CN1504994A - 通过被钉扎磁性层的等离子体平滑增强的gmr磁头信号 - Google Patents

通过被钉扎磁性层的等离子体平滑增强的gmr磁头信号 Download PDF

Info

Publication number
CN1504994A
CN1504994A CNA200310114925A CN200310114925A CN1504994A CN 1504994 A CN1504994 A CN 1504994A CN A200310114925 A CNA200310114925 A CN A200310114925A CN 200310114925 A CN200310114925 A CN 200310114925A CN 1504994 A CN1504994 A CN 1504994A
Authority
CN
China
Prior art keywords
layer
magnetic head
separation layer
magnetic
pinned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200310114925A
Other languages
English (en)
Other versions
CN1315111C (zh
Inventor
李文扬
��Ī������
林灿
I
丹尼尔·莫里
亚历山大·迈克尔·泽尔特瑟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
Original Assignee
Hitachi Global Storage Technologies Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Storage Technologies Netherlands BV filed Critical Hitachi Global Storage Technologies Netherlands BV
Publication of CN1504994A publication Critical patent/CN1504994A/zh
Application granted granted Critical
Publication of CN1315111C publication Critical patent/CN1315111C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/012Recording on, or reproducing or erasing from, magnetic disks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3143Disposition of layers including additional layers for improving the electromagnetic transducing properties of the basic structure, e.g. for flux coupling, guiding or shielding
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49034Treating to affect magnetic properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49041Fabricating head structure or component thereof including measuring or testing with significant slider/housing shaping or treating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49043Depositing magnetic layer or coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49043Depositing magnetic layer or coating
    • Y10T29/49044Plural magnetic deposition layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49048Machining magnetic material [e.g., grinding, etching, polishing]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本申请涉及通过被钉扎磁性层的等离子体平滑增强的GMR磁头信号。具体地,一种具有含传感器叠层的自旋阀传感器的磁头,所述叠层包括被钉扎磁性层、形成在被钉扎磁性层上的隔离层以及形成在隔离层上的自由磁性层。在优选的实施例中,隔离层由CuOx组成。在淀积隔离层之前进行被钉扎磁性层上表面的等离子体平滑,优选的等离子体气体为氩气和氧气的混合物。

Description

通过被钉扎磁性层的等离子体 平滑增强的GMR磁头信号
技术领域
本发明总体涉及用于磁头的自旋(spin)阀传感器,特别涉及自旋阀传感器结构的钉扎磁性层表面的等离子体平滑。
背景技术
用于硬盘驱动器的磁头通常具有读取头部分,读取头部分包括用于从硬盘驱动器的磁盘读取数据的磁阻(MR)自旋阀传感器结构。正如本领域中的技术人员公知的,这种MR传感器结构包括设置在限定读取间隙的两个磁屏蔽之间的多个薄膜层。薄膜层具有独特的磁性质,并且对硬盘上的数据位的磁场敏感。
典型的MR自旋阀传感器的薄膜层包括至少一个反铁磁层、至少一个被钉扎的磁性层、隔离层以及至少一个自由磁性层。当自由磁性层的磁场方向平行于被钉扎的磁性层的磁场方向时,MR传感器的电阻R最低。当读取数据时,硬盘的磁数据位使自由磁性层的磁场方向改变,因此传感器的电阻增加。电阻的这种改变(ΔR)影响了穿过传感器的电流,由此被检测为数据信号。
需要开发出厚度减小的MR传感器,同时保持或者甚至增加ΔR值。在金属MR传感器层,特别是隔离层制得较薄时,较薄层的电阻增加,会有较少的分流电流穿过这些层并远离自由磁性层。这导致传感器电阻R和ΔR增加,提高了磁头性能。自旋阀传感器性能中另一重要参数是被钉扎的磁性层和自由磁性层之间的磁耦合场强度,保持所述耦合场强度以保持自旋阀性能很重要。
在现有技术中采用了许多不同材料和制造步骤以尝试增加MR传感器的ΔR。本发明涉及利用表面平滑的被钉扎磁性层制造MR自旋阀传感器。这允许使用较薄的隔离层,由此导致传感器的电阻R增加,并且ΔR更大,从而形成更强的读取头信号。
在现有的K.Tsunekawa,D.Nakagima和N.Watanabe在2001年11月12-16日于美国华盛顿州西雅图的46th Annual Conference onMagnetism and Magnetic Materials发表的论文BD-04(题目为“Effect of Plasma Treatment on the GMR Properties of PtMnBased Synthetic Spin Valve”)的摘要中介绍了有关GMR自旋阀传感器,可以利用低电压氩等离子体平滑被钉扎的磁性层表面。然后淀积铜隔离层和自由磁性层。所得GMR传感器显示信号强度增加。
本发明对所述现有技术的改进之处在于利用了由氩气和氧气组成的改进的等离子体,并且采用了在被钉扎和自由磁性层之间具有CuOx隔离层的MR头。
发明内容
本发明的磁头包括具有传感器叠层的自旋阀传感器,传感器叠层包括被钉扎的磁性层、形成在被钉扎的磁性层上的隔离层以及形成在隔离层上的自由磁性层。在优选的实施例中,隔离层由CuOx组成。通过在淀积隔离层之前等离子体平滑被钉扎的磁性层的上表面改善了自旋阀传感器的性能。被钉扎磁性层的等离子体平滑具有增加被钉扎和自由磁性层之间磁场耦合场强度的负性(negativity)的效果,因而隔离层可以制得较薄,以将耦合场强度调节到需要的值。隔离层的厚度减小造成传感器电阻增加和传感器信号幅度增加。在优选的实施例中,CuOx隔离层的厚度由约20减小到16。
本发明的磁头的一个优点是它包括了传感器隔离层厚度减小的磁阻传感器。
本发明的磁头的另一个优点是它包括传感器隔离层厚度减小,并且传感器信号幅度增加的磁阻传感器。
本发明的磁头的另一个优点是它包括设置在具有平滑表面的被钉扎磁性层上的CuOx隔离层。
本发明的磁头的另一个优点是它包括层叠的被钉扎磁性层,层叠的被钉扎磁性层具有用等离子体平滑的上表面,减小厚度的CuOx隔离层设置其上,造成传感器信号幅度增加。
本发明的硬盘驱动器的一个优点为它包括本发明的含传感器隔离层厚度减小的磁阻传感器的磁头。
本发明的硬盘驱动器的另一个优点为它包括本发明的磁头,磁头具有传感器隔离层厚度减小并且传感器信号幅度增加的磁阻传感器。
本发明的硬盘驱动器的另一个优点为它包括含设置在具有平滑表面的被钉扎磁性层上的CuOx隔离层的本发明磁头。
本发明的硬盘驱动器的另一个优点为它包括含层叠的被钉扎磁性层的本发明磁头,层叠的被钉扎磁性层具有等离子体平滑的上表面,减小厚度的CuOx隔离层设置其上,造成传感器信号幅度增加。
本发明的磁头制造方法的一个优点为它包括具有等离子体平滑的上表面的被钉扎磁性层和减小厚度的CuOx隔离层,由此增加了传感器的信号幅度。
从下面参考附图的优选实施例的详细说明中,本发明的以上和其它目的、特点及优点将变得很显然。
附图说明
下面的附图没有按器件的实际比例,提供附图仅为了说明这里介绍的本发明。
图1总体示出了包括本发明磁头的硬盘驱动器的俯视图;
图2示出了典型的现有技术的磁头的自旋阀读取头部分的侧剖面图;
图3示出了可在本发明的自旋阀传感器结构的第一实施例的制造中采用的典型的薄膜层的侧视剖面图;
图4示出了本发明的磁头的氩气和氧气等离子体平滑的被钉扎磁性层的性能特性曲线;以及
图5示出了本发明的磁头的性能数据的曲线图。
具体实施方式
图1示出了包括本发明磁头的硬盘驱动器的主要部件的俯视图。硬盘驱动器10包括可旋转地安装在电动轴14上的磁介质硬盘12。致动器臂16枢轴地安装在具有本发明的磁头20的硬盘驱动器10内,本发明的磁头20设置在致动器臂16的末端22。典型的硬盘驱动器10可包括可旋转地安装在轴14上的多个磁盘12和具有安装在致动器臂的末端22上的一个或多个磁头20的致动器臂16。正如本领域中的技术人员所公知的,当硬盘驱动器10工作时,硬盘12绕轴14旋转,磁头20作为适合于在旋转盘表面上浮起的气浮浮动块。浮动块包括基底,在其上制备有形成磁头的各种层和结构。在晶片衬底上大量制造这种头,并随后切割成分立的磁头20。
典型的现有技术的磁头制成包括从硬盘读取数据的读取头部分以及用于写入硬盘的写入头部分,图2概括示出了磁头的现有技术的读取头自旋阀部分,将作为介绍本发明的新颖读取头结构的起始点。如图2所示,自旋阀30包括在基底42的表面38上制造的第一磁屏蔽层(S1)34。第一绝缘层(G1)44制备在S1屏蔽层34上,然后在G1层44上制备多个自旋阀传感器层50。下面详细介绍传感器层50,并讨论本发明的新颖传感器层。使用光刻和蚀刻技术,除去部分传感器层留下图2中所示的中心部分50。此后,在传感器层50之后制备硬偏置元件54,电引线60制备在硬偏置元件54上,第二电绝缘层(G2)64淀积在器件上,之后制备第二磁屏蔽层(S2)68,随后制备写入头部分(总体示为72)以完成磁头制备工序。
本发明涉及包括自旋阀的传感器叠层50的特定层的改进,对比如可用做图1的磁头20中的本发明的改进传感器80的磁阻(MR)自旋阀传感器的更详细描述示出在图3中。如图3所示,通常由Al2O3组成的G1绝缘层44制备在通常由NiFe组成的S1屏蔽层34上。之后制造自旋阀层结构90,这是从可由AlOx子层、NiFeCr子层以及NiFe子层组成的第二籽晶层84开始。淀积籽晶层之后,  自旋阀层结构90中的传感器层序列包括PtMn反铁磁层94、CoFe/Ru/CoFe层叠的被钉扎磁性层98、CuOx隔离层102、CoFe/NiFe自由磁性层106以及Ta帽盖层110,各层的通常厚度列在图3中。
这里所述的磁阻自旋阀这样工作:当传感器暴露到数据位的磁场时,通过自旋阀传感器内的电阻变化检测写在硬盘上的磁数据位。具体地,通过数据位的磁场改变自由磁性层场的磁场取向,自由层磁场的取向变化使传感器的电阻R变化。当自由层磁场的取向平行于被钉扎层磁场时,传感器的电阻最低(Rmin),当自由层磁场不是平行于被钉扎层磁场方向取向时,传感器的电阻增加。电阻的这种变化R-Rmin通常表示为ΔR。重要的是,传感器的电阻R主要由隔离层的电阻决定,通常较薄的隔离层通常具有较高的电阻R,通常导致较高的ΔR值,假如磁阻系数ΔR/R保持不变的话。自旋阀特性中的另一重要参数为被钉扎磁性层和自由磁性层之间的磁耦合场的强度。该磁耦合场保持在需要的范围内,以提高良好的SV性能,这在下面更详细地介绍。
因此,本发明的自旋阀传感器的性能目标是增加电阻R和ΔR,同时将磁耦合场保持在需要范围内,并且不负面地影响其它的传感器能,例如ΔR/R和矫顽磁力。从下面的介绍中可以看出,被钉扎磁性层上表面平滑度的改进提高了自旋阀传感器的性能。
参考图3,本发明关注的是被钉扎磁性层98的上表面120。具体地,在表面120平滑的地方,被钉扎和自由磁性层之间的磁性耦合变得更负。然后,为了将磁耦合值回到初始的、更希望的值,可以减小隔离层102的厚度。最后,由于隔离层厚度减小,隔离层(因此传感器)的电阻增加,这也增加了ΔR(ΔR/R保持不变),由此增加了传感器信号的信号幅度。因此,应该理解被钉扎磁性层98的表面的平滑导致隔离层102更薄并且提高了传感器特性。
平滑具有铜隔离层的GMR自旋阀传感器的被钉扎磁性层表面的效果已被其它人报道,参见K.Tsunekawa,D.Nakagima和N.Watanabe在2001年11月12-16日在美国华盛顿西雅图的46thAnnual Conference on Magnetism and Magnetic Materials上发表的论文BD-04(题目为“Effect of Plasma Treatment on the GMRProperties of PtMn Based Synthetic Spin Valve”)。在该现有的被钉扎层平滑工艺中使用了低电压氩等离子体,之后Cu隔离层淀积在氩等离子体平滑的表面上。
在本发明的优选实施例中,如图3所示,在传感器结构90中使用CuOx隔离层,在淀积隔离层之前使用氩气加氧气的等离子体加工气体进行被钉扎磁性层的表面平滑。本领域中的技术人员应该理解,在多室制造装置中进行磁头传感器的制造工艺,在多室制造装置中,一个或多个晶片设置在硅片夹上,硅片夹可移动到形成各种层和进行处理的多个室内。参考本发明,硅片夹移动到依次淀积各种传感器膜层的相继的室内,所述膜层包括S1屏蔽、G1绝缘层、籽晶层、反铁磁层以及被钉扎的磁性层。淀积被钉扎的磁性层之后,将等离子体处理气体引入到处理室内并将低偏置电压施加到夹盘。进行等离子体轰击很短的时间,在此期间,被钉扎的磁性层表面暴露到等离子体,实现了表面的平滑。
对于本发明的表面平滑工艺,具有其上淀积有被钉扎磁性层的晶片的硅片夹设置在工艺室中,压力为约1×10-3乇到约3×10-3乇。以约50sccm的流速引入氩气和氧气等离子体气体混合物,气体混合物由约49.5sccm的纯氩气和0.5sccm的80%氩气加20%的氧气混合物组成。这与约2×10-6乇的氧气分压相关。现已发现从0.5×10-6乇到约6×10-6乇的氧气分压提供了优异的表面平滑结果。从约25到约70伏并优选从30到60伏的硅片夹偏置电压用于支持等离子体,其中等离子体起弧电压(striking voltage)约25伏。从约15到约60秒的表面平滑等离子体暴露时间足以获得本发明的表面平滑效果。本领域中的技术人员应该理解,表面平滑暴露时间为偏置电压和等离子体组分之类的参数的函数。
等离子体表面平滑步骤之后,硅片夹移动到隔离层淀积室,接着CuOx隔离层102淀积在被钉扎的磁性层98的平滑表面120上。CuOx每秒淀积约1厚,由此在本发明中使用约16到20秒的淀积时间以得到约16到20厚度的CuOx,优选的CuOx厚度约17。此后,依次淀积自由磁性层和帽盖层(cap layer)。
与现有技术的Cu隔离层相比,CuOx隔离层的电阻增加。此外,CuOx隔离层的性质导致被钉扎和自由磁性层之间的负磁耦合场。该耦合场的强度为重要的传感器参数,影响自由磁性层的磁场旋转,从而影响传感器的性能。耦合场的强度受被钉扎和自由磁性层之间隔离层的厚度影响,如下面详细所述,本发明的一个重要特征是将耦合场强度保持在需要的范围内,从而减小了隔离层的厚度。
因此应该理解对耦合场强度的主要影响因素在于被钉扎层隔离层界面的毫微级粗糙度(nano scale roughness),如图4所示,粗糙度的降低导致对于给定隔离层厚度耦合场减小或者相反允许减小隔离层厚度同时保持给定的耦合场。隔离层厚度减小有两个益处,随着隔离层变薄,传感器的ΔR/R增加,同时传感器的电阻R变大。ΔR/R与R的乘积为ΔR,对于预测读取头中的信号幅度来说是一个优良的品质因素(figure of merit)。如图5所示和下面讨论的,通过减小被钉扎层的表面粗糙度改进了该品质因数,从而改善了磁头信号。
图4示出了通过GMR隔离层的耦合场强度Hf与隔离层厚度的函数关系。此时隔离层为掺氧的Cu,其中已知包含在Cu中的氧有助于减小耦合场。方形符号中的数据显示了有CuO隔离层成分的正常淀积的传感器层叠层的耦合场。菱形符号中的数据示出了由于仅使用氩气进行等离子体平滑而减小的耦合场。最后三角形符号中的数据表示使用氩气加氧气等离子体时进一步减小的耦合场。因此可以看出不使用等离子体平滑时(方形符号)可以用约19的CuOx隔离层厚度获得-5到-15Oe的耦合场强度,用氩等离子体平滑时(钻石符号)可以用约18的CuOx隔离层厚度获得-5到-15Oe的耦合场强度。使用氩气加氧气等离子体(三角形符号)和-5到-15Oe的耦合场强度的CuOx隔离层的本发明的优选等离子体平滑得到约17的隔离层厚度。从这些曲线中可以看出显然这些等离子体处理显著扩大了负耦合(negative coupling)的工艺窗口(process window)。由此,可以使用等离子体平滑减小隔离层厚度同时保持固定的耦合场值。
图5示出了品质因素(ΔR,等于ΔR/R倍的表面电阻(R))如何随CuOx隔离层厚度变化。方形符号中的数据示出了具有CuO隔离层成分的普通淀积传感器层叠层的ΔR值。菱形符号中的数据表示由于仅使用氩气等离子体平滑得到的ΔR值。最后三角形符号中的数据示出了使用氩气加氧气等离子体时的ΔR值。因此可以看出随着CuO隔离层厚度减小ΔR总体上增加。由此,本发明能淀积较薄的隔离层,由此增加了ΔR,提高了GMR传感器性能。
相对于以上介绍的现有技术,本发明的自旋阀传感器的改进之处在于利用包括氩气和氧气的等离子体气体混合物进行被钉扎磁性层表面的平滑,还在于隔离层由CuOx组成而不是Cu。每个所述变化都是对现有技术的改进,当在本发明的优选实施例中组合在一起时,产生了进一步改进的器件。
虽然参考一些优选实施例示出和介绍了本发明,应该理解本领域中的技术人员毫无疑问可以对其中的形式和细节进行某些修改和变化。因此下面的权利要求书覆盖了包括本发明的实际精神和范围的所有这种修改和变化。

Claims (28)

1.一种包括自旋阈传感器的磁头,包括:
被钉扎磁性层、形成在所述被钉扎磁性层上的隔离层以及形成在所述隔离层上的自由磁性层;
其中所述被钉扎磁性层形成有由氩气加氧气等离子体平滑的上表面,所述隔离层设置在所述被钉扎磁性层的所述平滑的上表面上。
2.根据权利要求1的磁头,其中所述隔离层由Cu组成。
3.根据权利要求1的磁头,其中所述隔离层由CuOx组成。
4.根据权利要求3的磁头,其中所述被钉扎磁性层由CoFe组成。
5.根据权利要求3的磁头,其中所述自由磁性层由NiFe组成。
6.根据权利要求3的磁头,其中所述被钉扎磁性层由包括CoFe、Ru和CoFe层的层叠结构组成。
7.根据权利要求3的磁头,其中所述自由磁性层由包括CoFe和NiFe层的层叠结构组成。
8.一种包括自旋阀传感器的磁头,包括:
在基底上构造的磁屏蔽层(S1);
在所述S1层上构造的第一电绝缘层(G1);
设置在所述G1层上的自旋阀传感器结构;
其中所述自旋阀传感器结构包括在所述G1层上构造的籽晶层,设置在所述籽晶层上的反铁磁层,设置在所述反铁磁层上的被钉扎磁性层,设置在所述被钉扎磁性层上的隔离层,以及设置在所述隔离层上的自由磁性层;以及
其中所述被钉扎磁性层形成有等离子体平滑的上表面,并且所述隔离层由CuOx组成。
9.根据权利要求8的磁头,其中存在跨越所述隔离层的磁耦合场,具有从约-5到-15Oe的耦合场强度,所述隔离层形成有约16到约20的厚度。
10.根据权利要求9的磁头,其中所述耦合场强度为约-10Oe,所述隔离层厚度约17。
11.根据权利要求9的磁头,其中所述被钉扎磁性层由CoFe组成。
12.根据权利要求9的磁头,其中所述自由磁性层由NiFe组成。
13.根据权利要求9的磁头,其中所述被钉扎磁性层由包括CoFe、Ru和CoFe层的层叠结构组成。
14.根据权利要求9的磁头,其中所述自由磁性层由包括CoFe和NiFe层的层叠结构组成。
15.一种硬盘驱动器,包括含自旋阀传感器的磁头,所述磁头包括:
在基底上构造的磁屏蔽层(S1);
在所述S1层上构造的第一电绝缘层(G1);
设置在所述G1层上的自旋阀传感器结构;
其中所述自旋阀传感器结构包括在所述G1层上构造的籽晶层,设置在所述籽晶层上的反铁磁层,设置在所述反铁磁层上被钉扎磁性层,设置在所述被钉扎磁性层上的隔离层,以及设置在所述隔离层上的自由磁性层;
其中所述被钉扎磁性层形成有等离子体平滑的上表面,并且所述隔离层由CuOx组成。
16.根据权利要求15的包括磁头的硬盘驱动器,其中存在跨越所述隔离层的磁耦合场,具有从约-5到-15Oe的耦合场强度,所述隔离层形成有约16到约20的厚度。
17.根据权利要求16的包括磁头的硬盘驱动器,其中所述耦合场强度约-10Oe,所述隔离层厚度约17。
18.根据权利要求15的包括磁头的硬盘驱动器,其中所述被钉扎磁性层由CoFe组成。
19.根据权利要求15的包括磁头的硬盘驱动器,其中所述自由磁性层由NiFe组成。
20.根据权利要求15的包括磁头的硬盘驱动器,所述被钉扎磁性层由包括CoFe、Ru和CoFe层的层叠结构组成。
21.根据权利要求15的包括磁头的硬盘驱动器,其中所述自由磁性层由包括CoFe和NiFe层的层叠结构组成。
22.一种包括读取传感器的磁头的构造方法,包括以下步骤:
淀积被钉扎磁性层;
用氩气加氧气等离子体平滑所述被钉扎磁性层的上表面;
在所述被钉扎磁性层的所述上表面上淀积隔离层;
在所述隔离层上淀积自由磁性层。
23.根据权利要求22所述的磁头的构造方法,其中所述氩气加氧气等离子体包括浓度从约0.05%到约0.6%的氧气。
24.根据权利要求22所述的磁头的构造方法,其中所述氩气加氧气等离子体使用约1×10-3乇到约3×10-3乇的压力,氧气的分压从约0.5×10-6乇到约6×10-6乇。
25.根据权利要求24所述的磁头的构造方法,其中所述隔离层形成有从约16到约20的厚度。
26.根据权利要求22所述的磁头的构造方法,其中存在跨越所述隔离层的磁耦合场,具有从约-5到-15Oe的耦合场强度,所述隔离层形成有约16到约20的厚度。
27.根据权利要求26所述的磁头的构造方法,其中所述氩气加氧气等离子体使用约1×10-3乇到约3×10-3乇的压力,氧气的分压从约0.5×10-6乇到约6×10-6乇。
28.根据权利要求27所述的磁头的构造方法,其中所述隔离层形成有从约16到约20的厚度。
CNB2003101149250A 2002-11-13 2003-11-13 通过被钉扎磁性层的等离子体平滑增强的gmr磁头信号 Expired - Fee Related CN1315111C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/294,109 US6937448B2 (en) 2002-11-13 2002-11-13 Spin valve having copper oxide spacer layer with specified coupling field strength between multi-layer free and pinned layer structures
US10/294,109 2002-11-13

Publications (2)

Publication Number Publication Date
CN1504994A true CN1504994A (zh) 2004-06-16
CN1315111C CN1315111C (zh) 2007-05-09

Family

ID=32229776

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003101149250A Expired - Fee Related CN1315111C (zh) 2002-11-13 2003-11-13 通过被钉扎磁性层的等离子体平滑增强的gmr磁头信号

Country Status (3)

Country Link
US (2) US6937448B2 (zh)
JP (1) JP2004164837A (zh)
CN (1) CN1315111C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074266A (zh) * 2010-12-17 2011-05-25 电子科技大学 一种稳定剩磁态的自旋阀存储单元

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060042930A1 (en) * 2004-08-26 2006-03-02 Daniele Mauri Method for reactive sputter deposition of a magnesium oxide (MgO) tunnel barrier in a magnetic tunnel junction
US20060042929A1 (en) * 2004-08-26 2006-03-02 Daniele Mauri Method for reactive sputter deposition of an ultra-thin metal oxide film
WO2006073127A1 (ja) * 2005-01-05 2006-07-13 Ulvac, Inc. 磁性多層膜の製造方法
US7918014B2 (en) * 2005-07-13 2011-04-05 Headway Technologies, Inc. Method of manufacturing a CPP structure with enhanced GMR ratio
US7524381B2 (en) * 2005-12-22 2009-04-28 Hitachi Global Storage Technologies Netherlands B.V. Method for controlling magnetostriction in a free layer of a magnetoresistive sensor
US8094421B2 (en) * 2007-12-26 2012-01-10 Hitachi Global Storage Technologies Netherlands, B.V. Current-perpendicular-to-plane (CPP) read sensor with multiple reference layers
US8381391B2 (en) 2009-06-26 2013-02-26 Western Digital (Fremont), Llc Method for providing a magnetic recording transducer
US10312433B2 (en) * 2012-04-06 2019-06-04 Taiwan Semiconductor Manufacturing Company, Ltd Reduction of capping layer resistance area product for magnetic device applications
US9159353B2 (en) * 2012-05-16 2015-10-13 HGST Netherlands B.V. Plasma polish for magnetic recording media
US8984740B1 (en) 2012-11-30 2015-03-24 Western Digital (Fremont), Llc Process for providing a magnetic recording transducer having a smooth magnetic seed layer
JP6039697B2 (ja) 2013-02-04 2016-12-07 アルプス電気株式会社 巨大磁気抵抗効果素子およびそれを用いた電流センサ
US9940963B1 (en) 2016-11-17 2018-04-10 Western Digital Technologies, Inc. Magnetic media with atom implanted magnetic layer

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4495242A (en) * 1981-04-02 1985-01-22 Fuji Photo Film Co., Ltd. Magnetic recording medium
JPS59203238A (ja) * 1983-04-30 1984-11-17 Tdk Corp 磁気記録媒体の製造方法
US4575475A (en) * 1983-07-12 1986-03-11 Tdk Corporation Magnetic recording medium
JPH0610856B2 (ja) * 1984-08-04 1994-02-09 ティーディーケイ株式会社 磁気記録媒体
JPH076072B2 (ja) * 1986-08-08 1995-01-25 日本ペイント株式会社 フエライト膜の形成方法
JP3661949B2 (ja) * 1994-03-11 2005-06-22 富士写真フイルム株式会社 磁気記録媒体
DE69727261T2 (de) * 1996-06-17 2004-10-14 Sharp K.K. Element mit magnetoresistivem Effekt, sein Herstellungsverfahren und Magnetkopf daraus
US6175477B1 (en) * 1997-12-05 2001-01-16 International Business Machines Corporation Spin valve sensor with nonmagnetic oxide seed layer
JPH11296823A (ja) * 1998-04-09 1999-10-29 Nec Corp 磁気抵抗効果素子およびその製造方法、ならびに磁気抵抗効果センサ,磁気記録システム
US6738236B1 (en) * 1998-05-07 2004-05-18 Seagate Technology Llc Spin valve/GMR sensor using synthetic antiferromagnetic layer pinned by Mn-alloy having a high blocking temperature
US6063244A (en) * 1998-05-21 2000-05-16 International Business Machines Corporation Dual chamber ion beam sputter deposition system
JP3234814B2 (ja) 1998-06-30 2001-12-04 株式会社東芝 磁気抵抗効果素子、磁気ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
US6219212B1 (en) * 1998-09-08 2001-04-17 International Business Machines Corporation Magnetic tunnel junction head structure with insulating antiferromagnetic layer
US6108177A (en) * 1998-11-19 2000-08-22 International Business Machines Corporation Tunnel junction structure with FeX ferromagnetic layers
JP3833850B2 (ja) 1999-06-04 2006-10-18 富士通株式会社 磁気センサーとその製造方法および磁気記録装置
US6226159B1 (en) * 1999-06-25 2001-05-01 International Business Machines Corporation Multilayered pinned layer of cobalt based films separated by a nickel base film for improved coupling field and GMR for spin valve sensors
US6398924B1 (en) * 1999-06-29 2002-06-04 International Business Machines Corporation Spin valve sensor with improved pinning field between nickel oxide (NiO) pinning layer and pinned layer
US6613240B2 (en) * 1999-12-06 2003-09-02 Epion Corporation Method and apparatus for smoothing thin conductive films by gas cluster ion beam
US6396669B1 (en) * 2000-02-08 2002-05-28 International Business Machines Corporation AP pinned PtMn spin valve read head biased for playback symmetry and magnetic stability
JP2001229511A (ja) 2000-02-10 2001-08-24 Fujitsu Ltd 磁気抵抗効果膜、磁気抵抗効果型ヘッド、情報再生装置、および磁気抵抗効果膜製造方法
JP2001308413A (ja) 2000-02-18 2001-11-02 Sony Corp 磁気抵抗効果薄膜、磁気抵抗効果素子及び磁気抵抗効果型磁気ヘッド
TW495745B (en) 2000-03-09 2002-07-21 Koninkl Philips Electronics Nv Magnetic field element having a biasing magnetic layer structure
US6353318B1 (en) * 2000-03-10 2002-03-05 Read-Rite Corporation Magnetoresistive sensor having hard biased current perpendicular to the plane sensor
US6306266B1 (en) * 2000-05-17 2001-10-23 International Business Machines Corporation Method of making a top spin valve sensor with an in-situ formed seed layer structure for improving sensor performance
JP2001358381A (ja) * 2000-06-14 2001-12-26 Fujitsu Ltd 磁気抵抗効果膜、磁気抵抗効果型ヘッド、および情報再生装置
JP2002117508A (ja) 2000-10-06 2002-04-19 Hitachi Ltd 磁気ヘッドおよびその製造方法
JP2002150511A (ja) * 2000-11-06 2002-05-24 Fujitsu Ltd スピンバルブ磁気抵抗素子及びこれを用いる磁気ヘッド
US6954342B2 (en) * 2001-04-30 2005-10-11 Hitachi Global Storage Technologies Netherlands B.V. Underlayer for high amplitude spin valve sensors
US6709767B2 (en) * 2001-07-31 2004-03-23 Hitachi Global Storage Technologies Netherlands B.V. In-situ oxidized films for use as cap and gap layers in a spin-valve sensor and methods of manufacture
US6600638B2 (en) * 2001-09-17 2003-07-29 International Business Machines Corporation Corrosion resistive GMR and MTJ sensors
US6731477B2 (en) * 2001-09-20 2004-05-04 Hitachi Global Storage Technologies Netherlands B.V. Current-perpendicular-to-plane spin-valve sensor with metallic oxide barrier layer and method of fabrication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074266A (zh) * 2010-12-17 2011-05-25 电子科技大学 一种稳定剩磁态的自旋阀存储单元

Also Published As

Publication number Publication date
US7650684B2 (en) 2010-01-26
JP2004164837A (ja) 2004-06-10
CN1315111C (zh) 2007-05-09
US6937448B2 (en) 2005-08-30
US20040090717A1 (en) 2004-05-13
US20040264070A1 (en) 2004-12-30

Similar Documents

Publication Publication Date Title
CN1315111C (zh) 通过被钉扎磁性层的等离子体平滑增强的gmr磁头信号
US6841395B2 (en) Method of forming a barrier layer of a tunneling magnetoresistive sensor
US7751156B2 (en) Dual-layer free layer in a tunneling magnetoresistance (TMR) element
CN1237511C (zh) 带有低本征单轴各向异性自由层的巨磁致电阻传感器
US6778363B2 (en) Magnetoresistive head having longitudinal biasing by providing undirectional magnetic anisotropy
CN100390859C (zh) 自旋阀及其制造方法
CN1179424C (zh) 具有增大磁阻的铁磁隧道结
US20070297090A1 (en) Magnetic read head with reduced shunting
US6943041B2 (en) Magnetoresistive element and method for producing the same, as well as magnetic head, magnetic memory and magnetic recording device using the same
CN1740376A (zh) 超薄金属氧化物膜的反应溅射沉积方法
US7535683B2 (en) Magnetoresistive head with improved in-stack longitudinal biasing layers
US7075121B2 (en) Magnetic tunneling junction element having thin composite oxide film
US20080261082A1 (en) Tunneling magnetoresistive element including multilayer free magnetic layer having inserted nonmagnetic metal sublayer
CN1725301A (zh) 磁阻磁头及其制造方法
US8081402B2 (en) Magnetoresistive head having a current screen layer for confining current therein and method of manufacture thereof
CN1173335C (zh) 磁性传感器
US7092219B2 (en) Method for fabricating seed layer for spin valve sensor for magnetic heads for hard disk drives
US7149062B2 (en) Spin valve structure with Si seed layer and reduced PtMn antiferromagnetic layer thickness
JP2002171011A (ja) 磁気抵抗効果素子及びその製造方法並びに磁気抵抗効果センサ
JPH11168250A (ja) 磁気抵抗効果素子、磁気抵抗効果型ヘッドおよび磁気抵抗効果素子の製造方法
CN1510701A (zh) 一种铁磁/锰系反铁磁多层膜钉扎材料及其制备方法
EP1439527A2 (en) Enhanced spin-valve sensor with engineered overlayer
JPH08315324A (ja) 磁気抵抗効果型磁気ヘッド及びその製造方法
JP2004207366A (ja) Cpp磁気抵抗効果素子及びその製造方法、cpp磁気抵抗効果素子を備えた磁気記憶装置
CN1815769A (zh) 使用TiN作为盖帽层的磁致电阻器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070509

Termination date: 20091214