘的实际制作进行评价。在此评价中,利用一般的磁光记录再生装置(未图示),以一般的磁场调制方式将信息记录(脉冲磁场变记录)于本实施方式的磁光盘上,利用磁壁移动再生使信息再生。
作为评价条件,激光波长为650nm,物镜的数值孔径NA为0.6。另外,记录坑长度为0.080μm。此外,相对速度为2.40m/sec。
另外,用于记录信息的光束的功率为5.0mW。用于信息再生的光束的功率为2.4mW时抖动特性最佳,最佳时的抖动σ=3.4ns。
利用上述条件,在本实施方式的磁光盘上记录信息,并且在其后的再生中看到反映出噪声降低的效果很充分,C/N=41.0dB。并且,误码率(bit error rate)为1.5×10-5。这一结果,表示在相当于记录密度15Gbit/inch2的情况下达到充分实用的水平。
根据上述,本实施方式的磁光盘,由于采用具有特征的形状及对凸纹164以短波长的激光进行退火处理的新方法,可以大幅度改善现有的在实现窄道距的磁壁移动型磁光记录介质时的问题,即串扰和串写的影响,并且可大幅度降低噪声。由此,可以说本实施方式的磁光盘是实用水平的超高密度的磁光记录介质。
另外,由于本实施方式的凸纹凹槽基板161是浅沟,利用一般的喷射成形法可以制作,制造成本与现在相比相同。
(实施方式4)
下面介绍光束从基板的相反侧照射进行退火处理的磁光盘的实施方式4。除了特别指出的场合,实施方式4的磁光盘的结构与实施方式3的磁光盘相同。
图19为示出实施方式4的磁光盘的记录再生时的状态的概念图。如图19所示,本实施方式的磁光盘具有在基板191上形成积层薄膜192的结构。
在本实施方式中,是以短波长的激光193从基板的相反侧(即积层薄膜192侧)对积层薄膜192进行照射实施退火处理。
在本实施方式中,因为是以短波长的激光193从积层薄膜192侧进行照射实施退火处理,激光的能量集中于凸纹的边缘部分,经过处理磁性层变质的部分的面积与实施方式3相比更窄。就是说,可以实现比实施方式3的磁光盘道距更窄的磁光盘。但是,实施方式4的磁光盘,在制作积层薄膜192的过程中,必须进行退火处理,与实施方式3相比制作工序复杂,制作成本略高。
在如本实施方式这样从积层薄膜侧进行激光照射时,如果在积层薄膜192中存在散热层,激光被散热层反射而不能到达磁性层。
因此,作为本实施方式的磁光盘的形成方法,在利用图18说明的形成方法中,在直到形成区域A(到达保护层187)之后,暂时将介质取出在大气中进行退火处理,然后再放入真空装置内形成区域B(散热层188和保护覆盖层189)。
作为退火处理的条件的一例,激光的波长λ为405nm、物镜的数值孔径NA为0.9,介质的旋转相对速度为3.0m/sec,激光功率为3.2mW。
在以上的条件下实际制作本实施方式的磁光盘并与实施方式3一样进行评价。在实施方式4中,抖动σ=3.6ns。另外,反映出噪声降低的效果充分,C/N=41.1dB。此外,误码率为1.0×10-5,达到充分实用的水平。
根据上述,本实施方式的磁光盘,由于采用具有特征的形状及对凸纹以短波长的激光进行退火处理的新方法,与现在相比可以大幅度改善串扰和串写的影响,并且可大幅度降低噪声。由此,可以说本实施方式的磁光盘是实用水平的超高密度的磁光记录介质。
另外,由于本实施方式的凸纹凹槽基板161是浅沟,利用一般的喷射成形法可以制作,制造成本不会那么高。
为了确认此前叙述的本发明的各实施方式的效果,下面介绍比较示例。
(比较例1)
为了和本发明的实施方式3的磁光盘进行比较,制作比较例1的磁光记录介质。
比较例1的磁光记录介质,除了在凸纹的平坦部的表面粗糙度Ra(L)与凹槽的表面粗糙度Ra(G)同为0.35nm这一点上与实施方式3不同之外,与实施方式3的磁光记录介质相同。比较例1的基板,是将激光切割抗蚀剂的原盘在150°下进行后烘烤20分钟制作的。
对比较例1的磁光记录介质进行与对实施方式3进行的评价相同的评价,抖动σ=4.8ns。并且,误码率为8.0×10-4,未达到实用的水平。此外,串扰和串写的影响大到成为实用上的问题。
据此可知,最好是像实施方式3的磁光盘那样,凸纹的表面粗糙度比凹槽的表面粗糙度大。
(比较例2)
为了和本发明的实施方式4的磁光盘进行比较,制作比较例2的磁光记录介质。
比较例2的磁光记录介质,除了在凹槽斜面的表面粗糙度Ra(T)为1.3nm这一点上与实施方式4不同之外,与实施方式4的磁光记录介质相同。比较例2的基板,是对原盘完全不进行后处理制作的。
对比较例2的磁光记录介质进行与对实施方式4进行的评价相同的评价,抖动σ=5.2ns。误码率为9.8×10-4,未达到实用的水平。此外,串扰和串写的影响不像比较例1那样显著。
据此可知,凹槽斜面的表面粗糙度过大时,磁壁移动再生的特性恶化,实用上成为问题。
根据本发明,因为对磁光记录介质的摆动凹坑的配置及退火处理条件进行了最优化,所以可以在窄道距情况下进行跟踪伺服,可以抑制来自邻接光道的信号漏入的影响,在记录信息时,不会对邻接的光道上的记录信息造成伤害,可以实现可进行稳定的磁壁移动再生的磁光记录介质。

