CN1459149A - 传输功率控制电路 - Google Patents

传输功率控制电路 Download PDF

Info

Publication number
CN1459149A
CN1459149A CN01815693.2A CN01815693A CN1459149A CN 1459149 A CN1459149 A CN 1459149A CN 01815693 A CN01815693 A CN 01815693A CN 1459149 A CN1459149 A CN 1459149A
Authority
CN
China
Prior art keywords
control
detecting circuit
feedback rates
put power
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN01815693.2A
Other languages
English (en)
Inventor
铃木宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN1459149A publication Critical patent/CN1459149A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • H03G3/3047Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers for intermittent signals, e.g. burst signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0416Circuits with power amplifiers having gain or transmission power control

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)

Abstract

本发明的传输功率控制电路中,可变增益放大器(1)以与来自功率控制部(110)的控制电压Vc对应的增益放大传输波。传输波的传输功率(POUT)在检波电路(3)的可测定范围内时,功率控制部(110)将控制电压反馈率(K`)设定成0,负反馈检波电压(VDET),执行闭环控制,使传输功率POUT接近指定电平。另一方面,传输功率(POUT)在检波电路(3)的可测定范围外时,功率控制部(110)将检波电压反馈率(K)设定成0,通过基于基准电压VREF的开环控制,生成控制电压(Vc)。

Description

传输功率控制电路
技术领域
本发明涉及传输功率控制电路,具体地说,涉及采用检波器控制传输波的传输功率的传输功率控制电路。
背景技术
以前,便携电话等的无线终端装置中,一般形成这样的结构,即执行采用检波器进行的反馈控制,控制传输波输出的传输功率的结构。
参照图24,传统技术的传输功率控制电路10包括:可变增益放大器1;分配器2;检波电路3;基准电压发生电路4;功率控制部5。
可变增益放大器1以提供的控制电压Vc相应的增益放大传输信号,生成传输波输出。分配器2取出传输波输出的传输功率POUT的一部分。检波电路3对由分配器2获得的传输功率的一部分检波,生成与传输功率POUT对应的检波电压VDET。即,检波电压VDET根据传输功率POUT变化。
基准电压发生电路4生成与传输功率POUT的指定电平对应的基准电压VREF。功率控制部5根据检波电路3的检波电压VDET与检波电压反馈率K0相乘获得的负反馈电压K0·VDET以及来自基准电压发生电路4的VREF,基于下式(1),生成控制电压Vc。
Vc=VREF-K0VDET(1)
这样,用分配器2及检波电路3检出传输波输出的传输功率POUT的一部分,通过负反馈,可以执行闭环控制,使得传输功率POUT和传输功率指定值PCMD一致。
具体地说,传输功率POUT比指定电平大时,检波电压VDET变高,相应地,功率控制部5输出的控制电压Vc变低。结果,使可变增益放大器1的增益设定为小,可使传输功率POUT变小。相反,传输功率POUT比指定电平小时,检波电压VDET变低,相应地,将控制电压Vc设定为高,可使传输功率POUT变大。通过这种闭环控制,可以尽可能地减小传输波输出的传输功率POUT和对指定电平之间的误差进行控制。
参照图25,基准电压发生电路4包括传输功率指定部7、控制部8、D/A变换器9。表示传输功率的指定电平的传输功率指定值PCMD通过控制部8及D/A变换器9变换成基准电压VREF。即,基准电压VREF与传输功率指定值PCMD对应设定。
功率控制部5具备运算放大器10和电阻元件11及12。来自检波电路3的检波电压VDET经由电阻元件12传输到与运算放大器10的反相输入端子(-端子)相当的结点N0。运算放大器10的非反相输入端子(+端子)中输入来自D/A变换器9的基准电压VREF
运算放大器10的反相输入端子和输出端子之间连接有电阻元件11。从而,根据电阻元件11及12之比,确定图28所示检波电压反馈率K0
这样,传统技术的传输功率控制电路10的构成中,是以检波电路3在传输功率POUT的整个动态范围内可输出与传输功率对应的检波电压为前提。但是,传输功率的动态范围很大时,一般地,与扩大可变增益放大器1的增益的动态范围相比,扩大检波电路3的可测定范围较为困难。若检波电路3的可测定范围扩大,则导致检波电路的复杂化、大型化及高成本化。
发明的公开
本发明的目的为提供:采用结构简单且廉价的一般检波电路可可靠扩大传输功率的动态范围的传输功率控制电路。
根据本发明,传输功率控制电路包括:可变增益放大部,以与控制电压对应的增益放大传输信号,输出传输波;分配部,取出一部分传输波;检波部,对分配部的输出进行检波,生成与传输波的传输功率对应的检波电压;控制部,接受表示传输功率的指定电平的电气信号及检波电压,设定控制电压。控制部根据检波部的可测定功率范围和传输功率之间的关系,在根据乘上反馈率而负反馈的检波电压及对应于指定电平的基准电压而进行的闭环控制来设定控制电压的第1控制状态和根据对应于指定电平而进行的开环控制来设定控制电压的第2控制状态之间切换。
最好控制部根据检波电压进行第1及第2控制状态的切换。
另外,最好控制部根据传输功率的指定电平进行第1及第2控制状态的切换。
另外,最好控制部包括:第1信号变换部,将检波电压变换成第1数字信号;控制运算部,接受表示传输功率的指定电平的第2数字信号和第1数字信号,根据基于第1及第2数字信号的比较而选择的第1及第2控制状态的一方,执行数字运算以设定控制电压;第2信号变换部,将控制运算部的输出变换成模拟信号,生成控制电压。
这种传输功率控制电路中,不必在检波电路的可测定范围内/外分别设定传输功率的指定电平和基准电压之间的关系,采用一般结构的检波部可以可靠地扩大传输功率的动态范围。
另外,最好控制部包括反馈率调节部,后者在第1控制状态中,在检波部的可测定功率范围和不可测定功率范围的规定边界范围内,随着传输功率靠近不可测定功率范围,使反馈率从规定电平缓缓下降。
结果,与第1控制状态和第2控制状态的切换区域相当的规定的边界范围中,可防止传输功率的急剧变动。
而且最好反馈率调节部根据检波电压改变反馈率。
另外,而且最好反馈率调节部根据传输功率的指定电平改变反馈率。
另外,而且最好控制部还包括:第1信号变换部,将检波电压变换成第1数字信号;第2信号变换部,将反馈率调节部的输出变换成模拟信号,生成控制电压。反馈率调节部接受表示传输功率的指定电平的第2数字信号和第1数字信号,根据基于第2数字信号设定的反馈率,执行数字运算以设定控制电压。
根据本发明,传输功率控制电路包括:可变增益放大部,以与控制电压对应的增益放大传输信号,输出传输波;多个分配部,取出传输波的一部分;多个检波部,与多个分配部分别对应设置,分别具有不同的可测定功率范围。多个检波部分别对对应的分配部的输出进行检波,生成与传输波的传输功率对应的多个检波电压。传输功率控制电路还包括控制部,用以接受表示传输功率的指定电平的电气信号及多个检波电压,设定控制电压。控制部包括反馈率控制部,用以根据多个检波部的可测定功率范围和传输功率之间的关系,设定与多个检波电压分别对应的多个反馈率。控制部根据分别乘上多个反馈率而负反馈的多个检波电压及与传输功率的指定电平对应的基准电压进行闭环控制,以设定控制电压。
最好多个检波部的至少一部分可测定功率范围共有相互重合的范围,反馈率控制部(8,152,157,162,167)在传输波的传输功率与重合范围对应时,设定多个反馈率,使得来自各个共有重合范围的多个检波电路的多个检波电压进行合成,并进行负反馈。
而且,最好反馈率控制部在传输波的传输功率与重合范围对应时,设定多个反馈率,使合成的多个检波电压之间的合成比率根据传输功率缓缓变化。
这样的传输功率控制电路,通过采用多个不扩大检波部的各个可测定范围、即一般且廉价的检波部,可执行由检波电压进行的闭环控制,以便可靠地扩大传输功率的动态范围。而且,根据检波电路的各个可测定范围和检波电压之间的关系,在切换主要使用的检波电路时,可防止传输功率的不连续变化。
另外,最好反馈率调节部根据多个检波电压设定多个反馈率。
另外,最好反馈率调节部根据传输功率的指定电平设定多个反馈率。
另外,最好控制部还包括:将多个检波电压分别变换成多个第1数字信号的第1信号变换部;将反馈率调节部的输出变换成模拟信号、生成控制电压的第2信号变换部。反馈率调节部接受表示传输功率的指定电平的第2数字信号和多个第1数字信号,根据基于多个第2数字信号设定的多个反馈率,执行用以设定控制电压的数字运算。
另外,最好控制部在传输功率不属于多个检波部的可测定功率范围的任一个时,中止闭环控制,同时根据与传输功率的指定电平对应的开环控制,设定控制电压。
而且,这样的传输功率控制电路在传输功率不符合多个检波部的任一个的可测定范围时,根据基于传输功率的指定电平的开环控制,可控制传输功率。从而,不必在检波电路的可测定范围内/外分别设定传输功率的指定电平和基准电压的关系,可进行稳定的传输功率的控制。
另外,实际的传输功率POUT符合任一个检波电路的可测定范围时,与第3实施例的传输功率控制电路相同,通过采用多个不扩大检波电路的各个可测定范围、即一般且廉价的检波电路,可执行由检波电压进行的闭环控制,以便可靠地扩大传输功率的动态范围。而且,根据检波电路的各个可测定范围和检波电压之间的关系,在切换主要使用的检波电路时,可防止传输功率的不连续变化。
而且最好控制部根据多个检波电压来执行闭环控制及开环控制的切换和闭环控制中的多个反馈率的设定。
另外,而且最好控制部根据传输功率的指定电平来执行闭环控制及开环控制的切换和闭环控制中的多个反馈率的设定。
另外,而且最好控制部还包括:第1信号变换部,将多个检波电压变换成多个第1数字信号;第2信号变换部,将反馈率调节部的输出变换成模拟信号,生成控制电压。反馈率调节部接受表示传输功率的指定电平的第2数字信号和多个第1数字信号,根据基于第1及第2数字信号的比较而选择的开环控制及闭环控制的一方,采用根据多个第2数字信号设定的多个反馈率,执行数字运算以设定控制电压。
图面的简单说明
图1是表示本发明的传输功率控制电路的基本概念的概念图。
图2是表示本发明的第1实施例的传输功率控制电路的构成的方框图。
图3是说明由图2所示功率控制部进行检波电压反馈率的设定的概念图。
图4是表示第1实施例的传输功率控制特性的概念图。
图5是表示本发明的第1实施例的变形例1的传输功率控制电路的构成的方框图。
图6是说明由图5所示功率控制部进行检波电压反馈率的设定的概念图。
图7是表示本发明的第1实施例的变形例2的传输功率控制电路的构成的方框图。
图8是表示本发明的第2实施例的传输功率控制电路的构成的方框图。
图9是说明由图8所示功率控制部进行检波电压反馈率的设定的概念图。
图10是表示第2实施例的传输功率控制特性的概念图。
图11是表示本发明的第2实施例的变形例1的传输功率控制电路的构成的方框图。
图12是说明由图11所示功率控制部进行检波电压反馈率的设定的概念图。
图13是表示本发明的第2实施例的变形例2的传输功率控制电路的构成的方框图。
图14是表示本发明的第3实施例的传输功率控制电路的构成的方框图。
图15A、15B及15C是说明由图14所示功率控制部进行检波电压反馈率的设定的概念图。
图16是表示本发明的第3实施例的变形例1的传输功率控制电路的构成的方框图。
图17A、17B及17C是说明由图16所示功率控制部进行检波电压反馈率的设定的概念图。
图18是表示本发明的第3实施例的变形例2的传输功率控制电路的构成的方框图。
图19是表示本发明的第4实施例的传输功率控制电路的构成的方框图。
图20A及20B是说明由图19所示功率控制部进行检波电压反馈率的设定的概念图。
图21是表示本发明的第4实施例的变形例1的传输功率控制电路的构成的方框图。
图22A及22B是说明由图21所示功率控制部进行检波电压反馈率的设定的概念图。
图23是表示本发明的第3实施例的变形例2的传输功率控制电路的构成的方框图。
图24是表示传统技术的一般传输功率控制电路的构成的概略方框图。
图25是说明图24所示传统技术的传输功率控制电路的更详细的电路构成图。
发明的最佳实施例
以下,参照图面详细说明本发明的实施例的传输功率控制电路。另外,图中同一或相当部分附上同一符号,不重复进行说明。
(第1实施例)
参照图1,本发明的传输功率控制电路100包括:可变增益放大器1、分配器2、检波电路3、基准电压发生电路4、功率控制部110。
如图24中所述,可变增益放大器1以与来自功率控制部110的控制电压Vc对应的增益放大传输波,生成传输波输出。分配器2从传输波输出取出传输功率POUT的一部分。检波电路3对从分配器2获得的传输功率的一部分检波,生成与传输功率POUT对应的检波电压VDET。基准电压发生电路4生成与传输功率的指定电平对应的基准电压VREF
功率控制部110中,检波电压反馈率K和控制电压反馈率K`根据传输功率POUT和检波电路3的可测定范围之间的关系,进行联锁设定。
功率控制部110根据基准电压VREF、检波电压VDET及控制电压Vc,基于下式(2)生成控制电压Vc。
Vc=VREF-(K·VDET+K`·Vc)…(2)
传输功率POUT在检波电路3的可测定范围内时,通过将控制电压反馈率K`设定为0,负反馈来自检波电路3的检波电压VDET,与(1)式相同,执行闭环控制,使得传输功率POUT靠近指定电平。
另一方面,传输功率POUT在检波电路3的可测定范围外时,检波电压反馈率K设定为0。结果,VREF-K`·Vc=Vc成立,因而此时的控制电压Vc设定成如下式(3)所示。
Vc=VREF/(1+K`)…(3)
结果,控制电压Vc由基于基准电压VREF的开环控制生成。
传输功率控制电路中,传输功率指定值PCMD和基准电压VREF之间的关系是以执行经由检波电路3的负反馈为前提而确定的。从而,传输功率POUT在检波电路3的可测定范围外时,如果仅仅来自检波电路3的负反馈被切断,根据基准电压VREF控制的传输波输出的传输功率POUT与传输功率指定值PCMD产生大的误差。
为了避免该问题,传输波输出的传输功率POUT在检波电路3的测定范围外(不可测定范围)时,若切断来自检波电路3的负反馈,则取而代之,利用控制电压Vc乘上控制电压反馈率K`,生成控制电压Vc。从而传输功率指定值PCMD和基准电压VREF之间的关系不必在检波电路3的可测定范围内及可测定范围外分别设定。
参照图4,第1实施例的传输功率控制电路101a包括:可变增益放大器1、分配器2、检波电路3、基准电压发生电路4、功率控制部120a。
基准电压发生电路4与图25所示构成相同,包括传输功率指定部7、控制部8、D/A变换器9。传输功率指定部7生成表示传输功率的指定电平的传输功率指定值PCMD。控制部8生成与来自传输功率指定部7的传输功率指定值PCMD对应的数字信号。D/A变换器9生成具有与来自控制部8的数字信号对应的模拟电压的基准电压VREF
功率控制部120a包括:阈值电压发生电路121、比较器122、反相器123、控制状态切换开关124及125、运算放大器126、电阻元件R1~R3。
阈值电压发生电路生成阈值电压VTH,用以根据检波电压VDET判定传输功率POUT是在检波电路3的可测定范围内或可测定范围外。比较器122对来自阈值电压发生电路121的阈值电压VTH和来自检波电路3的检波电压VDET进行比较。
具体地说,检波电压VDET比阈值电压VTH大时,即判定传输功率POUT在检波电路3的可测定范围内时,比较器122的输出设定成H电平。另一方面,检波电压VDET比阈值电压VTH低时,即判定传输功率POUT在检波电路3的可测定范围外时,比较器122的输出设定成L电平。
运算放大器126的非反相输入端子中输入来自D/A变换器9的基准电压VREF。运算放大器126的反相输入端子和输出端子之间连接有电阻元件R1。运算放大器126的输出端子中生成的控制电压Vc传输到可变增益放大器1。
运算放大器126的反相输入端子和检波电路3之间,串联连接有控制状态切换开关124及电阻元件R2。另外,运算放大器126的反相输入端子和接地电压GND之间,串联连接有控制状态切换开关125及电阻元件R3。
控制状态切换开关124及125响应比较器122的输出,互补地导通·截止。判定传输功率POUT在检波电路3的可测定范围内时,即比较器122的输出设定成H电平时,控制状态切换开关124导通,控制状态切换开关125截止。
结果,经由电阻元件R2,检波电压VDET作为负反馈输入运算放大器126。从而,形成每次根据实际的传输功率POUT修正控制电压Vc的闭环控制系统。
相对地,判定传输功率POUT在检波电路3的可测定范围外时,即比较器122的输出为L电平时,控制状态切换开关125导通,控制状态切换开关124截止。
检波电压VDET不传输到运算放大器126的反相输入端子,运算放大器126作为仅仅输入来自D/A变换器的基准电压VREF的非反相放大器动作。从而,控制电压Vc通过仅仅根据基准电压VREF即传输功率指定值PCMD的开环控制系统生成。
参照图3,功率控制部120a根据检波电压VDET的电平,变更检波电压反馈率K的设定。即,功率控制部120a在检波电压VDET比阈值电压VTH高时,判定传输功率POUT在检波电路3的可测定范围内,将检波电压反馈率K设定成K0。图2所示电阻元件R1及R2的电阻值设定成可获得规定的反馈率K0
另一方面,检波电压VDET比阈值电压VTH低时,功率控制部120a判定传输功率POUT在检波电路3的可测定范围外,将检波电压反馈率K设定成0。即,中止检波电压VDET的负反馈,执行开环控制。图2所示电阻元件R3的电阻值考虑在开环控制时基准电压VREF和传输功率指定值PCMD之间的关系进行设计。
参照图4,根据检波电压VDET,开环控制及闭环控制基于传输功率POUT进行切换。与检波电路3的可测定范围内对应的闭环控制范围中,通过检波电压VDET的负反馈,虚线表示的理想控制响应和实线表示的实际的传输功率大致一致。
另一方面,与检波电路3的可测定范围外对应的开环控制范围中,根据传输功率指定值PCMD设定可变增益放大器1的增益。
从而,在检波电路3的可测定范围内/可测定范围外,不必分别使用传输功率指定值PCMD和基准电压VREF之间的关系,可以简化控制部8的构成。
如上所述,第1实施例的传输功率控制电路中,例如,仅仅在传输功率POUT较大的范围中要求高控制精度,而在传输功率POUT较小的范围则可以是低控制精度的情况下,不必扩大检波电路的可测定范围,即采用一般且廉价的检波电路就可以可靠地扩大传输功率的动态范围。
(第1实施例的变形例1)
参照图5,第1实施例的变形例1的传输功率控制电路101b与图2所示传输功率控制电路101a比较,其不同点在于具备功率控制部120b,以取代功率控制部120a。功率控制部120b与图2所示功率控制部120a和比较,其不同点在于省略了阈值电压发生电路121及比较器122的配置。功率控制部120b中,控制状态切换开关124及125的导通·截止指示,即开环控制及闭环控制的切换指示由控制部8执行。控制部8根据传输功率指定值PCMD,指示控制状态切换开关124及125的导通·截止。
参照图6,功率控制部120b在传输功率指定值PCMD比规定电平PTH大时,判定传输功率POUT在检波电路3的可测定范围内,将检波电压反馈率K设定成K0。此时,响应控制部8的指示,控制状态切换开关124导通,控制状态切换开关125截止。
相对地,传输功率指定值PCMD比规定电平PTH低时,判定传输功率POUT在检波电路3的可测定范围外,检波电压反馈率K设定成0。此时,响应控制部8的指示,控制状态切换开关125导通,控制状态切换开关124截止。
即,第1实施例的变形例1中,实际的传输功率POUT是否在检波电路3的可测定范围内的判定不根据实际的检波电压VDET,而根据传输功率指定值PCMD执行。传输功率控制电路101b的其他部分的构成及动作与图2所示传输功率控制电路101a同样,不详细进行说明。
通过这种构成,判定实际的传输功率POUT是否在检波电路3的可测定范围内的精度虽然变低,由于可以省略判定检波电压VDET的电平的电路即阈值电压发生电路121及比较器122,因而可以简化功率控制部120b的构成。
(第1实施例的变形例2)
参照图7,第1实施例的变形例2的传输功率控制电路101c与图2所示传输功率控制电路101a比较,其不同点在于具备功率控制部120c,以取代功率控制部120a。另外,省略控制部8及D/A变换器9的配置,来自传输功率指定部7的传输功率指定值PCMD以数字信号的形式直接提供给功率控制部120c。
功率控制部120c具备:A/D变换器135、控制运算部137、D/A变换器139。
A/D变换器135将来自检波电路3的检波电压VDET变换成数字信号。控制运算部137接受与来自检波电路3的检波电压VDET对应的数字信号和数字信号的传输功率指定值PCMD,根据与图6同样设定的检波电压反馈率K执行数字运算。即,控制运算部137中,执行与由模拟电路构成的功率控制部110b同样的控制运算。控制运算部137的运算结果在D/A变换器139中变换成模拟电压,作为控制电压Vc传输到可变增益放大器1。
这样,第1实施例的变形例2中,通过数字运算可实现与第1实施例的变形例1同样的传输功率控制。
另外,第1实施例及其变形例1、2中说明了将检波电路3的可测定范围设计成与传输功率POUT比较高的范围对应的结构,也可以构成使检波电路3的可测定范围与传输功率POUT比较小的范围对应,更换传输功率POUT的大/小和开环控制/闭环的设定的对应关系。
(第2实施例)
第1实施例的传输功率控制电路中,根据实际的传输功率POUT是否在检波电路的可测定范围内的判定结果切换开环控制和闭环控制。结果,开环控制和闭环控制的切换边界区域附近,由于检波电压反馈率是阶跃变化,因而该区域中传输功率POUT有可能急剧变化。从而,第2实施例中,说明可防止开环控制和闭环控制的切换边界区域中的传输功率的急剧变化的控制方式。
参照图8,第2实施例的传输功率控制电路102a与图2所示第1实施例的传输功率控制电路101a比较,其不同点在于具备功率控制部140a,以取代功率控制部120a。
功率控制部140a与图2所示功率控制部120a比较,其不同点在于:用反馈率控制电路142取代阈值电压发生电路121及比较器122,用可变电阻144取代控制状态切换开关124及电阻元件R2,用可变电阻146取代控制状态切换开关125及电阻元件R3。
反馈率控制电路142根据来自检波电路3的检波电压VDET,控制可变电阻144及146的电阻值。可变电阻144作为调节检波电压反馈率K的手段。另外,可变电阻146作为调节控制电压反馈率K`的手段。
参照图9,检波电压VDET比规定电压VTH2大时,即判定传输功率POUT充分地处于检波电路3的可测定范围内时,反馈率控制电路142将可变电阻146的电阻值设定成最大值(理想为∞)。从而根据电阻元件R2及可变电阻146的电阻值之比,检波电压反馈率K设定成K0。通过检波电压VDET的负反馈执行闭环控制。
相对地,检波电压VDET比规定电压VTH1小时,即判定传输功率POUT在检波电路3的可测定范围外时,反馈率控制电路142将可变电阻144的电阻值设定成最大值(理想为∞)。结果,构成根据与电阻元件R1和可变电阻144的电阻值对应的控制电压反馈率K`输入基准电压VREF的非反相放大器,根据传输功率指定值PCMD,执行传输功率POUT的开环控制。
而且,与开环控制及闭环控制的切换边界区域相当,检波电压VDET在比规定电压VTH1高且比VTH2低的范围中,反馈率控制电路142调节可变电阻144及146的电阻值,使检波电压反馈率K缓慢变化。该区域中,检波电压反馈率K设定成传输功率POUT随着靠近检波电路的可测定范围外而降低。
比较图10和图4,第2实施例的构成中,在开环控制及闭环控制的切换边界区域中设置使检波电压反馈率K缓慢变化的反馈率迁移区间,切换闭环控制和开环控制,因而,可防止该切换边界区域中传输功率的急剧变化。
(第2实施例的变形例1)
参照图11,第2实施例的变形例1的传输功率控制电路102b与图8所示传输功率控制电路102a比较,其不同点在于具备功率控制部140b,以取代功率控制部140a。
功率控制部140b与图8所示功率控制部140a的不同点在于省略了反馈率控制电路142的配置。功率控制部140b中,可变电阻144及146的电阻值由控制部8控制。控制部8根据来自传输功率指定部7的传输功率指定值PCMD,设定可变电阻144及146的电阻值。
参照图12,传输功率指定值PCMD比规定电平PTH2大时,即判定传输功率POUT充分处于检波电路3的可测定范围内时,控制部8将可变电阻146的电阻值设定成最大值(理想为∞)。从而,根据电阻元件R2及可变电阻144的电阻值之比,将检波电压反馈率K设定成K0,通过检波电压VDET的负反馈执行闭环控制。
相对地,传输功率指定值PCMD比规定电平PTH1小时,即判定传输功率POUT在检波电路3的可测定范围外时,控制部8将可变电阻144的电阻值设定成最大值(理想为∞)。结果,构成根据与电阻元件R1和可变电阻146的电阻值对应的控制电压反馈率K`输入基准电压VREF的非反相放大器,根据传输功率指定值PCMD执行传输功率POUT的开环控制。
而且,与开环控制及闭环控制的切换边界区域相当,传输功率指定值PCMD比规定电平PTH1高且比规定电平PTH2低时,控制部8调节可变电阻144及146的电阻值,使检波电压反馈率K缓慢变化。与第2实施例相同,在切换边界区域中,设定检波电压反馈率K,使传输功率POUT随着靠近检波电路的可测定范围外而降低。
这样,第2实施例的变形例1的传输功率控制电路102b中,不根据检波电压VDET,而是根据传输功率指定值PCMD判定实际的传输功率POUT是在检波电路3的可测定范围内或可测定范围外。通过这种构成,虽然实际的传输功率POUT是否在检波电路3的可测定范围内的判定精度变低,但是由于可以省略根据检波电压VDET进行判定的电路(图8的反馈率控制电路142)的配置,因而可以简化功率控制部的构成。
另外,第2实施例及其变形例1中,表示了开环控制及闭环控制的切换边界区域中,检波电压反馈率K连续变化的构成及采用电阻值模拟变化的可变电阻144及146的构成,但是这些可变电阻也可使用电阻值分阶段缓慢变化的类型。此时,切换边界区域的检波电压反馈率K分阶段缓慢变化。
(第2实施例的变形例2)
参照图13,第2实施例的变形例2的传输功率控制电路102c与图8所示传输功率控制电路102a比较,不同点在于用功率控制部140c取代了功率控制部140a。另外,省略了控制部8及D/A变换器9的配置,来自传输功率指定部7的传输功率指定值PCMD以数字信号的形式直接提供给功率控制部140c。
功率控制部140c包括:A/D变换器135、控制运算部147、D/A变换器139。
A/D变换器135的动作与图7所述相同。控制运算部147接受与来自检波电路3的检波电压VDET对应的数字信号和数字信号形式的传输功率指定值PCMD,根据与图12相同设定的检波电压反馈率K执行数字运算。即,控制运算部137中,执行与由模拟电路构成的功率控制部140b同样的控制运算。控制运算部137的运算结果在D/A变换器139变换成模拟信号,作为控制电压Vc传输到可变增益放大器1。
这样,第2实施例的变形例2中,通过数字运算,可实现与第2实施例的变形例1同样的传输功率控制。
另外,第2实施例及其变形例1、2中,说明了将检波电路3的可测定范围设定成与传输功率POUT比较高的范围对应,但是也可使检波电路3的可测定范围与传输功率POUT比较小的范围对应,更换传输功率POUT的大小和开环控制/闭环控制的设定的对应关系。
(第3实施例)
参照图14,第3实施例的传输功率控制电路103a与图2所示第1实施例的传输功率控制电路101a比较,其不同点在于具备多个分配器2a、2b、2c和具有各不相同的可测定范围的第1检波电路3a、第2检波电路3b及第3检波电路3c。第1检波电路3a、第2检波电路3b及第3检波电路3c分别与分配器2a、2b、2c对应设置。
第1检波电路3a对由分配器2a获得的传输功率的一部分检波,生成检波电压VDET1。第2检波电路3b对由分配器2b获得的传输功率的一部分检波,生成检波电压VDET2。第3检波电路3c对由分配器2c获得的传输功率的一部分检波,生成检波电压VDET3
第3实施例的传输功率控制电路103a与图2所示传输功率控制电路101a比较,其不同点在于用功率控制部150a取代了功率控制部120a
功率控制部150a包括:反馈率控制电路152、可变电阻154、156及158、电阻元件R2、运算放大器126。
可变电阻154配置于第1检波电路3a和运算放大器126的非反相输入端子之间,传输检波电压VDET1。可变电阻156配置于第2检波电路3b和运算放大器126的非反相输入端子之间,传输检波电压VDET2。可变电阻158配置于第3检波电路3c和运算放大器126的非反相输入端子之间,传输检波电压VDET3
反馈率控制电路152根据检波电压VDET1、VDET2及VDET3设定可变电阻154、156及158的电阻值。
参照图15A到图15C,第1检波电路3a、第2检波电路3b及第3检波电路3c具有各不相同的可测定范围,可测定范围相邻的每两个检波电路间,设定可测定范围部分重合。例如,第1检波电路3a的可测定范围与VDET1<VTH2的范围对应,第2检波电路3b的可测定范围与VTH1<VDET2<VTH4的范围对应。而且,第3检波电路3c的可测定范围与VDET3>VTH3的范围对应。式中,这些阈值电压间,有VTH1<VTH2及VTH4>VTH3的关系成立
从而,检波电压在比VTH1高且比VTH2低的范围内,可以用第1检波电路3a及第2检波电路3b两者测定。同样,检波电压在比VTH3高且比VTH4低的范围内,可以用第2检波电路3b及第3检波电路3c两者测定。
反馈率控制电路152设定可变电阻154、156及158的电阻值,使得分别与检波电压VDET1、VDET2及VDET3对应的检波电压反馈率K1、K2及K3根据检波电压,如图14A到图14C所示进行变化。
参照图15A,当检波电压VDET1与第1检波电路3a的可测定范围对应时,即VDET1<VTH2时,与检波电压VDET1对应的反馈率K1设定成K1>0。特别是,与第2检波电路3b的可测定范围重合的范围,即VTH1<VDET1<VTH2的范围中,随着靠近第1检波电路3a的不可测定范围,即随着VDET1靠近VTH2,检波电压反馈率K1缓慢下降。另一方面,除此以外的范围,即VTH1<VDET1的范围内,检波电压反馈率K1设定成规定电平K0
相对地,在检波电压VDET1与第1检波电路3a的可测定范围外对应时(VDET1>VTH2),检波电压反馈率K1设定成0。此时,可变电阻154的电阻值设定成最大值(理想为∞)。
参照图15B,当检波电压VDET2与第2检波电路3b的可测定范围对应时,即VTH1<VDET2<VTH4时,与检波电压VDET2对应的反馈率K2设定成K2>0。特别是,与第1检波电路3a或第2检波电路3b的可测定范围重合的范围,即VTH1<VDET2<VTH2的范围及VTH3<VDET2<VTH4的范围中,随着靠近第2检波电路3b的不可测定范围,检波电压反馈率K2缓慢降低。另一方面,除此以外的范围,即VTH1<VTH2的范围中,检波电压反馈率K1设定成规定电平K0。另一方面,除此以外的范围,即VTH2<VDET2<VTH3的范围中,检波电压反馈率K2设定成规定电平K0
相对地,检波电压VDET2与第1检波电路3b的可测定范围外对应时(VDET2<VTH1或VDET2>VTH4),检波电压反馈率K2设定成0。可变电阻156的电阻值设定成最大值(理想为∞)。
参照图15C,当检波电压V3与第3检波电路3c的可测定范围对应时,即VDET3>VTH3时,与检波电压VDET3对应的反馈率K3设定成K3>0。特别是,与第2检波电路3b的可测定范围重合的范围,即VTH3<VDET3<VTH4的范围中,随着靠近第3检波电路3c的不可测定范围,即VDET3靠近VTH3,检波电压反馈率K3缓慢降低。另一方面,除此以外的范围,即VDET3>VTH4的范围中,检波电压反馈率K3设定成规定电平K0
相对地,检波电压VDET3与第3检波电路3c的可测定范围外对应时(VDET3<VTH3),检波电压反馈率K3设定成0。可变电阻158的电阻值设定成最大值(理想为∞)。
通过这种构成,在第1检波电路3a、第2检波电路3b及第3检波电路3c的可测定范围的重合范围,即主要使用的检波电路的切换边界附近中,设定检波电压反馈率K1~K3,使来自共有该重合的可测定范围的两个检波电路的检波电压合成,进行负反馈。
另外,在该范围中,设定检波电压反馈率K1~K3,使合成的检波电压间的合成比率根据检波电压和检波电路的可测定范围之间的关系缓慢变化。
从而,采用多个不扩大检波电路的各个可测定范围、即一般且廉价的检波电路,可执行根据检波电压的闭环控制,以可靠地扩大传输功率的动态范围。而且,根据检波电路的各个可测定范围和检波电压之间的关系,在切换主要使用的检波电路时,可防止传输功率的不连续变化。
(第3实施例的变形例1)
参照图16,第3实施例的变形例1的传输功率控制电路103b与第3实施例的传输功率控制电路103a比较,其不同点在于用功率控制部150b取代了功率控制部150a。
功率控制部150b与图14所示功率控制部150a的不同点在于省略了反馈率控制电路152的配置。功率控制部150b中,可变电阻154、156及158的电阻值由控制部8控制。控制部8根据来自传输功率指定部7的传输功率指定值PCMD设定可变电阻154、156及158的电阻值,使得检波电压反馈率K1、K2及K3根据检波电压,进行如图17A到图17C所示的变化。
参照图17A到图17C,阈值PTH1、PTH2、PTH3及PTH4与第1检波电路3a、第2检波电路3b及第3检波电路3c的可测定范围对应设定。
参照图17A,当判定传输功率指定值PCMD与第1检波电路3a的可测定范围对应时,即PCMD<PTH2时,与检波电压VDET1对应的反馈率K1设定成K1>0。特别是,与第2检波电路3b的可测定范围重合的范围,即PTH1<PCMD<PTH2的范围中,随着靠近第1检波电路3a的不可测定范围,即随着PCMD靠近PTH2,检波电压反馈率K1缓慢降低。另一方面,除此以外的范围,即PCMD<PTH1的范围中,检波电压反馈率K1设定成规定电平K0
相对地,判定传输功率指定值PCMD与第1检波电路3a的可测定范围外对应时(PCMD>PTH2),检波电压反馈率K1设定成0。
参照图17B,判定传输功率指定值PCMD与第2检波电路3b的可测定范围对应时,即PTH1<PCMD<PTH4时,与检波电压VDET2对应的反馈率K2设定成K2>0。特别是,与第1检波电路3a或第3检波电路3c的可测定范围重合的范围,即PTH1<PCMD<PTH2的范围及PTH3<PCMD<PTH4的范围中,随着靠近第2检波电路3b的不可测定范围,检波电压反馈率K2缓慢降低。另一方面,除此以外的范围,即PTH2<PCMD<PTH3的范围中,检波电压反馈率K2设定成规定电平K0
相对地,判定传输功率指定值PCMD与第2检波电路3b的可测定范围外对应时(PCMD<PTH1或PCMD>PTH4),检波电压反馈率K2设定成0。
参照图17C,判定传输功率指定值PCMD与第3检波电路3c的可测定范围对应时,即PCMD>PTH3时,与检波电压VDET3对应的反馈率K3设定成K3>0。特别是,与第2检波电路3b的可测定范围重合的范围,即PTH3<PCMD<PTH4的范围中,随着靠近第3检波电路3c的不可测定范围,即PCMD靠近PTH3,检波电压反馈率K3缓慢降低。另一方面,除此以外的范围,即PCMD>PTH4的范围中,检波电压反馈率K3设定成规定电平K0
相对地,判定传输功率指定值PCMD与第3检波电路3c的可测定范围外对应时(PCMD<PTH3),检波电压反馈率K3设定成0。
这样,第2实施例的变形例1的传输功率控制电路103b中,根据传输功率指定值PCMD判定与实际的传输功率POUT对应的检波电路是哪一个。通过这种构成,虽然具有与实际的传输功率POUT对应的可测定范围的检波电路的判定精度变低,但是由于可省略根据检波电压VDET1、VDET2及VDET3进行判定的电路(图14的反馈率控制电路152)的配置,因而可以简化执行与第2实施例同样的传输功率控制的电路构成。
另外,第3实施例及其变形例1中,说明了采用电阻值模拟变化的可变电阻154、156及158的构成,但是这些可变电阻也可以使用电阻值分阶段缓慢变化的类型。
(第3实施例的变形例2)
参照图18,第3实施例的变形例2的传输功率控制电路103c与第3实施例的传输功率控制电路103a比较,其不同点在于用功率控制部150c取代了功率控制部150a。另外,省略了控制部8及D/A变换器9的配置,来自传输功率指定部7的传输功率指定值PCMD以数字信号的形式直接提供给功率控制部150c。
功率控制部150c包括:第1A/D变换器135a、第2A/D变换器135b、第3A/D变换器135c、控制运算部157、D/A变换器139。
第1A/D变换器135a、第2A/D变换器135b及第3A/D变换器135c与第1检波电路3a、第2检波电路3b及第3检波电路3c分别对应设置,将检波电压VDET1、VDET2及VDET3分别变换成数字信号。
控制运算部157接受与检波电压VDET1~VDET3分别对应的多个数字信号和数字信号形式的传输功率指定值PCMD,根据与图17A到图17C相同设定的检波电压反馈率K1~K3,执行数字运算。即,控制运算部157中,执行与由模拟电路构成的功率控制部150b同样的控制运算。控制运算部157的运算结果用D/A变换器139变换成模拟信号,作为控制电压Vc传输到可变增益放大器1。
通过这种构成,第3实施例的变形例2中,分别将检波电压VDET1、VDET2及VDET3变换成数字信号,根据数字运算实现闭环控制,可实现与第3实施例的变形例1同样的传输功率控制。
另外,第3实施例及其变形例1、2中,说明了配置可测定范围不同的3个检波电路的构成,但是这种检波电路可以采用任意个。此时,必须与各个检波电路对应配置分配器及可变电阻。
(第4实施例)
第4实施例中,说明将通过第3实施例所说明的多个检波电路与传输功率的宽动态范围对应的结构和第1实施例中说明的切换闭环控制和开环控制的结构组合,进行传输功率控制的情况。
参照图19,第4实施例的传输功率控制电路104a与第1实施例的传输功率控制电路101a比较,其不同点在于包括具有各不相同的可测定范围的第1检波电路3a及第2检波电路3b,以及与第1检波电路3a及第2检波电路3b分别对应的分配器2a及2b。
另外,第4实施例的传输功率控制电路104a具备功率控制部160a,以取代图2所示功率控制部120a。
参照图20A及图20B,第1检波电路3a的可测定范围与检波电压为VTH1<VDET1<VTH4的范围对应。另一方面,第2检波电路3b的可测定范围与检波电压为VDET2>VTH3的范围对应。这里,设计第1检波电路3a及第2检波电路3b的可测定范围,使VTH3<VTH4,即可测定范围的一部分相互重合。
再参照图19,功率控制部160a包括:运算放大器126;电阻元件R1;反馈率控制电路162;可变电阻164、166、168。可变电阻164连接到第1检波电路3a和运算放大器126的反相输入端子之间,传输检波电压VDET1。可变电阻166连接到第2检波电路3b和运算放大器126的反相输入端子之间,传输检波电压VDET2。可变电阻168连接到运算放大器126的反相输入端子和接地电压GND之间。电阻元件R1连接到运算放大器126的反相输入端子和输出端子之间。
反馈率控制电路162根据检波电压VDET1及VDET2设定可变电阻164、166及168的电阻值。
再参照图20A及图20B,在检波电压VDET1及VDET2比VTH1低的范围中,检波电压反馈率K1及K2都设定成0。即,该范围中,反馈率控制电路162将可变电阻164及166的电阻值设定成最大值(理想为∞)。结果,由运算放大器126、电阻元件R1及可变电阻168形成非反相放大器,控制电压Vc根据开环控制设定。另外,电阻元件R1及可变电阻168的电阻值设计成可获得规定的控制电压反馈率K`。
在检波电压VDET1及VDET2比VTH1高的范围中,可变电阻168的电阻值设定成最大值(理想为∞),从基于基准电压VREF的开环控制切换到基于检波电压的负反馈的闭环控制。
在与开环控制和闭环控制的切换区域附近相当、检波电压为VTH1<VDET1<VTH2的范围中,设定可变电阻164的电阻值,使反馈率K1连续缓慢增加。
而且,检波电压VDET1若变得比阈值电压VTH2高,则在检波电压为VTH2<VDET1<VTH3的范围中,设定可变电阻164的电阻值,使得反馈率K1变成规定的检波电压反馈率K0。另一方面,VDET2<VTH3的范围中,将可变电阻166的值设定成最大值(理想为∞),使得反馈率K2变成0。
在检波电压VDET1及VDET2比阈值电压VTH3高且比VTH4低的范围中,设定可变电阻164及166的电阻值,使得随着检波电压变高,反馈率K1缓慢降低,同时反馈率K2缓慢增加。即,多个检波电路间重合的可测定范围中,与第3实施例相同,设定检波电压反馈率。从而,该范围中,与第3实施例相同,合成多个检波电路的输出,执行负反馈。另外,该合成比率不会发生急剧的切换,而是缓慢变化。
通过这种构成,当处于不属于检波电路3a及3b的任一个的可测定范围的范围中时,根据基于基准电压VREF即传输功率指定值PCMD的开环控制,可以设定控制电压Vc即可变增益放大器1的增益。
另外,实际的传输功率POUT符合任一个检波电路的可测定范围时,与第3实施例的传输功率控制电路相同,通过采用多个不扩大检波电路的各个可测定范围、即一般且廉价的检波电路,可执行由检波电压进行的闭环控制,以便可靠地扩大传输功率的动态范围。而且,根据检波电路的各个可测定范围和检波电压之间的关系,在切换主要使用的检波电路时,可防止传输功率的不连续变化。
(第4实施例的变形例1)
参照图21,第4实施例的变形例1的传输功率控制电路104b与图18所示传输功率控制电路104a比较,其不同点在于用功率控制部160b取代了功率控制部160a。
功率控制部160b与图19所示功率控制部160a的不同点在于省略了反馈率控制电路162的配置。功率控制部160b中,可变电阻164、166及168的电阻值由控制部8控制。控制部8根据来自传输功率指定部7的传输功率指定值PCMD设定可变电阻164、166及168的电阻值,使得检波电压反馈率K1及K2根据检波电压,进行如图20A及20B所示的变化。
参照图22A及图22B,阈值PTH1、PTH2、PTH3及PTH4与检波电路3a及3b的可测定范围对应设定。
与传输功率指定值PCMD为PTH1<PCMD<PTH4的范围对应,判定检波电路3a的可测定范围。另一方面,与传输功率指定值PCMD为PCMD>PTH3的范围对应,判定检波电路3b的可测定范围。与PTH3<PCMD<PTH4的范围对应,判定检波电路3a及3b的重合的可测定范围。
控制部8不根据检波电压,而是根据传输功率指定值PCMD设定检波电压反馈率K1及K2。由控制部8进行的检波电压反馈率K1及K2的设定,在图20A及20B中,相当于将阈值电压VTH1、VTH2、VTH3及VTH4用阈值PTH1、PTH2、PTH3及PTH4置换。
从而,在传输功率指定值PCMD比PTH1低的范围中,控制部8将检波电压反馈率K1及K2设定成0,仅仅根据基于基准电压VREF的开环控制,设定控制电压Vc。
另一方面,在传输功率指定值PCMD比PTH1高的范围中,控制部8将可变电阻168的电阻值设定成最大值(理想为∞),从基于基准电压VREF的开环控制切换到由检波电压的负反馈进行的闭环控制。
另外,在与开环控制和闭环控制的切换区域附近相当、传输功率指定值PCMD为PTH1<PCMD<PTH2的范围中,设定可变电阻164的电阻值,使得反馈率K1缓慢增加。而且,多个检波电路间重合的可测定范围(PTH3<PCMD<PTH4)中,与第3实施例相同,合成多个检波电路的输出,执行负反馈。另外该合成比率缓慢变化。
这样,第4实施例的变形例1的传输功率控制电路104b中,根据传输功率指定值PCMD判定与实际的传输功率POUT对应的检波电路是哪一个。通过这种构成,虽然对实际的传输功率POUT与哪一个检波电路的可测定范围对应进行的判定精度降低,但是可以省略根据检波电压VDET1及VDET2进行判定的电路(图19的反馈率控制电路162)的配置,因而,可以简化执行与第2实施例同样的传输功率控制的电路构成。
另外,第4实施例及其变形例1中说明了采用电阻值模拟变化的可变电阻164、166及168的构成,但是这些可变电阻也可使用电阻值逐步缓慢变化的类型。
(第4实施例的变形例2)
参照图23,第4实施例的变形例2的传输功率控制电路104c与第4实施例的传输功率控制电路104a比较,不同点在于用功率控制部160c取代了功率控制部160a。另外,省略了控制部8及D/A变换器9的配置,将来自传输功率指定部7的传输功率指定值PCMD以数字信号的形式直接提供给功率控制部160c。
功率控制部160c包括:第1A/D变换器135a、第2A/D变换器135b、控制运算部167、D/A变换器139。
第1A/D变换器135a及第2A/D变换器135b与第1检波电路3a及第2检波电路3b分别对应设置,将检波电压VDET1及VDET2分别变换成数字信号
控制运算部167接受检波电压VDET1及VDET2对应的数字信号和数字信号形式的传输功率指定值PCMD,根据与图22A及图22B相同设定的检波电压反馈率K1及K2,执行数字运算。即,控制运算部167中,执行与由模拟电路构成的功率控制部160b同样的控制运算。控制运算部167的运算结果在D/A变换器139变换成模拟信号,作为控制电压Vc传输到可变增益放大器1。
通过这种构成,第4实施例的变形例2中,检波电压VDET1及VDET2分别变换成数字信号,根据数字运算实现闭环控制,可实现与第4实施例的变形例1同样的传输功率控制。
另外,第4实施例及其变形例1及2中,说明了配置了具有各不相同的可测定范围的2个检波电路的构成,也可使用3个以上的这种检波电路。此时,必须分别与检波电路对应配置分配器及可变电阻的组合。同样,虽然说明了将传输功率的最小范围切换到开环控制的结构例,但是在采用开环的区间,可以设定成与任意的功率范围对应。
应该理解所公开的实施例是用所有方面进行例示而不是限制。本发明的范围不是上述说明,而是由权利要求的范围确定,包括与权利要求的范围具有均等意义的范围以及范围内的所有变更。
工业上的利用可能性
本发明的传输功率控制电路适用于便携电话等无线通信装置。

Claims (18)

1.一种传输功率控制电路,包括:
可变增益放大部(1),以与控制电压(Vc)对应的增益放大传输信号,输出传输波;
分配部(2),取出一部分所述传输波;
检波部(3),对所述分配部的输出进行检波,生成与所述传输波的传输功率(POUT)对应的检波电压(VDET);
控制部(120a,120b,120c,140a,140b,140c),接受表示所述传输功率的指定电平的电气信号及所述检波电压,设定所述控制电压,
所述控制部根据所述检波部的可测定功率范围和所述传输功率之间的关系,在根据乘上反馈率(K)而负反馈的检波电压及对应于所述指定电平的基准电压而进行的闭环控制来设定所述控制电压的第1控制状态和根据对应于所述指定电平而进行的开环控制来设定所述控制电压的第2控制状态之间切换。
2.如权利要求1所述的传输功率控制电路,其特征在于:
所述控制部(120a,140a)根据所述检波电压(VDET)进行所述第1及第2控制状态的切换。
3.如权利要求1所述的传输功率控制电路,其特征在于:
所述控制部(120b,140b)根据所述传输功率的指定电平(PCMD)进行所述第1及第2控制状态的切换。
4.如权利要求1所述的传输功率控制电路,其特征在于,
所述控制部(120c,140c)包括:
第1信号变换部(135),将所述检波电压(VDET)变换成第1数字信号;
控制运算部(137,147),接受表示所述传输功率的指定电平(PCMD)的第2数字信号和所述第1数字信号,根据基于所述第1及第2数字信号的比较而选择的所述第1及第2控制状态的一方,执行数字运算以设定所述控制电压;
第2信号变换部(139),将所述控制运算部的输出变换成模拟信号,生成所述控制电压(Vc)。
5.如权利要求1所述的传输功率控制电路,其特征在于:
所述控制部(140a,140b,140c)包括反馈率调节部(8,142,147),后者在所述第1控制状态中,在所述检波部的可测定功率范围和不可测定功率范围的规定边界范围内,随着所述传输功率(POUT)靠近所述不可测定功率范围,使所述反馈率(K)从规定电平(K0)缓缓下降。
6.如权利要求5所述的传输功率控制电路,其特征在于:
所述反馈率调节部(142)根据所述检波电压(VDET)改变所述反馈率(K)。
7.如权利要求5所述的传输功率控制电路,其特征在于:
所述反馈率调节部(8)根据所述传输功率的指定电平(PCMD)改变所述反馈率(K)。
8.如权利要求5所述的传输功率控制电路,其特征在于:
所述控制部(140c)还包括:第1信号变换部(135),将所述检波电压(VDET)变换成第1数字信号;第2信号变换部(139),将所述反馈率调节部(147)的输出变换成模拟信号,生成所述控制电压(Vc);
所述反馈率调节部(147)接受表示所述传输功率的指定电平(PCMD)的第2数字信号和所述第1数字信号,根据基于所述第2数字信号设定的所述反馈率(K),执行数字运算以设定所述控制电压。
9.一种传输功率控制电路,包括:
可变增益放大部(1),以与控制电压(Vc)对应的增益放大传输信号,输出传输波;
多个分配部(2a~2c),取出所述传输波的一部分;
多个检波部(3a~3c),与所述多个分配部分别对应设置,分别具有不同的可测定功率范围;
多个检波部分别对对应的分配部的输出进行检波,生成与所述传输波的传输功率(POUT)对应的多个检波电压(VDET1~VDET3);
还包括控制部(150a,150b,150c,160a,160b,160c),用以接受表示所述传输功率的指定电平(PCMD)的电气信号及所述多个检波电压,设定所述控制电压;
所述控制部包括反馈率控制部(8,152,157,162,167),用以根据所述多个检波部的可测定功率范围和所述传输功率之间的关系,设定与所述多个检波电压分别对应的多个反馈率(K1~K3);
所述控制部根据分别乘上所述多个反馈率而负反馈的多个检波电压及与所述传输功率的指定电平对应的基准电压(VREF)进行闭环控制,以设定所述控制电压。
10.如权利要求9所述的传输功率控制电路,其特征在于:
所述多个检波部(3a~3c)的至少一部分可测定功率范围共有相互重合的范围,
所述反馈率控制部(8,152,157,162,167)在所述传输波的传输功率与所述重合范围对应时,设定所述多个反馈率(K1~K3),使得分别来自共有所述重合范围的多个检波电路的多个检波电压进行合成,并进行负反馈。
11.如权利要求10所述的传输功率控制电路,其特征在于:
所述反馈率控制部(8,152,157,162,167)在所述传输波的传输功率与所述重合范围对应时,设定所述多个反馈率(K1~K3),使合成的多个检波电压之间的合成比率根据所述传输功率缓缓变化。
12.如权利要求9所述的传输功率控制电路,其特征在于:
所述反馈率调节部(152,162)根据所述多个检波电压(VDET1~VDET3)设定所述多个反馈率(K1~K3)。
13.如权利要求9所述的传输功率控制电路,其特征在于:
所述反馈率调节部(8)根据所述传输功率的指定电平(PCMD)设定所述多个反馈率(K1~K3)。
14.如权利要求9所述的传输功率控制电路,其特征在于,
所述控制部(150c)还包括:将所述多个检波电压(VDET1~VDET3)分别变换成多个第1数字信号的第1信号变换部(135a~135c);将所述反馈率调节部(157,167)的输出变换成模拟信号、生成所述控制电压(Vc)的第2信号变换部(139);
所述反馈率调节部(157,167)接受表示所述传输功率的指定电平(PCMD)的第2数字信号和所述多个第1数字信号,根据基于所述多个第2数字信号设定的所述多个反馈率(K1~K3),执行用以设定所述控制电压的数字运算。
15.如权利要求9所述的传输功率控制电路,其特征在于:
所述控制部(160a,160b,160c)在所述传输功率不属于所述多个检波部的可测定功率范围的任一个时,中止所述闭环控制,同时根据与所述传输功率的指定电平(PCMD)对应的开环控制,设定所述控制电压(Vc)。
16.如权利要求15所述的传输功率控制电路,其特征在于:
所述控制部(160a)根据所述多个检波电压(VDET1~VDET3)来执行所述闭环控制及所述开环控制的切换和所述闭环控制中的多个反馈率(K1~K3)的设定。
17.如权利要求15所述的传输功率控制电路,其特征在于:
所述控制部(160b)根据所述传输功率的指定电平(PCMD)来执行所述闭环控制及所述开环控制的切换和所述闭环控制中的多个反馈率(K1~K3)的设定。
18.如权利要求15所述的传输功率控制电路,其特征在于,
所述控制部(160c)还包括:第1信号变换部(135a~135c),将所述多个检波电压(VDET1~VDET3)分别变换成多个第1数字信号;第2信号变换部(139),将所述反馈率调节部(167)的输出变换成模拟信号,生成所述控制电压(Vc);
所述反馈率调节部(167)接受表示所述传输功率的指定电平(PCMD)的第2数字信号和所述多个第1数字信号,根据基于所述第1及第2数字信号的比较而选择的所述开环控制及所述闭环控制的一方,采用根据所述多个第2数字信号设定的所述多个反馈率(K1~K3),执行数字运算以设定所述控制电压。
CN01815693.2A 2001-07-17 2001-07-17 传输功率控制电路 Pending CN1459149A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/006190 WO2003009481A1 (fr) 2001-07-17 2001-07-17 Unite de commande de la puissance d'emission

Publications (1)

Publication Number Publication Date
CN1459149A true CN1459149A (zh) 2003-11-26

Family

ID=11737557

Family Applications (1)

Application Number Title Priority Date Filing Date
CN01815693.2A Pending CN1459149A (zh) 2001-07-17 2001-07-17 传输功率控制电路

Country Status (5)

Country Link
US (1) US6788138B2 (zh)
EP (1) EP1309094A1 (zh)
JP (1) JPWO2003009481A1 (zh)
CN (1) CN1459149A (zh)
WO (1) WO2003009481A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255608A (zh) * 2011-01-11 2011-11-23 苏州英诺迅科技有限公司 一种大动态范围自动增益调节电路
CN1938965B (zh) * 2004-02-05 2012-02-22 高通股份有限公司 Ad-hoc无线网络中的功率控制
CN113541643A (zh) * 2021-09-16 2021-10-22 深圳市鼎阳科技股份有限公司 用于信号发生器的功率控制装置、方法和信号发生器

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004020582A2 (en) * 2002-08-15 2004-03-11 Functional Genetics, Inc. Mammalian genes involved in rapamycin resistance and tumorgenesis: rapr6 genes
GB2399260A (en) * 2003-03-07 2004-09-08 Ubinetics Ltd Mobile transceiver transmit power control using a transmitted power detector over a part of the power range
JP3828879B2 (ja) * 2003-05-23 2006-10-04 松下電器産業株式会社 検波回路
US7639015B2 (en) 2003-07-18 2009-12-29 Mks Instruments, Inc. Methods and systems for stabilizing an amplifier
US7075366B2 (en) 2003-07-18 2006-07-11 Mks Instruments, Inc. Methods and systems for stabilizing an amplifier
US8461842B2 (en) 2003-07-18 2013-06-11 Mks Instruments, Inc. Methods and systems for stabilizing an amplifier
US7171171B1 (en) * 2003-08-15 2007-01-30 Rf Micro Devices, Inc. GaAs RF signal detection circuit with operational amplifier
US6927627B2 (en) * 2003-09-22 2005-08-09 Motorola, Inc. Amplifier power control in frequency hopping applications and methods
US20050206447A1 (en) * 2004-03-18 2005-09-22 Ryo Yamazaki Method to prevent saturation in power amplifier control loop
JP2005348312A (ja) * 2004-06-07 2005-12-15 Renesas Technology Corp 高周波電力増幅用電子部品
EP2490330A3 (en) * 2004-07-28 2015-01-21 Mks Instruments, Inc. Methods and Systems for Stabilizing an Amplifier
JP5086075B2 (ja) 2004-07-28 2012-11-28 エムケイエス インストゥルメンツ, インコーポレイテッド 増幅器を安定化する方法およびシステム
ATE387028T1 (de) * 2004-07-29 2008-03-15 Sony Ericsson Mobile Comm Ab Hf-baugruppe und verfahren zur leistungsregelung zur verwendung in einer funkkommunikationseinrichtung
US20060025104A1 (en) * 2004-07-29 2006-02-02 Reed Byron M Dynamic trim to mitigate transients
US7205842B2 (en) * 2005-01-13 2007-04-17 Telefonaktiebolaget Lm Ericsson (Publ) Continuous alternating closed-open loop power control
JP2007116651A (ja) * 2005-09-22 2007-05-10 Renesas Technology Corp 高周波電力増幅用電子部品および無線通信装置
JP4676383B2 (ja) * 2006-05-31 2011-04-27 ルネサスエレクトロニクス株式会社 送信回路及びそれを用いた移動体通信用送信機
US8744510B2 (en) * 2007-03-13 2014-06-03 Pranav Dayal Power control method and apparatus for wireless communications
CN101983528B (zh) 2008-02-08 2015-02-11 天工方案公司 用于调整发射器带宽的闭环自适应功率控制器
TWM349649U (en) * 2008-09-10 2009-01-21 Amazing Microelectronic Corp Bias balancing circuit
US8315581B2 (en) * 2008-09-18 2012-11-20 Intel Mobile Communications GmbH Transmitter with hybrid closed loop power control
US8422968B2 (en) * 2009-06-03 2013-04-16 Apple Inc. Wireless electronic device with open-loop and closed-loop output power control
US8565699B1 (en) 2009-09-23 2013-10-22 Marvell International Ltd. Setting of power amplifier control voltage
US8417198B1 (en) * 2009-10-28 2013-04-09 Marvell International Ltd. Selection of closed-loop/open-loop power control in user equipment
US8260226B1 (en) 2009-10-28 2012-09-04 Marvell International Ltd. High-accuracy transmit power control with high-efficiency power amplifier operation
JP2010179152A (ja) * 2010-05-10 2010-08-19 Mks Instruments Inc 増幅器を安定化する方法およびシステム
JP5963632B2 (ja) * 2012-09-28 2016-08-03 株式会社ダイヘン 高周波電源装置及びその制御方法
US9100033B2 (en) * 2013-12-20 2015-08-04 Motorola Solutions, Inc. Systems and methods for using a digital power amplifier controller (DPAC) having foward-loop correction and feedback-loop correction
CN110022598B (zh) * 2018-01-08 2023-08-08 深圳市中兴微电子技术有限公司 一种功率控制方法、终端和计算机可读存储介质

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2876837B2 (ja) * 1991-08-20 1999-03-31 日本電気株式会社 検波回路
JP2826003B2 (ja) * 1991-11-29 1998-11-18 松下電器産業株式会社 送信出力制御回路
JPH06169228A (ja) 1992-11-27 1994-06-14 Sanyo Electric Co Ltd 送信電力制御装置
US5452473A (en) * 1994-02-28 1995-09-19 Qualcomm Incorporated Reverse link, transmit power correction and limitation in a radiotelephone system
JP3192323B2 (ja) * 1994-07-29 2001-07-23 沖電気工業株式会社 電力制御回路
JPH08102682A (ja) * 1994-10-03 1996-04-16 Matsushita Electric Ind Co Ltd Apc回路
JPH09121132A (ja) * 1995-10-24 1997-05-06 Oki Electric Ind Co Ltd 無線装置の送信電力制御回路
JP2954024B2 (ja) 1996-07-12 1999-09-27 埼玉日本電気株式会社 送信電力制御回路
JPH10145160A (ja) * 1996-11-15 1998-05-29 Oki Electric Ind Co Ltd 自動出力制御回路
JP3263017B2 (ja) * 1997-10-22 2002-03-04 三菱電機株式会社 検波回路およびそれを用いた送信装置ならびに受信装置
CN1153371C (zh) * 1998-06-29 2004-06-09 诺基亚网络有限公司 多载波无线发射机中的功率控制
JP2000101456A (ja) * 1998-09-24 2000-04-07 Fujitsu Ltd 無線送信装置
JP2000349657A (ja) * 1999-06-08 2000-12-15 Nec Saitama Ltd Rf検波回路
JP2001016116A (ja) * 1999-07-02 2001-01-19 Nec Corp 携帯無線機
JP2001189667A (ja) * 1999-12-28 2001-07-10 Mitsubishi Electric Corp 送信電力制御回路および送信電力制御方法
US6670849B1 (en) * 2000-08-30 2003-12-30 Skyworks Solutions, Inc. System for closed loop power control using a linear or a non-linear power amplifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1938965B (zh) * 2004-02-05 2012-02-22 高通股份有限公司 Ad-hoc无线网络中的功率控制
CN102255608A (zh) * 2011-01-11 2011-11-23 苏州英诺迅科技有限公司 一种大动态范围自动增益调节电路
CN113541643A (zh) * 2021-09-16 2021-10-22 深圳市鼎阳科技股份有限公司 用于信号发生器的功率控制装置、方法和信号发生器

Also Published As

Publication number Publication date
US20040012907A1 (en) 2004-01-22
WO2003009481A1 (fr) 2003-01-30
JPWO2003009481A1 (ja) 2004-11-11
US6788138B2 (en) 2004-09-07
EP1309094A1 (en) 2003-05-07

Similar Documents

Publication Publication Date Title
CN1459149A (zh) 传输功率控制电路
CN1166065C (zh) 具有节能电路的模数转换器及其控制方法
CN1782728A (zh) 电池功率检测装置
CN1794893A (zh) 放电灯点灯装置以及照明系统
CN1220321C (zh) 开关电源装置
CN1929274A (zh) 用于dc-dc转换器的控制器和控制方法
CN1896898A (zh) 恒压电路,设有多个恒压电路的电源系统装置及其控制方法
CN1407701A (zh) 开关电源装置
CN1149576C (zh) 半导体集成电路
CN1692551A (zh) 差动放大器及运算放大器
CN1482727A (zh) 直流—直流变换器
CN1941639A (zh) 发射装置和用于阻抗匹配的方法
CN1756084A (zh) 具有增益控制功能的δς调制电路
CN1270433A (zh) 电池充电控制电路、电池充电设备和电池充电控制方法
CN1711678A (zh) 功率放大装置
CN1521930A (zh) 开关电源装置
CN1168197C (zh) 励磁控制装置及励磁控制方法
CN1398031A (zh) 电源装置
CN101079598A (zh) 高频功率放大器和通信设备
CN1848652A (zh) 开关电源装置和开关方法
CN101047915A (zh) 第三代时分同步码分多址移动终端自动校准的方法和装置
CN1437311A (zh) 直流稳压电源装置
CN1274082C (zh) 功率控制电路和发射机
CN101053110A (zh) 蓄电池温度控制设备和蓄电池温度控制方法
CN1491476A (zh) Dc-dc变换器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication