CN1343264A - 在晶体生长过程中使用的硅熔体的锶掺杂 - Google Patents

在晶体生长过程中使用的硅熔体的锶掺杂 Download PDF

Info

Publication number
CN1343264A
CN1343264A CN00805045A CN00805045A CN1343264A CN 1343264 A CN1343264 A CN 1343264A CN 00805045 A CN00805045 A CN 00805045A CN 00805045 A CN00805045 A CN 00805045A CN 1343264 A CN1343264 A CN 1343264A
Authority
CN
China
Prior art keywords
strontium
crucible
silicon
melt
devitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00805045A
Other languages
English (en)
Other versions
CN1166821C (zh
Inventor
R·J·菲利浦
S·J·克尔特纳
J·D·霍德尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SunEdison Inc
Original Assignee
SunEdison Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SunEdison Inc filed Critical SunEdison Inc
Publication of CN1343264A publication Critical patent/CN1343264A/zh
Application granted granted Critical
Publication of CN1166821C publication Critical patent/CN1166821C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

公开了一种在单晶硅生长工艺中使用的锶掺杂硅熔体的制备方法。多晶硅和锶在二氧化硅坩埚中熔化。在熔化以及晶体生长的过程中,锶起失透促进剂的作用并且在与熔体接触的坩埚内表面上产生失透二氧化硅层,从而降低了在熔体以及生长的晶体中的污染物水平。

Description

在晶体生长过程中使用的硅熔体的锶掺杂
发明背景
本发明涉及一种对在晶体生长过程中使用的硅熔体进行掺杂的方法。更具体地,本发明涉及一种对在二氧化硅坩埚中使用的硅熔体用锶进行掺杂,以便在多晶硅熔化以及整个晶锭生长过程中,在坩埚内壁上形成失透二氧化硅薄层结构,同时又不会有明显的锶掺入生长的晶锭中的方法。
在制备由Czochrolski法生长的单晶硅的过程中,首先将多晶硅熔化在石英坩埚中。在多晶硅已熔化并且温度达到平衡之后,将一籽晶浸入熔体并且随后提取以形成单晶硅晶锭,这期间石英坩埚处于旋转状态。由于晶锭生长期间达到的温度极高,因此,当晶锭生长时,处于坩埚一熔体界面的二氧化硅坩埚壁会慢慢溶解。使用玻璃态的二氧化硅坩埚的一个不足之处在于坩埚内表面上的污染物能够在多晶硅熔化和单晶硅晶锭生长时形核并且促使在玻璃态的二氧化硅表面形成方石英岛状物(一般而言,该岛状物以污染部位为中心)。该方石英岛状物在熔化期间能够被冲刷掉并且作为粒子进入硅熔体中,从而导致位错在硅晶锭中形成。所述方石英岛状物,例如,可以在玻璃态二氧化硅和方石英之间界面处形成的低熔点共晶液体的作用下被冲刷掉,参见Liu等于1992年,在7(2)的J.Mater.Res.的352页上发表的文章“液态硅与玻璃态二氧化硅之间的反应”。
为了减少释放进入熔体的污染物的量,在晶体生长中使用的二氧化硅坩埚一般存在两个不同的区域。与支撑坩埚的石墨机构接触的坩埚外部区域包含高密度的气泡,以对传递至熔体和晶体的辐射热进行调节。内部区域包含一般被称作是清洁层或无气泡层的气泡减少的层。该内层并非完全无气泡存在,而且,当置于晶体生长的典型温度下时,靠近坩埚表面的溶解或俘获气体能够在坩埚表面上形成气泡并释放进入硅熔体中。气泡的长期释放能够引起坩埚的内层劣化并且在生长的晶锭中形成空洞。这种劣化是晶体生长的时间限制因素,并且可能会导致零位错结构的丧失或者在生长的晶体中形成物理缺陷如大的光点缺陷。
已知在本领域中存在通过稳定二氧化硅/硅界面或者增大气泡在坩埚表面内的稳定性来改善坩埚内层的耐久性,以减少污染物的产生的各种方法。其中的一些方法包括通过将内层中的氢氧化物含量控制在某一特定值以下来改善所述稳定性(Matsumura日本专利申请08-169798);通过将预成型的二氧化硅管(内层)熔入支撑层(气泡复合体)来形成一种双层结构(Watanabe等,日本专利申请08-333124);以及在氢气氛中在高压下对坩埚进行退火,使氢进入所述二氧化硅中,结果,当暴露于熔体中以及随后所述二氧化硅发生溶解时,氢进入硅晶体中以减少堆垛层错。
另外,其它人已尝试通过使用在引入和加热多晶硅之前预先涂覆在坩埚表面的失透促进剂涂层来改善所述二氧化硅的耐久性,从而减少或消除由坩埚进入熔体和/或晶体引起的污染物的产生(Hansen等,EP 0748885 A1,EP 0753605 A1)。在熔化多晶硅时,所述涂层使得在整个晶体的提拉过程中,在存在硅熔体的条件下,形成失透的二氧化硅表面。
虽然已做了各种尝试来改善坩埚的性能和减少晶锭生长过程中熔体的污染,但迄今没有一种尝试已完全成功地消除由坩埚引起的所有污染物的产生。因此,本领域中仍需要能够制备具有较少污染物和缺陷水平的晶锭的改进坩埚。
发明简述
因此,本发明的目的之一在于制备一种用于晶锭生长的改进硅熔体;制备具有基于硅熔体掺杂水平的可控的失透层厚度的坩埚;提供用于不同掺杂剂含量而同时在失透界面处无横向裂纹形成的位于坩埚表面上的连续的失透二氧化硅薄膜;以及在于提供一种硅/锶合金的制备方法。
因此,简言之,本发明目的在于一种在二氧化硅坩埚中制备用于生长单晶硅晶锭的硅熔体的方法。所述方法包括首先将多晶硅装入具有底壁和侧壁结构的坩埚中,并且将多晶硅熔化,以便在坩埚中形成硅熔体。然后,用锶对所述熔融物进行掺杂,并且在与所述熔融物接触的坩埚侧壁结构的内表面上形成一个失透的二氧化硅层。
本发明的目的还在于一种制备用于生长单晶硅晶锭的在二氧化硅坩埚中的硅熔体的方法。所述方法包括首先将多晶硅装入具有底壁和侧壁结构的坩埚中,并且将多晶硅熔化,以便在坩埚中形成硅熔体。然后,用锶对所述熔体进行掺杂,并且,在与所述熔体接触的坩埚侧壁结构的内表面上形成一个失透的二氧化硅层。最后,在坩埚的侧壁结构的内表面部分失去透明性之后,将另外的掺杂剂加入所述熔体中。
本发明的目的又在于制备用于生长单晶硅晶锭的在二氧化硅坩埚中的硅熔体的方法。所述方法包括首先将多晶硅装入具有底壁和侧壁结构的坩埚中,并且将多晶硅熔化,在坩埚中形成硅熔体。然后,用锶对所述熔体进行掺杂,并且,在与所述熔体接触的坩埚内表面上形成一个失透的二氧化硅层。
本发明又在于一种在二氧化硅坩埚中制备用于生长单晶硅晶锭的硅熔体的方法。所述方法包括首先将多晶硅和锶装入具有底壁和侧壁结构的坩埚中,并且将多晶硅熔化,以便在坩埚中形成硅熔体。在与熔体接触的坩埚侧壁结构的内表面上形成一个失透的二氧化硅层。
附图简述
图1是一种用于将钨掺杂剂退火进入坩埚内表面的装置示意图。
图2是石英坩埚示意图。
图3是一种用于将钨掺杂剂退火进入坩埚的内部表面和/或外部表面的装置示意图。
所有附图中,相应的参考符号表示相应的部件。
优选实施方案详述
根据本发明,已发现:用能够使二氧化硅坩埚表面发生失透的锶,或者含锶组合物对硅熔体进行掺杂,能够减少在晶体生长期间由坩埚进入硅熔体的污染物的量。令人惊奇地,已发现:坩埚表面能够加以选择性失透处理,而且,失透层在二氧化硅表面的形成能够得以控制,这样,在晶锭生长期间所述失透层不会发生明显的开裂和/或释放微粒进入硅熔体中。形成失透层的反应路径避免了可能会被俘获在失透层中的由分解产物切下的岛状物以及孔隙。另外,相对于晶体生长各阶段的失透层的形成能够加以控制,这样,在晶锭生长期间的关键点,所述表面允许不溶性气体由坩埚底部和侧壁释放,从而减少了晶体空洞,降低了微粒产生。
现参见图2,其示出的是在本发明中使用的传统石英坩埚10。所述坩埚10具有底壁12和由底壁12向上延展并且起确定盛放熔融半导体材料的空腔作用的侧壁结构14。侧壁结构14和底壁12具有各自的内表面16,18和外表面20,22。在本发明的多晶硅熔化期间以及晶锭在二氧化硅坩埚内的整个生长过程中,存在于硅熔体的锶与二氧化硅坩埚反应并且提供在坩埚表面的形核位置,在所述形核位置,形成稳定的籽晶核心并且引起坩埚表面的玻璃态二氧化硅结晶和在坩埚表面上形成基本均匀且连续的失透方石英壳。锶可以作为元素锶或者含锶组合物添加至硅熔体中。基本均匀和连续的失透壳在直至熔化线的坩埚内表面上形成并且在晶体生长过程中当熔体将所述壳层溶解时能连续不断地再生。在坩埚内表面上形成的基本均匀和连续的失透壳层当与硅熔体接触时会发生基本均匀的溶解。结果,由于不会有相当数量的微粒由失透壳层进入熔体中,因此,在生长的晶体中形成的位错数目最少化。
由于锶与二氧化硅表面反应形成的连续的失透二氧化硅层不是在对掺杂的多晶硅进行加热和熔化时立即形成的。在将锶掺杂剂和多晶硅装入坩埚并且开始熔化后,锶首先会引起坩埚侧壁发生失透。如果在硅熔体中存在充分的锶,则锶也会引起坩埚底部发生失透。由于坩埚的失透性变化不是在对多晶硅和锶掺杂剂进行加热时立即发生的,因此,坩埚基体中包含的  不溶于硅的气体如氩能够从坩埚表面逸出并且可在作为空洞缺陷进入生长的晶锭之前离开熔体。在将锶掺杂的硅装入二氧化硅坩埚并熔化,引起失透层在坩埚的底部和/或侧壁上形成之后,生长单晶硅。有几种生长晶体的方法在本领域是公知的,如在美国专利3,953,281和美国专利5,443,034中介绍的方法。
锶或者含锶的组合物在本发明中被作为掺杂剂用于硅熔体中,以促进二氧化硅表面在多晶硅熔化以及单晶硅晶锭生长期间的失透变化。可以用作掺杂剂的适当的锶组合物包括,例如,氧化物、碳酸盐、硅酸盐、乙酸盐、硅化物、氢化物、氯化物、氢氧化物,以及草酸盐。锶的形式可以是单质、离子或者作为与有机离子的离子对。优选的组合物包括锶的硝酸盐和锶的氯化物。更优选的组合物包括锶的草酸盐、锶的乙酸盐和锶的氢氧化物。最优选的组合物是锶的碳酸盐和锶的氧化物。锶或者含锶的组合物用作掺杂剂,这样,就不会有显著多的锶进入生长的晶体内。优选进入生长的晶体内的锶应不超过约5ppbw,更优选不超过约3ppbw,还更优选不超过约2ppbw。
在本发明的一个实施方案中,将锶掺杂剂加入硅熔体以在坩埚内制备掺杂锶的硅熔体,通过将与多晶硅合金化的锶掺杂剂以固态形式加入二氧化硅坩埚中来促进。此处使用的术语“合金”或“合金化的”指的是包含两种或多种金属(“金属间的”化合物),一种金属与一种金属化合物,或者两种金属化合物的物质。锶/硅是用于本发明的合金的一个实例。锶/硅合金中锶的浓度较低时,锶基本上溶入硅基体中并且在锶与硅之间基本无直接的化学反应发生。随着锶/硅合金中的锶含量增加,就会达到锶在硅中的溶解极限,并且在合金中形成锶/硅化合物如SrSi2和SrSi。结果,在浓度较高时,锶/硅合金可能包含两种组元;在硅中的溶解锶和锶/硅化合物如SrSi2和SrSi。
用于本发明的合金可以采用例如感应熔化电炉制备。首先将粒状、块状多晶硅或者粒状与块状多晶硅的混合物装入炉内并且在适当的温度下进行熔化。一旦硅熔体的温度达到平衡,则将适量的锶掺杂剂加入硅熔体中。将所述硅/锶掺杂剂的混合物进行彻底搅拌和混合。最后,撤去加热源,并且使所获混合物凝固,以产生用于生长单晶硅晶锭的根据本发明的锶掺杂的多晶硅合金。本领域的专业人员会认识到:所述合金化的多晶硅可以直接加入二氧化硅坩埚中进行熔化,或者可与适量的纯多晶硅混合加入,以便通过对进入熔体的锶掺杂剂的量适当调整来控制二氧化硅表面的失透。
在另一个实施方案中,本发明的掺杂锶硅熔体的制备可以通过将锶直接加入盛有硅熔体的坩埚中来完成。在该实施方案中,首先在位于晶体生长装置中的坩埚内将块状、粒状的多晶硅,或者块状和粒状的多晶硅混合物熔化。在坩埚内硅熔体的温度达到平衡之后,锶直接加入至硅熔体中并且开始晶锭的生长过程。另一种方法是,可以将多晶硅和锶同时加入,并且,然后,进行加热以使多晶硅熔化并产生一种锶掺杂熔体。这些实施方案与前述的合金型掺杂的情形相比,在晶体生长过程中在坩埚上形成失透的二氧化硅层的时机较晚。对于相同的掺杂水平,合金型掺杂会使二氧化硅表面的失透更快发生,因为掺杂剂在整个硅熔化期间都存在,从而使得发生失透性变化的时机更早。在硅熔化后进行掺杂会使得二氧化硅的失透发生较慢,因为掺杂剂与多晶硅混合并到达二氧化硅表面需更多的时间,故其反应动力学较慢。
应该对与多晶硅或多晶硅熔体进行合金化的锶或含锶组合物的量或在晶锭生长之前直接加入晶体生长装置中的硅熔体中的的锶或含锶组合物的量进行控制,以便在与掺杂硅熔体接触的坩埚壁上形成一薄且连续的失透二氧化硅层。薄且连续的失透二氧化硅层可使得层中的应力在层的整个范围内均匀分布,从而获得一个基本无裂纹的表面。该连续层由于晶体生长期间的形成动力学速率的原因而有利于空洞从坩埚表面释放,并且因此减少了空洞缺陷进入生长的晶锭中。形成一个薄且连续的无裂纹表面所必需的在硅熔体中的锶掺杂剂量随坩埚尺寸而变。本发明可用于对所有的坩埚尺寸形成失透层,包括,但不限于,14-32英寸的坩埚。另外,单腔或双腔坩埚也在本发明的范围之内。
通过控制进入硅熔体的锶或含锶组合物的量,能够使坩埚的底部和侧壁在硅熔化及晶体生长期间发生选择性失透性变化。虽然其它的失透促进剂如钡在添加至熔体中时首先使坩埚底部发生失透但是硅熔体采用锶或含锶的组合物进行掺杂时,锶会首先引起坩埚的侧壁发生失透。锶首先使直至熔化线的坩埚侧壁失透,之后,如果硅熔体中存在的锶很充分,则使坩埚的底部发生失透。硅熔体中的锶含量较低时,仅仅是直至熔化线的坩埚侧壁失透。熔体中锶含量低时,坩埚底部保持玻璃态并且可继续使气泡从坩埚底部释放出。这些气泡能够部分或者完全由不溶于硅的气体组成。因此,有利的是,使这些气泡从熔体中逸出,以便能够生长空洞缺陷较少的晶体。与气泡从坩埚侧壁逸出相比,气泡从坩埚底部的逸出的问题更多。由坩埚底部释放的气泡趋于被旋转晶体产生的旋涡俘获并且一般需要花长得多的时间进入熔体并且从熔体中逸出。由坩埚侧壁产生的气泡一般不会被俘获在硅熔体旋涡中并且能够比由坩埚底部产生的气泡快得多地进入熔体并逸出到晶体生长的气氛中。
随着硅熔体中锶浓度的增加,高至熔化线的侧壁以及坩埚底部均会发生失透。在本发明的一个实施方案中,锶掺杂剂可以在熔化期间采用两个或多个单独步骤加入坩埚中,以便选择性地在熔化过程的早期对坩埚侧壁进行失透性处理,在熔化过程的较晚期使坩埚底部发生失透。该实施方案使得在该工艺的早期侧壁发生失透,从而减少了对熔体的颗粒污染,同时又允许在坩埚底部存在的气体花更长的时间从熔体中逸出。在熔化过程的较后期,可以添加另外的锶以使坩埚底部发生失透并且减少晶体拉制期间的颗粒污染。实现选择性失透所必需的锶量是所采用的拉制过程以及加热区结构和形状的函数。加热区一般可称为“传统”加热区或“先进”加热区。所采用的传统加热区的温度典型地比先进加热区高约50-150℃。先进加热区一般绝热更佳,并且还使用清洗管,因此其温度不需要象传统加热区那么高。
添加至熔体中以在坩埚的底部和/或侧壁上产生失透性变化的锶量依据硅的添加体积、坩埚表面的润湿面积以及所采用的加热区类型来确定。如方程(1)所示,为了使坩埚底部以及高至熔化线的坩埚侧壁均发生失透,锶量除以多晶硅装添体积再除以坩埚的润湿面积之值,对于传统型加热区,至少为约1.5×10-12g/cm3/cm2,更优选至少约1.5×10-11g/cm3/cm2,最优选至少约1.5×10-10g/cm3/cm2;对于先进加热区,至少为约6×10-11g/cm3/cm2,更优选至少约6×10-10g/cm3/cm2,最优选至少约6×10-9g/cm3/cm2
锶量(g)/Si装添体积(cm3)/二氧化硅润湿面积(cm2)  (1)
为了仅仅在高至熔化线的坩埚侧壁而并非在坩埚底部产生失透性变化,以使气体能够在晶体拉制和/或熔化过程中从底部逸出,添加至硅熔体中的锶量应较低。如果采用的是传统型加热区,则添加至硅熔体中,以使坩埚侧壁发生失透性变化的锶量约为3.5×10-13g/cm3/cm2,更优选为约3.5×10-12g/cm3/cm2,最优选为约3.5×10-11g/cm3/cm2。如果采用的是先进加热区,则添加至硅熔体中,以使坩埚侧壁发生失透性变化的锶量为约2×10-11g/cm3/cm2,更优选为约2×10-10g/cm3/cm2,最优选为约2×10-9g/cm3/cm2
本领域的专业人员将认识到;通过改变锶的添加量,能够容易地实现对失透层厚度的控制。变量如装料组成、提拉技术和装置,以及拉制时间可能要求通过使用较厚或较薄的失透层来获得本发明的益处。
在另一个实施方案中,本发明的锶掺杂硅熔体可以装入在外表面上具有失透促进剂的坩埚中。再次参照图2,失透促进剂24处于侧壁结构14的外表面20上。所述坩埚外表面在将本发明的锶掺杂多晶硅装入之前通过采用浸渍涂覆或喷涂在坩埚外表面上形成涂层而得到处理,由此例如在外表面上形成具有高密度形核位置的薄层。当对坩埚加热以使掺杂的多晶硅熔化并且生长成硅晶锭时,所述失透促进剂与玻璃态二氧化硅反应,在坩埚外表面上形成晶核。随着熔化过程的继续,硅熔体和石墨基座起还原剂的作用并且促进在表面的这些晶核从形核位置沿径向快速生长。在存在锶掺杂硅熔体和石墨基座时,这些晶核生长至汇合一起,也就是说,在坩埚上形成一连续的陶瓷壳层,从而增加了坩埚的机械强度并且降低了其与石墨支撑的反应性。
适于对坩埚外表面进行涂覆的失透促进剂包括碱土金属的氧化物、碳酸盐、氢氧化物、草酸盐、硅酸盐、氟化物、氯化物,以及过氧化物、三氧化硼和五氧化磷。其它失透促进剂,例如二氧化钛、二氧化锆、氧化铁、包括碱土金属的甲酸盐、乙酸盐、丙酸盐、水杨酸盐、硬酯酸盐和酒石酸盐的碱土金属阳离子与有机阴离子的离子对,以及较少优选的含过渡金属、难熔金属、镧系元素或锕系元素的促进剂也可以用来涂覆外表面。
所述失透促进剂优选是一种选自于钙、钡、镁、锶和铍的碱土金属。所述碱土金属可以是与坩埚表面结合的任何形式。所述碱土金属的形式可以是元素(如Ba)、自由离子(如Ba2+),或者与阴离子如氧根、氢氧根、过氧、碳酸根、硅酸根、草酸根、甲酸根、乙酸根、丙酸根、水杨酸根、硬酯酸根、酒石酸根、氟离子,或氯离子构成的离子对。优选地,所述失透促进剂是碱土金属的氧化物、氢氧化物、碳酸盐或硅酸盐。
外涂层必须含有足够的失透促进剂以便使基本失透的二氧化硅层形核。每一千平方厘米至少约0.10mM的碱土金属的浓度一般能够提供具有促进失透的均匀涂层。经外涂覆处理的坩埚优选具有的碱土金属浓度为约0.10-1.2mM/1000cm2,更优选为约0.30-0.60mM/1000cm2。坩埚外表面可以采用任何能将失透促进剂沉积到表面的方法如浸渍涂覆或喷射涂覆方法来涂覆。
在另一个实施方案中,本发明的锶掺杂硅熔体可以同含有极少量不溶于硅的气体的坩埚一起使用(参见美国专利5,913,975,在此引入作为参考)。这种坩埚有助于减少由能够在晶锭生长期间从坩埚逸出的不溶气体如氩引起的缺陷。
该含有极少量不溶于硅的气体的坩埚通过将坩埚在存在减量不溶性气体如氩的气氛中溶化制备而成。通过在这种气氛中将坩埚熔化,则在坩埚基体中形成的气泡中存在减量的不溶性气体如氩。因此,在晶体生长期间由于坩埚溶解而使气泡进入熔体中时,晶体中由不溶气体引起的晶体空洞缺陷降至最少或完全被消除。
用于将坩埚熔化的装置周围的气氛中含有的不溶于硅的气体低于约0.5%,更优选低于约0.1%,最优选低于约0.01%。此处使用的术语“不溶于硅”指的是该气体实际上不与液态硅发生反应并且能够在液态硅中存在而不发生明显溶解。适当的气氛可以包括合成空气,氮和氧的混合物、或者纯氮气。
在另一个实施方案中,本发明的锶掺杂硅熔体可以同具有一个或多个钨掺杂层的坩埚一起使用。所述层表现出类似于无气泡,并且或许就是无气泡的。当本发明的锶掺杂硅熔体与内表面上的钨掺杂层一起使用时,失透层与该气泡较少层一起共同减少了熔体中的污染物的量。坩埚外表面上的钨掺杂层可能会提高坩埚的强度和降低其反应性。令人惊奇地,在石英基体中的钨掺杂剂能够导致石英坩埚处理表面的气泡灭失并且在随后的热使用期间不再次形成,同时钨不会从坩埚表面扩散出或者不会对生长的晶锭造成污染,因此,不会引起零位错生长的丧失和/或晶体质量的下降。
现参见图1,其中示出的是根据本发明将钨掺杂剂退火进入坩埚4的内表面的装置2。再次参见图1,装置2包括水平支撑台10,与电源(未示出)连接的电导线12和14,与惰性气源(未示出)相连接的惰性气体输入管线16,惰性气体输出管线18,以及钨源20。惰性气体将氧从钨源处带走,以减少钨源发生不希望的氧化和固态氧化物的形式。适当的惰性气体可包括例如氩、氦、氙等。水平支撑台10对处理中的坩埚起支撑作用,并且可以由例如不锈钢、玻璃、或陶瓷构成。台架10上存在钻入其表面的孔22和24,以使惰性气体输入管线16和惰性气体输出管线18能通达所处理坩埚周围的环境。另外,台架10上存在钻入其表面以使电线12和14连接至钨源20的孔26和28。
当对电线12和14通电加热钨源20时,钨蒸汽就会在坩埚内部产生。在加热钨源20和产生钨蒸汽之前,通过惰性气体输入管线16将惰性气体送入钨源20周围的环境。在加热钨源和产生钨蒸汽的整个过程中,惰性气体被连续送入钨源20周围的环境。惰性气体通过惰性气体输出管线18从钨源周围环境中去除。这种对钨源20周围环境的连续净化基本将所有氧从钨源20周围环境中去除。应对净化气体的流动进行控制,以便能够将基本上所有的氧充分去除,从而基本上消除固态氧化物的形成。应该指出的是,本领域的专业人员将认识到:在坩埚与支撑台之间可以使用少量的密封剂,如真空脂、有机硅或其它适当的密封剂,以确保进入钨源周围环境的氧量减少。另外,可以用减压代替惰性气体或者与惰性气体一起使用,以降低钨源区的氧浓度。
在基本无氧的环境下由加热的钨源产生的蒸汽钨扩散进入坩埚的内表面。将钨源加热至高温,进而又使内表面的温度升高,从而有利于扩散进行。坩埚内表面暴露在蒸汽钨中的时间一般为约1~10小时,更优选约2-8小时,还更优选约4-6小时,最优选约5小时,以便在坩埚内表面上产生钨掺杂层,所述层含有不低于约100PPba(十亿分之几,原子比)的钨,优选不低于约200PPba的钨,最优选不低于约300PPba的钨。钨扩散进入内表面的距离为约0.1-4毫米,从而在表面上形成其深度与扩散的钨的深度相等的钨掺杂层。钨可以扩散进入任何尺寸的坩埚中改善性能。本领域的专业人员将认识到,如果存在商业需求,可以通过更长时间的退火,使钨更深地退火进入到内表面中。当在晶体生长过程中使用时,钨掺杂层的作用象无气泡层,而且其可以是无气泡层。
本领域的专业人员也会认识到已退火的钨不会在坩埚内产生例如从100PPba至0PPba这样的急剧过渡。当钨退火进入表面时会产生一梯度,而且,虽然产生的钨掺杂层的厚度例如为4mm,但会有一些钨扩散进入坩埚内的距离超过4mm。
此处使用的术语无气泡层可能意味着该层完全无气泡,或者其基本上不存在气泡。当前的用于确定石英坩埚中的气泡的分析测定方法能够在几个毫米量级的大视场范围内测定直径约15μm的气泡。当根据本发明钨退火进入坩埚内表面至约0.1-4mm的深度范围时,在含有钨的区域,每mm3存在0个直径至少约15μm的气泡。类似地,在进行晶锭生长过程典型的热循环之后,坩埚中每mm3存在0个直径至少约15μm的气泡。本领域的专业人员会认识到:随着分析测定方法的改进和确定直径更小的气泡成为可能,优选相应地对退火进入坩埚表面的钨量进行调整,以便在钨掺杂的区域,如前面所讨论的那样,达到无可探测到的气泡的水平。
当具有钨掺杂层的坩埚随后在晶体拉制过程中使用时,由于晶体生长所必需的极端条件,坩埚会缓慢溶解进入硅熔体。因此,处于溶解进入熔体的石英基体中的钨也进入硅熔体。然而,已表明:不会有可探测到的量的钨进入到生长的晶锭内。其原因似乎包括两方面。第一,由于为达到所要求的效果退火进入坩埚内的钨量如此少,因此在熔体中不会存在明显数量的钨。第二,由于钨的偏析系数低,因此,其趋于停留在液态硅内而不是结晶进入生长的晶锭中。
在本发明的又一个实施方案中,钨可以退火进入石英坩埚的内和/或外表面,以便在所述内表面和外表面上产生钨掺杂层。钨退火进入坩埚外表面产生钨掺杂层可以提高坩埚的机械强度,减少在晶锭生长期间坩埚的变形。另外,外表面上的钨掺杂层降低坩埚与对坩埚起支撑作用的石墨支撑结构的反应性,并且因此降低生长中晶锭及硅熔体周围的污染物的量。
现参见图3,其示出的是使钨退火进入石英坩埚的内表面和/或外表面的装置40。除了在图1中的将钨退火进入石英坩埚内表面的装置中示出的部件以外,装置40还包括容器42,第二个钨元件44,第二个惰性气体输入管线30,第二个惰性气体输出管线32,以及第二套与电源(未示出)相连的电导线34和36。容器42可以例如由玻璃、不锈钢,或陶瓷构成,并且应与水平支撑面10紧密匹配,以确保密封严密,从而防止氧进入惰性气体净化区域。第二个钨源44与前述钨源类似,惰性气体输入管线30和输出管线32在退火期间对容器进行净化。
石英坩埚的内表面和外表面可以采用图3所示的装置进行处理,以使钨退火进入两表面产生钨掺杂层。坩埚内表面采用前述方法处理,这样,向钨源20施加能量,使钨退火进入坩埚内表面至所要求的深度。也对钨源44施加能量以使钨退火进入坩埚的外表面。在所述源加热期间用惰性气体对两个钨源周围区域进行连续净化,以便将氧的存在降至最低,并降低该源氧化的可能以及固态氧化物的形成。
为了使钨退火进入坩埚的外表面,对第二个钨源施加能量和加热。坩埚外表面暴露在蒸汽钨中的时间一般为约1-10小时,更优选约2-8小时,还更优选约4-6小时,最优选约5小时,以便在坩埚外表面上产生一个钨掺杂层,所述掺杂层含有不低于约100PPba的钨,优选不低于约200PPba的钨,最优选不低于约300PPba的钨。钨扩散进入外表面约0.1~6mm的距离,以在该表面上形成其深度与扩散的钨深度相等的钨掺杂层。在含有钨的区域,每mm3存在0个直径至少约15μm的气泡。
本领域的专业人员会认识到:可以仅仅对坩埚的外表面进行处理,从而产生钨只是退火进入到外表面的坩埚。采用如图3中所示的装置,只对第二个钨源施加能量至所要求的时间,就可仅仅在外表面上产生钨掺杂层。在该实施方案中,只对外表面进行退火处理,而没有对用于处理内表面的钨源施加能量。
在本发明的又一个实施方案中,在制备锶掺杂多晶硅和对坩埚进行装添之前,可以通过使用含钨的金属有机化合物,将钨退火进入石英坩埚的内表面、外表面,或者内表面和外表面。在该实施方案中,所述金属有机化合物是钨的化合物在有机溶剂中的溶液。将所述化合物施加在坩埚的内表面、外表面、或者内表面和外表面上,其厚度为约500-2000,并且对其进行干燥。然后,利用硅胶在已处理的坩埚涂覆一层二氧化硅,经干燥处理可形成二氧化硅层。硅胶叠层可重复进行涂覆以形成几层。然后,在约550-900℃的温度下对坩埚退火约1-10小时,以便进行该两层间的相互扩散,从而改变二氧化硅基体的物理结构,结果,如上所述,由于气体溶解度增加而导致气泡消失。在退火处理期间,至少约100PPba的钨扩散进入坩埚表面,而有机组分则蒸发掉。
在前述叠层步骤的又一个实施方案中,可以使用利用适当的前体溶液如异丙氧基钨和原硅酸四乙酯对二氧化硅和钨组元进行的混合。所述混合后的组分随后进行如上所述的加热使有机组分蒸发并且对钨进行退火,以便在退火后产生所要求的物理效应。另外,在本发明中,可以对钨和石英砂进行电弧熔化,以使钨能够存留在二氧化硅基体中,用于进行电弧熔化的适当的钨源可包括钨的氧化物。
根据前面的介绍,可看到本发明的几个目的已达到。由于在不偏离本发明的范围的条件下可以对上述硅掺杂方法进行各种改变,因此这意味着前面介绍中包含的所有内容的解释是说明性和非限制性的。

Claims (10)

1.在二氧化硅坩埚中用于生长单晶硅晶锭的硅熔体的制备方法,所述方法包括:
将多晶硅装入具有底壁和侧壁结构的坩埚内,所述底壁和侧壁结构具有内表面和外表面;
在坩埚内将多晶硅熔化成硅熔体;
用锶对硅熔体进行掺杂;以及
在与所述熔体接触的坩埚侧壁结构的内表面上形成失透二氧化硅层,所述层由熔体中的锶形核。
2.根据权利要求1的方法,其中,所述锶掺杂剂选自于锶的硝酸盐、锶的氯化物、锶的草酸盐、锶的乙酸盐,以及锶的氢氧化物。
3.根据权利要求1的方法,其中,所述锶掺杂剂选自于锶的碳酸盐和锶的氧化物。
4.根据权利要求1的方法,其中,坩埚侧壁结构的内表面而非坩埚底部的内表面发生失透。
5.根据权利要求1的方法,其中,坩埚侧壁结构的内表面和坩埚底部的内表面发生失透。
6.在二氧化硅坩埚中用于生长单晶硅晶锭的硅熔体的制备方法,所述方法包括:
将多晶硅装入具有底部和侧壁结构的坩埚内,所述底部和侧壁结构具有内表面和外表面;
在坩埚内将多晶硅熔化成硅熔体;
用锶对所述熔体进行掺杂;
在与所述熔体接触的坩埚侧壁结构的内表面上形成失透二氧化硅层,所述层由熔体中的锶形核;以及
在坩埚侧壁结构的内表面至少部分发生失透之后,将另外的掺杂剂加入所述熔体中。
7.根据权利要求6的方法,其中,所述锶掺杂剂选自于锶的硝酸盐、锶的氯化物、锶的草酸盐、锶的乙酸盐,以及锶的氢氧化物。
8.根据权利要求6的方法,其中,所述锶掺杂剂选自于锶的碳酸盐和锶的氧化物。
9.在二氧化硅坩埚中用于生长单晶硅晶锭的硅熔体的制备方法,所述方法包括:
将多晶硅装入具有底壁和侧壁结构的坩埚内,所述底壁和侧壁结构具有内表面和外表面;
在坩埚内将多晶硅熔化成硅熔体;
用锶对所述熔体进行掺杂;以及
在与所述熔体接触的坩埚内表面上形成失透二氧化硅层,所述层由熔体中的锶形核。
10.在二氧化硅坩埚中用于生长单晶硅晶锭的硅熔体的制备方法,所述方法包括:
将多晶硅和锶装入具有底壁和侧壁结构的坩埚内,所述底部和侧壁结构具有内表面和外表面;
在坩埚内将多晶硅熔化成硅熔体;以及
在与所述熔体接触的坩埚侧壁结构的内表面上形成失透二氧化硅层,所述层由熔体中的锶形核。
CNB008050457A 1999-03-15 2000-03-14 在晶体生长过程中使用的硅熔体的锶掺杂 Expired - Fee Related CN1166821C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12440099P 1999-03-15 1999-03-15
US60/124,400 1999-03-15
US09/521,525 2000-03-08
US09/521,525 US6350312B1 (en) 1999-03-15 2000-03-08 Strontium doping of molten silicon for use in crystal growing process

Publications (2)

Publication Number Publication Date
CN1343264A true CN1343264A (zh) 2002-04-03
CN1166821C CN1166821C (zh) 2004-09-15

Family

ID=26822544

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008050457A Expired - Fee Related CN1166821C (zh) 1999-03-15 2000-03-14 在晶体生长过程中使用的硅熔体的锶掺杂

Country Status (8)

Country Link
US (1) US6350312B1 (zh)
EP (1) EP1169496B1 (zh)
JP (1) JP4439741B2 (zh)
KR (1) KR100681744B1 (zh)
CN (1) CN1166821C (zh)
DE (1) DE60003800T2 (zh)
MY (1) MY136021A (zh)
WO (1) WO2000055395A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101052753B (zh) * 2004-09-13 2012-01-04 岛根县 二氧化硅多孔晶体的制造方法
CN106591942A (zh) * 2016-12-30 2017-04-26 江西赛维Ldk太阳能高科技有限公司 多晶硅铸锭用坩埚及其制备方法和多晶硅锭及其制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1224574C (zh) * 2000-05-11 2005-10-26 德山株式会社 多晶硅、其生产方法及生产装置
US20040118156A1 (en) * 2001-03-08 2004-06-24 Gabriele Korus Method of producing a quartz glass crucible
US7118789B2 (en) 2001-07-16 2006-10-10 Heraeus Shin-Etsu America Silica glass crucible
JP2003095678A (ja) * 2001-07-16 2003-04-03 Heraeus Shin-Etsu America シリコン単結晶製造用ドープ石英ガラスルツボ及びその製造方法
US6641663B2 (en) 2001-12-12 2003-11-04 Heracus Shin-Estu America Silica crucible with inner layer crystallizer and method
US20040187767A1 (en) * 2002-10-24 2004-09-30 Intel Corporation Device and method for multicrystalline silicon wafers
US7383696B2 (en) * 2005-09-08 2008-06-10 Heraeus Shin-Etsu America, Inc. Silica glass crucible with bubble-free and reduced bubble growth wall
US7427327B2 (en) * 2005-09-08 2008-09-23 Heraeus Shin-Etsu America, Inc. Silica glass crucible with barium-doped inner wall
JP5034246B2 (ja) * 2006-02-01 2012-09-26 株式会社Sumco シリコン単結晶の製造方法およびシリコン単結晶
US20090120353A1 (en) * 2007-11-13 2009-05-14 Memc Electronic Materials, Inc. Reduction of air pockets in silicon crystals by avoiding the introduction of nearly-insoluble gases into the melt
WO2011009062A2 (en) * 2009-07-16 2011-01-20 Memc Singapore Pte, Ltd. Coated crucibles and methods for preparing and use thereof
US20190062943A1 (en) * 2016-03-23 2019-02-28 Momentive Performance Materials Inc. Devitrification agent for quartz glass crucible crystal growing process
US20240035198A1 (en) * 2022-07-29 2024-02-01 Globalwafers Co., Ltd. Systems and methods for forming single crystal silicon ingots with crucibles having a synthetic liner

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2872299A (en) 1954-11-30 1959-02-03 Rca Corp Preparation of reactive materials in a molten non-reactive lined crucible
JP3100836B2 (ja) 1994-06-20 2000-10-23 信越石英株式会社 石英ガラスルツボとその製造方法
EP0691423B1 (en) 1994-07-06 1999-03-24 Shin-Etsu Handotai Company Limited Method for the preparation of silicon single crystal and fused silica glass crucible therefor
JPH08217592A (ja) 1995-02-17 1996-08-27 Toshiba Ceramics Co Ltd シリコン単結晶製造用石英ルツボ
JPH08239231A (ja) 1995-03-02 1996-09-17 Shin Etsu Chem Co Ltd 石英ルツボの製造方法
JP2811290B2 (ja) 1995-04-04 1998-10-15 信越石英株式会社 シリコン単結晶引き上げ用石英ガラスルツボ
JP2830990B2 (ja) 1995-05-31 1998-12-02 信越石英株式会社 石英製二重ルツボの製造方法
US5976247A (en) 1995-06-14 1999-11-02 Memc Electronic Materials, Inc. Surface-treated crucibles for improved zero dislocation performance
US5980629A (en) 1995-06-14 1999-11-09 Memc Electronic Materials, Inc. Methods for improving zero dislocation yield of single crystals
JP4237280B2 (ja) 1997-07-02 2009-03-11 信越半導体株式会社 シリコン単結晶の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101052753B (zh) * 2004-09-13 2012-01-04 岛根县 二氧化硅多孔晶体的制造方法
CN106591942A (zh) * 2016-12-30 2017-04-26 江西赛维Ldk太阳能高科技有限公司 多晶硅铸锭用坩埚及其制备方法和多晶硅锭及其制备方法
CN106591942B (zh) * 2016-12-30 2019-06-11 江西赛维Ldk太阳能高科技有限公司 多晶硅铸锭用坩埚及其制备方法和多晶硅锭及其制备方法

Also Published As

Publication number Publication date
WO2000055395A1 (en) 2000-09-21
JP4439741B2 (ja) 2010-03-24
DE60003800D1 (de) 2003-08-14
EP1169496B1 (en) 2003-07-09
US6350312B1 (en) 2002-02-26
CN1166821C (zh) 2004-09-15
JP2002539069A (ja) 2002-11-19
DE60003800T2 (de) 2004-06-03
EP1169496A1 (en) 2002-01-09
KR20010102426A (ko) 2001-11-15
MY136021A (en) 2008-07-31
KR100681744B1 (ko) 2007-02-15

Similar Documents

Publication Publication Date Title
CN1166822C (zh) 在晶体生长过程中使用的硅熔体的钡掺杂
CN1166821C (zh) 在晶体生长过程中使用的硅熔体的锶掺杂
EP1153161B1 (en) Tungsten doped crucible and method for preparing same
CN101696514A (zh) 一种多晶锭的生产方法
JP5768809B2 (ja) 半導体単結晶の製造方法
WO2021098348A1 (zh) 一种利用铟磷混合物制备磷化铟晶体的方法
CN109477239A (zh) 石英玻璃坩埚及其制造方法以及使用了石英玻璃坩埚的单晶硅的制造方法
JP4815003B2 (ja) シリコン結晶成長用ルツボ、シリコン結晶成長用ルツボ製造方法、及びシリコン結晶成長方法
JP2019509969A (ja) 石英ガラス坩堝結晶育成法のための失透剤
KR20030040167A (ko) 다공성 실리카글라스소지에서 결정영역을 가진실리카글라스도가니의 제조방법
JP5386255B2 (ja) 窒素ドープした石英ガラスルツボおよびそのようなルツボの製造方法
JP2006347834A (ja) フッ化金属単結晶の製造方法
RU2370568C1 (ru) Способ изготовления кварцевых контейнеров
KR20230163459A (ko) 석영 유리 도가니 및 그 제조 방법 및 실리콘 단결정의 제조 방법
KR20230163461A (ko) 석영 유리 도가니 및 그 제조 방법 및 실리콘 단결정의 제조 방법
JP2005200279A (ja) シリコンインゴットの製造方法、太陽電池

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040915

Termination date: 20150314

EXPY Termination of patent right or utility model