Claims (12)

1.一种磁光记录介质,其特征在于包括:
多个记录再生用的光道;以及
采样伺服用的一对摆动凹坑,
上述摆动凹坑分别设置于互相分开的邻接的光道之间,且在邻接的光道中共用。
2.如权利要求1所述的磁光记录介质,其中该磁光记录介质是一种磁壁移动型磁光记录介质,且还包括基板、在上述基板上积层形成的磁壁移动层、切换层及记录保持层。
3.如权利要求2所述的磁光记录介质,其中在上述基板上形成凸纹及凹槽,上述凹槽用作上述记录再生用的光道,上述凹槽上的上述磁壁移动层通过退火处理使其磁化状态变质。
4.如权利要求3所述的磁光记录介质,其中在形成上述摆动凹坑的区域上不形成上述凹槽,上述摆动凹坑在上述凸纹的延长线上形成。
5.如权利要求3所述的磁光记录介质,其中上述凹槽的间隔设定为比记录或再生用的光束的光束直径小。
6.如权利要求5所述的磁光记录介质,其中上述凹槽的宽度设定为上述光束直径的2/3~7/8倍。
7.如权利要求3所述的磁光记录介质,其中上述凸纹的宽度和上述凹槽的宽度之比为2∶9。
8.如权利要求4所述的磁光记录介质,其中上述摆动凹坑的宽度为上述凸纹的宽度的4~6倍。
9.如权利要求8所述的磁光记录介质,其中上述摆动凹坑的深度比上述凹槽的深度大。
10.如权利要求3所述的磁光记录介质,其中上述凸纹的表面粗糙度大于等于上述凹槽的表面粗糙度。
11.如权利要求3所述的磁光记录介质,其中上述凸纹的前端由曲面构成。
12.如权利要求4所述的磁光记录介质,其中上述凹槽的反射率为没有形成上述凹槽的区域的反射率的0.95倍以上。
CNA028084403A 2001-04-19 2002-04-17 磁光记录介质 Pending CN1513180A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001120909 2001-04-19
JP120909/2001 2001-04-19

Publications (1)

Publication Number Publication Date
CN1513180A true CN1513180A (zh) 2004-07-14

Family

ID=18970876

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA028084403A Pending CN1513180A (zh) 2001-04-19 2002-04-17 磁光记录介质

Country Status (5)

Country Link
US (1) US20040076083A1 (zh)
EP (1) EP1408493A1 (zh)
JP (1) JPWO2002086882A1 (zh)
CN (1) CN1513180A (zh)
WO (1) WO2002086882A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103988258A (zh) * 2012-10-11 2014-08-13 松下电器产业株式会社 光信息装置、串扰降低方法、计算机、播放机以及刻录机

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004006240A1 (ja) 2002-07-04 2005-11-04 ソニー株式会社 光磁気記録媒体
JP2004133989A (ja) * 2002-10-09 2004-04-30 Canon Inc 光磁気記録媒体及びその製造方法
JP2004247016A (ja) * 2003-02-17 2004-09-02 Sony Corp 光磁気記録媒体の製造方法
JP2004355783A (ja) * 2003-05-30 2004-12-16 Sharp Corp 光情報記録媒体とその再生方法
US20050048252A1 (en) * 2003-08-26 2005-03-03 Irene Dris Substrate and storage media for data prepared therefrom
US20050046056A1 (en) * 2003-08-26 2005-03-03 Jiawen Dong Method of molding articles
JP2005216337A (ja) * 2004-01-27 2005-08-11 Canon Inc 光学的情報記録再生装置
JP4137979B2 (ja) * 2004-12-03 2008-08-20 富士通株式会社 光学的記憶媒体、光学的記憶媒体の製造方法及び光学的記憶装置
JP2008010107A (ja) * 2006-06-30 2008-01-17 Toshiba Corp 情報記録媒体、及びディスク装置
JP2008010129A (ja) * 2006-06-30 2008-01-17 Toshiba Corp 情報記録媒体、及びディスク装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035219U (zh) * 1989-06-02 1991-01-18
JP3166329B2 (ja) * 1992-08-14 2001-05-14 ソニー株式会社 サンプルサーボ装置
EP0596716B1 (en) * 1992-11-06 2002-05-15 Sharp Kabushiki Kaisha Magneto-optical recording medium and recording and reproducing method and optical head designed for the magneto-optical recording medium
EP0618572B1 (en) * 1993-04-02 2002-07-03 Canon Kabushiki Kaisha Magnetooptical recording medium on which high-density information can be recorded and method of reproducing the recorded information
JP3332458B2 (ja) * 1993-04-02 2002-10-07 キヤノン株式会社 光磁気記録媒体
JPH07240040A (ja) * 1994-02-25 1995-09-12 Pioneer Electron Corp 光ディスク
JPH08147777A (ja) * 1994-11-15 1996-06-07 Canon Inc 光学的記録媒体、記録再生方法および再生装置
JPH10106040A (ja) * 1996-09-26 1998-04-24 Canon Inc 光学的情報記録媒体および光学的情報記録再生装置
JPH11195253A (ja) * 1997-10-24 1999-07-21 Canon Inc 光磁気記録媒体
US6177175B1 (en) * 1997-10-16 2001-01-23 Canon Kabushiki Kaisha Magneto-optical medium utilizing domain wall displacement
JPH11195255A (ja) * 1997-12-26 1999-07-21 Canon Inc 光学的情報再生装置
JP3477384B2 (ja) * 1998-11-27 2003-12-10 シャープ株式会社 光磁気記録媒体
JP2001052343A (ja) * 1999-08-09 2001-02-23 Matsushita Electric Ind Co Ltd 光ディスクおよびその製造方法
EP1304692A4 (en) * 2000-06-22 2007-11-28 Matsushita Electric Ind Co Ltd OPTICAL PLATE RECORDING MEDIUM, OPTICAL PLATE DEVICE AND MASTER MANUFACTURING METHOD
JP2002203343A (ja) * 2000-10-31 2002-07-19 Matsushita Electric Ind Co Ltd 光ディスクおよびその製造方法
JP2002319197A (ja) * 2001-04-19 2002-10-31 Matsushita Electric Ind Co Ltd 光磁気記録媒体およびその製造方法
JP2002319198A (ja) * 2001-04-19 2002-10-31 Matsushita Electric Ind Co Ltd 光磁気記録媒体およびその製造方法と製造装置
JP2002319200A (ja) * 2001-04-19 2002-10-31 Matsushita Electric Ind Co Ltd 光ディスクおよびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103988258A (zh) * 2012-10-11 2014-08-13 松下电器产业株式会社 光信息装置、串扰降低方法、计算机、播放机以及刻录机
CN103988258B (zh) * 2012-10-11 2017-03-08 松下知识产权经营株式会社 光信息装置、串扰降低方法、计算机、播放机以及刻录机

Also Published As

Publication number Publication date
JPWO2002086882A1 (ja) 2004-08-12
US20040076083A1 (en) 2004-04-22
EP1408493A1 (en) 2004-04-14
WO2002086882A1 (fr) 2002-10-31

Similar Documents

Publication Publication Date Title
CN1149558C (zh) 光记录媒体及对光记录媒体的记录方法
CN1221962C (zh) 光记录介质和在其中对数据进行光记录的方法
CN1747021A (zh) 磁记录媒体的记录再生方法、记录再生装置及磁记录媒体
CN1326186A (zh) 光记录方法和光记录媒体
CN1281214A (zh) 光学信息介质和读取方法
CN1734567A (zh) 磁记录介质及其制造方法、和磁记录介质的记录再生方法
CN1922675A (zh) 磁记录介质及其制造方法和制造装置、磁记录介质的记录再现方法和记录再现装置
CN1513180A (zh) 磁光记录介质
CN1282180C (zh) 光盘记录媒体
CN1320542C (zh) 光记录介质及其制造方法以及用于溅射工艺的靶
CN1297956C (zh) 信息记录方法
CN1241177C (zh) 光记录媒体和光记录方法
CN1649009A (zh) 光记录介质
CN1463001A (zh) 光记录介质和在这种光记录介质上用光学方法记录数据的方法
CN1155959C (zh) 光盘和光盘装置
CN1294582C (zh) 相变型光记录媒体
CN1308947C (zh) 光信息记录介质
CN1494063A (zh) 磁性记录媒体、其制造方法及磁性记录再现装置
CN1922674A (zh) 磁记录介质及其制造方法、制造装置、记录再生方法及记录再生装置
CN1173337C (zh) 光记录方法
CN1615518A (zh) 记录装置
CN1692419A (zh) 磁光记录介质、信息记录/读出方法和磁记录装置
CN1957405A (zh) 多层信息记录介质、信息记录装置及信息再现装置
CN1886790A (zh) 光磁记录介质及其制造方法、光磁记录介质用基板、母模及其制造方法
CN1647183A (zh) 光记录媒体、磁光记录媒体、信息记录/再生装置、信息记录/再生方法及磁记录装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication