CN1330164A - 一种原位合金化与反应颗粒增强金属基复合材料制备方法 - Google Patents

一种原位合金化与反应颗粒增强金属基复合材料制备方法 Download PDF

Info

Publication number
CN1330164A
CN1330164A CN 00109469 CN00109469A CN1330164A CN 1330164 A CN1330164 A CN 1330164A CN 00109469 CN00109469 CN 00109469 CN 00109469 A CN00109469 A CN 00109469A CN 1330164 A CN1330164 A CN 1330164A
Authority
CN
China
Prior art keywords
reaction
matrix
situ
diluent
cuo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 00109469
Other languages
English (en)
Other versions
CN1108389C (zh
Inventor
张济山
黄赞军
杨滨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN 00109469 priority Critical patent/CN1108389C/zh
Publication of CN1330164A publication Critical patent/CN1330164A/zh
Application granted granted Critical
Publication of CN1108389C publication Critical patent/CN1108389C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提出了一种制备原位合金化与原位反应颗粒共同强化金属基复合材料的方法,原位反应生成陶瓷颗粒增强相的同时生成合金化元素,实现方法可用熔铸原位反应法或粉末冶金原位反应烧结法;使工艺过程中的原材料准备工作简单化,并且能减少常规熔铸工艺中的合金化工序。本发明主要适用于设计与制备包括以铝合金,铜合金,锌合金,钛合金,铁合金和镍合金等为基体在内的各类颗粒增强金属基复合材料。

Description

一种原位合金化与反应颗粒增强金属基复合材料制备方法
原位复合材料的概念于1967年由前苏联的A.G.Merzhanov等人(J.Mater.Sci.,27(1992)6249)在用自蔓延高温合成法制备TiB2/Cu功能梯度材料时首先提出。原位反应颗粒增强金属基复合材料制备技术的原理是:根据材料设计的要求,选择适当的反应剂(气相,液相,或粉末态固相),在适当的温度下,借助于基体或合金和它们之间的化学反应,原位生成尺寸细小,分布均匀的增强陶瓷相。目前原位反应陶瓷增强相主要包括氧化物,碳化物,氮化物,硅化物以及硼化物等,目的是为了强化基体,提高弹性模量。
一般原位颗粒增强金属基复合材料(MMCs)的增强体尺寸在0.5~5μm之间,体积分数在0~50%之间。与外加增强体制备MMCs的方法相比,原位法复合材料的优势包括:
1、较小的增强体尺寸,强度较高,有较好的疲劳抗力和蠕变抗力
2、能获得小的单晶增强体,颗粒断裂可能性小
3、干净的颗粒基体界面,界面结合强度高,材料具有高的塑性和韧性
4、材料含有热力学稳定的颗粒,可焊且可铸造,颗粒高温下不溶解,没有反应层,界面结合强度高,改善了材料的腐蚀性能和稳定性能
5、颗粒尺寸分布较好,改善了机械性能
6、常规工艺即可制备,设备简单,并且省去了单独合成增强相及其处理和加入工序,工艺简单,总的成本低。
目前,原位反应技术按照化学反应的类别可分为化合反应和置换反应两种。化合反应是将所需获得的增强相元素粉末混合后发生反应,这种反应可表示为:
                        
反应过程中,为了使反应完全,通常将其中一种元素过量,结果在合金基体中往往会引入不必要的成分。如 反应中常常将C量加大,结果使基体的含C量过多,从而影响材料性能。
由于化合反应的反应物是纯元素粉末,通常成本较高,在一定程度上影响了它的应用。置换反应常采用氧化物等廉价原材料,有利于降低成本,已经引起研究者的重视。
置换反应最常研究的是金属氧化物被Al还原发生的放热反应(铝热反应),制备出Al2O3颗粒增强金属基复合材料。其基本反应式如下:
                 (未配平)日本的长隆郎、小桥真等人(轻金属(日),3(1992)138)初步研究了CuO,ZnO,SnO,Cr2O3,TiO2和SiO2颗粒与1000℃铝液的反应情况,结果发现CuO与Al的反应最剧烈,生成Al2O3细小而弥散。而Cr2O3几乎不反应。中科院固体物理所的陈刚、朱震刚等人(金属学报,34(1998)531)研究了CuO与Al之间反应的机理,他们分别在空气介质和纯Al介质条件下将CuO粉与Al粉混合物压成坯,在不同温度加热10分钟和30分钟,结果认为介质的导热率会影响反应的进行,而反应存在着中间过渡产物Cu2O。在空气介质中860℃条件下反应完全,而在纯Al介质中,950℃下40分钟后才反应完全,生成(α-Al2O3和Cu,但α-Al2O3分布不均匀。
尝试用其他氧化物提供氧源来获得Al2O3增强金属基复合材料的研究也在逐步增加,并可望形成一个独特的领域。印度铸锻研究所的P.C.Maity等人(J.Mater.Sci.Lett.,16(1997)1224)向Al熔体中添加Fe2O3颗粒,生成Al2O3颗粒尺寸在0.5~1μm,X射线表明,Fe被置换出来之后以纯Fe形式存在,未与Al合金化以至生成金属间化合物,其原因之一被认为是制备过程在极短时间内完成引起的。美国的Hanabe(J.Mater.Res.,11(1996)1562)通过SiO2与Al或Al-Cu熔体反应制备出了Al2O3/Al复合材料。陈刚(Mater.Sci.Eng.,A244(1998)291)等人用ZnO与Al反应制备出了Al2O3/Al-Zn复合材料。Fukunaga等人(J.Mater.Sci.Lett.,10(1991)23)用TiO2与Al反应制备了Al3Ti-Al2O3/Al基复合材料。而彭华新等人(材料科学与工艺,4(1996)11)采用Ni2O3与Al反应制备了Al2O3颗粒增强金属基复合材料。P.C.Maity(Mater.lett.,20(1994)93)研究了MnO2与Al-2%Mg熔体反应生成Al2O3颗粒增强Al-Mg基复合材料。
以上研究人员的工作表明,原位置换反应法制备颗粒增强金属基复合材料的方法完全可行,而且置换反应法制备颗粒增强金属基复合材料所需原材料成本低,来源广泛。但是,原位置换反应除生成所需陶瓷颗粒相之外,还产生第二种物质,如果不加考虑,往往成为材料的有害杂质,破坏材料的综合性能。
目前研究者们的注意力只集中在增强体的获得上,而没有考虑原位反应给基体带来的影响。因此应该注意到,复合材料是一个基体与增强相互相结合的有机整体,对于不同基体材料,若选择相同的反应体系,往往在合金基体中带入不必要过剩的甚至是有害的元素,降低了材料的性能,如为提高增强相的生成量而加入大量的化合物相,结果使合金元素的含量远远超过合金化所需的量,造成合金化失效。
本发明的目的在于解决原位反应中生成过剩或有害杂质的问题,将原位反应,合金基体,增强相,合金元素等作为一个整体来考虑,提出制备原位合金化和原位颗粒同时强化金属基复合材料的思路与方法。
本发明的构成:设计与制备原位合金化与原位反应颗粒同时增强金属基复合材料,基本实现方法有熔铸原位反应法和粉末冶金原位反应烧结法等。
当采用熔铸原位反应法工艺时,其基本制备过程包括:选择反应体系与计算混合物配比,制备预制坯,熔炼纯金属基体,原位反应操作,后续成型和后续热加工等几个步骤:
1、选择反应体系,计算混合物配比
反应表达式为:
式中,X代表基体元素,如Al,Cu,Fe,Ni,Ti,Zn等及其合金元素,Y代表基体合金元素。例如,对于Al基体而言可以是Cu,Mg,Si,Mn,Ti,Ni,V,Zr,Fe,Zn,Li,Sn等;对于Cu基体而言,可以是Al,Mn,Ni,Fe,Sn,Zn,Si,Mg等;Z代表非金属元素,如O,C,B,N等。选择反应体系的原则是该反应在热力学上可行,化合物XZ比YZ在热力学上更稳定。置换反应的结果是生成陶瓷增强相,同时被置换出来的元素Y可以成为基体的合金元素,Y在所述复合材料中的质量含量在0.1%~30%内可调。与基体或基体中其他合金元素反应生成二元或多元金属间化合物增强相。各反应物均为粉末状,粒度范围为5~300μm;
2、制备预制坯
将各反应物X和YZ按化学式配比放入混料机中混合均匀,其中常常需另添加一定量的反应促进剂和反应稀释剂,稀释剂需与反应料混合均匀,使反应绝热温度在化合物XZ的熔点到X的汽化点以上200K之间,反应促进剂可以两种方式混入:其一是局部混合或接触;其二是整体均匀混合。将准备好的粉末在室温下压制成型,压力范围是5~100Mpa;所说的反应促进剂包括K,Ca,Na,Mg,Sr和稀土等元素的粉末,它们能在较低温度下促进反应进行;所说的反应稀释剂不参与反应物间的化学反应,其作用在于吸收反应的放热,使反应在一定范围内可控,如在Al+CuO的预制块中加入过量的Al;反应促进剂的添加量为粉末压块总重量的0.0005~0.01倍;反应稀释剂的添加量为反应物化学配比后总重量的0.05~3.0倍;当所说的反应物为Al和CuO组合时,反应促进剂与反应稀释剂的优先选择范围(重量比)分别为:0.001~0.008和0.5~1.5;如果是Al与CuO和SiO2组合时,它们的优先选择范围分别为:0.002~0.005和2.0~2.5
3、纯金属基体的熔化与原位反应合成
将适量的纯金属基体,如纯Al,Cu,Fe,Ti,Ni,Zn等放入加热炉中加热,加热温度为该元素熔点以上120~300K;将占基体纯金属重量1%~50%的预制块压入合金熔体中,保温1~30分钟;
4、熔体精炼和后续成形工艺:熔体精炼可采用常规合金精炼方法,如铝合金用六氯乙烷;后续成形工艺可以包括:模铸,压铸,半固态铸造,离心铸造或者喷射成形,急冷辊快凝等;如对于Al2O3颗粒增强Al-Fe复合材料体系而言,可以选用喷射成形或急冷辊工艺,以消除粗大的Fe3Al的针状金属间化合物;
5、后续热加工包括常规热挤压,锻造,热挤压等工艺。由于材料中存在细小的陶瓷颗粒,它们在热加工中可以阻碍基体晶粒和金属间化合物相的长大,能解决现行热加工中晶粒长大的问题。
当采用粉末治金法制备复合材料时,其基本步骤包括:选择反应体系,制备粉末压坯,烧结原位反应与致密化工艺。
1、选择反应体系,计算混合物配比的方法同熔铸原位反应法;混合物料包括反应物,稀释剂和促进剂,它们的加入量应使反应绝热温度在1800K到低熔点生成物的汽化点之间;
2、将物料混合均匀,在室温下压成压坯,压坯密度为理论密度的50~90%;
3、将压坯置于一定的介质,温度或者压力条件下使其发生反应,如将压坯置于真空,惰性气体或金属熔体之中,于800~1500K之间,1~10个大气压下发生反应,致密过程可与反应过程同时进行,也可以单独进行;对于Al+CuO反应,可选择铝熔体为介质,温度在800~1000℃之间,时间为30~360分钟;
以上制备原位合金化与原位反应颗粒共同强化金属基复合材料的方法中,所选择反应体系可以是一种化合物被某元素还原,如(Al+CuO),也可以是多种化合物被某元素所还原,如Al+CuO+MnO2+TiO2,它们分别适合于从纯金属基体制备原位颗粒增强二元合金基体复合材料和多元合金基体复合材料,通过调整化合物的加入量,可以满足基体合金化对元素加入量的要求,同时满足对颗粒增强效果的要求。
本发明的优点在于:
1、在保证原位反应颗粒增强金属基复合材料各种优越性条件下,进一步提高材料的力学性能。由于本发明在工艺过程中能保证原位颗粒生成与金属基体的合金化得以同时实现,在设计增强相的同时也设计了基体的合金成分,可通过后续热处理,进一步提高材料的力学性能,有效地解决了现行原位反应金属基复合材料在制备工艺中反应副产物对性能的危害问题。
2、原位金属基复合材料的制备方法更灵活,且在一定范围内能显著提高细小增强颗粒的添加量。由于采用单一反应体系(如Al+CuO)时,被置换出来的元素(如Cu)的量不宜太高,致使生成的颗粒量受到一定限制,本发明提供了复合反应体系(如Al+CuO+SiO2),能获得较大的颗粒添加量,在原位合金化的同时,增加原位增强颗粒的数量。
3、可以沿用常规铸造合金中的精炼和变质处理技术,提高材料的综合性能。由于本发明可制备以成熟合金体系为基体的复合材料,因而可沿用常规精炼变质处理工艺,提高基体的性能。而且原位生成颗粒尺寸十分细小,精炼变质处理对颗粒不会产生影响。
4、可沿用常规铸造或粉末冶金生产的设备,并且能减少常规熔铸工艺中的合金化工序,使材料的准备工作简单化,降低复合材料制造成本;
下面结合附图对本发明进一步说明。图1是本发明二元合金为基的复合材料铸态组织。图2是本发明三元合金基复合材料的铸态组织。图3是粉末冶金原位反应烧结复合材料的烧结组织。
实施例1
铸造原位10wt.%Cu和5.3%Al2O3颗粒共同强化Al基复合材料。按Al∶CuO=1∶1的比例称取适量的纯度为>99.5%的工业纯Al粉和化学纯CuO粉末,粒度分别为31.2μm和8.2μm,将其混合均匀,在压机上单向压制成Ф20×30mm的圆柱形预制块,压力为10MPa。将1.015Kg工业纯铝放入中频感应加热炉中熔化,加热至800℃。用石墨钟罩将340g预制块压入铝液中,保温10分钟。当温度降至750℃时,加入占铝液重量0.3%的六氯乙烷精炼。保温5分钟,将熔体倒入金属型中,得到Al2O3颗粒增强Al-10Cu基复合材料。复合材料在永久模铸态时σb≥200MPa,在T5状态时σb≥300MPa,用剑桥S250型扫描电镜观察,材料的铸态组织如图1所示。
实施例2
铸造原位10wt%Cu,4wt%Si和Al2O3颗粒增强Al基复合材料。按Al∶CuO∶SiO2=1∶1.5∶1的比例称取适量的纯度为>99.5%的工业纯Al粉和化学纯CuO和SiO2粉末,粒度分别为31.2μm,8.2μm和8.5μm,将其混合均匀,在压机上单向压制成Ф20×20mm的圆柱形预制块,压力为8MPa。将0.52Kg工业纯铝放入中频感应加热炉中熔化,加热至800℃。用石墨钟罩将210g预制块压入铝液中,保温10分钟。当温度降至750℃时,加入占铝液重量0.3%的六氯乙烷精炼。保温5分钟,将熔体倒入金属型中,得到Al2O3颗粒增强Al-10Cu-4Si基复合材料。用剑桥S250型扫描电镜观察,复合材料的铸态组织如图2所示。
实施例3
粉末冶金原位8wt%Fe和Al2O3颗粒同时强化Al基复合材料。按Al∶Fe2O3=8.7∶1的比例称取适量的纯度为>99.5%的工业纯Al粉和化学纯Fe2O3粉末,粒度分别为31.2μm和8.2μm,,将其混合均匀,在50吨压机上压制成Ф20×30mm的圆柱形压坯。将1Kg工业纯铝放入电阻加热炉中熔化,加热至1000℃。用石墨钟罩将预制块压入铝液中,保温10分钟后从其中取出,得到Al2O3颗粒增强Al-Fe基复合材料。用剑桥S250型扫描电镜观察,复合材料的烧结组织如图3所示。

Claims (3)

1、一种原位反应与原位合金化同时进行,制备颗粒增强金属基复合材料的方法,其特征在于:利用原位反应生成陶瓷颗粒增强相的同时还原生成基体金属合金化所需的元素,达到按合金设计目标同时实现合金化与颗粒增强的目的,实现方法可用熔铸原位反应法或粉末冶金原位反应烧结法:
a、采用熔铸原位反应法包括:选择反应体系,其反应式为: 式中,X代表基体元素,如Al,Cu,Fe,Ni,Ti,Zn及其合金元素,Y代表基体合金元素,对于Al基体而言可以是Cu,Mg,Si,Mn,Ti,Ni,V,Zr,Fe,Zn,Li,Sn等,对于Cu基体而言可以是Al,Mn,Ni,Fe,Sn,Zn,Si,Mg等,Z代表非金属元素,如O,C,B,N等;选择反应体系的原则是该反应在热力学上可行,化合物XZ比YZ在热力学上更稳定,反应的绝热温度为元素X的汽化点到高于汽化点0~500K;置换反应的结果是生成陶瓷增强相,同时被置换出来的元素Y可以成为基体的合金元素,Y在所述复合材料中的重量含量在0.1%~30%内可调;各反应物均为粉末状,粒度范围为5~300μm;制备预制坯,将反应物X和YZ按化学反应式配比放入混料机中混合均匀,另添加反应稀释剂和反应促进剂,稀释剂需与反应料混合均匀,使反应绝热温度在化合物XZ的熔点到X的汽化点以上200K之间,反应促进剂可以两种方式混入:其一局部混合或接触;其二整体均匀混合;将准备好的粉末在室温下压制成型,压力范围是5~100MPa;基体纯金属的熔化与原位反应合成,将基体纯金属如纯Al,Cu,,Ti,,Zn,,Fe,Ni放入加热炉中加热,加热温度为该元素熔点以上120~300K;再将占基体纯金属重量1%~50%的预制块用石墨钟罩压入合金熔体中,保温1-30分钟;熔体精炼和成形,对于铝合金用六氯乙烷精炼,成形工艺包括:模铸,压铸,半固态铸造,离心铸造或者喷射成形,急冷辊快凝等;对于Al2O3颗粒增强Al-Fe复合材料体系,可以选用喷射成形或急冷辊工艺,以消除粗大的Fe3Al针状金属间化合物;后续热加工包括热挤压,锻造,热轧等工艺,材料中细小的原位陶瓷颗粒在热加工中阻碍基体晶粒和金属间化合物相的长大。
b、采用粉末治金法制备复合材料,其基本步骤包括:选择好反应体系制备粉末压坯,将物料混合均匀,物料包括反应物,稀释剂和促进剂,它们的加入量应使反应绝热温度在1800K到低熔点生成物的汽化点之间;在室温下压成压坯,压坯密度控制在理论密度的50~90%范围内,烧结原位反应与致密化工艺:将压坯置于真空,惰性气体或金属熔体内,温度在800~1500K之间,1~10个大气压下使其发生反应,致密过程可与反应过程同时进行,也可以单独进行;对于Al+CuO反应,可选择铝熔体为介质,温度在1000~1273K之间,时间为30~360分钟。
2、按照权利要求1所述的复合材料的制备方法,其特征在于:所选择反应体系可以是单个化合物被某元素还原,如(Al+CuO),也可以是多个化合物被某元素还原,如Al+CuO+MnO2+TiO2,它们分别适合于从纯金属基体中制备原位颗粒增强二元合金基体复合材料和多元合金基体复合材料,通过调整化合物的加入量,可以满足基体合金化对元素加入量的要求,同时满足对颗粒增强效果的要求。
3、按照权利要求1所述的复合材料的制备方法,其特征在于:所说的反应促进剂包括K,Ca,Na,Mg,Sr和稀土等元素的粉末;所说的反应稀释剂作用在于吸收反应的放热,如在Al+CuO的预制块中加入过量的Al;反应促进剂的添加量为粉末压块总重量的0.0005~0.01倍;反应稀释剂的添加量为反应物化学配比后总重量的0.05~3.0倍;当所说的反应物为Al和CuO组合时,反应促进剂的优先选择范围为0.001~0.008,反应稀释剂为0.5~1.5;如果是Al与CuO和SiO2组合时,反应促进剂的优先选择范围为0.002~0.005,反应稀释剂为2.0~2.5。
CN 00109469 2000-06-27 2000-06-27 一种原位合金化与反应颗粒增强金属基复合材料制备方法 Expired - Fee Related CN1108389C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 00109469 CN1108389C (zh) 2000-06-27 2000-06-27 一种原位合金化与反应颗粒增强金属基复合材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 00109469 CN1108389C (zh) 2000-06-27 2000-06-27 一种原位合金化与反应颗粒增强金属基复合材料制备方法

Publications (2)

Publication Number Publication Date
CN1330164A true CN1330164A (zh) 2002-01-09
CN1108389C CN1108389C (zh) 2003-05-14

Family

ID=4579661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 00109469 Expired - Fee Related CN1108389C (zh) 2000-06-27 2000-06-27 一种原位合金化与反应颗粒增强金属基复合材料制备方法

Country Status (1)

Country Link
CN (1) CN1108389C (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1297682C (zh) * 2004-02-02 2007-01-31 北京科技大学 一种原位α-Al2O3晶须和TiC颗粒复合增强铝基复合材料的制备方法
CN100410402C (zh) * 2005-09-30 2008-08-13 中南大学 Cu-TiB2纳米弥散合金的制备方法
CN101787454A (zh) * 2010-04-12 2010-07-28 中国船舶重工集团公司第十二研究所 一种多组元增强铝基复合材料的制备方法
CN101892406A (zh) * 2010-07-15 2010-11-24 江苏大学 一种具有均匀细小等轴晶粒的铝基复合材料制备方法
CN102021357A (zh) * 2010-12-15 2011-04-20 江苏大学 一种颗粒增强金属基复合材料的制备方法
CN102400006A (zh) * 2010-09-16 2012-04-04 北京有色金属研究总院 泡沫碳/铜基或铝基复合材料及其制备方法
CN101501177B (zh) * 2006-06-30 2012-09-19 Posco公司 用于精炼镁合金的熔盐
CN102776428A (zh) * 2012-07-30 2012-11-14 四川材料与工艺研究所 通过旋锻形变提高钒铬钛合金综合力学性能的方法
CN103031462A (zh) * 2012-12-28 2013-04-10 山东大学 一种碳化钛颗粒增强铝-铜基复合材料的制备方法
CN103160702A (zh) * 2013-03-19 2013-06-19 山东大学 一种碳化硅颗粒增强铝基复合材料的制备方法
CN107717177A (zh) * 2017-08-22 2018-02-23 宁波艾克米金属工贸有限公司 一种射吸式割咀及其制备方法
CN109112331A (zh) * 2018-08-30 2019-01-01 江苏科技大学 一种原位合成高性能Fe3Al-TiC复合材料的方法及其应用
CN109518033A (zh) * 2019-01-18 2019-03-26 福州大学 一种原位Al2O3颗粒增强铝基复合材料制备方法
CN109957684A (zh) * 2017-12-25 2019-07-02 北京有色金属研究总院 一种汽车零部件用高强耐热铝合金材料的制备方法
CN111020259A (zh) * 2019-11-18 2020-04-17 海南大学 一种片状金属间化合物增强细晶钨合金及其制备方法
CN111321312A (zh) * 2020-03-02 2020-06-23 湖南大学 一种原位生成钨颗粒增强高熵合金基复合材料及制备方法
CN111663061A (zh) * 2020-06-23 2020-09-15 江苏大学 一种制备Al-Si合金晶粒细化剂的方法
CN113249604A (zh) * 2021-06-25 2021-08-13 北京科技大学 高纯度金属间化合物Nb3Al块体及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100408724C (zh) * 2006-04-28 2008-08-06 北京科技大学 一种在铝合金表面涂敷耐磨涂层的方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1297682C (zh) * 2004-02-02 2007-01-31 北京科技大学 一种原位α-Al2O3晶须和TiC颗粒复合增强铝基复合材料的制备方法
CN100410402C (zh) * 2005-09-30 2008-08-13 中南大学 Cu-TiB2纳米弥散合金的制备方法
CN101501177B (zh) * 2006-06-30 2012-09-19 Posco公司 用于精炼镁合金的熔盐
CN101787454A (zh) * 2010-04-12 2010-07-28 中国船舶重工集团公司第十二研究所 一种多组元增强铝基复合材料的制备方法
CN101787454B (zh) * 2010-04-12 2011-11-23 中国船舶重工集团公司第十二研究所 一种多组元增强铝基复合材料的制备方法
CN101892406A (zh) * 2010-07-15 2010-11-24 江苏大学 一种具有均匀细小等轴晶粒的铝基复合材料制备方法
CN102400006B (zh) * 2010-09-16 2013-05-22 北京有色金属研究总院 泡沫碳/铜基或铝基复合材料及其制备方法
CN102400006A (zh) * 2010-09-16 2012-04-04 北京有色金属研究总院 泡沫碳/铜基或铝基复合材料及其制备方法
CN102021357A (zh) * 2010-12-15 2011-04-20 江苏大学 一种颗粒增强金属基复合材料的制备方法
CN102776428A (zh) * 2012-07-30 2012-11-14 四川材料与工艺研究所 通过旋锻形变提高钒铬钛合金综合力学性能的方法
CN103031462A (zh) * 2012-12-28 2013-04-10 山东大学 一种碳化钛颗粒增强铝-铜基复合材料的制备方法
CN103160702A (zh) * 2013-03-19 2013-06-19 山东大学 一种碳化硅颗粒增强铝基复合材料的制备方法
CN107717177A (zh) * 2017-08-22 2018-02-23 宁波艾克米金属工贸有限公司 一种射吸式割咀及其制备方法
CN109957684A (zh) * 2017-12-25 2019-07-02 北京有色金属研究总院 一种汽车零部件用高强耐热铝合金材料的制备方法
CN109957684B (zh) * 2017-12-25 2021-02-02 有研工程技术研究院有限公司 一种汽车零部件用高强耐热铝合金材料的制备方法
CN109112331A (zh) * 2018-08-30 2019-01-01 江苏科技大学 一种原位合成高性能Fe3Al-TiC复合材料的方法及其应用
CN109518033A (zh) * 2019-01-18 2019-03-26 福州大学 一种原位Al2O3颗粒增强铝基复合材料制备方法
CN111020259A (zh) * 2019-11-18 2020-04-17 海南大学 一种片状金属间化合物增强细晶钨合金及其制备方法
CN111020259B (zh) * 2019-11-18 2021-11-23 海南大学 一种片状金属间化合物增强细晶钨合金及其制备方法
CN111321312A (zh) * 2020-03-02 2020-06-23 湖南大学 一种原位生成钨颗粒增强高熵合金基复合材料及制备方法
CN111663061A (zh) * 2020-06-23 2020-09-15 江苏大学 一种制备Al-Si合金晶粒细化剂的方法
CN111663061B (zh) * 2020-06-23 2021-11-23 江苏大学 一种制备Al-Si合金晶粒细化剂的方法
CN113249604A (zh) * 2021-06-25 2021-08-13 北京科技大学 高纯度金属间化合物Nb3Al块体及其制备方法

Also Published As

Publication number Publication date
CN1108389C (zh) 2003-05-14

Similar Documents

Publication Publication Date Title
CN1108389C (zh) 一种原位合金化与反应颗粒增强金属基复合材料制备方法
JP3069354B2 (ja) 金属間物質含有母体から成る複合体
US4673550A (en) TiB2 -based materials and process of producing the same
CN101492781B (zh) 一种高塑性钛基超细晶复合材料及其制备方法
EP0378504B1 (en) A process for preparing selfsupporting bodies having controlled porosity and graded properties and products produced thereby
CN110257684B (zh) 一种FeCrCoMnNi高熵合金基复合材料的制备工艺
CN1676644A (zh) 陶瓷颗粒增强铝基复合材料及其制备方法
CN1281053A (zh) 陶瓷相弥散强化合金及颗粒增强金属基复合材料制备方法
Chen et al. Microstructure and properties of in situ Al/TiB 2 composite fabricated by in-melt reaction method
CN110846530B (zh) 一种具有原位双相增强铝基复合材料的制备方法
CN112831680B (zh) 一种超硬多元硼化物颗粒增强铝基复合材料及其制备方法
US5640666A (en) Composite silicide/silicon carbide mechanical alloy
Chen et al. Microstructural evolution of reactive-sintered aluminum matrix composites
US20140037494A1 (en) Method of preparing aluminum matrix composites and aluminum matrix composites prepared by using the same
CN1161483C (zh) 一种高强度原位铝基复合材料
Kondoh et al. Magnesium matrix composite with solid-state synthesized Mg2Si dispersoids
Nie Patents of methods to prepare intermetallic matrix composites: A Review
CN87106327A (zh) 生产复合陶瓷结构的改进方法
CN114892045B (zh) 原位自组装核壳结构增强铝基复合材料及其制备方法
Leszczyńska-Madej et al. Microstructure characterization of SiC reinforced aluminium and Al4Cu alloy matrix composites
Cai et al. In situ WAl12 particle-reinforced Al matrix composites synthesized by combining mechanical alloying and vacuum hot pressing technology
CN1297682C (zh) 一种原位α-Al2O3晶须和TiC颗粒复合增强铝基复合材料的制备方法
CN1552939A (zh) 一类含难熔金属颗粒的镧基非晶态合金复合材料
CN1743102A (zh) 一种纳米氮化铝/纳米铝双纳米复合材料的制备方法
CN100370047C (zh) 一种氮化铝增强金属铝的双纳米复合材料

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee