CN1415924A - 用于喷射器循环系统的喷射器 - Google Patents
用于喷射器循环系统的喷射器 Download PDFInfo
- Publication number
- CN1415924A CN1415924A CN02150306A CN02150306A CN1415924A CN 1415924 A CN1415924 A CN 1415924A CN 02150306 A CN02150306 A CN 02150306A CN 02150306 A CN02150306 A CN 02150306A CN 1415924 A CN1415924 A CN 1415924A
- Authority
- CN
- China
- Prior art keywords
- injector
- refrigerant
- channel
- nozzle
- coolant channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/02—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid
- F04F5/04—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid displacing elastic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/06—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
- F25B2309/061—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2341/00—Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
- F25B2341/001—Ejectors not being used as compression device
- F25B2341/0012—Ejectors with the cooled primary flow at high pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/01—Geometry problems, e.g. for reducing size
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/008—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- Jet Pumps And Other Pumps (AREA)
- Nozzles (AREA)
Abstract
一种用于喷射气循环系统的喷射器(400),喷嘴具有第一制冷剂通道(411),第二制冷剂通道(412),及第三制冷剂通道(413),以此顺序沿从所述喷嘴的制冷剂入口向制冷剂出口的制冷剂流方向布置。第一制冷剂通道,第二制冷剂通道和第三制冷剂通道分别形成为圆柱形,其每一个都具有恒定的通道直径。再者,喷嘴的压力增加部分(420)同样形成为具有恒定通道直径的圆柱形。由此,喷射器能够容易地以低成本制造喷射器。
Description
技术领域
本发明涉及一种用于喷射器循环系统的喷射器,该喷射器由从喷嘴喷射的高速制冷剂流吸入气态制冷剂。
背景技术
如图9所示在JP-U-57-76300中所描述的喷射器循环系统中,喷射器包括用于将从散热器来的高压制冷剂的压力能转换成速度能(speed energy)的喷嘴40,混合部分42,在混合部分42中在蒸发器中蒸发的气态制冷剂由从喷嘴41喷射的高速制冷剂流吸入,及扩散器43,在扩散器43中速度能被转换成压力能,以便当从喷嘴40排放的制冷剂和从蒸发器来的气态制冷剂混合时增加制冷剂的压力。在喷射器中,喷嘴40具有在入口侧的锥形部分41,并且扩散器43被形成为锥形。由于锥形部分41和扩散器43的每一个内壁被形成为圆锥形,因此难于通过使用简单的钻头形成该孔。形成锥形部分41和扩散器43中的孔一般必须放电加工或线切割。因此,难于减少加工步骤及降低生产成本。
另一方面,为了防止喷嘴40中的制冷剂流的较大的扰动,锥形部分41的锥角设置为相对较小的角度。因此,喷嘴40的轴向尺寸变得较长。
发明内容
考虑到上述问题,本发明的第一个目的是提供一种具有喷射器的喷射器循环系统,该喷射器循环系统能够降低生产成本。
本发明的第二个目的是提供一种用于喷射器循环系统的喷射器,该喷射器具有减小的轴向尺寸。
依照本发明的第一个方面,一种用于喷射气循环系统的喷射器,包括喷嘴,所述喷嘴用于通过将高压制冷剂的压力能转换成速度能使从散热器流出的高压制冷剂减压,及混合部分,在蒸发器中蒸发的气态制冷剂通过从所述喷嘴喷射的制冷剂流被吸入所述混合部分中,以便与从所述喷嘴喷射的制冷剂混合。在所述喷射器中,所述喷嘴具有第一制冷剂通道,第二制冷剂通道,及第三制冷剂通道,以此顺序沿从所述喷嘴的制冷剂入口向制冷剂出口的制冷剂流方向布置。再者,所述第一制冷剂通道,第二制冷剂通道和第三制冷剂通道分别具有圆柱形,其每一个都具有恒定的通道直径,及所述第一制冷剂通道的通道直径大于所述第二制冷剂通道的通道直径。由此,能够容易地通过诸如钻孔的简单切削方法制造所述第一制冷剂通道,第二制冷剂通道和第三制冷剂通道。由此,能够降低喷射器的制造成本。
在本发明中,可以使所述第二制冷剂通道的通道直径小于所述第三制冷剂通道的通道直径。作为选择,可以使所述第二制冷剂通道的通道直径等于所述第三制冷剂通道的通道直径。作为选择,所述第二制冷剂通道的通道直径可以大于所述第三制冷剂通道的通道直径。
优选方式是,所述混合部分具有圆柱形通道,所述圆柱形通道具有恒定的通道直径。在此种情况下,能够容易地通过诸如钻孔的简单切削方法制造所述混合部分。
根据本发明的第二个方面,在一种用于喷射气循环系统的喷射器中,喷嘴包括锥形部分,在所述锥形部分中其通道截面面积向下游制冷剂侧被减小以便具有其通道截面面积变成最小的节流部分,及连接到在制冷剂下游侧的所述节流部分上的出口通道部分;再者,锥形部分具有在制冷剂入口侧的锥角,所述锥角大于在节流部分的一侧的锥角。由此,能够迅速地增加制冷剂流速,并且能够相对地减小喷嘴的轴向尺寸。由此,能够有效地减小喷射器的轴向尺寸。
在这种情况下,锥形部分的锥角可以分段变化,并且所述喷嘴的出口通道部分可以形成为圆柱形,所述圆柱形具有恒定的通道直径。
附图说明
从下面结合附图对优选实施例的详细描述,本发明的其他目的和优点更加显而易见,其中:
图1是表示根据本发明第一个实施例的喷射器循环系统的示意图;
图2是表示用于根据第一个实施例的喷射器循环系统的喷射器的放大示意图;
图3是根据第一个实施例的特征图,图中示出了从喷嘴的制冷剂出口到喷射器混合部分的制冷剂出口的制冷剂相对流速,和从喷射器的制冷剂通道部分中的中心沿径向方向的径向位置之间的关系;
图4是表示根据第一个实施例的喷射器循环系统操作的莫利尔线图(p-h图);
图5是表示用于根据本发明的第二个实施例的喷射器循环系统的喷射器的喷嘴的剖视图;
图6是表示在比较喷嘴中的制冷剂速度的变化图;
图7是说明在根据第二个实施例的喷射器中的喷嘴的效果的视图;
图8是表示根据第二个实施例的修改的喷射器的喷嘴的剖视图;及
图9是表示现有技术中的喷射器的剖视图。
具体实施方式
下面将结合附图描述本发明的优选实施例。(第一个实施例)
在第一个实施例中,本发明典型地应用于车辆空调设备的喷射器循环系统。
在图1中,压缩机100由诸如车辆发动机(未示出)的驱动源驱动,以便吸入和压缩制冷剂。在散热器200中(即,高压侧热交换器),从压缩机100排出的制冷剂与客室外面的空气(外面的空气)进行热交换,被冷却。在蒸发器300中(即,低压侧热交换器),在喷射器循环系统中的液态制冷剂与吹入客室的空气进行热交换,以便通过蒸发器300的空气被冷却。喷射器400使从散热气200流出的高压制冷剂减压和膨胀以便将在蒸发器300中蒸发的气态制冷剂吸入其中,并且将膨胀能(expansion energy)转换成压力能,以便增加吸入压缩机100中的制冷剂的压力。从喷射器400过来的制冷剂流入气体-液体分离器500中,并且在气体-液体分离器500中被分离为气态制冷剂和液态制冷剂。在气体-液体分离器500中被分离的气态制冷剂被吸入压缩机100,而在气体-液体分离器500中被分离的液态制冷剂被吸入蒸发器300的一侧。气体-液体分离器500通过制冷剂通道连接到蒸发器300上。在气体-液体分离器500和蒸发器300之间的制冷剂通道中,可以提供诸如毛细管,固定节流阀和可变节流阀的流量控制阀。
再者,喷射器400的结构详细描述如下。如图2所示,喷射器400包括喷嘴410和混合部分420。喷嘴410通过将制冷剂的压力能(压头)转换成其速度能(速度头(speed head))使从散热器200流过来的高压制冷剂减压和膨胀。在蒸发器300中蒸发的气态制冷剂由从喷嘴410喷射的高速制冷剂流被吸入混合部分420,并且在混合部分420中与从喷嘴410喷射的制冷剂混合。
构造喷嘴410,使其具有第一制冷剂通道411,第二制冷剂通道412和第三制冷剂通道413,以此顺序从制冷剂入口向制冷剂出口布置。第一制冷剂通道411,第二制冷剂通道412和第三制冷剂通道413分别形成为具有预定通道直径D1,D2,D3的圆柱形。第一制冷剂通道411的通道直径D1大于第二制冷剂通道412的通道直径D2和第三制冷剂通道413的通道直径。再者,第二制冷剂通道412的通道直径D2小于第三制冷剂通道413的通道直径D3。
喷射器400由诸如不锈钢,铜和铝的金属材料制造。在利用这类金属材料模铸成型后,进行诸如钻孔的切削,形成制冷剂通道411-413和混合部分420,以便制造喷射器400。
下面将描述喷射器循环系统的操作。当压缩机100开始操作时,从气体-液体分离器500过来的气态制冷剂被吸入压缩机100,并且被压缩的制冷剂从压缩机100被排放到散热器200中。在散热器200中冷却的制冷剂在喷射器400的喷嘴410中被减压,并且在蒸发器300中蒸发的气态制冷剂被吸入喷射器400。即,在第一个实施例中,喷射器400也用作循环气体-液体分离器500和蒸发器300之间的制冷剂的泵。
从蒸发器300吸入的制冷剂和从喷嘴410喷射的制冷剂在混合部分420被混合,并且其后流入气体-液体分离器500。在混合部分420中,从喷嘴410喷射的制冷剂喷射流和从蒸发器300吸入的制冷剂吸入流被混合,以便保持从喷嘴410喷射的驱动流制冷剂(喷射流制冷剂)的动力量(kinetic amount)和从蒸发器300的吸入流制冷剂的动力量的和,并且在混合部分420中制冷剂的压力被增加。由此,在混合部分420,制冷剂的动压被转换成其静压,并且在混合部分420制冷剂的压力被增加。因此,混合部分420用作压力增加部分,在该部分被吸入压缩机100的制冷剂的压力被增加。
另一方面,由于气态制冷剂从蒸发器300被吸入喷射器400,从气体-液体分离器500过来的液态制冷剂流入蒸发器300,通过从被吹入客室的空气中吸收热量被蒸发。
图3是仿真结果,图中示出了从喷嘴410的制冷剂出口到混合部分420的制冷剂出口的制冷剂流速(相对流速),和从喷射器400的制冷剂通道横截面的中心沿径向方向的径向位置之间的关系。假定制冷剂流速分布(气体流速分布)是相对于中心轴线对称的,并且假定在喷嘴410的出口的制冷剂流速是1,进行图3所示的仿真。在图3中,A标示从喷嘴410流出的喷射流气态制冷剂,而C标示从蒸发器300吸入的吸入气态制冷剂(吸入流气体)。如图3所示,当喷射流气态制冷剂吸入并且加速从蒸发器300来的制冷剂时,从喷嘴410排出的喷射流气态制冷剂的流速变低。由此,在混合部分420的制冷剂出口侧,喷射流气态制冷剂的流速降低接近完成,如图3中的B所示。
图4示出了喷射器循环的操作。在图4中,标号C1-C9表示在图1所示的喷射器循环系统中的操作位置。此外,图4示出了理想状态,即在连接压缩机100,散热器200,蒸发器300,喷射器400和气体-液体分离器500的管道中的压力损失被忽略。
根据本发明,形成喷嘴,使其具有第一,第二和第三制冷剂通道411,412,413,第一,第二和第三制冷剂通道411,412,413在横截面中具有一定的通道直径。及,制冷剂通道411,412,413中的每一个都具有简单的圆柱形,通过诸如钻孔的简单切削能够容易地制造喷嘴410。由此,能够以低成本制造喷射器400。
在喷射器400中,制冷剂通道411,412,413形成为具有不同通道直径的圆柱形,在制冷剂通道411,412,413中的相邻的两个之间形成阶梯部分。由此,制冷剂流在阶梯部分被拢动,并且与没有阶梯部分的情形相比将制冷剂的压力能转换成速度能的转换效率降低。然而,在本实施例中,由于具有零干燥度的液态制冷剂是从气体-液体分离器500供给到蒸发器300,因此与利用膨胀阀对制冷剂进行减压的蒸发压缩制冷剂循环相比,在蒸发器300中的制冷剂的湿润面积(wettedarea)变大。因此,在喷射循环中,增加了蒸发器300中的制冷剂的热转换效率。因此,在第一实施例中,喷射器400能够以低成本被制造,而与蒸发-压缩制冷剂循环相比压缩机100实际消耗的电能能够被降低。例如,在第一个实施例中,形成第一,第二和第三制冷剂通道411-413,使其具有通道直径比(D1∶D2∶D)20∶2∶3。
在上述实施例中,使第三制冷剂通道413的通道直径D3大于第二制冷剂通道412的通道直径D2。然而,在第一个实施例中,可以使第三制冷剂通道413的通道直径D3等于第二制冷剂通道412的通道直径D2。作为选择,可以使第三制冷剂通道413的通道直径D3小于第二制冷剂通道412的通道直径D2。
例如,在第一个实施例的喷射器循环系统中,碳氟化合物或二氧化碳可以用作制冷剂。当碳氟化合物用作喷射器循环系统中的制冷剂时,在高压侧的制冷剂压力低于制冷剂的临界压力。另一方面,当二氧化碳用作喷射器循环系统中的制冷剂时,在高压侧的制冷剂压力高于制冷剂的临界压力。(第二个实施例)
下面将参照图5-8描述本发明的第二个实施例。如图5所示,在第二个实施例中,用于喷射器循环系统制的喷射器400中的制冷剂通道411-413的截面形状被改变。在第二个实施例中,第一制冷剂通道(锥形部分)411是锥形的,以便锥形部分411的通道截面面积从制冷剂入口向制冷剂下游侧逐渐减小。锥形部分411的通道截面面积在第二制冷剂通道(节流部分)412处被减小并且变成最小。连接到节流部分412的第三制冷剂通道(出口通道部分)413是锥形的,以便第三制冷剂通道413的通道截面面积向出口通道部分413的制冷剂出口方向逐渐增加。即,在第二个实施例中,作为喷嘴410,采用了扩散喷嘴(渐缩渐阔喷嘴)。在图5中,具有最小通道直径的节流部分412形成为具有短轴向尺寸的节流阀状。然而,节流部分412的轴向尺寸能够被调整为更长。锥形部分411是通道面积减小的部分,在该部分从制冷剂入口向节流部分412通道截面面积被减小,并且出口通道部分413是通道面积增加部分,在该部分从节流部分412向制冷剂出口通道截面面积被增加。锥形部分411形成为两阶锥形,以便具有在制冷剂入口侧的第一锥形部分411a,及在节流部分412侧的第二锥形部分411b。这里,在喷嘴410的锥形部分411中,设置第一锥形部分411a的锥角α1大于第二锥形部分411b的锥角α2。
图6示出了在锥形部分中具有恒定锥角的比较喷嘴中的制冷剂流速。在该情况下,如图6所示,围绕锥形部分的入口部分的制冷剂的流速迅速增加,并且其后,流速相对较慢地增加。在节流部分之后,在出口通道部分流速稍稍增加。
在第二个实施例中,锥形部分(通道面积减小部分)411被形成,使其具有第一和第二锥形部分411a,411b,以便在喷嘴410中制冷剂流速能够更迅速地被增节。再者,设置第一锥形部分411a的锥角α1大于第二锥形部分411b的锥角α2,以便能够有效地增加制冷剂流速。由此,即使当设置节流部分的截面面积等于比较喷嘴的节流部分的截面面积时,与比较喷嘴相比第二实施例的喷嘴410的轴向尺寸也能够被减小。
在上述第二个实施例中,锥形部分411的锥角在两阶中是变化的,具有两个不同的锥角。然而,喷嘴410的锥形部分411能够形成为具有多于两个的多阶锥形部分。
在图5中,喷嘴410的出口通道413(第三制冷剂通道)形成为锥形,在该处从节流部分412到制冷剂出口通道截面面积增加。然而,在穿过节流部分412之后在喷嘴410中的制冷剂流速稍微增加。因此,在第二个实施例中,如图8所示,喷嘴410的出口通道部分413能够被形成为具有恒定通道直径的圆柱形。在该情况下,可以设定出口通道部分413的恒定通道直径等于节流部分412的通道直径。
例如,类似于上述第一个实施例,第二个实施例的喷嘴410能够被用于喷射器循环系统,在系统中碳氟化合物和二氧化碳可以用作制冷剂。
尽管参照附图,结合优选实施例,充分描述了本发明,但应当注意,多种改变和修改对本领域的普通技术人员而言是非常明显的。
例如,在上述实施例中,用于通过将速度能转换为压力能的增加制冷剂压力的锥形扩散器可以设置在混合部分420的制冷剂出口处。
在本发明的上述实施例中,喷射器循环系统用于车辆空调设备。然而,该喷射器循环系统能够用于任何隔间,冷却单元,或使用热泵的加热单元的空调设备。
这种变化和修改被理解为在本发明权力要求所限定的范围内。
Claims (10)
1.一种用于喷射气循环系统的喷射器(400),包括压缩机(100),散热器(200),蒸发器(300)和气体-液体分离器(500),构造所述喷射器循环系统,以便在所述气体-液体分离器中被分离的气态制冷剂被供给到所述压缩机的吸入侧,而在所述气体-液体分离器中被分离的液态制冷剂被供给到所述蒸发器,所述喷射器包括:
喷嘴(410),所述喷嘴用于通过将高压制冷剂的压力能转换成速度能使从所述散热器流出的高压制冷剂减压;及
混合部分(420),在所述蒸发器中蒸发的气态制冷剂通过从所述喷嘴喷射的制冷剂流被吸入所述混合部分中,以便与从所述喷嘴喷射的制冷剂混合,其中:
所述喷嘴具有第一制冷剂通道(411),第二制冷剂通道(412),及第三制冷剂通道(413),以此顺序沿从所述喷嘴的制冷剂入口向制冷剂出口的制冷剂流方向布置;
所述第一制冷剂通道,第二制冷剂通道和第三制冷剂通道分别具有圆柱形,其每一个都具有恒定的通道直径;及
所述第一制冷剂通道(411)的通道直径(D1)大于所述第二制冷剂通道(412)的通道直径(D2)。
2.根据权利要求1所述的喷射器,其中
所述第二制冷剂通道(412)的通道直径(D2)小于所述第三制冷剂通道(413)的通道直径(D3)。
3.根据权利要求1所述的喷射器,其中
所述第二制冷剂通道(412)的通道直径(D2)等于所述第三制冷剂通道(413)的通道直径(D3)。
4.根据权利要求1所述的喷射器,其中
所述第二制冷剂通道(412)的通道直径(D2)大于所述第三制冷剂通道(413)的通道直径(D3)。
5.根据权利要求1所述的喷射器,其中
所述第一制冷剂通道的通道直径,所述第二制冷剂通道的通道直径和所述第三制冷剂通道的通道直径的比值约为20∶2∶3。
6.根据权利要求1-5中任何一项所述的喷射器,其中所述混合部分(420)具有圆柱形通道,所述圆柱形通道具有恒定的通道直径。
7.一种用于喷射气循环系统的喷射器(400),包括压缩机(100),散热器(200),蒸发器(300)和气体-液体分离器(500),构造所述喷射器循环系统,以便在所述气体-液体分离器中被分离的气态制冷剂被供给到所述压缩机的吸入侧,而在所述气体-液体分离器中被分离的液态制冷剂被供给到所述蒸发器,所述喷射器包括:
喷嘴(410),所述喷嘴用于通过将高压制冷剂的压力能转换成速度能使从所述散热器流出的高压制冷剂减压;及
压力增加部分(420),在所述压力增加部分(420)当从所述喷嘴喷射的制冷剂和从蒸发器来的气态制冷剂被混合时速度能被转化成压力能以便增加制冷剂的压力,其中:
所述喷嘴包括锥形部分(411),在所述锥形部分(411)中其通道截面面积向下游制冷剂侧被减小以便具有其通道截面面积变成最小的节流部分(412),及连接到在制冷剂下游侧的所述节流部分上的出口通道部分(413);及
锥形部分(411)具有在制冷剂入口侧的锥角,所述锥角大于在节流部分(412)的一侧的锥角。
8.根据权利要求7所述的喷射器,其中所述锥形部分(411)具有分段变化的锥角。
9.根据权利要求7和8中的任何一项所述的喷射器,其中所述喷嘴的出口通道部分(413)具有圆柱形,所述圆柱形具有恒定的通道直径。
10.根据权利要求7和8中的任何一项所述的喷射器,其中所述喷嘴的出口通道部分(413)是锥形的,以便从所述节流部分(412)到所述制冷剂下游侧通道截面面积逐渐增加。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001332747 | 2001-10-30 | ||
JP2001332747A JP3903766B2 (ja) | 2001-10-30 | 2001-10-30 | エジェクタ |
JP332747/2001 | 2001-10-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1415924A true CN1415924A (zh) | 2003-05-07 |
CN1160540C CN1160540C (zh) | 2004-08-04 |
Family
ID=19148122
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB021503060A Expired - Fee Related CN1160540C (zh) | 2001-10-30 | 2002-10-30 | 用于喷射器循环系统的喷射器 |
CN02284933U Expired - Fee Related CN2583578Y (zh) | 2001-10-30 | 2002-10-30 | 用于喷射器循环系统的喷射器 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN02284933U Expired - Fee Related CN2583578Y (zh) | 2001-10-30 | 2002-10-30 | 用于喷射器循环系统的喷射器 |
Country Status (5)
Country | Link |
---|---|
US (1) | US6604379B2 (zh) |
EP (1) | EP1308679A3 (zh) |
JP (1) | JP3903766B2 (zh) |
CN (2) | CN1160540C (zh) |
BR (1) | BR0207604A (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102822535A (zh) * | 2010-03-31 | 2012-12-12 | 三菱电机株式会社 | 喷射器、驱动流体发泡方法及制冷循环装置 |
CN103148649A (zh) * | 2013-03-27 | 2013-06-12 | 上海理工大学 | 蒸汽压缩制冷循环系统中喷射器设计方法 |
CN104169591A (zh) * | 2012-03-07 | 2014-11-26 | 株式会社电装 | 喷射器 |
CN104870829A (zh) * | 2012-12-13 | 2015-08-26 | 株式会社电装 | 喷射器 |
CN104870829B (zh) * | 2012-12-13 | 2016-11-30 | 株式会社电装 | 喷射器 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3928470B2 (ja) * | 2002-04-26 | 2007-06-13 | 株式会社デンソー | 車両用空調装置 |
JP3928471B2 (ja) * | 2002-04-26 | 2007-06-13 | 株式会社デンソー | 車両用空調装置 |
JP4200780B2 (ja) * | 2003-02-14 | 2008-12-24 | 株式会社デンソー | 蒸気圧縮式冷凍機 |
US6918266B2 (en) * | 2003-04-21 | 2005-07-19 | Denso Corporation | Ejector for vapor-compression refrigerant cycle |
JP4114554B2 (ja) * | 2003-06-18 | 2008-07-09 | 株式会社デンソー | エジェクタサイクル |
JP2005009774A (ja) * | 2003-06-19 | 2005-01-13 | Denso Corp | エジェクタサイクル |
JP4049063B2 (ja) * | 2003-09-10 | 2008-02-20 | 株式会社デンソー | 同軸度の測定方法および同軸度の測定装置 |
JP4539499B2 (ja) * | 2004-11-09 | 2010-09-08 | 株式会社デンソー | 振動加工装置及び振動加工方法 |
JP2007183082A (ja) * | 2005-03-04 | 2007-07-19 | Tgk Co Ltd | 膨張弁 |
JP4929936B2 (ja) * | 2006-09-07 | 2012-05-09 | 株式会社デンソー | エジェクタおよびエジェクタ式冷凍サイクル |
US20100150742A1 (en) * | 2008-12-16 | 2010-06-17 | Jan Vetrovec | Reconfigurable jet pump |
CN102659196A (zh) * | 2012-05-28 | 2012-09-12 | 天津壹帆水务有限公司 | 一种节能蒸发工艺及其系统 |
CN102996530B (zh) * | 2012-12-19 | 2016-03-02 | 宁波思进机械股份有限公司 | 旋涡式负压吸液装置 |
CN111608963A (zh) * | 2020-06-02 | 2020-09-01 | 江苏惠生流体设备有限公司 | 一种便于维护的智能喷射器 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2859596A (en) * | 1955-06-01 | 1958-11-11 | Girton Mfg Company Inc | Refrigeration system |
US3838002A (en) * | 1972-07-21 | 1974-09-24 | Gen Electric | Jet pump for nuclear reactor |
GB1530128A (en) * | 1974-10-21 | 1978-10-25 | Gen Electric | Jet pumps and nozzles therefor |
US4187695A (en) * | 1978-11-07 | 1980-02-12 | Virginia Chemicals Inc. | Air-conditioning system having recirculating and flow-control means |
JPS5776300A (en) | 1980-10-28 | 1982-05-13 | Kurabo Ind Ltd | Apparatus for transporting work liquid under constant pressure |
JP2801598B2 (ja) * | 1988-02-01 | 1998-09-21 | 株式会社東芝 | 原子炉の非常時炉心冷却系 |
DE4036854C1 (zh) * | 1990-11-19 | 1992-05-21 | Thermal-Werke, Waerme-, Kaelte-, Klimatechnik Gmbh, 6832 Hockenheim, De | |
JP3158656B2 (ja) * | 1992-06-16 | 2001-04-23 | 株式会社デンソー | エジェクタ |
US5713212A (en) * | 1997-02-07 | 1998-02-03 | Mcdonnell Douglas Corporation | Apparatus and method for generating air stream |
RU2107841C1 (ru) * | 1997-04-21 | 1998-03-27 | Сергей Анатольевич Попов | Жидкостно-газовый струйный аппарат |
FR2806011B1 (fr) * | 2000-03-10 | 2002-09-27 | Cogema | Ejecteur vapeur-liquide a buse amovible |
DE60112184T2 (de) * | 2000-06-01 | 2006-06-01 | Denso Corp., Kariya | Ejektorzyklus |
-
2001
- 2001-10-30 JP JP2001332747A patent/JP3903766B2/ja not_active Expired - Fee Related
-
2002
- 2002-10-23 BR BR0207604-7A patent/BR0207604A/pt active Search and Examination
- 2002-10-28 US US10/281,690 patent/US6604379B2/en not_active Expired - Lifetime
- 2002-10-29 EP EP02024426A patent/EP1308679A3/en not_active Ceased
- 2002-10-30 CN CNB021503060A patent/CN1160540C/zh not_active Expired - Fee Related
- 2002-10-30 CN CN02284933U patent/CN2583578Y/zh not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102822535A (zh) * | 2010-03-31 | 2012-12-12 | 三菱电机株式会社 | 喷射器、驱动流体发泡方法及制冷循环装置 |
CN102822535B (zh) * | 2010-03-31 | 2015-10-21 | 三菱电机株式会社 | 喷射器、驱动流体发泡方法及制冷循环装置 |
CN104169591A (zh) * | 2012-03-07 | 2014-11-26 | 株式会社电装 | 喷射器 |
CN104870829A (zh) * | 2012-12-13 | 2015-08-26 | 株式会社电装 | 喷射器 |
CN104870829B (zh) * | 2012-12-13 | 2016-11-30 | 株式会社电装 | 喷射器 |
US10077923B2 (en) | 2012-12-13 | 2018-09-18 | Denso Corporation | Ejector |
CN103148649A (zh) * | 2013-03-27 | 2013-06-12 | 上海理工大学 | 蒸汽压缩制冷循环系统中喷射器设计方法 |
Also Published As
Publication number | Publication date |
---|---|
EP1308679A2 (en) | 2003-05-07 |
EP1308679A3 (en) | 2003-10-08 |
CN1160540C (zh) | 2004-08-04 |
BR0207604A (pt) | 2003-11-25 |
JP3903766B2 (ja) | 2007-04-11 |
CN2583578Y (zh) | 2003-10-29 |
US20030079495A1 (en) | 2003-05-01 |
US6604379B2 (en) | 2003-08-12 |
JP2003139098A (ja) | 2003-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN2583578Y (zh) | 用于喷射器循环系统的喷射器 | |
CN1267686C (zh) | 有节流阀可变喷嘴的喷射器及用该喷射器的循环系统 | |
US6729149B2 (en) | Ejector cycle system | |
CN101532760B (zh) | 喷射器装置和使用该喷射器装置的制冷循环设备 | |
CN1226582C (zh) | 具有喷射器循环系统的空调器 | |
CN1470821B (zh) | 带有节流可控喷嘴的喷射器和使用它的喷射循环 | |
KR100393170B1 (ko) | 이젝터 사이클 시스템 | |
CN103477160B (zh) | 减压装置和制冷循环装置 | |
US8523091B2 (en) | Ejector | |
CN1247943C (zh) | 具有锥形喷嘴和锥形针的喷射器 | |
US9372014B2 (en) | Ejector-type refrigeration cycle device | |
CN101412011A (zh) | 可调式喷射器 | |
CN101608642A (zh) | 喷射器 | |
CN101311646A (zh) | 喷射器循环装置 | |
US6931887B2 (en) | Ejector decompression device | |
US6918266B2 (en) | Ejector for vapor-compression refrigerant cycle | |
JPH1137577A (ja) | ノズル装置 | |
JPH11148733A (ja) | 冷凍サイクル用エジェクタ | |
JP2003004319A (ja) | エジェクタサイクル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20040804 Termination date: 20181030 |
|
CF01 | Termination of patent right due to non-payment of annual fee |