US20100150742A1 - Reconfigurable jet pump - Google Patents

Reconfigurable jet pump Download PDF

Info

Publication number
US20100150742A1
US20100150742A1 US12/653,690 US65369009A US2010150742A1 US 20100150742 A1 US20100150742 A1 US 20100150742A1 US 65369009 A US65369009 A US 65369009A US 2010150742 A1 US2010150742 A1 US 2010150742A1
Authority
US
United States
Prior art keywords
jet pump
fluid
fitting
nozzle
diffuser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/653,690
Inventor
Jan Vetrovec
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/653,690 priority Critical patent/US20100150742A1/en
Publication of US20100150742A1 publication Critical patent/US20100150742A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • F04F5/463Arrangements of nozzles with provisions for mixing

Definitions

  • This invention relates generally to apparatus and methods for jet pumps and more specifically to jet pumps suitable for easy reconfiguration.
  • Jet pumps also know as ejectors, eductors, or thermo-compressors
  • Jet pumps are used in industry for pumping of liquids and fluides, see for example, R. H. Perry and C. H. Chilton, “Chemical Engineer's Handbook,” 5 th edition, Chapter 6, Section “Ejectors,” pages 6-29 to 6-32, published by McGraw-Hill Book Company, New York, N.Y., 1973, and G. L. Weissler and R. W. Carlson (editors), “Vacuum Physics and Technology,” Chapter 4.3.5: Ejectors, pages 136 to 138, published by Academic Press, New York, N.Y., 1979.
  • FIG. 1 shows a general configuration of a fluid (liquid, gas, or steam) operated ejector pump for pumping fluids.
  • the term “ejector pump” shall mean a -operated ejector pump.
  • Ejector pump essentially consists of a fluid-operated driving nozzle, a suction chamber and a diffuser duct.
  • the diffuser duct typically has two sections; a mixing section which may have converging and/or straight segments, and a pressure recovery section which is usually diverging.
  • the driving nozzle is fed a high-pressure “driving” fluid (liquid, gas, or steam) at pressure p 1 and converts its potential (pressure) energy into a kinetic energy thereby producing a high-velocity fluid jet discharging into the suction chamber.
  • Driving action occurs when the fluid in the suction chamber is entrained by the jet, acquires some of its velocity, and is carried into the diffuser duct where the kinetic energy of the mixture of driving and entrained fluids is converted into a potential (pressure) energy.
  • the velocity of the fluid mixture is recovered inside the diffuser to a pressure p 3 which is greater than the suction pressure p 2 but lower than the driving pressure p 1 .
  • the diffuser exit pressure p 3 must be equal or higher than the backing pressure p 4 .
  • Ejector design is termed subsonic if the fluid velocity in the diffuser is subsonic.
  • ejector design is termed supersonic if the fluid velocity in the diffuser is supersonic.
  • a supersonic ejector requires that the driving nozzle is a supersonic nozzle.
  • diffuser ducts used in ejector pumps have a circular cross-section because it provides the largest cross-sectional area with the least circumference and, therefore, the least wall friction losses.
  • ejector pumps have been used to produce compression ratio P 3 /p 2 of up to about 10.
  • the driving fluid pressure p 1 is much higher than the target pressure p 3 at the exit of the ejector, i.e., p 1 >>p 3 . Consequently, ejector pumps can be used as vacuum pumps or as compressors. Ejector pumps can be designed to accommodate a wide variety of flow conditions. As a results, ejector pumps for different applications can greatly vary in size, nozzle and duct shape, and arrangement of components.
  • the ejector configuration having a centrally located driving nozzle immersed in the inlet fluid flow shown in FIG. 1 is known as the in-line ejector.
  • FIG. 2 shows an alternative configuration known as the annular jet ejector where the driving nozzle is formed as an annulus enveloping the inlet fluid flow.
  • Data on commercially produced fluid ejector pumps and their performance can be found, for example, in “Pumping Gases, Jet Pump Technical Data,” Section 1000, Bulletin 1300, Issued March 1976 by Penberthy Division of Houdaille Industries, Inc., Prophetstown, Ill.
  • flow throughput and pressure of driving fluid can be varied to produce desired discharge port pressure p 3 over a broad range of pumped fluid inflows and pressures p 2 .
  • several ejector pumps can be operated in parallel.
  • multiple driving nozzles can be used to feed a single large cross-section diffuser duct (see, for example FIG. 6-71 in the above noted Perry and Chilton).
  • Prior art jet pumps are made with a suction chamber and diffuser formed as one piece typically produced by casting, molding, and/or machining. This results in a costly product. In addition, the configuration of the diffuser (which affects jet pump performance) is thereby fixed and unchangeable.
  • FIGS. 3 and 4 show examples of prior art jet pumps. There is a need for a jet pump that can be produced inexpensively and can be reconfigured at conform to new operating conditions.
  • a reconfigurable jet pump that is also inexpensive to fabricate.
  • a reconfigurable jet pump is formed as a nozzle element and a diffuser element each being attached in in-line arrangement to a standard tube T-shape fitting or a standard pipe T-shape fitting.
  • T-shape fittings are inexpensive commercial off-the-shelf items used in tube or pipe systems.
  • T-shape fittings for tubes that use one or more joints where seals is formed by a compression/deformation of certain elements.
  • Some classes of such fittings are known as Swagelok fittings and UltraTorr fittings respectively, each of which can be obtained from Swagelok Inc., Solon, Ohio.
  • a T-type compression fitting there is a first in-line port, a second in-line port, and a side port, see FIGS. 5 and 6 .
  • the compression type fitting such as above mentioned the Swagelok and Ultra Torr type fittings automatically axially align the tubes (or other components with appropriate outside diameter) installed in the in-line ports to a great degree of accuracy. This feature is important to the subject invention.
  • the subject invention fulfills and important need for a jet pump that can be produced inexpensively and can be reconfigured to conform to new operating conditions.
  • FIG. 1 shows a general configuration of a jet pump (Prior Art).
  • FIG. 2 shows a general configuration of a jet pump (Prior Art).
  • FIG. 3 shows a prior art jet pump.
  • FIG. 4 shows another prior art jet pump.
  • FIG. 5 shows a Swagelok T-style fitting with 3 compression ports
  • FIG. 6 shows another Swagelok T-style fitting with 2 compression ports
  • FIG. 7 is a cross-sectional view of the reconfigurable jet pump of the subject invention.
  • the jet pump 100 comprises a fitting body 102 , a nozzle. element 104 , and a diffuser element 106 .
  • the fitting body 102 is preferably a T-shape tube fitting having a first compression type port 108 and a second compression port 110 , with the two ports being arranged in-line.
  • Compression style ports typically comprise a hollow threaded nut 109 and a mating thread 111 on the fitting body 102 .
  • this type of fitting allows for precise axial alignment of the nozzle element 104 and the diffuser element 106 , which is important to the subject invention.
  • Connection style of the side port 112 may be a compression type, pipe thread, or other suitable connection, and it may be formed as either male or female.
  • the nozzle element 104 is attached to the body 102 via a first in-line compression port 108 and made to be substantially mechanically rigid and substantially sealing for the working fluid. Suitable mechanical rigidity and fluid seal may be accomplished, for example, by appropriately tightening the hollow nut 109 .
  • the diffuser element 106 is attached to the body 102 via the second in-line compression port 110 and made to be substantially mechanically rigid and substantially sealing for the working fluid. Suitable mechanical rigidity and fluid seal may be accomplished, for example, by appropriately tightening the hollow nut 109 .
  • the nozzle element 104 may be formed as a substantially cylindrical body 116 having an internal passage 118 , a driving nozzle 114 formed on the end of the cylindrical body 116 being inserted into the first inlet 108 , and a suitable fluid connection style on the end of the cylindrical body 116 being outside the fitting body 102 .
  • the diffuser element 106 may be formed as a substantially cylindrical body 126 having an internal diffuser duct 128 . into the second port 102 and a suitable fluid connection style on the cylindrical body end outside the fitting body 102 .
  • the diffuser duct 128 may have a rounded or conical inlet 124 on the end inserted into the second compression type port 110 and have a diverging portion 132 on the opposite end.
  • the nozzle element 104 and the diffuser element 106 are axially positioned in their respective ports 108 and 110 so that the space between the driving nozzle 114 and the inlet 124 form a suction chamber 142 fluidly connected to the inlet 134 of the side port 112 .
  • the nozzle element is connected to a source of suitable driving (motive) fluid 120 (liquid, gas, or steam) provided at a high pressure and the side port is connected to a source of suitable inlet fluid 130 (liquid, gas, or vapor) provided at a lower pressure.
  • the motive fluid 120 is injected into the suction chamber 142 via the driving nozzle 114 , mixes with and entrains a portion of the inlet fluid 130 , and forces the mixture into the diffuser passage 128 .
  • Velocity of mixed fluid 140 is converted in-part into pressure and the fluid is discharged into a suitable fluid duct, chamber, or open space.

Abstract

The present invention provides reconfigurable jet pump that is also inexpensive to fabricate. In one preferred embodiment of the present invention, a jet pump is formed as a nozzle and a diffuser attached to a standard tube or pipe T-shape fitting. Suitable T-shape fittings may have one or more joints where seals is formed by a compression/deformation of certain elements. The subject invention fulfills and important need for a jet pump that can be produced inexpensively and can be reconfigured at conform to new operating condition without the need to replace the entire unit. This feature is very important in fluid installations such as chemical plants where the physical parameters of the fluid (such as density, viscosity, bubble content, etc.) or the operating flow conditions (pressures, flow rates) are not precisely known and experimentation may be required to achieve best performance of the jet pump.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority from the U.S. provisional patent application U.S. Ser. No. 61/201,886, filed on Dec. 16, 2008, entitled “RECONFIGURABLE JET PUMP.”
  • GOVERNMENT RIGHTS IN THIS INVENTION
  • This invention was made with U.S. government support under contract number FA8650-08-M-5026. The U.S. government may have certain rights in this invention.
  • FIELD OF THE INVENTION
  • This invention relates generally to apparatus and methods for jet pumps and more specifically to jet pumps suitable for easy reconfiguration.
  • BACKGROUND OF THE INVENTION
  • The invention is for a jet pump apparatus and method. Jet pumps (also know as ejectors, eductors, or thermo-compressors) are used in industry for pumping of liquids and fluides, see for example, R. H. Perry and C. H. Chilton, “Chemical Engineer's Handbook,” 5th edition, Chapter 6, Section “Ejectors,” pages 6-29 to 6-32, published by McGraw-Hill Book Company, New York, N.Y., 1973, and G. L. Weissler and R. W. Carlson (editors), “Vacuum Physics and Technology,” Chapter 4.3.5: Ejectors, pages 136 to 138, published by Academic Press, New York, N.Y., 1979. One key advantage of ejector pumps is that they are mechanically simple as they have no pistons, rotors, or other moving components. FIG. 1 shows a general configuration of a fluid (liquid, gas, or steam) operated ejector pump for pumping fluids. In this disclosure, the term “ejector pump” shall mean a -operated ejector pump. Ejector pump essentially consists of a fluid-operated driving nozzle, a suction chamber and a diffuser duct. The diffuser duct typically has two sections; a mixing section which may have converging and/or straight segments, and a pressure recovery section which is usually diverging. The driving nozzle is fed a high-pressure “driving” fluid (liquid, gas, or steam) at pressure p1 and converts its potential (pressure) energy into a kinetic energy thereby producing a high-velocity fluid jet discharging into the suction chamber. Pumping action occurs when the fluid in the suction chamber is entrained by the jet, acquires some of its velocity, and is carried into the diffuser duct where the kinetic energy of the mixture of driving and entrained fluids is converted into a potential (pressure) energy. In particular, the velocity of the fluid mixture is recovered inside the diffuser to a pressure p3 which is greater than the suction pressure p2 but lower than the driving pressure p1. For stable operation the diffuser exit pressure p3 must be equal or higher than the backing pressure p4. Ejector design is termed subsonic if the fluid velocity in the diffuser is subsonic. Conversely, ejector design is termed supersonic if the fluid velocity in the diffuser is supersonic. Hence, a supersonic ejector requires that the driving nozzle is a supersonic nozzle. Typically, diffuser ducts used in ejector pumps have a circular cross-section because it provides the largest cross-sectional area with the least circumference and, therefore, the least wall friction losses.
  • In practice, ejector pumps have been used to produce compression ratio P3/p2 of up to about 10. To achieve high compression ratio p3/p2 it is necessary that the driving fluid pressure p1 is much higher than the target pressure p3 at the exit of the ejector, i.e., p1>>p3. Consequently, ejector pumps can be used as vacuum pumps or as compressors. Ejector pumps can be designed to accommodate a wide variety of flow conditions. As a results, ejector pumps for different applications can greatly vary in size, nozzle and duct shape, and arrangement of components. The ejector configuration having a centrally located driving nozzle immersed in the inlet fluid flow shown in FIG. 1 is known as the in-line ejector. FIG. 2 shows an alternative configuration known as the annular jet ejector where the driving nozzle is formed as an annulus enveloping the inlet fluid flow. Data on commercially produced fluid ejector pumps and their performance can be found, for example, in “Pumping Gases, Jet Pump Technical Data,” Section 1000, Bulletin 1300, Issued March 1976 by Penberthy Division of Houdaille Industries, Inc., Prophetstown, Ill.
  • In an ejector with fixed geometry, flow throughput and pressure of driving fluid can be varied to produce desired discharge port pressure p3 over a broad range of pumped fluid inflows and pressures p2. To increase ejector pump throughput beyond the capacity of a single ejector, several ejector pumps can be operated in parallel. Alternately, multiple driving nozzles can be used to feed a single large cross-section diffuser duct (see, for example FIG. 6-71 in the above noted Perry and Chilton).
  • Prior art jet pumps are made with a suction chamber and diffuser formed as one piece typically produced by casting, molding, and/or machining. This results in a costly product. In addition, the configuration of the diffuser (which affects jet pump performance) is thereby fixed and unchangeable. FIGS. 3 and 4 show examples of prior art jet pumps. There is a need for a jet pump that can be produced inexpensively and can be reconfigured at conform to new operating conditions.
  • In summary, prior art does not teach a capable of fast response that is also simple, lightweight, compact, and inexpensive to fabricate. It is against this background that the significant improvements and advancements of the present invention have taken place.
  • SUMMARY OF THE INVENTION
  • The present invention provides a reconfigurable jet pump that is also inexpensive to fabricate. In one preferred embodiment of the present invention, a reconfigurable jet pump is formed as a nozzle element and a diffuser element each being attached in in-line arrangement to a standard tube T-shape fitting or a standard pipe T-shape fitting. T-shape fittings are inexpensive commercial off-the-shelf items used in tube or pipe systems. In particular, there are T-shape fittings for tubes that use one or more joints where seals is formed by a compression/deformation of certain elements. Some classes of such fittings are known as Swagelok fittings and UltraTorr fittings respectively, each of which can be obtained from Swagelok Inc., Solon, Ohio. In a T-type compression fitting there is a first in-line port, a second in-line port, and a side port, see FIGS. 5 and 6. It is important to note, that the compression type fitting such as above mentioned the Swagelok and Ultra Torr type fittings automatically axially align the tubes (or other components with appropriate outside diameter) installed in the in-line ports to a great degree of accuracy. This feature is important to the subject invention. The subject invention fulfills and important need for a jet pump that can be produced inexpensively and can be reconfigured to conform to new operating conditions. This feature is very important in fluid installations such as chemical plants where the physical parameters of the fluid (such as density, viscosity, bubble content, etc.) or the operating flow conditions (pressures, flow rates) are not precisely known and experimentation may be required to achieve best performance of the jet pump.
  • Accordingly, it is an object of the present invention to provide a reconfigurable jet pump that is also and inexpensive to fabricate.
  • These and other objects of the present invention will become apparent upon a reading of the following specification and claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a general configuration of a jet pump (Prior Art).
  • FIG. 2 shows a general configuration of a jet pump (Prior Art).
  • FIG. 3 shows a prior art jet pump.
  • FIG. 4 shows another prior art jet pump.
  • FIG. 5 shows a Swagelok T-style fitting with 3 compression ports
  • FIG. 6 shows another Swagelok T-style fitting with 2 compression ports
  • FIG. 7 is a cross-sectional view of the reconfigurable jet pump of the subject invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Selected embodiments of the present invention will now be explained with reference to drawings. In the drawings, identical components are provided with identical reference symbols. It will be apparent to those skilled in the art from this disclosure that the following descriptions of the embodiments of the present invention are merely exemplary in nature and are in no way intended to limit the invention, its application, or uses.
  • Referring now to FIG. 7, there is shown a cross-sectional view through a jet pump 100. The jet pump 100 comprises a fitting body 102, a nozzle. element 104, and a diffuser element 106. The fitting body 102 is preferably a T-shape tube fitting having a first compression type port 108 and a second compression port 110, with the two ports being arranged in-line. Compression style ports typically comprise a hollow threaded nut 109 and a mating thread 111 on the fitting body 102. As already noted, this type of fitting allows for precise axial alignment of the nozzle element 104 and the diffuser element 106, which is important to the subject invention. Connection style of the side port 112 may be a compression type, pipe thread, or other suitable connection, and it may be formed as either male or female. The nozzle element 104 is attached to the body 102 via a first in-line compression port 108 and made to be substantially mechanically rigid and substantially sealing for the working fluid. Suitable mechanical rigidity and fluid seal may be accomplished, for example, by appropriately tightening the hollow nut 109. The diffuser element 106 is attached to the body 102 via the second in-line compression port 110 and made to be substantially mechanically rigid and substantially sealing for the working fluid. Suitable mechanical rigidity and fluid seal may be accomplished, for example, by appropriately tightening the hollow nut 109.
  • The nozzle element 104 may be formed as a substantially cylindrical body 116 having an internal passage 118, a driving nozzle 114 formed on the end of the cylindrical body 116 being inserted into the first inlet 108, and a suitable fluid connection style on the end of the cylindrical body 116 being outside the fitting body 102. The diffuser element 106 may be formed as a substantially cylindrical body 126 having an internal diffuser duct 128. into the second port 102 and a suitable fluid connection style on the cylindrical body end outside the fitting body 102. The diffuser duct 128 may have a rounded or conical inlet 124 on the end inserted into the second compression type port 110 and have a diverging portion 132 on the opposite end. The nozzle element 104 and the diffuser element 106 are axially positioned in their respective ports 108 and 110 so that the space between the driving nozzle 114 and the inlet 124 form a suction chamber 142 fluidly connected to the inlet 134 of the side port 112.
  • In operation, the nozzle element is connected to a source of suitable driving (motive) fluid 120 (liquid, gas, or steam) provided at a high pressure and the side port is connected to a source of suitable inlet fluid 130 (liquid, gas, or vapor) provided at a lower pressure. The motive fluid 120 is injected into the suction chamber 142 via the driving nozzle 114, mixes with and entrains a portion of the inlet fluid 130, and forces the mixture into the diffuser passage 128. Velocity of mixed fluid 140 is converted in-part into pressure and the fluid is discharged into a suitable fluid duct, chamber, or open space.
  • The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” and “includes” and/or “including” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
  • The terms of degree such as “substantially”, “about” and “approximately” as used herein mean a reasonable amount of deviation of the modified term such that the end result is not significantly changed. For example, these terms can be construed as including a deviation of at least ±5% of the modified term if this deviation would not negate the meaning of the word it modifies.
  • Moreover, terms that are expressed as “means-plus function” in the claims should include any structure that can be utilized to carry out the function of that part of the present invention. In addition, the term “configured” as used herein to describe a component, section or part of a device includes hardware and/or software that is constructed and/or programmed to carry out the desired function.
  • While only selected embodiments have been chosen to illustrate the present invention, it will be apparent to those skilled in the art from this disclosure that various changes and modifications can be made herein without departing from the scope of the present invention as defined in the appended claims. Furthermore, the foregoing description of the embodiments according to the present invention are provided for illustration only, and not for the purpose of limiting the present invention as defined by the appended claims and their equivalents. Thus, the scope of the present invention is not limited to the disclosed embodiments.

Claims (5)

1. A jet pump apparatus comprising:
a) A “T”-style fluid fitting having a first in-line compression type port, a second in-line compression type port, and a side port;
b) a nozzle element installed in said first in-line compression type port; and
c) a diffuser element installed in said second in-line compression type port.
2. The jet pump apparatus of claim 1 wherein said “T”-style fluid fitting is a tube fitting.
3. The jet pump apparatus of claim 1 wherein said “T”-style fluid fitting is selected from a group consisting of a Swagelok-type fitting and an Ultra Torr-type fitting.
4. The jet pump apparatus of claim 1 wherein said nozzle element further comprises a driving nozzle.
5. The jet pump apparatus of claim 1 further comprising a suction chamber.
US12/653,690 2008-12-16 2009-12-16 Reconfigurable jet pump Abandoned US20100150742A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/653,690 US20100150742A1 (en) 2008-12-16 2009-12-16 Reconfigurable jet pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US20188608P 2008-12-16 2008-12-16
US12/653,690 US20100150742A1 (en) 2008-12-16 2009-12-16 Reconfigurable jet pump

Publications (1)

Publication Number Publication Date
US20100150742A1 true US20100150742A1 (en) 2010-06-17

Family

ID=42240761

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/653,690 Abandoned US20100150742A1 (en) 2008-12-16 2009-12-16 Reconfigurable jet pump

Country Status (1)

Country Link
US (1) US20100150742A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120038165A1 (en) * 2010-08-11 2012-02-16 Rene Carlos System and method for generating power in a dam
US8631638B2 (en) 2010-08-11 2014-01-21 Rene Carlos Method, system and apparatus for providing water to a heat engine via a dammed water source
CN106837892A (en) * 2017-02-22 2017-06-13 西安长庆科技工程有限责任公司 Pipe fitting type sprays supercharging drainage device
CN107110181A (en) * 2014-11-17 2017-08-29 威德福科技控股有限责任公司 Upstream injection pump
NO20181300A1 (en) * 2018-10-09 2019-07-29 Submatech As Inverted Eductor Jet Pump
EP3896292A1 (en) * 2020-04-14 2021-10-20 Eaton Intelligent Power Limited Jet pump
US20220316303A1 (en) * 2021-03-31 2022-10-06 Saudi Arabian Oil Company Hybrid hydrocarbon lift system and method
WO2023193383A1 (en) * 2022-04-07 2023-10-12 北京亿华通科技股份有限公司 Hydrogen ejector for fuel cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3838002A (en) * 1972-07-21 1974-09-24 Gen Electric Jet pump for nuclear reactor
US5253984A (en) * 1992-07-21 1993-10-19 Oil-Rite Corporation Apparatus for dispensing a liquid on a remote object
US5776781A (en) * 1995-04-25 1998-07-07 Systemix Sterile flow cytometer and sorter with mechanical isolation between flow chamber and sterile enclosure and methods for using same
US5785846A (en) * 1992-02-14 1998-07-28 Caretaker Systems, Inc. Venturi-powered filtration system for pools
US6604379B2 (en) * 2001-10-30 2003-08-12 Denso Corporation Ejector for ejector cycle system
US7311821B2 (en) * 2003-05-28 2007-12-25 Queirel Joel Water circulation unit with increased throughput for swimming pools, and filter unit comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3838002A (en) * 1972-07-21 1974-09-24 Gen Electric Jet pump for nuclear reactor
US5785846A (en) * 1992-02-14 1998-07-28 Caretaker Systems, Inc. Venturi-powered filtration system for pools
US5253984A (en) * 1992-07-21 1993-10-19 Oil-Rite Corporation Apparatus for dispensing a liquid on a remote object
US5776781A (en) * 1995-04-25 1998-07-07 Systemix Sterile flow cytometer and sorter with mechanical isolation between flow chamber and sterile enclosure and methods for using same
US6604379B2 (en) * 2001-10-30 2003-08-12 Denso Corporation Ejector for ejector cycle system
US7311821B2 (en) * 2003-05-28 2007-12-25 Queirel Joel Water circulation unit with increased throughput for swimming pools, and filter unit comprising the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120038165A1 (en) * 2010-08-11 2012-02-16 Rene Carlos System and method for generating power in a dam
US8631638B2 (en) 2010-08-11 2014-01-21 Rene Carlos Method, system and apparatus for providing water to a heat engine via a dammed water source
CN107110181A (en) * 2014-11-17 2017-08-29 威德福科技控股有限责任公司 Upstream injection pump
EP3221591A4 (en) * 2014-11-17 2018-06-06 Weatherford Technology Holdings, Inc. Reverse flow jet pump
US10788054B2 (en) 2014-11-17 2020-09-29 Weatherford Technology Holdings, Llc Reverse flow jet pump
CN106837892A (en) * 2017-02-22 2017-06-13 西安长庆科技工程有限责任公司 Pipe fitting type sprays supercharging drainage device
NO20181300A1 (en) * 2018-10-09 2019-07-29 Submatech As Inverted Eductor Jet Pump
NO343954B1 (en) * 2018-10-09 2019-07-29 Submatech As Inverted Eductor Jet Pump
EP3896292A1 (en) * 2020-04-14 2021-10-20 Eaton Intelligent Power Limited Jet pump
US20220316303A1 (en) * 2021-03-31 2022-10-06 Saudi Arabian Oil Company Hybrid hydrocarbon lift system and method
WO2023193383A1 (en) * 2022-04-07 2023-10-12 北京亿华通科技股份有限公司 Hydrogen ejector for fuel cell

Similar Documents

Publication Publication Date Title
US20100150742A1 (en) Reconfigurable jet pump
CN106122120B (en) Compound two-stage multichannel gas-liquid jet pump
US7621728B2 (en) Pump inlet manifold
US3664768A (en) Fluid transformer
CN106064122B (en) Sawtooth jet type evacuator
US20110240753A1 (en) Directed multiport eductor and method of use
US10895135B2 (en) Jet pump
KR20010074499A (en) Differential injector
US9651186B2 (en) Axial flow conditioning device for mitigating instabilities
CN104772239A (en) Supersonic speed chrysanthemum-shaped nozzle and gas jet vacuum pump provided with same
US20130216352A1 (en) Ejector and method
US20220364577A1 (en) Ejector device
US20140255218A1 (en) Pump assembly comprising a plurality of jet pumps
US11199203B2 (en) Jet pump comprising an internal nozzle
US20220305447A1 (en) Apparatus for dissolving gas into a liquid and method for producing the same
CN111558309B (en) Multi-channel ejector and medicament adding system
RU2151920C1 (en) Gas injector
US20050178106A1 (en) Enhanced performance torroidal coolant-collection manifold
US6364626B1 (en) Liquid-gas jet apparatus
RU2076250C1 (en) Vortex jet apparatus
RU2781580C1 (en) Underwater apparatus for mixing gas and liquid flows
CN109404273A (en) A kind of high pressure low temperature reciprocating pump cold end
RU166169U1 (en) AERATOR OF VISCOPLASTIC LIQUIDS
RU2111386C1 (en) Injector
SK50452015A3 (en) Integrated two-stage supersonic jet ejector and the configuration and volume of the machine

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION