CN1318873A - 质子交换膜燃料电池纳米电催化剂的制备方法 - Google Patents

质子交换膜燃料电池纳米电催化剂的制备方法 Download PDF

Info

Publication number
CN1318873A
CN1318873A CN01118253A CN01118253A CN1318873A CN 1318873 A CN1318873 A CN 1318873A CN 01118253 A CN01118253 A CN 01118253A CN 01118253 A CN01118253 A CN 01118253A CN 1318873 A CN1318873 A CN 1318873A
Authority
CN
China
Prior art keywords
catalyst
ruthenium
aqueous solution
platinum
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01118253A
Other languages
English (en)
Other versions
CN1166019C (zh
Inventor
邢巍
杜荣兵
陆天虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Applied Chemistry of CAS
Original Assignee
Changchun Institute of Applied Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Applied Chemistry of CAS filed Critical Changchun Institute of Applied Chemistry of CAS
Priority to CNB011182539A priority Critical patent/CN1166019C/zh
Priority to US09/932,048 priority patent/US6518217B2/en
Publication of CN1318873A publication Critical patent/CN1318873A/zh
Application granted granted Critical
Publication of CN1166019C publication Critical patent/CN1166019C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

本发明属于质子交换膜燃料电池纳米电催化剂的制备方法。提供了一种方便的制备纳米级高活性的直接甲醇质子交换膜燃料电池和氢/氧质子交换膜燃料电池阳极催化剂的方法和有效化学成份及其化学计量。本方法制备的催化剂粒度均匀,粒径约4±0.5纳米,电化学性能优于国际上同类型的商品。

Description

质子交换膜燃料电池纳米电催化剂的制备方法
本发明是关于制备高活性质子交换膜燃料电池电催化剂的方法。
质子交换膜燃料电池是一种新型的直接将化学能转化为电能的装置。由于无转动部件的内能消耗、不经过燃烧,能量转化效率不受卡诺循环限制;采用清洁能源,如氢气、甲醇等,无硫氧化物和氮氧化物排放,无环境危害;适合于移动电源的应用领域,是发展电动车的首选电源。目前,由于技术的不断提高,工业化和实用化日益明朗。它的关键材料之一是电催化剂,其活性直接影响电池性能。E-TEK公司出品的催化剂,是电催化活性和贵金属用量比最佳的商业化催化剂之一。实验室中人们通常用化学还原法制备催化剂,催化剂性能随不同方法有很大区别。(1)浸渍法是制备载体金属催化剂的最常用方法[J.B.Goodenough,A.Hamnett,B.J.Kemmedy,ETC.ElectrochimicaActa,Vol 15,No.1 pp.199-207,1990]。其基本操作过程为,将载体放入金属盐的溶液中充分浸渍,然后加入还原剂还原金属离子。该法主要依靠毛细管作用使液体渗透到载体内部空隙中,使液体中的活性组分在载体上吸附。因此,液体中活性组分在载体上的吸附特性对催化剂的性能有很大影响。(2)金属蒸汽法[吴世华,杨树军,王序昆等,石油化工,18(6),361,1989]是先将金属汽化,再使金属凝聚到载体表面上,这样可以制备出金属分散度更高,活性更好的催化剂。但该法对设备的要求较高,不易大量制备。(3)金属离子配合物氧化还原法[Masahiro Watanabe,Makoto Uchida,Satoshi Motoo,J.Electroanal.Chem.229(1987)395-406]是将金属离子与还原态配位离子形成配合物,然后加入氧化剂,氧化配体和金属离子,形成亚稳态溶液。一定条件下,加入载体,金属在载体上沉积,形成金属分散度较好,颗粒大小较均一的催化剂。但该法较为繁琐。(4)纳米金属簇合成法是一种全新的方法[Schmidt,M.Noeske,H.A.Gasteiger,R.J.Behm,J.Electrochem.Soc.,Vol.145,No.3,March 1998],在合适的有机相中,金属离子和还原剂反应,在稳定剂存在条件下,生成纳米金属簇。然后加入载体吸附金属簇,用该法制得的金属催化剂粒径较小,但该法反应条件过于苛刻。一般认为铂微粒应在4纳米范围,呈非晶体状态,催化剂表现的电化学活性最好[MasahiroWatanabe,Makoto Uchida,Satoshi Motoo,J.Electroanal.Chem.229(1987)395-406]。但制备时由于条件控制很苛刻,常规方法一般很难制备微观状态均匀的催化剂。通常由于吸附平衡存在,溶液中的贵金属先被还原,吸附平衡向液相移动,被吸附的贵金属脱附,实际上大部分贵金属的还原是在液相中进行的,这样还原得到的催化剂必然产生金属粒子的聚集、均匀度下降和活性炭承载不佳。
本发明的目的是提供一种质子交换膜燃料电池纳米电催化剂的制备方法,通过控制活性炭对贵金属的吸附,获得贵金属催化剂最佳粒径和晶态,解决了上述方法中的缺陷,在同等条件下进行电化学测试,性能超过E-TEK公司同类商品。
本发明以含有铂或铂/钌的水溶液为原料,铂或铂/钌是以二价或四价离子的铂卤化合物/钌卤化合物或钌卤化合物及其盐的形式存在,加入活性炭吸附贵金属;用一种碱保持原料液的pH值,控制此pH值下的特定吸附状态,用一种化学物质作为还原剂,还原铂/钌金属离子,使还原的金属离子与活性炭沉积复合在一起。确保金属颗粒及其表面状态具有优越的催化活性。
本发明选择的铂卤化合物、钌卤化合物分别是氯化物、溴化物或碘化物。最佳为氯化合物,氯铂酸钠、氯钌酸钠、氯铂酸钾、氯钌酸钾、氯亚铂酸钠、氯亚钌酸钠、氯亚铂酸钾或氯亚钌酸钾的水溶液。
本发明选择铂卤化合物水溶液或铂/钌卤化合物水溶液为原料,其中铂/钌摩尔比为1∶0.2-1,用去离子水溶解于烧杯中,贵金属含量0.5-10g/l,加入活性炭进行吸附,活性炭量为0.05-2g/l,并用碱性溶液调整其pH值2.5-10.5,碱为氢氧化钠、氢氧化钾或氢氧化铵之中二种碱的混合溶液,配比均为1∶1;将活性碳用二次蒸馏水配成悬浮液,搅拌,加热到50-65℃:用滴注方法加入相对贵金属摩尔数过量2.5-5倍的还原剂,还原剂的化学物质为水合阱、硼氢化钠、氢气和甲酸中之一的水溶液,保持温度继续搅拌1小时;温度降到室温时将液体过滤,洗涤,直到其中无Cl-时为止;在60-80℃下真空干燥,得到粒径4±0.5纳米的活性炭载贵金属催化剂。
本方法制备的催化剂与E-TEK催化剂相比,对甲醇和氢的氧化反应的催化活性具有明显的提高。氧化极化曲线测试得知:在相同氧化反应电流密度下,对甲醇氧化的起始电势E负移约110mV,表明本发明催化剂对甲醇氧化反应的活化能大大降低,为提高电池总工作电压提供了110mV的潜力。实际用此催化剂组装的DMFC在同样电流密度下工作,电压比用E-TEK催化剂组装的电池高100mV。催化剂晶体结构X-衍射图表明,自制催化剂和E-Tek催化剂中金属铂的结晶度较小,铂的衍射峰更矮、更宽。表明催化剂中铂的结晶度较低,以晶体形式存在的铂较少。铂表面的活性位多,所以其催化活性更好。高分辨电子显微镜像图表明本发明制备的纳米催化剂粒径均匀,尺度分布在4±0.5纳米,呈非晶态。
本发明中的化合物配方与方法专门适用于制备直接甲醇质子交换膜燃料电池电催化剂。具体地说,本发明的方法包括配备合适的铂或铂/钌水溶液,加入活性炭进行吸附,然后调节其pH值,控制还原温度,逐步加入还原剂,制备成活性炭载的铂或铂/钌纳米微粒。
本发明提供的实施例如下:
实施例1:取0.05g活性碳,用二次蒸馏水配成悬浮液1升,搅拌,加热悬浮液使其达到50℃。滴注氯铂酸溶液,使其铂含量为5g/l,保持1小时后使之被活性炭吸附并达到平衡,用氢氧化钾/氢氧化铵水溶液调节pH值到7.5,将悬浊液搅拌30分钟;加入1g硼氢化钠,保持温度20℃,至活性炭相可以沉淀并溶液相呈无色。将温度降到室温时将液体过滤,并用热水多次洗涤活性炭载还原产物,用氯化银测试,直到其中无Cl-时为止;最后在60℃真空干燥,得到质子交换膜燃料电池用一元电催化剂,催化剂中铂粒径为4±0.5纳米,呈非晶态。
实施例2:其他条件同实施例1,仅改变pH=10.5,铂含量0.5g/l,以0.25g水合肼为还原剂,反应温度为60℃,得到对H2的氧化反应的一元阳极催化剂。
实施例3:其他条件同实施例1,仅改变用氢氧化钠/氢氧化铵水溶液调节pH=7.0,铂含量5g/l,还原反应过程在连续通氢气下进行,还原反应温度为0℃,得对甲醇的氧化反应的一元催化剂,催化剂中铂粒径为4±0.5纳米,呈非晶态。
实施例4:其他条件同实施例1,仅改变采用氯铂酸/氯钌酸水溶液,其中铂/钌摩尔比为1∶0.5,铂、钌含量为5g/l,用2.5g水合肼为还原剂,得到对甲醇的氧化反应的高催化活性的二元催化剂,与E-TEK催化剂相比,在相同氧化反应电流密度下,对甲醇氧化的起始电位负移110mV。
实施例5:其他条件同实施例4,仅改变用氢氧化钾/氢氧化钠水溶液调节pH=2.5,采用氯亚铂酸/氯亚钌酸水溶液,其中铂/钌摩尔比为1∶0.2,铂、钌含量0.5g/l,以连续通入的氢气为还原剂,还原反应温度为0℃,得到对甲醇的氧化反应的高催化活性的二元催化剂,与E-TEK催化剂相比,在相同氧化反应电流密度下,对甲醇氧化的起始电势E负移约100mV。
实施例6:其他条件同实施例4,仅改变用氢氧化钠/氢氧化铵水溶液调节pH=5,铂、钌含量10g/l,其中铂/钌摩尔比为1∶0.5,还原剂为12g甲酸,还原反应温度为40℃,得到对甲醇氧化反应的高催化活性的二元催化剂,与E-TEK催化剂相比,在相同氧化反应电流密度下,对甲醇氧化的起始电势E负移约105mV。
实施例7:其他条件同实施例4,仅改变用氢氧化钠/氢氧化铵水溶液调节pH=6.8,采用氯铂酸/氯钌酸水溶液,其中铂/钌摩尔比为1∶1,铂、钌含量5g/l,以连续通入的氢气为还原剂,还原反应温度为40℃,得对H2的氧化反应的高催化活性的二元催化剂,组装成氢/氧燃料电池,与E-TEK催化剂相比,在相同工作电流密度下,工作电压提高80mV。
实施例8:其他条件同实施例4,仅改变用氢氧化钠/氢氧化铵水溶液调节pH=7.5,采用溴铂酸/溴钌酸水溶液,铂、钌含量2g/l,还原剂0.6g硼氢化钠,还原反应温度为30℃,得到对氢的氧化反应的高催化活性的二元催化剂,与E-TEK催化剂相比,组装成氢/氧燃料电池,在相同工作电流密度下,工作电压提高80mV。
实施例9:其他条件实施例4,同仅改变用氢氧化钠/氢氧化铵水溶液调节pH=8.5,采用溴亚铂酸钠/溴亚钌酸钠水溶液,铂、钌含量1g/l,还原剂为1.2克甲酸,还原反应温度为50℃,得到对氢的氧化反应的高催化活性的二元催化剂,组装成氢/氧燃料电池,与E-TEK催化剂相比,在相同工作电流密度下,工作电压提高80mV。
实施例10:其他条件同实施例4,仅改变用氢氧化钠/氢氧化铵水溶液调节pH=10.5,采用碘铂酸/碘钌酸水溶液,其中铂/钌摩尔比为1∶0.2,铂、钌含量7g/l,还原剂为6g甲酸,还原反应温度为40℃,得到对氢的氧化反应的高催化活性的二元催化剂,组装成氢/氧燃料电池,与E-TEK催化剂相比,在相同工作电流密度下,工作电压提高80mV。
实施例11:其他条件同实施例4,仅改变用氢氧化钠/氢氧化铵水溶液调节pH=6.5,采用碘铂酸钠/亚钌酸钠水溶液,铂、钌含量8g/l,还原剂为6克甲酸,还原反应温度为70℃,得到对氢的氧化反应的高催化活性二元催化剂,组装成氢/氧燃料电池,与E-TEK催化剂相比,在相同工作电流密度下,工作电压提高80mV。
实施例12:其他条件同实施例4,仅改变用氢氧化钠/氢氧化铵水溶液调节pH=10.5,采用碘亚铂酸钠/碘亚钌酸钠水溶液,铂、钌含量7g/l,还原剂为4.5克甲酸,还原反应温度为50℃,得到对氢的氧化反应的高催化活性的二元催化剂,组装成氢/氧燃料电池,与E-TEK催化剂相比,在相同工作电流密度下,工作电压提高80mV。
实施例13:其他条件同实施例4,仅改变氢氧化钾/氢氧化铵用水溶液调节pH=10.5,铂、钌含量10g/l,还原剂为8g水合肼,还原反应温度为65℃,得到对甲醇和氢的氧化反应的高催化活性的二元催化剂,组装成氢/氧燃料电池,与E-TEK催化剂相比,在相同工作电流密度下,工作电压提高80mV。
实施例14:其他条件同实施例4,仅改变用氢氧化钾/氢氧化铵水溶液调节pH=9.5,一边搅拌一边加入氯铂酸/氯钌酸溶液,铂、钌含量8g/l,还原剂为4g水合肼,还原反应温度为65℃,得到对甲醇和氢的氧化反应的高催化活性的二元催化剂,与E-TEK催化剂相比,在相同氧化反应电流密度下,对甲醇氧化的起始电势E负移约100mV。
实施例15:其他条件同实施例4,仅改变用氢氧化钾/氢氧化铵水溶液调节pH=9.0,一边搅拌一边加入氯铂酸/氯钌酸溶液,铂、钌含量8g/l,还原剂为8克水合肼,还原反应温度为55℃,得到对甲醇和氢的氧化反应的高催化活性的二元催化剂,与E-TEK催化剂相比,在相同氧化反应电流密度下,对甲醇氧化的起始电势E负移约100mV。

Claims (2)

1.一种质子交换膜燃料电池纳米电催化剂的制备方法,其特征在于选择铂卤化合物水溶液或铂/钌卤化合物水溶液为原料,其中铂/钌摩尔比为1∶0.2-1,用去离子水溶解于烧杯中,贵金属含量0.5-10g/l,加入活性炭进行吸附,活性炭量为0.05-2g/l,并用碱性溶液调整其pH值2.5-10.5,碱为氢氧化钠、氢氧化钾或氢氧化铵之中二种碱的混合溶液,配比均为1∶1;将活性碳用二次蒸馏水配成悬浮液,搅拌,加热到50-65℃;用滴注方法加入相对贵金属摩尔数过量2.5-5倍的还原剂,还原剂的化学物质为水合阱、硼氢化钠、氢气和甲酸中之一的水溶液,保持温度继续搅拌1小时;温度降到室温时将液体过滤,洗涤,直到其中无Cl-时为止;在60-80℃下真空干燥,得到粒径4±0.5纳米的活性炭载贵金属催化剂。
2.如权利要求1所述的质子交换膜燃料电池纳米电催化剂的制备方法,其特征在于铂卤化合物、钌卤化合物水溶液分别是氯铂酸和氯钌酸及其碱金属盐氯铂酸钠、氯钌酸钠、氯铂酸钾、氯钌酸钾、氯亚铂酸钠、氯亚钌酸钠、氯亚铂酸钾或氯亚钌酸钾的水溶液。
CNB011182539A 2001-05-25 2001-05-25 质子交换膜燃料电池纳米电催化剂的制备方法 Expired - Fee Related CN1166019C (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNB011182539A CN1166019C (zh) 2001-05-25 2001-05-25 质子交换膜燃料电池纳米电催化剂的制备方法
US09/932,048 US6518217B2 (en) 2001-05-25 2001-08-17 Method of preparing of nanometer electrocatalyst for proton exchange membrane fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB011182539A CN1166019C (zh) 2001-05-25 2001-05-25 质子交换膜燃料电池纳米电催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN1318873A true CN1318873A (zh) 2001-10-24
CN1166019C CN1166019C (zh) 2004-09-08

Family

ID=4663058

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011182539A Expired - Fee Related CN1166019C (zh) 2001-05-25 2001-05-25 质子交换膜燃料电池纳米电催化剂的制备方法

Country Status (2)

Country Link
US (1) US6518217B2 (zh)
CN (1) CN1166019C (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299376C (zh) * 2005-02-01 2007-02-07 哈尔滨工业大学 直接甲醇燃料电池用催化剂的制备方法
CN1323450C (zh) * 2005-07-05 2007-06-27 北京科技大学 一种直接甲醇燃料电池阳极催化剂的制备方法
CN100344021C (zh) * 2005-08-23 2007-10-17 天津大学 制备铂/碳催化剂的无机胶体方法
CN100346876C (zh) * 2006-04-14 2007-11-07 浙江大学 碳表面负载中空铂钌合金纳米粒子电催化剂及其制备方法
CN100441291C (zh) * 2006-10-19 2008-12-10 中山大学 活性炭纤维载铂电催化剂及其制备方法
CN101219402B (zh) * 2006-05-16 2011-04-20 三星Sdi株式会社 担载催化剂,其制备方法,及利用它的燃料电池
CN102423704A (zh) * 2011-10-21 2012-04-25 中国科学院长春应用化学研究所 一种直接甲酸燃料电池用钯纳米催化剂的制备方法
CN103084167A (zh) * 2013-01-15 2013-05-08 中国科学院长春应用化学研究所 一种质子交换膜燃料电池催化剂的制备方法
CN111465447A (zh) * 2017-10-23 2020-07-28 贺利氏阿姆洛伊技术有限公司 制备负载型铂颗粒的方法

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576214B2 (en) * 2000-12-08 2003-06-10 Hydrocarbon Technologies, Inc. Catalytic direct production of hydrogen peroxide from hydrogen and oxygen feeds
US6746597B2 (en) * 2002-01-31 2004-06-08 Hydrocarbon Technologies, Inc. Supported noble metal nanometer catalyst particles containing controlled (111) crystal face exposure
CN1165092C (zh) * 2002-04-30 2004-09-01 中国科学院长春应用化学研究所 聚合物电解质膜燃料电池阴极纳米铂/炭电催化剂的制备方法
US7067103B2 (en) * 2003-03-28 2006-06-27 Headwaters Nanokinetix, Inc. Direct hydrogen peroxide production using staged hydrogen addition
US7569508B2 (en) * 2004-11-17 2009-08-04 Headwaters Technology Innovation, Llc Reforming nanocatalysts and method of making and using such catalysts
US7011807B2 (en) * 2003-07-14 2006-03-14 Headwaters Nanokinetix, Inc. Supported catalysts having a controlled coordination structure and methods for preparing such catalysts
US7655137B2 (en) 2003-07-14 2010-02-02 Headwaters Technology Innovation, Llc Reforming catalysts having a controlled coordination structure and methods for preparing such compositions
US7045479B2 (en) * 2003-07-14 2006-05-16 Headwaters Nanokinetix, Inc. Intermediate precursor compositions used to make supported catalysts having a controlled coordination structure and methods for preparing such compositions
US7144565B2 (en) * 2003-07-29 2006-12-05 Headwaters Nanokinetix, Inc. Process for direct catalytic hydrogen peroxide production
JP2005235435A (ja) * 2004-02-17 2005-09-02 Seiko Epson Corp 機能性材料層形成用組成物、機能性材料層の形成方法、燃料電池の製造方法、電子機器および自動車
US8541146B2 (en) * 2005-01-12 2013-09-24 Toyota Motor Engineering & Manufacturing North America, Inc. Photocatalytic methods for preparation of electrocatalyst materials
KR101229400B1 (ko) * 2004-08-20 2013-02-05 우미코레 아게 운트 코 카게 직접 메탄올형 연료 전지용 백금/루테늄 촉매
US7632775B2 (en) * 2004-11-17 2009-12-15 Headwaters Technology Innovation, Llc Multicomponent nanoparticles formed using a dispersing agent
US8609573B2 (en) * 2005-01-12 2013-12-17 Toyota Motor Engineering & Manufacturing North America, Inc. Photocatalytic methods for preparation of electrocatalyst materials
US7449423B2 (en) * 2005-01-14 2008-11-11 Headwaters Technology Innovation, Llc Heat treatment of anchored nanocatalysts in a non-zero oxidation state and catalysts made by such method
US7045481B1 (en) 2005-04-12 2006-05-16 Headwaters Nanokinetix, Inc. Nanocatalyst anchored onto acid functionalized solid support and methods of making and using same
US20060258875A1 (en) * 2005-05-10 2006-11-16 Clementine Reyes Methods for manufacturing supported nanocatalysts and methods for using supported nanocatalysts
US7396795B2 (en) * 2005-08-31 2008-07-08 Headwaters Technology Innovation, Llc Low temperature preparation of supported nanoparticle catalysts having increased dispersion
US7718710B2 (en) * 2006-03-17 2010-05-18 Headwaters Technology Innovation, Llc Stable concentrated metal colloids and methods of making same
US7632774B2 (en) * 2006-03-30 2009-12-15 Headwaters Technology Innovation, Llc Method for manufacturing supported nanocatalysts having an acid-functionalized support
KR100738062B1 (ko) * 2006-05-16 2007-07-10 삼성에스디아이 주식회사 막 전극 접합체 및 이를 이용한 연료전지
US7541309B2 (en) * 2006-05-16 2009-06-02 Headwaters Technology Innovation, Llc Reforming nanocatalysts and methods of making and using such catalysts
KR100774746B1 (ko) * 2006-09-25 2007-11-08 현대자동차주식회사 복합 환원제를 이용한 고분산 백금 담지 촉매의 제조방법
US7601668B2 (en) * 2006-09-29 2009-10-13 Headwaters Technology Innovation, Llc Methods for manufacturing bi-metallic catalysts having a controlled crystal face exposure
US7744761B2 (en) 2007-06-28 2010-06-29 Calera Corporation Desalination methods and systems that include carbonate compound precipitation
US7753618B2 (en) * 2007-06-28 2010-07-13 Calera Corporation Rocks and aggregate, and methods of making and using the same
JP5158334B2 (ja) * 2007-10-05 2013-03-06 信越化学工業株式会社 燃料電池用電極触媒の製造方法
BRPI0821515A2 (pt) 2007-12-28 2019-09-24 Calera Corp métodos de captura de co2
US7749476B2 (en) 2007-12-28 2010-07-06 Calera Corporation Production of carbonate-containing compositions from material comprising metal silicates
US7754169B2 (en) * 2007-12-28 2010-07-13 Calera Corporation Methods and systems for utilizing waste sources of metal oxides
US20100239467A1 (en) 2008-06-17 2010-09-23 Brent Constantz Methods and systems for utilizing waste sources of metal oxides
KR101048622B1 (ko) * 2008-03-07 2011-07-14 서울대학교산학협력단 연료전지 전극 소재용 백금계 합금 촉매의 제조 방법
US20100144521A1 (en) * 2008-05-29 2010-06-10 Brent Constantz Rocks and Aggregate, and Methods of Making and Using the Same
WO2010009273A1 (en) * 2008-07-16 2010-01-21 Calera Corporation Co2 utilization in electrochemical systems
US7993500B2 (en) 2008-07-16 2011-08-09 Calera Corporation Gas diffusion anode and CO2 cathode electrolyte system
WO2010008896A1 (en) 2008-07-16 2010-01-21 Calera Corporation Low-energy 4-cell electrochemical system with carbon dioxide gas
CA2700644A1 (en) * 2008-09-11 2010-03-18 Calera Corporation Co2 commodity trading system and method
TW201026597A (en) 2008-09-30 2010-07-16 Calera Corp CO2-sequestering formed building materials
US7939336B2 (en) * 2008-09-30 2011-05-10 Calera Corporation Compositions and methods using substances containing carbon
US8869477B2 (en) 2008-09-30 2014-10-28 Calera Corporation Formed building materials
US7815880B2 (en) 2008-09-30 2010-10-19 Calera Corporation Reduced-carbon footprint concrete compositions
US9133581B2 (en) 2008-10-31 2015-09-15 Calera Corporation Non-cementitious compositions comprising vaterite and methods thereof
EP2203241A4 (en) * 2008-10-31 2011-01-12 Calera Corp CEMENT-FREE COMPOSITIONS WITH CO2 SEQUESTRATION ADDITIVES
US20100150802A1 (en) * 2008-12-11 2010-06-17 Gilliam Ryan J Processing co2 utilizing a recirculating solution
CA2696088A1 (en) * 2008-12-23 2010-06-23 Calera Corporation Low-energy electrochemical proton transfer system and method
BRPI0823394A2 (pt) 2008-12-23 2015-06-16 Calera Corp Sistema e método eletroquímico de hidróxido de baixa energia
US20100258035A1 (en) * 2008-12-24 2010-10-14 Brent Constantz Compositions and methods using substances containing carbon
US20110091366A1 (en) * 2008-12-24 2011-04-21 Treavor Kendall Neutralization of acid and production of carbonate-containing compositions
EP2240629A4 (en) * 2009-01-28 2013-04-24 Calera Corp SOLUTION OF LOW ENERGY ELECTROCHEMICAL ION BICARBONATES
CN101918614A (zh) 2009-02-10 2010-12-15 卡勒拉公司 用氢和电催化电极低电压生产碱
EP2250127A4 (en) 2009-03-02 2011-04-06 Calera Corp SYSTEMS AND METHODS FOR REMOVAL OF MULTI-POLLUTANTS FROM GASEOUS CURRENTS
TW201105406A (en) * 2009-03-10 2011-02-16 Calera Corp Systems and methods for processing CO2
US20110147227A1 (en) * 2009-07-15 2011-06-23 Gilliam Ryan J Acid separation by acid retardation on an ion exchange resin in an electrochemical system
US7993511B2 (en) * 2009-07-15 2011-08-09 Calera Corporation Electrochemical production of an alkaline solution using CO2
US20110079515A1 (en) * 2009-07-15 2011-04-07 Gilliam Ryan J Alkaline production using a gas diffusion anode with a hydrostatic pressure
CN101928979B (zh) * 2010-08-06 2012-07-04 厦门大学 金属纳米催化剂的表面结构调控和制备方法
CN102916199B (zh) * 2011-08-05 2014-12-10 清华大学 燃料电池膜电极的制备方法
JP6818288B2 (ja) * 2015-06-16 2021-01-20 国立大学法人東北大学 白金族担持触媒及びその製造方法
CN115000435B (zh) * 2022-06-24 2023-06-13 中自环保科技股份有限公司 一种质子交换膜燃料电池ccm材料全回收工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1941931C3 (de) * 1968-08-26 1974-02-28 Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka (Japan) Elektrode mit Katalysator und Verfahren zu deren Herstellung
US4039409A (en) * 1975-12-04 1977-08-02 General Electric Company Method for gas generation utilizing platinum metal electrocatalyst containing 5 to 60% ruthenium
US4031292A (en) * 1976-04-19 1977-06-21 Uop Inc. Method for the preparation of an electrocatalyst
US4090978A (en) * 1976-12-28 1978-05-23 Uop Inc. Electrocatalysts and a method for the preparation thereof
EP0952241B1 (en) * 1998-04-23 2001-09-05 N.E. Chemcat Corporation Supported Pt-Ru electrocatalyst, and electrodes, membrane-electrode assembly and solid polymer electrolyte fuel cells, using said electrocatalyst

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299376C (zh) * 2005-02-01 2007-02-07 哈尔滨工业大学 直接甲醇燃料电池用催化剂的制备方法
CN1323450C (zh) * 2005-07-05 2007-06-27 北京科技大学 一种直接甲醇燃料电池阳极催化剂的制备方法
CN100344021C (zh) * 2005-08-23 2007-10-17 天津大学 制备铂/碳催化剂的无机胶体方法
CN100346876C (zh) * 2006-04-14 2007-11-07 浙江大学 碳表面负载中空铂钌合金纳米粒子电催化剂及其制备方法
CN101219402B (zh) * 2006-05-16 2011-04-20 三星Sdi株式会社 担载催化剂,其制备方法,及利用它的燃料电池
US7994088B2 (en) 2006-05-16 2011-08-09 Samsung Sdi Co., Ltd. Supported catalyst, method of preparing the same, and fuel cell using the same
CN100441291C (zh) * 2006-10-19 2008-12-10 中山大学 活性炭纤维载铂电催化剂及其制备方法
CN102423704A (zh) * 2011-10-21 2012-04-25 中国科学院长春应用化学研究所 一种直接甲酸燃料电池用钯纳米催化剂的制备方法
CN103084167A (zh) * 2013-01-15 2013-05-08 中国科学院长春应用化学研究所 一种质子交换膜燃料电池催化剂的制备方法
CN111465447A (zh) * 2017-10-23 2020-07-28 贺利氏阿姆洛伊技术有限公司 制备负载型铂颗粒的方法
CN111465447B (zh) * 2017-10-23 2024-06-14 贺利氏德国有限两合公司 制备负载型铂颗粒的方法

Also Published As

Publication number Publication date
CN1166019C (zh) 2004-09-08
US20020177525A1 (en) 2002-11-28
US6518217B2 (en) 2003-02-11

Similar Documents

Publication Publication Date Title
CN1166019C (zh) 质子交换膜燃料电池纳米电催化剂的制备方法
Daas et al. Fuel cell applications of chemically synthesized zeolite modified electrode (ZME) as catalyst for alcohol electro-oxidation-a review
CN106328960A (zh) Zif‑67模板法制备钴铂核壳颗粒/多孔碳复合材料以及在燃料电池阴极中的催化应用
CN1186838C (zh) 一种质子交换膜燃料电池电极催化剂的制备方法
CN111001428B (zh) 一种无金属碳基电催化剂及制备方法和应用
US20080182745A1 (en) Supported platinum and palladium catalysts and preparation method thereof
CN1380711A (zh) 聚合物电解质膜燃料电池阴极纳米铂/炭电催化剂的制备方法
EP2529439A2 (en) Catalysts and electrodes for fuel cells
Zhao et al. Stability and activity of Pt/ITO electrocatalyst for oxygen reduction reaction in alkaline media
Yin et al. Amorphous NiB alloy decorated by Cu as the anode catalyst for a direct borohydride fuel cell
CN113097502A (zh) 一种以氮掺杂碳为载体的碳载铂催化剂的制备方法
Xia et al. Multistep Sulfur Leaching for the Development of a Highly Efficient and Stable NiS x/Ni (OH) 2/NiOOH Electrocatalyst for Anion Exchange Membrane Water Electrolysis
Hameed Microwave irradiated Ni–MnOx/C as an electrocatalyst for methanol oxidation in KOH solution for fuel cell application
Cheng et al. High-performance high-entropy quinary-alloys as anode catalysts for direct ethylene glycol fuel cells
Sun et al. Pd–Ru/C as the electrocatalyst for hydrogen peroxide reduction
KR100561169B1 (ko) 산소 흡착 조촉매를 함유하는 연료 전지용 촉매, 이를이용하여 제조된 연료 전지용 전극, 및 그 전극을포함하는 연료 전지
JP2005085607A (ja) 燃料電池用アノード電極触媒およびその製造方法
Zhang et al. The corrosion resistant Pt5Ce–CeO2 structure provides significant oxygen reduction catalysis
CN1274045C (zh) 质子交换膜燃料电池纳米催化剂的制备方法
Habibi et al. Ethanol electrooxidation on the Co@ Pt core-shell nanoparticles modified carbon-ceramic electrode in acidic and alkaline media
Ma et al. Platinum overlaid PdCuIr/C: an Improved Methanol Oxidation Electrocatalyst
CN108878902B (zh) 一种以铱黑为载体的双效氧电极催化剂的制备与应用
JPWO2006112368A1 (ja) 燃料電池用電極触媒およびその製造方法
Tripachev et al. Specific features of the oxygen reaction on catalytic systems in acetonitrile-based electrolytes
CN110931808A (zh) 一种Pd-WO3/C质子交换膜燃料电池阳极电催化剂及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee