CN1378269A - 双金属栅极互补金属氧化物半导体器件及其加工方法 - Google Patents

双金属栅极互补金属氧化物半导体器件及其加工方法 Download PDF

Info

Publication number
CN1378269A
CN1378269A CN02108517A CN02108517A CN1378269A CN 1378269 A CN1378269 A CN 1378269A CN 02108517 A CN02108517 A CN 02108517A CN 02108517 A CN02108517 A CN 02108517A CN 1378269 A CN1378269 A CN 1378269A
Authority
CN
China
Prior art keywords
metal
trap
deposition
grid
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN02108517A
Other languages
English (en)
Inventor
Y·马
Y·奥诺
D·R·埃文斯
S·T·许
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of CN1378269A publication Critical patent/CN1378269A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823842Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一种制造双金属栅极互补金属氧化物半导体(CMOS)的方法包括在栅极区形成栅极氧化物和在各个n阱和p阱沉积固定位置的栅极,去除固定位置的栅极和栅极氧化物,在栅极区沉积高k电介质,在p阱的栅极区沉积第一金属,在各个n阱和p阱的栅极区沉积第二金属,对通过上述步骤得到的结构进行绝缘和金属化,本发明的双金属栅极CMOS包括PMOS晶体管和NMOS晶体管。在NMOS中,栅极包括高k杯体,在高k杯体上形成的第一金属杯体,在第一金属杯体上形成的第二金属栅极。在PMOS中,栅极包括高k杯体和在高k杯体上形成的第二金属栅极。

Description

双金属栅极互补金属氧化物半导体器件及其加工方法
技术领域
本发明涉及一种MOS晶体管和IC的制造方法,特别地涉及双金属栅极CMOS器件及其制造方法。
背景技术
双金属栅极CMOS器件的提出是在1999年版的“InternationalTechnology Roadmap for Semiconductor”,然而该公开既没有告诉也没有建议任何加工工艺以制造这种器件,同时也没有指定制造双金属栅极CMOS器件的材料或参数。
目前CMOS器件使用多晶硅作为栅极电极用于NMOS和PMOS晶体管,其中N+多晶硅用于NMOS,而P+多晶硅用于PMOS。由于多晶硅存在栅极损耗问题,存在着用金属代替多晶硅以提供更可靠和有效的CMOS器件的期望。
目前有两种技术用于在IC器件上形成金属电极:一种是在硅带隙(band gap)的中间设置费米级的金属电极。第二个技术是使用双金属,一个金属的功能类似于NMOS晶体管的N+多晶硅,第二个不同的金属的功能类似于PMOS晶体管的P+多晶硅。
发明内容
一种制造双金属栅极互补金属氧化物半导体(CMOS)的方法包括制备形成器件区域的硅基片,其中各器件区域包括n阱和p阱;在栅极区形成栅极氧化物和在各个n阱和p阱沉积固定位置的栅极;在各个n阱和p阱掺杂离子形成源极区和漏极区;清除固定位置的栅极和栅极氧化物;在栅极区沉积高k电介质;在p阱的栅极区沉积第一金属;在所述各个n阱和p阱的栅极区沉积第二金属;对通过上述步骤得到的结构进行绝缘和金属化。
本发明的双金属栅极互补金属氧化物半导体(CMOS)包括具有形成PMOS晶体管的n阱和形成NMOS晶体管的p阱的基片,各晶体管包括栅极区、源极区和漏极区;在NMOS,栅极包括高k杯体、在高k杯体上形成的第一金属杯体和在第一金属杯体上形成的第二金属栅极;在PMOS,栅极包括高k杯体、在高k杯体上形成的第二金属栅极;其中第一金属是从由Pt和Ir组成的一组金属中选出的金属,第二金属是从由Al,Zr,Mo,Nb,Tl和TlN及V组成的一组金属中选出的金属。
本发明的目的是提供一种高效、可靠的双金属栅极CMOS器件。
本发明的另一目的是提供一种在栅极区不使用多晶硅的CMOS器件。
提出本发明的目的和概要使得可以快速理解本发明的性质。对本发明的更全面的了解可以参考下面的结合附图对本发明的优选
实施例的详细介绍。
附图说明
图1到7显示了根据本发明方法形成双金属栅极CMOS器件的步骤。
具体实施方式
本发明提供了集成双金属栅极CMOS器件的加工步骤和根据本发明方法制造的CMOS器件。现在转到图1,本发明的CMOS器件在p型硅晶片10上形成。晶片10被氧化物区11分割成隔离器件区,形成多个器件区域,其中一个通常显示为12。接下来采用目前的工艺技术形成用于PMOS晶体管的n-阱14,和用于NMOS晶体管的p-阱16。这些区域可以通过剂量大约为5×1013/cm2到5×1014/cm2,能级为50keV到200keV的条件下掺杂磷离子形成PMOS;可以通过剂量大约为5×1013/cm2到5×1014/cm2,能级为20keV到100keV的条件下掺杂硼离子形成NMOS。调整门槛电压。分别用于PMOS晶体管和NMOS晶体管的栅极氧化物层18,20通过热氧化形成。氮化硅(Si3N4)或多晶硅的厚度通过等离子增强化学气相沉积(PECVD)沉积到大约150到500nm之间,以形成所谓的“虚拟”栅极或位置固定栅极。位置固定栅极22,24分别在PMOS和NMOS上形成。这些都是通过在氮化物或多晶硅上进行照相平版印刷和各向异性等离子蚀刻形成的,蚀刻停止于栅极氧化物的水平。栅极氧化物可以部分蚀刻掉或在蚀刻过程中完全清除。氮化物层形成了栅极电极的替代物。
源极和漏极的接合点在PMOS和NMOS的上面。一种实现的技术是通过在剂量为大约为1×1015/cm2到5×1015/cm2,能级为30keV到50keV的条件下对n阱14掺杂BF2离子而形成PMOS的源极26和漏极28;在剂量为大约为1×1015/cm2到5×1015/cm2,能级为30keV到60keV的条件下对P阱16掺杂砷离子形成NMOS的源极30和漏极32。氧化物间隔通过在沉积硅化物后沉积氧化物和进行各向异性蚀刻来形成。
现在参见图2,氧化物层36是通过化学气相沉积进行沉积的。希望的厚度为图1所示氮化硅层的大约1.5倍到2倍。该结构是通过一磷酸胞苷(CMP)工艺掺杂的并停止于氮化硅的顶部。CMP工艺希望有高度选择性的浆状物。
现在看图3和4,优选去除固定位置的氮化物栅极22,24和栅极氧化物18,20。沉积高k栅极电介质38,如HfO2和ZrO2,至厚度大约为3到8nm之间,并经过传统的后沉积处理,包括在温度大约500到800℃的范围内进行大约10分钟到60分钟的退火,在各个n阱14和p阱16的栅极区形成杯状电介质。本发明方法的下一步可以用两个方法进行。
现在参考图3,第一种方法是使用光致抗蚀剂40在NMOS的栅极区域形成图案。然后用阴极真空喷镀进行沉积金属栅极电极的第一金属42。第一金属通常不是铂就是铱。金属形成了图案,然后进行蚀刻,只保留NMOS的栅极区的金属。然后将光致抗蚀剂清除。形成图5所示的结构,其包括在NMOS的高k杯体中形成的第一金属杯体。
现在参考图4,第二个方法是在整个晶片上沉积第一金属42,然后用光致抗蚀剂40在晶片和PMOS区形成图案。暴露的金属然后用蚀刻剂有选择地进行湿法蚀刻。蚀刻不会蚀刻掉高k栅极电介质。一种蚀刻剂是H2O2。所产生的结构与第一个方法的结构类似,其显示在图5。
本发明方法的下一步是沉积第二金属44,沉积的金属可以从由Al,Zr,Mo,Nb,Tl和TlN及V组成的一组金属中选出。该金属然后通过CMP使之平滑和减小,产生图6所示的结构,其中在NMOS的第一金属杯体和PMOS的高k杯体中形成金属电极。
现在参考图7,完成双金属栅极CMOS的其余工艺利用现有工艺技术进行清除剩余高k材料,沉积绝缘氧化物46,和金属化结构48,50,52和54。对栅极电极的金属化也同时完成,虽然该结构未在图7中显示。
因此对双金属栅极CMOS器件的系统以及其制造方法已经进行了介绍。应当了解进一步的变化和改进可以在不脱离所附权利要求限定的发明范围的情况下进行。

Claims (17)

1.一种制造双金属栅极互补金属氧化物半导体(CMOS)的方法,包括:
a)制备硅基片以形成器件区,其中各器件区包括n阱和p阱;
b)在栅极区形成栅极氧化物和在所述各个n阱和p阱沉积固定位置的栅极;
c)在所述各个n阱和p阱掺杂离子形成源极区和漏极区;
d)清除所述固定位置的栅极和所述栅极氧化物;
e)在所述栅极区沉积高k电介质;
f)在所述p阱的栅极区沉积第一金属;
g)在所述各个n阱和p阱的栅极区沉积第二金属;和
h)对通过上述步骤得到的结构进行绝缘和金属化。
2.根据权利要求1所述的方法,其特征在于,所述b)中沉积固定位置的栅极,包括将固定位置的材料厚度沉积到大约150至500nm之间。
3.根据权利要求2所述的方法,其特征在于,所述b)中沉积的固定位置的材料包括Si3N4
4.根据权利要求2所述的方法,其特征在于,所述方法还包括在所述d)中的清除之前沉积氧化物层,其中所述氧化物层厚度为所述固定位置栅极厚度的大约1.5倍到2.0倍之间。
5.根据权利要求1所述的方法,其特征在于,所述e)中的沉积高k材料包括沉积从由HfO2和ZrO2组成的一组材料中选出的高k材料。
6.根据权利要求1所述的方法,其特征在于,所述e)中沉积高k材料包括将高k材料的厚度沉积到大约3到8nm之间。
7.根据权利要求1所述的方法,其特征在于,所述f)中沉积第一金属包括在所述p阱的所述栅极区制作图案和沉积所述第一金属,对所述第一金属制作图案,和有选择地蚀刻所述第一金属。
8.根据权利要求1所述的方法,其特征在于,所述f)中沉积第一金属包括在整个器件表面上沉积一层所述第一金属,在所述器件表面制作图案并在所述p阱的所述栅极区留下第一金属杯体。
9.根据权利要求1所述的方法,其特征在于,所述f)中沉积第一金属包括沉积从由Pt和Ir组成的一组金属中选出的金属。
10.根据权利要求1所述的方法,其特征在于,所述g)中沉积第二金属包括沉积从由Al,Zr,Mo,Nb,Tl和TlN及V组成的一组金属中选出的金属。
11.一种制造双金属栅极互补金属氧化物半导体(CMOS)的方法,包括:
a)制备硅基片以形成器件区域,其中各器件区域包括n阱和p阱;
b)在栅极区形成栅极氧化物和在所述各个n阱和p阱沉积固定位置的栅极;包括沉积Si3N4固定位置材料的厚度到大约150至500nm之间。
c)在所述各个n阱和p阱掺杂离子形成源极区和漏极区;
d)沉积氧化物层的厚度到大约225至1000nm之间;
e)清除所述固定位置的栅极和所述栅极物;
f)在所述栅极区沉积高k电介质;
g)在所述p阱的栅极区沉积从由Pt和Ir组成的一组金属中选出的第一金属;
h)在所述各个n阱和p阱的栅极区沉积从由Al,Zr,Mo,Nb,Tl和TlN及V组成的一组金属中选出的第二金属;和
i)对通过步骤a)到h)得到的结构进行绝缘和金属化。
12.根据权利要求11所述的方法,其特征在于,所述f)中的沉积高k材料包括沉积从由HfO2和ZrO2组成的一组材料中选出的高k材料。
13.根据权利要求11所述的方法,其特征在于,所述f)中沉积高k材料包括将高k材料的厚度沉积到大约3到8nm之间。
14.根据权利要求11所述的方法,其特征在于,所述g)中沉积第一金属包括在所述p阱的所述栅极区制作布线图案和沉积所述第一金属,对所述第一金属制作布线图案,和有选择地蚀刻所述第一金属。
15.根据权利要求11所述的方法,其特征在于,所述g)中沉积第一金属包括在整个器件区域上沉积一层所述第一金属,在所述器件区域制作布线图案并在所述p阱的所述栅极区留下第一金属杯体。
16.一种双金属栅极CMOS,包括:
一基片,具有可形成PMOS晶体管的n阱和可形成NMOS晶体管的p阱,各阱均具有栅极区,源极区和漏极区;
在NMOS中,栅极包括高k杯体,在所述高k杯体上形成的第一金属杯体,及在第一金属杯体上形成的第二金属栅极;
在PMOS中,栅极包括高k杯体和在所述高k杯体上形成的第二金属栅极;
其中,所述第一金属是从由Pt和Ir组成的一组金属中选出的金属;
其中,所述第二金属是从由Al,Zr,Mo,Nb,Tl和TlN及V组成的一组金属中选出的金属。
17.根据权利要求16所述的CMOS,其特征在于,所述高k材料是从由HfO2和ZrO2组成的一组材料中选出的高k材料。
CN02108517A 2001-03-27 2002-03-27 双金属栅极互补金属氧化物半导体器件及其加工方法 Pending CN1378269A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/817834 2001-03-27
US09/817,834 US6573134B2 (en) 2001-03-27 2001-03-27 Dual metal gate CMOS devices and method for making the same

Publications (1)

Publication Number Publication Date
CN1378269A true CN1378269A (zh) 2002-11-06

Family

ID=25223983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN02108517A Pending CN1378269A (zh) 2001-03-27 2002-03-27 双金属栅极互补金属氧化物半导体器件及其加工方法

Country Status (5)

Country Link
US (2) US6573134B2 (zh)
JP (1) JP2002329794A (zh)
KR (1) KR100529202B1 (zh)
CN (1) CN1378269A (zh)
TW (1) TW523914B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100442517C (zh) * 2003-11-12 2008-12-10 三星电子株式会社 具有不同栅极介质的半导体器件及其制造方法
US7799630B2 (en) 2008-01-23 2010-09-21 United Microelectronics Corp. Method for manufacturing a CMOS device having dual metal gate
CN101427386B (zh) * 2004-06-04 2011-01-26 国际商业机器公司 阻挡层的选择性实施以实现在具有高k电介质的CMOS器件制造中的阈值电压控制
WO2011057492A1 (zh) * 2009-11-11 2011-05-19 中国科学院微电子研究所 一种半导体器件及其制造方法
CN101685800B (zh) * 2008-09-26 2012-02-01 台湾积体电路制造股份有限公司 半导体装置的制造方法
CN102956641A (zh) * 2011-08-19 2013-03-06 南亚科技股份有限公司 垂直双栅极电路结构
US10695697B2 (en) 2016-11-02 2020-06-30 Rotecna, S.A. Device for treating a slurry by separating solids from liquids

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW494574B (en) * 1999-12-01 2002-07-11 Innotech Corp Solid state imaging device, method of manufacturing the same, and solid state imaging system
KR20030002256A (ko) * 2001-06-30 2003-01-08 주식회사 하이닉스반도체 시모스 (cmos)의 제조 방법
JP4316896B2 (ja) * 2003-01-09 2009-08-19 株式会社 日立ディスプレイズ 表示装置とその製造方法
US20050151166A1 (en) * 2004-01-09 2005-07-14 Chun-Chieh Lin Metal contact structure and method of manufacture
JP2005203436A (ja) * 2004-01-13 2005-07-28 Seiko Epson Corp 半導体装置の製造方法及び半導体装置
TWI252539B (en) * 2004-03-12 2006-04-01 Toshiba Corp Semiconductor device and manufacturing method therefor
JP4040602B2 (ja) * 2004-05-14 2008-01-30 Necエレクトロニクス株式会社 半導体装置
JP4455427B2 (ja) * 2005-06-29 2010-04-21 株式会社東芝 半導体装置及びその製造方法
US7202535B2 (en) * 2005-07-14 2007-04-10 Infineon Technologies Ag Manufacturing method for an integrated semiconductor structure and corresponding integrated semiconductor structure
US20070048920A1 (en) * 2005-08-25 2007-03-01 Sematech Methods for dual metal gate CMOS integration
US7332433B2 (en) * 2005-09-22 2008-02-19 Sematech Inc. Methods of modulating the work functions of film layers
US8648403B2 (en) * 2006-04-21 2014-02-11 International Business Machines Corporation Dynamic memory cell structures
JP4271230B2 (ja) 2006-12-06 2009-06-03 株式会社東芝 半導体装置
US7466617B2 (en) * 2007-01-16 2008-12-16 International Business Machines Corporation Multi-port dynamic memory structures
JP5139023B2 (ja) * 2007-10-16 2013-02-06 株式会社東芝 半導体装置の製造方法
JP2009170841A (ja) 2008-01-21 2009-07-30 Toshiba Corp 半導体装置の製造方法
US20090206416A1 (en) * 2008-02-19 2009-08-20 International Business Machines Corporation Dual metal gate structures and methods
US7838946B2 (en) * 2008-03-28 2010-11-23 United Microelectronics Corp. Method for fabricating semiconductor structure and structure of static random access memory
US7977754B2 (en) 2008-07-25 2011-07-12 Taiwan Semiconductor Manufacturing Company, Ltd. Poly resistor and poly eFuse design for replacement gate technology
US20100059823A1 (en) * 2008-09-10 2010-03-11 Taiwan Semiconductor Manufacturing Company, Ltd. Resistive device for high-k metal gate technology and method of making
US7915105B2 (en) * 2008-11-06 2011-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Method for patterning a metal gate
US8895426B2 (en) * 2009-06-12 2014-11-25 Taiwan Semiconductor Manufacturing Company, Ltd. Metal gate transistor, integrated circuits, systems, and fabrication methods thereof
US7994576B2 (en) * 2009-06-22 2011-08-09 United Microelectronics Corp. Metal gate transistor and resistor and method for fabricating the same
US8304841B2 (en) * 2009-09-14 2012-11-06 Taiwan Semiconductor Manufacturing Company, Ltd. Metal gate transistor, integrated circuits, systems, and fabrication methods thereof
KR101634748B1 (ko) 2009-12-08 2016-07-11 삼성전자주식회사 트랜지스터의 제조방법 및 그를 이용한 집적 회로의 형성방법
US8330227B2 (en) 2010-02-17 2012-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated semiconductor structure for SRAM and fabrication methods thereof
KR101675373B1 (ko) 2010-03-24 2016-11-11 삼성전자주식회사 반도체 소자 및 그 제조 방법
US8519487B2 (en) 2011-03-21 2013-08-27 United Microelectronics Corp. Semiconductor device
US9269634B2 (en) 2011-05-16 2016-02-23 Globalfoundries Inc. Self-aligned metal gate CMOS with metal base layer and dummy gate structure
US20120319198A1 (en) 2011-06-16 2012-12-20 Chin-Cheng Chien Semiconductor device and fabrication method thereof
US8674452B2 (en) 2011-06-24 2014-03-18 United Microelectronics Corp. Semiconductor device with lower metal layer thickness in PMOS region
US8486790B2 (en) 2011-07-18 2013-07-16 United Microelectronics Corp. Manufacturing method for metal gate
US8580625B2 (en) 2011-07-22 2013-11-12 Tsuo-Wen Lu Metal oxide semiconductor transistor and method of manufacturing the same
US8445345B2 (en) * 2011-09-08 2013-05-21 International Business Machines Corporation CMOS structure having multiple threshold voltage devices
US8658487B2 (en) 2011-11-17 2014-02-25 United Microelectronics Corp. Semiconductor device and fabrication method thereof
US8860135B2 (en) 2012-02-21 2014-10-14 United Microelectronics Corp. Semiconductor structure having aluminum layer with high reflectivity
US8860181B2 (en) 2012-03-07 2014-10-14 United Microelectronics Corp. Thin film resistor structure
US8836049B2 (en) 2012-06-13 2014-09-16 United Microelectronics Corp. Semiconductor structure and process thereof
FR2995135B1 (fr) * 2012-09-05 2015-12-04 Commissariat Energie Atomique Procede de realisation de transistors fet
US9054172B2 (en) 2012-12-05 2015-06-09 United Microelectrnics Corp. Semiconductor structure having contact plug and method of making the same
US8735269B1 (en) 2013-01-15 2014-05-27 United Microelectronics Corp. Method for forming semiconductor structure having TiN layer
US8787096B1 (en) * 2013-01-16 2014-07-22 Qualcomm Incorporated N-well switching circuit
US9023708B2 (en) 2013-04-19 2015-05-05 United Microelectronics Corp. Method of forming semiconductor device
US9159798B2 (en) 2013-05-03 2015-10-13 United Microelectronics Corp. Replacement gate process and device manufactured using the same
US9196542B2 (en) 2013-05-22 2015-11-24 United Microelectronics Corp. Method for manufacturing semiconductor devices
US8921947B1 (en) 2013-06-10 2014-12-30 United Microelectronics Corp. Multi-metal gate semiconductor device having triple diameter metal opening
US9064814B2 (en) 2013-06-19 2015-06-23 United Microelectronics Corp. Semiconductor structure having metal gate and manufacturing method thereof
US9384984B2 (en) 2013-09-03 2016-07-05 United Microelectronics Corp. Semiconductor structure and method of forming the same
US9245972B2 (en) 2013-09-03 2016-01-26 United Microelectronics Corp. Method for manufacturing semiconductor device
US20150069534A1 (en) 2013-09-11 2015-03-12 United Microelectronics Corp. Semiconductor device and method for fabricating the same
US9281201B2 (en) 2013-09-18 2016-03-08 United Microelectronics Corp. Method of manufacturing semiconductor device having metal gate
US9318490B2 (en) 2014-01-13 2016-04-19 United Microelectronics Corp. Semiconductor structure and manufacturing method thereof
US9231071B2 (en) 2014-02-24 2016-01-05 United Microelectronics Corp. Semiconductor structure and manufacturing method of the same
US10714486B2 (en) 2018-09-13 2020-07-14 Sandisk Technologies Llc Static random access memory cell employing n-doped PFET gate electrodes and methods of manufacturing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291282B1 (en) * 1999-02-26 2001-09-18 Texas Instruments Incorporated Method of forming dual metal gate structures or CMOS devices
JP4237332B2 (ja) * 1999-04-30 2009-03-11 株式会社東芝 半導体装置の製造方法
US6093590A (en) * 1999-09-14 2000-07-25 Worldwide Semiconductor Manufacturing Corp. Method of fabricating transistor having a metal gate and a gate dielectric layer with a high dielectric constant
US6444512B1 (en) * 2000-06-12 2002-09-03 Motorola, Inc. Dual metal gate transistors for CMOS process
US6303418B1 (en) * 2000-06-30 2001-10-16 Chartered Semiconductor Manufacturing Ltd. Method of fabricating CMOS devices featuring dual gate structures and a high dielectric constant gate insulator layer
US6410376B1 (en) * 2001-03-02 2002-06-25 Chartered Semiconductor Manufacturing Ltd. Method to fabricate dual-metal CMOS transistors for sub-0.1 μm ULSI integration
US6365450B1 (en) * 2001-03-15 2002-04-02 Advanced Micro Devices, Inc. Fabrication of P-channel field effect transistor with minimized degradation of metal oxide gate
US6406956B1 (en) * 2001-04-30 2002-06-18 Taiwan Semiconductor Manufacturing Company Poly resistor structure for damascene metal gate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100442517C (zh) * 2003-11-12 2008-12-10 三星电子株式会社 具有不同栅极介质的半导体器件及其制造方法
CN101427386B (zh) * 2004-06-04 2011-01-26 国际商业机器公司 阻挡层的选择性实施以实现在具有高k电介质的CMOS器件制造中的阈值电压控制
US7799630B2 (en) 2008-01-23 2010-09-21 United Microelectronics Corp. Method for manufacturing a CMOS device having dual metal gate
CN101685800B (zh) * 2008-09-26 2012-02-01 台湾积体电路制造股份有限公司 半导体装置的制造方法
WO2011057492A1 (zh) * 2009-11-11 2011-05-19 中国科学院微电子研究所 一种半导体器件及其制造方法
US8624325B2 (en) 2009-11-11 2014-01-07 Institute of Microelectronics, Chinese Academy of Sciences Semiconductor device and method of manufacturing the same
CN102956641A (zh) * 2011-08-19 2013-03-06 南亚科技股份有限公司 垂直双栅极电路结构
CN102956641B (zh) * 2011-08-19 2015-02-18 南亚科技股份有限公司 垂直双栅极电路结构
US10695697B2 (en) 2016-11-02 2020-06-30 Rotecna, S.A. Device for treating a slurry by separating solids from liquids

Also Published As

Publication number Publication date
KR20020075732A (ko) 2002-10-05
KR100529202B1 (ko) 2005-11-17
JP2002329794A (ja) 2002-11-15
US20020140036A1 (en) 2002-10-03
TW523914B (en) 2003-03-11
US20030205767A1 (en) 2003-11-06
US6573134B2 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
CN1378269A (zh) 双金属栅极互补金属氧化物半导体器件及其加工方法
CN100487911C (zh) 用于cmos工艺的双金属栅极晶体管及其制造方法
EP0996975B8 (en) Method of fabricating a field effect transistor in silicon carbide
CN100501975C (zh) 具有双栅结构的半导体器件的制造方法
WO1986007491A1 (en) Process for forming contacts and interconnects for integrated circuits
CN1282098A (zh) 用于形成一个半导体器件的方法
KR20020077160A (ko) 이중 상감 구리 게이트 및 그 인터커넥트
KR20020056282A (ko) 반도체 소자의 게이트 제조방법
US5686324A (en) Process for forming LDD CMOS using large-tilt-angle ion implantation
US4459740A (en) Method for manufacturing VLSI complementary MOS field effect transistor circuits in silicon gate technology
US5543338A (en) Method for manufacturing a semiconductor device using a semiconductor-on-insulator substrate
TW507354B (en) Electrostatic discharge protection for salicided devices and method of making same
EP0768709B1 (en) A BiCMOS process with low base recombination current bipolar transistor
JPH08111527A (ja) 自己整合シリサイド領域を有する半導体デバイスの製造方法
US4621412A (en) Manufacturing a complementary MOSFET
JP2002237541A (ja) SiGeBiCMOS集積化技法によるポリシリコン−ポリシリコン間キャパシタの形成方法
US5340757A (en) Method of manufacturing a vertical field effect transistor
US6780700B2 (en) Method of fabricating deep sub-micron CMOS source/drain with MDD and selective CVD silicide
EP0763256B1 (en) METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE WITH BiCMOS CIRCUIT
KR100499755B1 (ko) Mdd 와 선택적 cvd 실리사이드를 갖는 디프서브미크론 cmos 소스/드레인 제조방법
JPH0945795A (ja) 相補性mosトランジスタの製造方法
JP2746959B2 (ja) 半導体装置の製造方法
US6674135B1 (en) Semiconductor structure having elevated salicided source/drain regions and metal gate electrode on nitride/oxide dielectric
KR100361521B1 (ko) 반도체 소자의 게이트 제조방법
KR100611786B1 (ko) Mos 트랜지스터 제조 방법

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication