CN101928979B - 金属纳米催化剂的表面结构调控和制备方法 - Google Patents

金属纳米催化剂的表面结构调控和制备方法 Download PDF

Info

Publication number
CN101928979B
CN101928979B CN2010102491635A CN201010249163A CN101928979B CN 101928979 B CN101928979 B CN 101928979B CN 2010102491635 A CN2010102491635 A CN 2010102491635A CN 201010249163 A CN201010249163 A CN 201010249163A CN 101928979 B CN101928979 B CN 101928979B
Authority
CN
China
Prior art keywords
growth
nucleation
electrode
electrolyzer
current potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010102491635A
Other languages
English (en)
Other versions
CN101928979A (zh
Inventor
孙世刚
黄蕊
陈声培
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN2010102491635A priority Critical patent/CN101928979B/zh
Publication of CN101928979A publication Critical patent/CN101928979A/zh
Priority to JP2013522076A priority patent/JP5705981B2/ja
Priority to PCT/CN2011/075629 priority patent/WO2012016478A1/zh
Priority to EP11814061.5A priority patent/EP2602361B1/en
Priority to US13/814,462 priority patent/US9162222B2/en
Application granted granted Critical
Publication of CN101928979B publication Critical patent/CN101928979B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C5/00Electrolytic production, recovery or refining of metal powders or porous metal masses
    • C25C5/02Electrolytic production, recovery or refining of metal powders or porous metal masses from solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/006Nanostructures, e.g. using aluminium anodic oxidation templates [AAO]
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/02Tanks; Installations therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/50Electroplating: Baths therefor from solutions of platinum group metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Catalysts (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Dispersion Chemistry (AREA)

Abstract

金属纳米催化剂的表面结构调控和制备方法,涉及一种金属纳米催化剂。提供一种金属纳米催化剂的表面结构调控和制备系统、具有开放表面结构的金属纳米催化剂及表面结构调控和制备方法。系统设成核电解池、配分阀、至少2个生长电解池,配分阀两端接成核电解池输出端和生长电解池输入端。具有开放表面结构的金属纳米催化剂为单一金属纳米尺度晶体,表面具有高密度的台阶原子或活性位。将前驱体反应液注入成核电解池,成核程序电位加到成核电解池的1对电极上,得已形成金属晶核的成核反应液,经配分阀送到生长电解池,将生长程序电位加到生长电解池中的1对电极上,生成具有开放表面结构的金属纳米尺度晶体;控制生长时间得反应液,离心收集产物。

Description

金属纳米催化剂的表面结构调控和制备方法
技术领域
本发明涉及一种金属纳米催化剂,尤其是涉及一种具有开放结构、高表面能的金属纳米催化剂的表面结构调控和连续制备方法。
背景技术
纳米材料具有小尺寸效应、表面效应、量子隧穿效应等特殊的物理化学性能。金属纳米材料因其优异的性能而成为重要的催化剂。常用的金属催化剂一般为铂族金属、币族金属、铁系金属等,它们广泛应用于能源转换、石油化工、汽车尾气净化和化学工业等领域。如何提高金属纳米催化剂的活性、选择性、稳定性和利用效率,一直是上述领域的重大关键问题。以铂金属催化剂为例,运用铂单晶面为模型催化剂的研究指出,催化剂的性能取决于其表面结构,呈开放结构且具有高表面能的高指数晶面的催化活性和稳定性显著优于原子紧密排列的低指数晶面(参见文献:[1]Na Tian,Zhi-You Zhou,Shi-Gang Sun,Platinum Metal Catalysts ofHigh-Index Surfaces:From Single-Crystal Planes to Electrochemically Shape-ControlledNanoparticles.J.Phys.Chem.C.,2008,112:19801-19817)。对其他金属催化剂的基础研究也给出类似的结论,即表面结构是金属催化剂性能的决定性关键因素,具有开放表面结构的催化剂具有更高的活性和稳定性。而且,不同的表面结构往往对特定的反应具有特殊的催化性能,即体现出表面结构的催化选择性。目前,商品化的金属纳米催化剂都是几个纳米尺寸大小的粒子或纳米晶体,其表面通常为原子紧密排列的晶面结构。由于纳米晶体的表面结构由纳米晶体的形状所决定,因此通过改变所制备的纳米晶体的形状即可改变其表面结构,进而实现在原子排列结构层次调控金属纳米催化剂的活性和选择性。
通过首先在玻碳电极表面沉积纳米铂球,然后再对其进行方波电位处理,使铂球溶解并重新成核生长,对此,本申请人([2]Na Tian,Zhi-You Zhou,Shi-Gang Sun,Yong Ding,ZhongLin Wang,Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and HighElectro-Oxidation Activity.Science,2007,316:732-735;[3]中国专利ZL 2007 1 0008741.4,铂二十四面体纳米晶体催化剂及其制备方法和应用)成功制备出二十四面体铂纳米晶体催化剂,其催化活性是商品铂纳米催化剂的2~4倍。进一步采用直接电沉积的方法,本申请人([4]Na Tian,Zhi-You Zhou,Neng-Fei Yu,Li-Yang Wang,Shi-Gang Sun,DirectElectrodeposition of Tetrahexahedral Pd Nanocrystals with High-Index Facets and High CatalyticActivity for Ethanol Electrooxidation,J.Am.Chem.Soc.2010,132:7580-7581)还制得钯二十四面体纳米晶体催化剂。研究结果表明,具有开放表面结构的铂纳米催化剂,其表面具有更多的活性位,因而显著提高了催化活性。本申请人([5]Zhi-You Zhou,Zhi-Zhong Huang,De-JunChen,Qiang Wang,Na Tian,and Shi-Gang Sun,High-Index Faceted Platinum NanocrystalsSupported on Carbon Black as Highly Efficient Catalysts for Ethanol Electrooxidation,Angew.Chem.Int.Ed.2010,49:411-414.)将铂前驱体与炭黑混合滴加到玻碳电极表面,通过方波电位处理制备出碳载高指数晶面铂纳米催化剂,进一步提高了铂的利用效率。本申请人([6]Yan-Xin Chen,Sheng-Pei Chen,Zhi-You Zhou,Na Tian,Yan-Xia Jiang,Shi-Gang Sun,YongDing,Zhong Lin Wang,Tuning the Shape and Catalytic Activity of Fe Nanocrystals fromRhombic Dodecahedra and Tetragonal Bipyramids to Cubes by Electrochemistry,J.Am.Chem.Sco.2009,131:10860-10862)还用电化学方法在玻碳电极表面制备出十二面体、四方双锥体、十八面体和立方体等多种形状的铁纳米晶体催化剂,它们对过氧化氢还原具有很高的电催化活性,研究结果还揭示出金属催化剂的表面结构越开放其催化活性越高的规律。
值得指出的是,上述的开放表面结构金属纳米催化剂都是在玻碳电极表面上生长,最多形成一个金属纳米晶体单层,数量极少,难以应用到实际的催化体系和工业化过程。在流动的液相反应液中加入金属前驱体作为金属源,通过程序电位控制金属先成核后生长的制备技术还未见报道。
发明内容
本发明的第一目的在于针对实际应用领域对进一步提高金属纳米催化剂的活性、选择性和稳定性的需求,提供一种金属纳米催化剂的表面结构调控和制备系统。
本发明的第二目的在于提供具有开放表面结构的金属纳米催化剂。
本发明的第三目的在于提供具有开放表面结构的金属纳米催化剂的表面结构调控和制备方法。
本发明所述金属纳米催化剂的表面结构调控和制备系统,是一种具有开放表面结构的金属纳米催化剂的表面结构调控和制备系统。
所述金属纳米催化剂的表面结构调控和制备系统设有成核电解池、配分阀、至少2个生长电解池,配分阀一端接成核电解池的输出端,配分阀另一端接所有生长电解池的输入端。
所述成核电解池设有成核电解池池体和1对成核电极,成核电解池池体设有反应液进口和成核反应液出口,反应液进口外接前驱体反应液输入装置,成核反应液出口接配分阀的输入端;1对成核电极置于成核电解池池体内,所述1对成核电极上施加成核程序电位。实际使用时,所述1对成核电极外接到恒电位仪等设备,并可施加以成核程序电位。
所述至少2个生长电解池的每1个生长电解池均设有生长电解池池体和1对生长电极,生长电解池池体设有成核反应液进口和产物出口。成核反应液进口通过配分阀与成核电解池出口相连接;1对生长电极置于生长电解池池体内;所述1对生长电极上施加生长程序电位。实际使用时,所述1对生长电极外接到恒电位仪等设备,并可施加以生长程序电位。
所述成核电解池池体与生长电解池池体的结构可相同;所述成核电解池池体与生长电解池池体的结构包括几何形状、电极材料和尺寸、放置方式等。
所述成核电极可采用平板电极,所述平板电极的长宽比可为(1~2)∶1,平板电极的长度可为1~10cm,平板电极之间的间距可为20~2000μm;所述平板电极,最好平行嵌入成核电解池池体内,以便前驱体反应液流经两个平板电极之间,同时发生相关反应。即前驱体反应液在成核电解池中形成金属晶核;所述成核电极可采用碳电极、金属电极或合金电极等,所述合金电极可采用不锈钢电极等。
所述生长电极可采用平板电极,所述平板电极的长宽比可为(1~2)∶1,平板电极的长度可为1~10cm,平板电极之间的间距可为20~2000μm;所述平板电极,最好平行嵌入生长电解池池体内,以便在成核电解池中已经形成金属晶核的反应液经过配分阀转移至生长电解池中,完成金属纳米晶体的表面结构调控和生长过程;所述生长电极可采用碳电极、金属电极或合金电极等,所述合金电极可采用不锈钢电极等。
所述生长电极与成核电极可相同,所述相同是指两者的几何形状、尺寸、材料等均相同。
所述成核程序电位由随时间变化的函数电位组成;所述生长程序电位由随时间变化的函数电位组成。
所述成核程序电位为分段函数电位,施加在成核电解池中的1对电极上,上限电位为1~2V,停留时间为10~300s,下限电位为-2~0.5V,停留时间为10~300s。
所述生长程序电位为方波函数电位,施加在生长电解池中的1对电极上,上限电位为1~5V,下限电位为-1.5~0.5V,电位波形频率为5~50Hz,生长时间为1~200min。其中施加在不同生长电解池的生长程序电位随不同生长电解池变化可以控制相同或者不同。当施加在不同生长电解池的生长程序电位相同时,可制备相同具有开放表面结构的金属纳米催化剂。在此条件下,若对不同的生长电解池控制不同的生长时间,则可制备不同尺寸的相同具有开放表面结构的金属纳米催化剂;当施加在每一个生长电解池的生长程序电位都不相同时,则可制备不同具有开放表面结构的金属纳米催化剂。
所述前驱体反应液的组成及其按质量比的含量可为金属前驱体∶载体∶电解质∶添加剂=1∶(0.1~5)∶(10~100)∶(0.1~10),最好为1∶(2.5~5)∶(10~30)∶(1~2)。
所述金属前驱体可选自金属前驱体相应的金属盐或金属氧化物,所述金属盐可选氯铂酸钾、氯铂酸钠、硝酸铂、氯化铂、氯化钯、氯氨化钯、氯化铱、氯化钌、氯化铑、氯化锇、氯化金、硝酸银、氯化铜、氯化铁、硫酸铁、氯化钴、硫酸镍等中的一种,所述金属氧化物可选自氧化铂、氧化钯、氧化铱、氧化铑、氧化钌、氧化锇、氧化金、氧化银、氧化铜、氧化铁、氧化钴、氧化镍等试剂中的一种。
所述金属前驱体还可选自氯铂酸、氯钯酸、氯金酸、氯铱酸等中的一种。
所述载体可选自炭黑、活性炭、介孔炭、碳纳米管等材料中的一种。
所述电解质可选自硫酸、高氯酸、硝酸等无机酸中的一种。
所述添加剂可选自抗坏血酸、柠檬酸盐、葡萄糖、油胺、油酸、十六烷基胺、十六烷基三甲基溴化铵、十二烷基苯磺酸钠、N-异丙基丙烯酰胺和聚乙烯吡咯烷酮等试剂中的一种。
所述前驱体反应液的pH可为0.1~13,最好pH为0.1~3,6.5~7.5,10~13。
本发明所述具有不同开放表面结构的金属纳米催化剂为单一金属纳米尺度晶体,表面具有高密度的台阶原子或活性位。单一金属纳米尺度晶体可为单一金属纳米尺度单形晶体或单一金属纳米尺度变形晶体。所述纳米尺度单形晶体为多面体,所述多面体可选自四面体、八面体、立方体、十二面体,二十四面体,三八面体、偏方三八面体和六八面体等中的一种;所述单一金属纳米尺度变形晶体可选自变形孪晶、变形纳米棒、纳米刺等中的一种。
所述金属纳米催化剂,可选自铂纳米催化剂、钯纳米催化剂、铱纳米催化剂、铑纳米催化剂、钌纳米催化剂、锇纳米催化剂、金纳米催化剂、银纳米催化剂、铜纳米催化剂、铁纳米催化剂、钴纳米催化剂、镍纳米催化剂等中的一种。
本发明所述具有开放表面结构的金属纳米催化剂的表面结构调控和制备方法,使用所述金属纳米催化剂的表面结构调控和制备系统,其具体步骤为:
1)将前驱体反应液注入成核电解池,同时将成核程序电位施加到成核电解池的1对电极上,在成核程序电位的作用下金属前驱体发生成核反应,得到已形成金属晶核的成核反应液;
2)将含有金属晶核的成核反应液经过配分阀输送到任意1个生长电解池,同时将生长程序电位施加到该生长电解池中的1对电极上,在生长程序电位的作用下,成核反应液中的金属晶核逐渐成长,同时金属晶体的形状和表面结构得到调控,生成具有开放表面结构的金属纳米尺度晶体;
3)控制施加在步骤2)所述任意1个生长电解池中的1对电极上的生长程序电位作用的生长时间,得到所需尺寸的具有开放表面结构的金属纳米催化剂的反应液;
4)将步骤3)得到的已生长出所需尺寸的具有开放表面结构的金属纳米催化剂的反应液输出,离心分离,收集产物,制得具有开放表面结构的金属纳米催化剂。
与现有的制备金属纳米催化剂的方法相比,本发明具有以下突出的优点:
1)金属纳米催化剂的表面结构调控和制备方法中所涉及的反应装置结构简单,操作方便,可以连续制备。
2)通过增加成核电解池和相匹配的生长电解池的数量,可实现规模化生产。
3)金属纳米催化剂的表面结构调控和制备方法中所采用的电极可以是碳,金属或合金等导电材料。
4)金属纳米催化剂的表面结构调控和制备方法中的金属来自前驱体反应液中加入的金属前驱体,金属纳米晶体的生长在液相中实现。
5)金属纳米催化剂的表面结构调控和制备方法中所制备的金属纳米催化剂与现有的商业催化剂相比,具有可调控的表面结构。
6)电化学程序电位可以诱导纳米粒子的生长过程,控制纳米粒子的晶体形貌,因此决定了本发明可以制备出具有可选择的具有不同开放表面结构的金属纳米催化剂,其催化活性和选择性要显著优于现有的商业金属纳米催化剂。
7)金属纳米催化剂的表面结构调控和制备方法中所制备的金属纳米催化剂,可为单一金属纳米尺度单形晶体,其晶体形状可为四面体、八面体、立方体、十二面体,二十四面体,三八面体、偏方三八面体和六八面体等规则晶体结构,也可为单一金属纳米尺度变形晶体,包括变形孪晶、变形纳米棒、纳米刺等。
8)金属纳米催化剂的表面结构调控和制备方法中所制备的金属纳米催化剂,其纳米粒子的粒径可以调控,通过改变成核时间和生长时间可以获得不同粒径大小的金属纳米催化剂,其粒径可在2~200nm范围内调控。
9)金属纳米催化剂的表面结构调控和制备方法中所制备的金属纳米催化剂,其负载状态可以调控,通过改变前驱体反应液的组成可以选择制备非负载型和负载型催化剂,负载型催化剂的载体可以不同。
10)金属纳米催化剂的表面结构调控和制备方法中所制备的具有开放表面结构的金属纳米催化剂可广泛应用于能源转换、石油化工和化学工业等重要领域。具有开放表面结构的金属纳米催化剂作为电催化剂用于燃料电池中,可显著提高燃料电池的输出功率。具有开放表面结构的金属纳米催化剂作为多相催化剂用于烃类催化重整、化学合成等工业过程中,可明显提高反应的选择性和产率。
附图说明
图1为本发明实施例1中成核电解池或生长电解池的外观正视图。在图1中,1为上盖,2为密封垫片,3为池体。
图2为本发明实施例1中成核电解池或生长电解池的水平剖面结构示意图。在图2中,3为池体,4为导线,5为内置垫片,6为螺丝孔,7为电极,A为通道。
图3为本发明实施例2所述金属纳米催化剂的表面结构调控和制备系统的组成示意图。在图3中,反应液P,成核电解池31,配分阀M,生长电解池321~325,产物331~335;成核电位En(t),生长电位Eg,i(t),
图4为本发明实施例2中制备过程施加在成核电极上的成核程序电位(或称成核电位)En(t)示意图。在图4中,横坐标为反应时间t,纵坐标为电极电位En(t)。
图5为本发明实施例2中制备过程施加在生长电极上的生长程序电位(或称生长电位)Eg,i(t)示意图。在图5中,横坐标为反应时间t,纵坐标为电极电位Eg,i(t)。
图6为本发明实施例3中制备的铂八面体纳米催化剂的扫描电镜(SEM)图。在图6中,a为扫描电镜图,b为相应的铂八面体结构模型图。
图7为本发明实施例4中制备的铂立方体纳米催化剂的扫描电镜(SEM)图。在图7中,a为扫描电镜图,b为相应的铂立方体结构模型图。
图8为本发明实施例5中制备的铂二十四面体纳米催化剂的扫描电镜(SEM)图。在图8中,a为扫描电镜图,b为相应的铂二十四面体结构模型图。
图9为本发明实施例6中制备的铂刺球纳米催化剂的扫描电镜(SEM)图。在图9中,a为扫描电镜图,b为相应的铂刺球末端高倍扫描电镜(SEM)图。
图10为本发明实施例7中制备的平均粒径为4nm的铂纳米催化剂扫描电镜(SEM)图。在图10中,标尺为500nm。
图11为本发明实施例8中制备的平均粒径为32nm的铂纳米催化剂的扫描电镜(SEM)图。在图11中,左下角模型图为边框部分纳米粒子对应的结构模型图;标尺为200nm。
图12为本发明实施例9中制备的开放结构铂纳米催化剂对乙醇催化活性表征图,在图12中,横坐标为工作电极电位E/V(SCE,以饱和甘汞电极为参比电极),纵坐标为电流密度j/mA cm-2;曲线a和b分别为开放结构铂纳米催化剂和美国E-TEK公司生产的碳载铂催化剂(铂含量为20wt%),测量时的溶液是0.1M乙醇和0.1M硫酸,测量温度是60℃。
具体实施方式
以下给出的实施例将结合附图对本发明作进一步的说明。
实施例1:参见图1~3,设计金属纳米催化剂表面结构调控和制备系统:成核电解池31和生长电解池321~325具有相同的几何尺寸和内部结构,电解池池体3可以由有机玻璃或聚四氟乙烯材料加工成型,将一对导电平板电极平行嵌入电解池池体3中,两电极间隙即为反应空间。前驱体反应液P注入成核电解池31反应,生成晶核后通过配分阀M流入多个生长电解池321~325完成纳米粒子的生长,分别得到产物331~335。1对导电平板电极7直接插入电解池池体3中部凹槽,通过调节内置垫片5的厚度控制两电极7之间的距离,电极7顶部焊接导线4,外接恒电位仪,电解池池体3中间保留反应液流动通道A,电解池池体3上面加盖一层密封垫片2,上盖1通过螺丝将电解池密封。
实施例2:金属纳米催化剂的表面结构调控和制备:将前驱体反应液P流入成核电解池31,在成核电极两端施加成核程序电位En(t)(其中E代表电位,n代表成核,t代表时间)诱发纳米粒子晶核生长后流入生长电解池321~325,在生长电极两端施加生长程序电位Eg,i(t)(其中E代表电位g代表生长,i代表生长电解池序号,t代表时间)完成纳米晶体的生长,由于成核时间相对比较短,可以根据生长时间与成核时间的比值设立多个并行的生长电解池(在图3中设5个生长电解池321~325),实现金属纳米催化剂的连续制备。图3为本发明实施例2所述金属纳米催化剂的表面结构调控和制备系统的组成示意图。图4为施加在成核电极上的成核程序电位(或称成核电位)En(t)示意图,图5为施加在生长电极上的生长程序电位(或称生长电位)Eg,i(t)示意图。
实施例3:与实施例2的制备方法类似,在制备铂纳米催化剂时,采用金属铂作为电极,前驱体反应液含铂前驱体和炭黑(炭黑作为载体),生长程序电位的上限电位为1.2V,下限电位为0.8V,频率为10Hz,生长时间为90min,制得形貌为八面体的铂纳米催化剂。图6为铂八面体纳米催化剂的SEM图以及相应的铂八面体结构模型图。
实施例4:与实施例3的制备方法类似,但在铂纳米催化剂制备时,生长程序电位的上限电位为1.4V,下限电位为0.8V,可制得形貌为立方体的铂纳米催化剂。图7为铂立方体纳米催化剂的SEM图以及相应的铂立方体结构模型图。
实施例5:与实施例3的制备方法类似,但在铂纳米催化剂制备时,生长程序电位的上限电位为1.6V,下限电位为1.2V,可制得形貌为二十四面体的铂纳米催化剂。图8为铂二十四面体纳米催化剂的SEM图以及相应的铂二十四面体结构模型图。
实施例6:与实施例3的制备方法类似,但在铂纳米催化剂制备时,生长程序电位的上限电位为1.8V,下限电位为-1.4V,可制得形貌为刺球状的铂纳米催化剂。图9为铂刺球纳米催化剂的SEM图以及刺球末端高倍SEM图。
实施例7:与实施例2的制备方法类似,在铂纳米催化剂制备时,采用金属铂作为电极,反应液含有0.5g/L炭黑作载体,0.02mM氯铂酸作金属前驱体,生长程序电位的上限电位为1.6V,下限电位为-1.2V,频率为10Hz,生长时间为60min,可制得平均粒径4nm的具有开放表面结构的铂纳米催化剂。图10为平均粒径为4nm的具有开放表面结构的铂纳米催化剂的SEM图。
实施例8:与实施例7的制备方法类似,但在铂纳米催化剂制备时,生长时间90min,可制得平均粒径32nm的具有开放表面结构的铂纳米催化剂。图11为平均粒径为32nm的具有开放表面结构的铂纳米催化剂的SEM图,图中圈出的纳米粒子为铂二十四面体结构,左下角为其对应的结构模型图。
实施例9:与实施例7的制备方法类似,但在铂纳米催化剂制备时,生长时间80min,可制具有开放结构的铂纳米催化剂。图12为所制备的开放结构铂纳米催化剂对乙醇催化活性表征图,表明其单位表面积的催化活性明显优于美国E-TEK公司的商品化铂纳米晶体催化剂。
实施例10:与实施例5的制备方法类似,但在铂纳米催化剂制备时,采用玻碳片作为电极,可制得具有开放表面结构的铂纳米催化剂。
实施例11:与实施例5的制备方法类似,但在铂纳米催化剂制备时,采用不锈钢作为电极,可制得具有开放表面结构的铂纳米催化剂。
实施例12:与实施例7的制备方法类似,但在铂纳米催化剂制备时,反应液含有0.1g/L炭黑作载体,0.02mM氯铂酸钾作金属前驱体,可制得具有开放表面结构的铂纳米催化剂。
实施例13:与实施例7的制备方法类似,但在铂纳米催化剂制备时,反应液中0.02mM四氯化铂作金属前驱体,30mM抗坏血酸作稳定剂,可制得具有开放表面结构的铂纳米催化剂。
实施例14:与实施例12的制备方法类似,但在铂纳米催化剂制备时,将炭黑换为介孔炭作载体,可制得具有开放表面结构的铂纳米催化剂。
实施例15:与实施例12的制备方法类似,但在铂纳米催化剂制备时,将炭黑换为碳纳米管作载体,可制得具有开放表面结构的铂纳米催化剂。
实施例16:与实施例13的制备方法类似,但在铂纳米催化剂制备时,10mM柠檬酸钠作稳定剂,可制得具有开放表面结构的铂纳米催化剂。
实施例17:与实施例13的制备方法类似,但在铂纳米催化剂制备时,10mM十六烷基三甲基溴化铵作稳定剂,可制得具有开放表面结构的铂纳米催化剂。
实施例18~90:与实施例1的制备方法类似,但改变前驱体反应液的组成,所制备的具有开放表面结构的金属纳米催化剂为相应的金属纳米催化剂,前驱体反应液的组成及其所制得的具有开放表面结构的金属纳米催化剂见表1(在表1中,具有开放表面结构的金属纳米催化剂简称为金属纳米催化剂)。
表1
Figure BSA00000222847300091
Figure BSA00000222847300101

Claims (15)

1.金属纳米催化剂的表面结构调控和制备系统,其特征在于设有成核电解池、配分阀、至少2个生长电解池,配分阀一端接成核电解池的输出端,配分阀另一端接所有生长电解池的输入端;所述成核电解池设有成核电解池池体和1对成核电极,成核电解池池体设有反应液进口和成核反应液出口,反应液进口外接前驱体反应液输入装置,成核反应液出口接配分阀的输入端;1对成核电极置于成核电解池池体内,所述1对成核电极上施加成核程序电位;所述至少2个生长电解池的每1个生长电解池均设有生长电解池池体和1对生长电极,生长电解池池体设有成核反应液进口和产物出口,成核反应液进口通过配分阀与成核电解池出口相连接;1对生长电极置于生长电解池池体内;所述1对生长电极上施加生长程序电位;
所述成核电极为平板电极,所述平板电极的长宽比为1~2∶1,平板电极的长度为1~10cm,平板电极之间的间距为20~2000μm;
所述生长电极为平板电极,所述平板电极的长宽比为1~2∶1,平板电极的长度为1~10cm,平板电极之间的间距为20~2000μm。
2.如权利要求1所述的金属纳米催化剂的表面结构调控和制备系统,其特征在于所述成核电解池池体与生长电解池池体的结构相同;所述成核电解池池体与生长电解池池体的结构包括几何形状、电极材料和尺寸、放置方式。
3.如权利要求1所述的金属纳米催化剂的表面结构调控和制备系统,其特征在于所述成核电极,平行嵌入成核电解池池体内。
4.如权利要求1所述的金属纳米催化剂的表面结构调控和制备系统,其特征在于所述成核电极为碳电极、金属电极或合金电极。
5.如权利要求4所述的金属纳米催化剂的表面结构调控和制备系统,其特征在于所述合金电极为不锈钢电极。
6.如权利要求1所述的金属纳米催化剂的表面结构调控和制备系统,其特征在于所述生长电极,平行嵌入生长电解池池体内。
7.如权利要求1所述的金属纳米催化剂的表面结构调控和制备系统,其特征在于所述生长电极为碳电极、金属电极或合金电极。
8.如权利要求7所述的金属纳米催化剂的表面结构调控和制备系统,其特征在于所述合金电极为不锈钢电极。
9.如权利要求1所述的金属纳米催化剂的表面结构调控和制备系统,其特征在于所述生长电极与成核电极相同,所述相同是指两者的几何形状、尺寸、材料均相同。
10.如权利要求1所述的金属纳米催化剂的表面结构调控和制备系统,其特征在于所述成核程序电位由随时间变化的函数电位组成;所述生长程序电位由随时间变化的函数电位组成。
11.如权利要求1所述的金属纳米催化剂的表面结构调控和制备系统,其特征在于所述成核程序电位为分段函数电位,施加在成核电解池中的1对电极上,上限电位为1~2V,停留时间为10~300s,下限电位为-2~0.5V,停留时间为10~300s;
所述生长程序电位为方波函数电位,施加在生长电解池中的1对电极上,上限电位为1~5V,下限电位为-1.5~0.5V,电位波形频率为5~50Hz,生长时间为1~200min。
12.如权利要求1所述的金属纳米催化剂的表面结构调控和制备系统,其特征在于所述前驱体反应液的组成及其按质量比的含量为金属前驱体∶载体∶电解质∶添加剂=1∶(0.1~5)∶(10~100)∶(0.1~10);所述前驱体反应液的pH为0.1~13。
13.如权利要求12所述的金属纳米催化剂的表面结构调控和制备系统,其特征在于所述前驱体反应液的组成及其按质量比的含量为金属前驱体∶载体∶电解质∶添加剂=1∶(2.5~5)∶(10~30)∶(1~2);所述前驱体反应液的pH为0.1~3,6.5~7.5,10~13。
14.如权利要求12或13所述的金属纳米催化剂的表面结构调控和制备系统,其特征在于所述金属前驱体选自金属前驱体相应的金属盐,或金属前驱体相应的金属氧化物,或氯铂酸、氯钯酸、氯金酸、氯铱酸中的一种;
所述金属盐选自氯铂酸钾、氯铂酸钠、硝酸铂、氯化铂、氯化钯、氯氨化钯、氯化铱、氯化钌、氯化铑、氯化锇、氯化金、硝酸银、氯化铜、氯化铁、硫酸铁、氯化钴、硫酸镍中的一种;
所述金属氧化物选自氧化铂、氧化钯、氧化铱、氧化铑、氧化钌、氧化锇、氧化金、氧化银、氧化铜、氧化铁、氧化钴、氧化镍中的一种。
15.如权利要求12或13所述的金属纳米催化剂的表面结构调控和制备系统,其特征在于所述载体选自炭黑、活性炭、介孔炭、碳纳米管中的一种;所述电解质选自硫酸、高氯酸、硝酸中的一种;所述添加剂选自抗坏血酸、柠檬酸盐、葡萄糖、油胺、油酸、十六烷基胺、十六烷基三甲基溴化铵、十二烷基苯磺酸钠、N-异丙基丙烯酰胺和聚乙烯吡咯烷酮中的一种。
CN2010102491635A 2010-08-06 2010-08-06 金属纳米催化剂的表面结构调控和制备方法 Active CN101928979B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2010102491635A CN101928979B (zh) 2010-08-06 2010-08-06 金属纳米催化剂的表面结构调控和制备方法
JP2013522076A JP5705981B2 (ja) 2010-08-06 2011-06-13 金属ナノ触媒の表面構造制御及び製造方法
PCT/CN2011/075629 WO2012016478A1 (zh) 2010-08-06 2011-06-13 金属纳米催化剂的表面结构调控和制备方法
EP11814061.5A EP2602361B1 (en) 2010-08-06 2011-06-13 Method for tuning surface structure of metallic nano-catalyst and preparation method thereof
US13/814,462 US9162222B2 (en) 2010-08-06 2011-06-13 Method for tuning surface structure of metallic nano-catalyst and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102491635A CN101928979B (zh) 2010-08-06 2010-08-06 金属纳米催化剂的表面结构调控和制备方法

Publications (2)

Publication Number Publication Date
CN101928979A CN101928979A (zh) 2010-12-29
CN101928979B true CN101928979B (zh) 2012-07-04

Family

ID=43368393

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102491635A Active CN101928979B (zh) 2010-08-06 2010-08-06 金属纳米催化剂的表面结构调控和制备方法

Country Status (5)

Country Link
US (1) US9162222B2 (zh)
EP (1) EP2602361B1 (zh)
JP (1) JP5705981B2 (zh)
CN (1) CN101928979B (zh)
WO (1) WO2012016478A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928979B (zh) * 2010-08-06 2012-07-04 厦门大学 金属纳米催化剂的表面结构调控和制备方法
FR2974582A1 (fr) * 2011-04-27 2012-11-02 Commissariat Energie Atomique Procede de croissance de particules metalliques par electrodeposition avec inhibition in situ
RU2611620C2 (ru) * 2013-10-04 2017-02-28 Общество с ограниченной ответственностью "Нанотехнологии для экологии" Способ получения медьсодержащих нанокатализаторов с развитой поверхностью
CN104084244A (zh) * 2014-07-10 2014-10-08 厦门大学 碳载金属纳米催化剂制备装置及其制备方法
KR101662756B1 (ko) * 2014-09-30 2016-10-06 충북대학교 산학협력단 전기화학적 석출법을 이용한 삼차원 백금 공 구조체 제조방법
CN106018507B (zh) * 2016-05-16 2018-05-15 天津理工大学 一种具有氨气气敏性能的介孔氧化镍的制备方法
US10646921B2 (en) * 2017-03-31 2020-05-12 The Regents Of The University Of California Excavated nanoframes with three-dimensional electrocatalytic surfaces
CN106902817B (zh) * 2017-04-11 2019-07-02 辽宁大学 一种活化碳纳米管负载钯纳米粒子催化剂的方法及其应用
CN108977846B (zh) * 2018-06-21 2020-02-28 太原理工大学 一种氧化铁纳米带阵列薄膜的制备方法
CN110894617A (zh) * 2018-09-13 2020-03-20 深圳市永达锐国际科技有限公司 3d铂金电铸工艺方法
CN110129839B (zh) * 2019-05-20 2021-05-14 江西鹏凯环保工程设备有限公司 一种镀铜光亮剂的制备方法
CN113441153B (zh) * 2020-03-24 2023-05-09 东营市天正化工有限公司 一种磁性催化剂及其制备方法
CN115072810B (zh) * 2022-07-28 2023-12-22 西安稀有金属材料研究院有限公司 一种绿色合成纳米氧化钌的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1544704A (zh) * 2003-11-21 2004-11-10 厦门大学 碳载铂基表面合金电催化电极的制备方法
CN1544702A (zh) * 2003-11-21 2004-11-10 ���Ŵ�ѧ 碳载聚合物表面纳米合金电催化电极的制备方法
CN101024174A (zh) * 2007-03-23 2007-08-29 厦门大学 铂二十四面体纳米晶体催化剂及其制备方法和应用

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2628184B2 (ja) * 1988-04-25 1997-07-09 日新製鋼株式会社 微粉末に金属を電気めっきする方法
JPH03164450A (ja) * 1989-11-24 1991-07-16 Nippon Telegr & Teleph Corp <Ntt> メタルコートファイバの作製法
JP2837397B2 (ja) * 1995-12-04 1998-12-16 テクノ工業株式会社 アルミニウムまたはアルミニウム合金の陽極酸化処理装置
JP2002069689A (ja) * 2000-08-28 2002-03-08 Yuken Industry Co Ltd 粉末の電気めっき方法
CN1166019C (zh) * 2001-05-25 2004-09-08 中国科学院长春应用化学研究所 质子交换膜燃料电池纳米电催化剂的制备方法
US7803734B2 (en) * 2004-06-10 2010-09-28 Sumitomo Electric Industries, Ltd. Metal catalyst and method for production thereof
US7393438B2 (en) * 2004-07-22 2008-07-01 Phelps Dodge Corporation Apparatus for producing metal powder by electrowinning
JP4608631B2 (ja) * 2005-06-08 2011-01-12 国立大学法人名古屋大学 車両用画像処理装置、運転支援装置
US20070029189A1 (en) * 2005-08-02 2007-02-08 The University Of Chicago Combinatorial electrochemical deposition system
JP2007203177A (ja) * 2006-02-01 2007-08-16 Hitachi Ltd 触媒材料及びその製造方法とそれを用いた燃料電池
JP4923763B2 (ja) * 2006-06-09 2012-04-25 富士ゼロックス株式会社 銀三角錐粒子の製造方法、及び銀三角錐粒子
KR100907877B1 (ko) * 2007-03-15 2009-07-14 윤의식 금속 나노입자 콜로이드 용액 제조 방법 및 이를 이용한 금속 나노입자 분말 제조 방법
JP2009046696A (ja) * 2007-08-13 2009-03-05 Mitsui Mining & Smelting Co Ltd 銀粉の製造方法
JP5065072B2 (ja) * 2008-02-07 2012-10-31 古河電気工業株式会社 銅微粒子の製造方法
JP2009214099A (ja) * 2008-02-14 2009-09-24 Okayama Univ アミド化合物の製造方法及びその触媒
JP2009221563A (ja) * 2008-03-18 2009-10-01 Ricoh Co Ltd 金ナノロッドとその製造方法、金ナノロッドを用いた電磁波吸収体、色材、光記録材料および二光子反応材料
CN101554597B (zh) * 2009-05-12 2010-12-08 厦门大学 碳载铂纳米催化剂的制备方法及其装置
CN101928979B (zh) * 2010-08-06 2012-07-04 厦门大学 金属纳米催化剂的表面结构调控和制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1544704A (zh) * 2003-11-21 2004-11-10 厦门大学 碳载铂基表面合金电催化电极的制备方法
CN1544702A (zh) * 2003-11-21 2004-11-10 ���Ŵ�ѧ 碳载聚合物表面纳米合金电催化电极的制备方法
CN101024174A (zh) * 2007-03-23 2007-08-29 厦门大学 铂二十四面体纳米晶体催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN101928979A (zh) 2010-12-29
US9162222B2 (en) 2015-10-20
JP5705981B2 (ja) 2015-04-22
JP2013535579A (ja) 2013-09-12
US20130184146A1 (en) 2013-07-18
EP2602361A1 (en) 2013-06-12
EP2602361B1 (en) 2018-05-16
EP2602361A4 (en) 2016-11-16
WO2012016478A1 (zh) 2012-02-09

Similar Documents

Publication Publication Date Title
CN101928979B (zh) 金属纳米催化剂的表面结构调控和制备方法
Zhang et al. High-performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions
Fang et al. Crystal-plane engineering of NiCo2O4 electrocatalysts towards efficient overall water splitting
Sun et al. High-index faceted metal oxide micro-/nanostructures: a review on their characterization, synthesis and applications
Petrii Electrosynthesis of nanostructures and nanomaterials
Zhan et al. Synthesis of mesoporous NiCo2O4 fibers and their electrocatalytic activity on direct oxidation of ethanol in alkaline media
Liang et al. Novel insight into the epitaxial growth mechanism of six-fold symmetrical β-Co (OH) 2/Co (OH) F hierarchical hexagrams and their water oxidation activity
EP2934793B1 (en) Manufacture of noble metal nanoparticles
Kim et al. Accelerating electrochemistry with metal nanowires
Wang et al. Design strategies for non-precious metal oxide electrocatalysts for oxygen evolution reactions
Ehsan et al. Aerosol-assisted chemical vapor deposition of nickel sulfide nanowires for electrochemical water oxidation
Kumar et al. A superior and stable electrocatalytic oxygen evolution reaction by one-dimensional FeCoP colloidal nanostructures
Kong et al. Low-dimensional materials for alkaline oxygen evolution electrocatalysis
Yadav et al. Chemical synthesis of a microsphere-like copper molybdate electrode for oxygen evolution reaction
He et al. Facile synthesis of Cu2SnS3 nanocrystals for efficient nitrogen reduction reaction
Yan et al. Boosting electrocatalytic activity of binary Ag-Fe-doped Co2P nanospheres as bifunctional electrocatalysts for overall water splitting
Yan et al. Spinel-type ternary multimetal hybrid oxides with porous hierarchical structure grown on Ni foam as large-current-density water oxidation electrocatalyst
Li et al. Non-precious metal nanotube arrays hybrid catalyst prepared by a mutual template method for efficient water oxidation in alkaline medium
Zhang et al. In-situ integration of nickel-iron Prussian blue analog heterostructure on Ni foam by chemical corrosion and partial conversion for oxygen evolution reaction
Zhou et al. Palladium-Copper bimetallic catalysts for electroreduction of CO2 and nitrogenous species
Nguyen et al. A single source, scalable route for direct isolation of earth-abundant nanometal carbide water-splitting electrocatalysts
Wang et al. Electroless deposition synthesis of composite catalysts Ni-Fe-P-WO3/NF with superior oxygen evolution performance
Zhang et al. Carbon-based active support for water oxidation electrocatalyst: Making full use of the available surface area
Yue et al. N-doped bimetallic NiFeP nanocubic clusters derived from Prussian blue analogues as a high-efficiency and durable water splitting electrocatalyst
Xu et al. Metal organic framework derived Ni0. 15Co0. 85S2@ MoS2 heterostructure as an efficient and stable electrocatalyst for hydrogen evolution

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant