CN1312793C - 锂二次电池用正极活性物质的制造方法 - Google Patents

锂二次电池用正极活性物质的制造方法 Download PDF

Info

Publication number
CN1312793C
CN1312793C CNB2004800011316A CN200480001131A CN1312793C CN 1312793 C CN1312793 C CN 1312793C CN B2004800011316 A CNB2004800011316 A CN B2004800011316A CN 200480001131 A CN200480001131 A CN 200480001131A CN 1312793 C CN1312793 C CN 1312793C
Authority
CN
China
Prior art keywords
lithium
cobalt
powder
composite oxide
calcined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004800011316A
Other languages
English (en)
Other versions
CN1701452A (zh
Inventor
数原学
斋藤尙
堀地和茂
巽功司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIYOMI CHEMICAL CO Ltd
Seimi Chemical Co Ltd
Original Assignee
KIYOMI CHEMICAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIYOMI CHEMICAL CO Ltd filed Critical KIYOMI CHEMICAL CO Ltd
Publication of CN1701452A publication Critical patent/CN1701452A/zh
Application granted granted Critical
Publication of CN1312793C publication Critical patent/CN1312793C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明提供了使用廉价的氢氧化钴和碳酸锂,制造体积容量密度、安全性、充放电循环耐久性、加压密度以及生产性等多方面都具有优异特性的锂二次电池正极用锂钴复合氧化物的方法。该方法是将氢氧化钴粉末和碳酸锂粉末按锂/钴的原子比达到0.98~1.01的要求进行混合,于250~700℃在含氧气氛中对所得混合物进行煅烧,再对该煅烧物于850~1050℃在含氧气氛中进行煅烧,或者以250~600℃的升温速度在4℃/分钟以下的条件升温,然后于850~1050℃在含氧气氛中进行煅烧。

Description

锂二次电池用正极活性物质的制造方法
技术领域
本发明涉及使用廉价原料氢氧化钴和碳酸锂,制造具有大体积容量密度、较高大电流放电特性、高安全性、高充放电循环耐久性、高加压密度及高生产性的锂二次电池正极用锂钴复合氧化物的方法;含有所制造的锂钴复合氧化物的锂二次电池用正极及锂二次电池。
背景技术
近年来,随着机器的便携化、无线化的发展,对小型、轻量且具有高能量密度的锂二次电池等非水电解液二次电池的要求越来越高。众所周知,这种非水电解液二次电池用正极活性物质有LiCoO2、LiNiO2、LiNi0.8Co0.2O2、LiMn2O4、LiMnO2等锂和过渡金属的复合氧化物。
其中,使用锂钴复合氧化物(LiCoO2)作为正极活性物质,使用锂合金、石墨、碳纤维等碳作为负极的锂二次电池可以得到4V级高电压,所以广泛用作具有高能量密度的电池。
作为锂钴复合氧化物的制造方法,一般都是使用四氧化三钴作为钴原料,使用碳酸锂作为锂原料。另外,使用碱式氢氧化钴和碳酸锂的方法最近也被用于工业生产。这些四氧化三钴和碱式氢氧化钴都是通过氢氧化钴的氧化制造的。因为氢氧化钴作为钴原料被用作四氧化三钴和碱式氢氧化钴的原材料,所以很便宜。
从氢氧化钴和碳酸锂制造钴酸锂的方法已于日本专利特开2002-321921号公报中被揭示。日本专利特开2002-321921号公报所揭示的方法的特征是,首先将氢氧化钴粉体和碳酸锂粉体,按Li/Co的摩尔比为1.02~1.06的条件混合,再将混合物造粒,在600~700℃下进行一次煅烧,将煅烧物粉碎后,再于750~1000℃下进行二次煅烧。但是,在日本专利特开2002-321921号公报记载的方法中,必须要有煅烧前的原料混合粉末的造粒和一次煅烧后的粉碎工艺等,所以存在制造工序烦杂、制造成本高、同时充放电循环耐久性差等问题。因此,目前为止本领域普通技术人员还没有预见到使用低成本的原料氢氧化钴,作为锂二次电池正极,能够制造出具有所希望的粒度分布、且可形成性能良好的正极的锂钴复合氧化物。
发明的揭示
本发明的目的在于分别使用廉价原料氢氧化钴和碳酸锂作为钴源和锂源,制造具有大体积容量密度、高安全性、高充放电循环耐久性、高加压密度及高生产性的锂二次电池正极用锂钴复合氧化物的新方法,含有所制造的锂钴复合氧化物的锂二次电池正极以及锂二次电池。
本发明者为了完成上述课题,进行研究后发现,使用廉价的氢氧化钴作为钴源,而且锂源也用廉价的碳酸锂,通过对它们按特定混合比例混合而得到的混合物在特定的控制条件下进行煅烧,不必进行原料的造粒和中间阶段的粉碎等,就可以制得锂钴复合氧化物。而且,所得锂钴复合氧化物,作为锂二次电池的正极,在体积容量密度、安全性、充放电循环耐久性、加压密度以及生产性等多方面都具有优异特性。
目前还不清楚本发明中通过在特定控制条件下煅烧上述特定的原料混合物为何能达到上述目的的理由。但是,推测是与氧化钴相比,氢氧化钴与碳酸锂的反应性慢,升温速度如果太快,未反应的碳酸锂融解,引起钴和锂的相分离,导致锂化不完全的缘故。
因此,本发明由以下要点构成。
(1)锂二次电池正极用锂钴复合氧化物的制造方法,该方法的特征是,将氢氧化钴粉末和碳酸锂粉末按锂/钴的原子比达到0.98~1.01的要求进行混合,于250~700℃在含氧气氛中对所得混合物进行煅烧,再对该煅烧物于850~1050℃在含氧气氛中进行煅烧。
(2)上述(1)中记载的制造方法,上述在250~700℃下煅烧而得的煅烧物不经粉碎,于850~1050℃在含氧气氛中对其进行煅烧。
(3)锂二次电池正极用锂钴复合氧化物的制造方法,该方法的特征是,将氢氧化钴粉末和碳酸锂粉末按锂/钴的原子比达到0.98~1.01的要求进行混合而得的混合物,以250~600℃的升温速度在4℃/分钟以下的条件进行升温,然后于850~1050℃在含氧气氛中对其进行煅烧。
(4)上述(1)~(3)中任一项记载的制造方法,氢氧化钴的使用了Cu-Kα射线的X射线衍射光谱中,2θ=19±1°的(001)面的衍射峰的半宽度为0.18~0.35°、2θ=38±1°的(101)面的衍射峰的半宽度为0.15~0.35°、且比表面积为5~50m2/g。
(5)上述(1)~(4)中任一项记载的制造方法,上述氢氧化钴粉末是由一次粒子聚集而成的平均粒径D50为5~25μm的近似球状的二次粒子。
(6)上述(1)~(5)中任一项所记载的制造方法,上述氢氧化钴粉末的二次粒子在纯水中分散后的平均粒径D50为在纯水中分散前的平均粒径D50的1/4以下。
(7)锂二次电池用正极,包含通过上述(1)~(6)中任一项记载的制造方法制得的锂钴复合氧化物。
(8)锂二次电池,使用了上述(7)记载的正极。
实施发明的最佳方式
本发明制造的锂二次电池正极用锂钴复合氧化物LiCoO2还可以含有元素M。元素M为除Co之外的过渡金属元素或碱土类金属。该过渡金属元素为周期表的4族、5族、6族、7族、8族、9族、10族及11族的过渡金属。其中,M为选自Ti、Zr、Hf、V、Nb、Ta、Mg、Ca、Sr、Ba和Al的至少一个元素。从容量显现性、安全性、循环耐久性等考虑,尤以Ti、Zr、Hf、Mg或Al为佳。
另外,锂钴复合氧化物还可以含有F原子。本发明制造的锂钴复合氧化物中,在含有M及/或F的情况下,最好是M及F的任一种存在于钴酸锂粒子的表面乃至距离表面在100nm以内、特好在30nm以内的实质性表层。如果存在于粒子的内部,则不仅电池特性的改良效果小,而且往往使电池特性下降,所以不好。存在于表面,不会因少量的添加招致电池特性的下降,还可改进安全性、充放电循环特性等重要的电池特性。关于是否存在于表面,可以对正极粒子进行分光分析,例如通过XPS分析进行判断。
本发明的锂钴复合氧化物的制造中所使用的氢氧化钴可使用任一种,但最好采用通过以Cu-Kα射线为线源的X射线衍射而测定的2θ=19±1°的(001)面的衍射峰的半宽度为0.18~0.35°、且2θ=38±1°的(101)面的衍射峰的半宽度为0.15~0.35°、且比表面积为5~50m2/g的氢氧化钴。
氢氧化钴的通过以Cu-Kα射线为线源的X射线衍射而测定的2θ=19±1°的(001)面的衍射峰的半宽度以及2θ=38±1°的(101)面的衍射峰的半宽度在本发明规定的上述范围之外的情况下,粉体变得蓬松,正极的加压密度下降,安全性低下。上述的半宽度中,更好的是2θ=19±1°的(001)面的衍射峰的半宽度为0.22~0.30°、2θ=38±1°的(101)面的衍射峰的半宽度为0.18~0.30°。
另外,氢氧化钴的比表面积小于5m2/g的情况下,正极的加压密度下降,安全性下降。相反,如果超过50m2/g,则粉体变得蓬松。比表面积为10~30m2/g特别好。另外,氢氧化钴的加压密度小于1.0g/cm3的情况下,粉体变得蓬松。另一方面,如果超过2.5g/cm3,则正极的加压密度下降,所以不好。
氢氧化钴的加压密度更好为1.0~2.5g/cm3,特好为1.3~2.2g/cm3。另外,对本发明中的氢氧化钴的加压密度如无特别说明,表示粒子粉末以0.3t/cm2的压力加压压缩时的表观加压密度。另外,锂钴复合氧化物的加压密度是指在0.96t/cm2的压力下加压压缩时的表观加压密度。
另外,上述氢氧化钴粉末的一次粒子凝集而成的平均粒径D50在5~25μm为佳,更好为8~20μm。上述平均粒径不在上述范围的情况下,正极的加压密度下降,大电流放电特性和自身放电特性下降,所以不好。另外,将氢氧化钴粉末的二次粒子分散在水中的状态下的平均粒径D50,较好是分散在水中之前的平均粒径D50的1/4以下,更好为1/8以下。在此情况下,氢氧化钴粒子分散在水中的状态下的平均粒径D50的测定在用超声波(42KHz、40W)照射3分钟的同时进行。
另外,上述氢氧化钴的二次粒子的形状以近似球形为佳。所谓粒子形状近似球形是指包括球状、橄榄球状、多棱体形状等,所具有的长径/短径之比以2/1~1/1为佳,尤以1.5/1~1/1为佳。其中最好是尽可能呈球形的形状。
用于本发明的锂钴复合氧化物的制造的具有上述特定物性的氢氧化钴可通过各种方法制得,对其制造方法没有限制。例如,通过连续混合硫酸钴水溶液、氢氧化铵水溶液以及氢氧化钠水溶液,能够很容易地制得含氢氧化钴的浆料。而且,通过改变此时的pH、搅拌等反应条件,就可以得到具有本发明的物性的氢氧化钴。
本发明最好使用具有上述特定物性的氢氧化钴作为钴源,但是,如果将该氢氧化钴的一部分用其它的钴源置换,则有时可以改良电池特性或正极制造生产性等的平衡。其它的钴源例如可以采用碱式氢氧化钴,四氧化三钴等。
通过本发明制造锂钴复合氧化物的情况下,使用廉价的锂源碳酸锂作为锂源,在本发明中,藉此也能得到具有优异性能的锂钴复合氧化物。另外,根据需要使用的元素M的原料可以选自氢氧化物、氧化物、碳酸盐、氟化物。作为氟源可以选自金属氟化物、LiF、MgF2等。
在本发明中,通过在含有氧气的气氛下煅烧上述氢氧化钴、碳酸锂以及根据需要使用的M元素源以及氟源的混合物,可以制得锂钴复合氧化物。在此情况下,要得到性能优异的锂钴复合氧化物,则被煅烧的上述混合物中的锂与钴的比例很重要,锂/钴的原子比必须在0.98~1.01之间。该比例如果小于0.98,则钴氧化物的副产量增多,用于锂电池正极的情况下,放电容量下降。另一方面,上述比例如果大于1.01,则充放电循环耐久性下降,变得易烧结,所以不好。锂/钴的原子比以0.990~1.005最佳。
另外,被煅烧的上述混合物的煅烧条件也很重要,在本发明中,作为其条件,可以按下述的2阶段煅烧或者1阶段煅烧工艺进行。即,采用2阶段煅烧的情况下,将上述混合物先在250~700℃下最好在300~550℃下煅烧,然后将该煅烧物在850~1050℃下最好在900~1000℃下煅烧。另外,采用1阶段煅烧的情况下,先使上述混合物以250~600℃的升温速度为4℃/分钟以下的条件、最好是以3℃/分钟以下的条件升温,然后在850~1050℃下最好是在900~1000℃下进行煅烧。进行满足这些条件中任一条件的煅烧时,不用进行原料的造粒和中间阶段的粉碎等,也能制得具有满足本发明目的的特性的锂钴复合氧化物。因此,例如对上述混合物不进行2阶段煅烧,而是直接在850~1050℃下煅烧时,或者250~600℃的升温速度超过4℃/分钟进行升温时,如后述的比较例所示,都得不到具有令人满意的性能的锂钴复合氧化物。
按本发明的上述的煅烧条件,进行2~48小时,最好为5~20小时的煅烧处理,再对所得到的煅烧物进行冷却、粉碎、分级,就可以制得锂钴复合氧化物粒子。
所制得的锂钴复合氧化物的平均粒径D50以5~15μm为佳,8~12μm特别好,比表面积以0.3~0.7m2/g为佳,0.4~0.6m2/g特别好,通过以Cu-Kα线为线源的X射线衍射而测定的2θ=66.5±1°的(110)面的衍射峰的半宽度以0.07~0.14°为佳、0.08~0.12°特别好,而且加压密度以3.15~3.8g/cm3为佳,3.0~3.55g/cm3特别好。另外,本发明的锂钴复合氧化物所含的残存碱量以0.03质量%以下为佳,尤以0.01质量%以下更佳。
用该锂钴复合氧化物制造锂二次电池用正极时,通过在该复合氧化物的粉末中混合乙炔黑、石墨、槽黑等碳系导电材料料和粘合材料而形成正极。上述粘合材料最好使用聚偏1,1-二氟乙烯、聚四氟乙烯、聚酰胺、羧甲基纤维素、丙烯酸树脂等。
使用溶剂或分散剂将本发明的锂钴复合氧化物的粉末、导电材料和粘合材料制成浆料或混炼物,通过将其涂布于铝箔、不锈钢箔等正极集电体而使其负载于正极集电体上,从而制得锂二次电池用正极。
在正极活性物质使用本发明的锂钴复合氧化物的锂二次电池中,隔板使用多孔质聚乙烯、多孔质聚丙烯薄膜。电池的电解质溶液的溶剂可以使用各种溶剂,以碳酸酯为佳。碳酸酯可以使用环状、链状中的任一种。作为环状碳酸酯,可以列举碳酸亚丙酯、碳酸亚乙酯(EC)等。作为链状碳酸酯,可以列举碳酸二甲酯、碳酸二乙酯(DEC)、碳酸乙基甲酯(EMC)、碳酸甲基丙酯、碳酸甲基异丙酯等。
本发明中,上述碳酸酯可以单独使用也可以2种以上混合使用,还可以与其它溶剂混合使用。另外,如果根据负极活性物质的材料,并用链状碳酸酯和环状碳酸酯,则有时可以改进放电特性、循环耐久性和充放电效率。
另外,在正极活性物质使用本发明的锂钴复合氧化物的锂二次电池中,也可以形成含有1,1-二氟乙烯-六氟丙烯共聚体(例如ァ卜ケ厶公司制:商品名カイナ一)或者1,1-二氟乙烯-全氟丙基乙烯基醚共聚体的凝胶聚合物电解质。添加于上述电解质溶剂或者聚合物电解质中的溶质,可以使用ClO4 -、CF3SO3 -、BF4 -、PF6 -、AsF6 -、SbF6 -、CF3CO2 -、(CF3SO2)2N-等阴离子的锂盐中的任何1种以上。对于由上述锂盐形成的电解质溶剂或者聚合物电解质,最好以0.2~2.0mol/L的浓度添加。如果超出此范围,则离子传导度下降,电解质的电传导度下降。尤以0.5~1.5mol/L为佳。
在正极活性物质使用本发明的锂钴复合氧化物的锂二次电池中,负极活性物质一般使用可吸藏和释放锂离子的材料。对形成该负极活性物质的材料没有特别限制,例如可以列举金属锂,锂合金,碳材料,以周期表14或15族金属为主体的氧化物,碳化合物,碳硅化合物,氧硅化合物,硫化钛,碳硼化合物等。作为碳材料,可以使用在各种热分解条件下有机物被热分解的物质和人造石墨、天然石墨、土壤石墨、膨胀石墨、鳞片状石墨等。另外,作为氧化物可以使用以氧化锡为主体的化合物。作为负极集电体一般使用铜箔、镍箔等。该负极通过将上述活性物质与有机溶剂混炼形成浆料,然后把该浆料涂布在金属箔集电极上,经干燥、加压而制得。
对正极活性物质使用本发明的锂钴复合氧化物的锂电池的形状没有特别的限制。一般根据用途选择片状、膜状、折叠状、卷绕型有底圆筒形、钮扣形等。
实施例
以下根据实施例具体说明本发明,但本发明并不限于这些实施例。另外,下述的例1~例6是本发明的实施例,例7~例10是比较例。
<例1>
将硫酸钴水溶液和氢氧化铵的混合液与氢氧化钠的水溶液连续混合,按公知的方法连续合成氢氧化钴浆液,经凝集、过滤和干燥工序,得到氢氧化钴粉体。所得到的氢氧化钴在使用CuKα线的粉末X射线衍射(使用理学电机株式会社制RINT2100型,40KV-40mA,取样间隔0.020,扫描速度2°/分钟,下同)中,2θ=19±1°的(001)面的衍射峰的半宽度为0.27°、2θ=38±1°的(101)面的衍射峰的半宽度为0.23°。另外,扫描型电子显微镜观察的结果表明,无定型的微粒子发生凝集,由近似球状的二次粒子形成。从扫描型电子显微镜观察的图像解析所求得的体积基准的粒度分布解析的结果为,平均粒径D50为17.5μm、D10为7.1μm、D90为26.4μm。
将该氢氧化钴二次粒子分散于纯水中后,二次粒子容易崩解,形成以一次粒子为主体的悬浊液,所以可知该二次粒子的凝集力很弱。另外,使用激光散射式粒度分布测定装置,以水为分散介质,经超声波(42kHz40W)照射3分钟后测定该二次粒子粉末的粒度分布的结果是,平均粒径D50为0.75μm、D10为0.35μm、D90为1.6μm。另外,干燥测定了平均粒径的浆料,从扫描型电子显微镜的结果不能确认测定前的二次粒子形状。由二次粒子构成的氢氧化钴粒子的比表面积为17.1m2/g、加压密度为1.75g/cm3,为一次粒子微弱凝集而成的近似球状的氢氧化钴粉末。
上述氢氧化钴粉末和碳酸锂粉末按锂和钴的原子比(Li/Co)为1.000进行干式混合。该混合粉充填在陶瓷制方型开放容器中,在煅烧炉内从室温至600℃以1.2℃/分钟的速度升温。再从600℃到950℃以1.5℃/分的速度升温,然后继续在950℃煅烧12小时。煅烧物是均质品。使用激光散射式粒度分布测定装置,以水为分散介质,测定煅烧物经粉碎得到的一次粒子凝集而成的LiCO2粉末的粒度分布的结果是,平均粒径D50为9.5μm、D10为4.9μm、D90为22.9μm。另外,用BET法求得的比表面积为0.47m2/g。氧化钴的副产量在0.2%以下。
将上述LiCO2粉末10g分散在100g纯水中,过滤后用0.1N的HCl进行电位差滴定,求出残存碱量为0.02重量%。另外,对上述粉末用X射线衍射测定得到X射线衍射光谱。在使用了CuKα线的粉末X射线衍射中,2θ=66.5±1°的(110)面的衍射峰的半宽度为0.095°、加压密度为3.40g/cm3
将上述粉末和乙炔黑、聚偏1,1-二氟乙烯粉末按90/5/5的质量比进行混合,添加N-甲基吡咯烷酮制得浆料,使用刮刀将其单面涂布于厚度20μm的铝箔。干燥,辊压4次压延,制得锂电池用正极体片。由压延后的正极体的厚度和电极层的单位体积的重量测得的电极层的密度为3.45g/cm3
然后,用在上述正极体板上穿孔的板做正极,使用厚度500μm的金属锂箔做负极,使用20μm镍箔做负极集电体,隔板则使用厚度25μm的多孔质聚丙烯,另外,电解液使用浓度1M的LiPF6/EC+DEC(1∶1)溶液(表示以LiPF6作为溶质的EC和DEC的质量比为1∶1的混合溶液,后述的溶剂也按此标准),在氩气手套箱内组装2个不锈钢制简易密闭单元型锂电池。
对于作为电解液使用了EC+DEC(1∶1)溶液的1个电池,在25℃下,以1g正极活性物质75mA的负荷电流充电至4.3V,再以1g正极活性物质75mA的负荷电流放电至2.5V,求得初期放电容量。另外,求得1.5C和0.25C的放电容量比率。此外,由电极层的密度和对应于重量的容量求得体积容量密度。对该电池连续进行充放电循环试验30次。
其结果是,25℃、2.5~4.3V下的正极电极层的初期体积容量密度是497mAh/cm3电极层,初期重量容量密度为160mAh/g-LiCoO2,30次充放电循环后的容量维持率为97.2%。此外,1.5C的放电容量/0.25C的放电容量的比率为0.91。
对于使用了EC+DEC(1∶1)溶液作为电解液的其它电池,分别以4.3V充电10小时,在氩气手套箱内将其解体,取出充电后的正极板,洗净该正极板,开直径3mm的孔,与EC一起密闭在铝容器中,用扫描型差动热量计,以5℃/分的速度升温,测定放热起始温度。其结果是,4.3V充电品的放热起始温度为161℃。
<例2>
使用与例1同样的混合粉,先以7℃/分的速度从室温升温至480℃,然后在大气中于480℃进行5小时的第1阶段煅烧。除了不进行进一步的解碎和粉碎,保持原样不动,以7℃/分的速度升温至950℃后,在大气中于950℃进行14小时的第2阶段煅烧之外,其余与例1同样,合成了LiCoO2粉末。煅烧物是均质品。所得LiCoO2的平均粒径D50为9.7μm、D10为4.0μm、D90为20.1μm,用BET法求得的比表面积为0.48m2/g。
对上述粉末用X射线衍射分析得到X射线衍射光谱。在使用了Cu-Kα线的粉末X射线衍射分析中,2θ=66.5±1°的(110)面的衍射峰的半宽度为0.098°。粉末的加压密度为3.45g/cm3,残存碱量为0.02重量%。
与例1同样,制作使用了上述粉末的正极体板,求得作为锂二次电池的正极活性物质的特性,其结果是,25℃、2.5~4.3V的初期重量容量密度是161mAh/g-LiCoO2,30次充放电循环后的容量维持率为97.1%,1.5C的放电容量/0.25C的放电容量的比率为0.90,4.3V充电品的放热起始温度为162℃。
<例3>
除了将例2中的第1阶段的煅烧温度设定为380℃之外,其余与例2同样,合成了LiCoO2粉末。煅烧物是均质品。所得LiCoO2的平均粒径D50为10.2μm、D10为6.0μm、D90为24.6μm,用BET法求得的比表面积为0.52m2/g。
用X射线衍射分析仪(理学电机株式会社制RINT2100型)得到LiCoO2粉末的X射线衍射光谱。在使用了Cu-Kα线的粉末X射线衍射中,2θ=66.5±1°的(110)面的衍射峰的半宽度为0.099°。所得LiCoO2粉末在加压压力为0.96t/cm2时的加压密度为3.43g/cm3,LiCoO2的残存碱量为0.02重量%。
与例1同样,制作使用了上述粉末的正极体板,求得作为锂二次电池的正极活性物质的特性,其结果是,25℃、2.5~4.3V的初期重量容量密度是163mAh/g-LiCoO2,30次充放电循环后的容量维持率为98.0%,4.3V充电品的放热起始温度为160℃。
<例4>
除了将例1中的从室温到600℃的升温速度设定为0.7℃/分之外,其余与例1同样,另外,在到达950℃前以1.5℃/分的升温温度升温后,通过在950℃煅烧12小时合成了LiCoO2粉末。所得LiCoO2的平均粒径D50为9.7μm、D10为3.7μm、D90为21.5μm,用BET法求得的比表面积为0.47m2/g。
对LiCoO2粉末进行X射线衍射分析,得到X射线衍射光谱。在使用了Cu-Kα线的粉末X射线衍射中,2θ=66.5±1°的(110)面的衍射峰的半宽度为0.095°。所得LiCoO2粉末在加压压力为0.96t/cm2时的加压密度为3.47g/cm3,LiCoO2的残存碱量为0.02重量%。
与例1同样,制作使用了上述粉末的正极体板,求得作为锂二次电池的正极活性物质的特性,其结果是,25℃、2.5~4.3V的初期重量容量密度是161mAh/g-LiCoO2,30次充放电循环后的容量维持率为97.4%。4.3V充电品的放热起始温度为161℃。
<例5>
除了将例2中的钴源改为例1中使用的氢氧化钴和一次粒子凝集而成的二次粒径15μm的碱式氢氧化钴按等摩尔的钴原子比形成的钴源之外,其余与例2条件相同进行煅烧,合成了正极活性物质。煅烧容器中的煅烧粉的煅烧状态是均质的。所得LiCoO2的平均粒径D50为10.8μm、D10为3.0μm、D90为18.5μm,用BET法求得的比表面积为0.47m2/g。
用X射线衍射分析仪(理学电机株式会社制RINT2100型)得到LiCoO2粉末的X射线衍射光谱。在使用了Cu-Kα线的粉末X射线衍射中,2θ=66.5±1°的(110)面的衍射峰的半宽度为0.095°。所得LiCoO2粉末在加压压力为0.96t/cmm2时的加压密度为3.30g/cm3,LiCoO2的残存碱量为0.02重量%。
与例1同样,制作使用了上述粉末的正极体板,求得作为锂二次电池的正极活性物质的特性,其结果是,25℃、2.5~4.3V的初期重量容量密度是161mAh/g-LiCoO2,30次充放电循环后的容量维持率为97.4%。4.3V充电品的放热起始温度为163℃。
<例6>
除了将例2中的钴源改为例1中使用的氢氧化钴和一次粒子凝集而成的二次粒径7μm的四氧化三钴按等摩尔的钴原子比形成的钴源之外,其余与例2条件相同进行煅烧,合成了正极活性物质。煅烧容器中的煅烧粉的煅烧状态是均质的。所得LiCoO2的平均粒径D50为7.7μm、D10为3.0μm、D90为19.1μm,用BET法求得的比表面积为0.47m2/g。
通过X射线衍射分析得到LiCoO2粉末的X射线衍射光谱。在使用了Cu-Kα线的粉末X射线衍射中,2θ=66.5±1°的(110)面的衍射峰的半宽度为0.095°。所得LiCoO2粉末在加压压力为0.96t/cm2时的加压密度为3.20g/cm3,LiCoO2的残存碱量为0.02重量%。
与例1同样,制作使用了上述粉末的正极体板,求得作为锂二次电池的正极活性物质的特性,其结果是,25℃、2.5~4.3V的初期重量容量密度是161mAh/g-LiCoO2,30次充放电循环后的容量维持率为97.4%。4.3V充电品的放热起始温度为160℃。
<例7>
除了将例1中的从室温到950℃的升温速度设定为6℃/分之外,其余与例1同样,在950℃下煅烧12小时合成了LiCoO2粉末。煅烧容器中的煅烧粉的煅烧状态是不均质的。容器内的煅烧粉的下层部的煅烧粉已烧结,上层部未烧结,该煅烧粉中的锂钴原子比Li/Co不足1。初期重量容量密度是154mAh/g-LiCoO2。1.5C的放电容量/0.25C的放电容量的比率为0.75。
<例8>
除了将例2中的第1阶段的煅烧温度设定为800℃、第2阶段的煅烧温度设定为950℃煅烧12小时之外,其余与例2同样合成了LiCoO2粉末。煅烧容器中的煅烧粉的煅烧状态是不均质的。容器内的煅烧粉的下层部的煅烧粉已烧结,上层部未烧结,该煅烧粉中的锂钴原子比Li/Co不足1。初期重量容量密度是153mAh/g-LiCoO2,1.5C的放电容量/0.25C的放电容量的比率为0.78。
<例9>
除了将例2中的第1阶段的煅烧温度设定为200℃、第2阶段的煅烧温度设定为950℃煅烧12小时之外,其余与例2同样合成了LiCoO2粉末。煅烧容器中的煅烧粉的煅烧状态是不均质的。容器内的煅烧粉的下层部的煅烧粉已烧结,上层部未烧结,该煅烧粉中的锂钴原子比Li/Co不足1。初期重量容量密度是155mAh/g-LiCoO2,1.5C的放电容量/0.25C的放电容量的比率为0.82。
<例10>
除了将例2中的作为原料的锂/钴混合原子比设定为1.025之外,其余与例2同样合成了LiCoO2粉末。评价的结果是,30次充放电循环后的容量维持率为89%。
产业上利用的可能性
本发明使用廉价的氢氧化钴作为钴源、使用廉价的碳酸锂作为锂源,提供了具有大体积容量密度、较高大电流放电特性、高安全性、高充放电循环耐久性、高加压密度以及高生产性的锂二次电池正极用锂钴复合氧化物的新制造方法。此外,还提供了包含所制造的锂钴复合氧化物的锂二次电池用正极及锂二次电池。

Claims (8)

1.锂二次电池正极用锂钴复合氧化物的制造方法,其特征在于,将氢氧化钴粉末和碳酸锂粉末按锂/钴的原子比达到0.98~1.01的要求进行混合,对所得混合物进行2阶段煅烧,即,先在300~550℃在含氧气氛中对所得混合物进行煅烧,再对该煅烧物于850~1050℃在含氧气氛中进行煅烧。
2.如权利要求1所述的制造方法,其特征还在于,上述在300~550℃下煅烧而得的煅烧物不经粉碎,于850~1050℃在含氧气氛中对其进行煅烧。
3.锂二次电池正极用锂钴复合氧化物的制造方法,其特征在于,将氢氧化钴粉末利碳酸锂粉末按锂/钴的原子比达到0.98~1.01的要求进行混合而得的混合物,以250~600℃的升温速度在4℃/分钟以下的条件进行升温,然后于850~1050℃在含氧气氛中对其进行煅烧。
4.如权利要求1~3中任一项所述的制造方法,其特征还在于,氢氧化钴的使用了Cu-Kα射线的X射线衍射光谱中,2θ=19±1°的(001)面的衍射峰的半宽度为0.18~0.35°、2θ=38±1°的(101)面的衍射峰的半宽度为0.15~0.35°、且比表面积为5~50m2/g。
5.如权利要求1或3所述的制造方法,其特征还在于,上述氢氧化钴粉末是由一次粒子聚集而成的平均粒径D50为8~20μm的近似球状的二次粒子。
6.如权利要求1或3所述的制造方法,其特征还在于,上述氢氧化钴粉末的二次粒子在纯水中分散后的平均粒径D50为其一次粒子的平均粒径D50的1/4以下。
7.锂二次电池用正极,其特征在于,包含通过权利要求1~6中任一项所述的制造方法制得的锂钴复合氧化物。
8.锂二次电池,其特征在于,使用了权利要求7所述的正极。
CNB2004800011316A 2003-03-31 2004-03-31 锂二次电池用正极活性物质的制造方法 Expired - Fee Related CN1312793C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP096739/2003 2003-03-31
JP2003096739 2003-03-31

Publications (2)

Publication Number Publication Date
CN1701452A CN1701452A (zh) 2005-11-23
CN1312793C true CN1312793C (zh) 2007-04-25

Family

ID=33127522

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800011316A Expired - Fee Related CN1312793C (zh) 2003-03-31 2004-03-31 锂二次电池用正极活性物质的制造方法

Country Status (6)

Country Link
US (1) US7270797B2 (zh)
JP (1) JP4268613B2 (zh)
KR (1) KR20050044770A (zh)
CN (1) CN1312793C (zh)
TW (1) TW200501486A (zh)
WO (1) WO2004088776A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104868108A (zh) * 2014-02-24 2015-08-26 钛工业株式会社 包含钛-铌复合氧化物的电极用活性物质及其制造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003069702A1 (fr) 2002-02-15 2003-08-21 Seimi Chemical Co., Ltd. Materiau actif d'electrode positive particulaire pour une pile au lithium secondaire
TWI274433B (en) 2002-09-03 2007-02-21 Seimi Chem Kk Process for producing lithium cobalt composite oxide for positive electrode of lithium secondary battery
CN100382363C (zh) * 2002-09-26 2008-04-16 清美化学股份有限公司 锂二次电池用正极活性物质及其制备方法
US20070292761A1 (en) 2005-04-13 2007-12-20 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US20080032196A1 (en) 2005-04-13 2008-02-07 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US20070298512A1 (en) 2005-04-13 2007-12-27 Lg Chem, Ltd. Material for lithium secondary battery of high performance
CN101176226B (zh) 2005-05-17 2010-07-21 Agc清美化学股份有限公司 锂二次电池正极用的含锂复合氧化物的制造方法
JP5260821B2 (ja) * 2005-07-11 2013-08-14 パナソニック株式会社 リチウムイオン二次電池
KR100686783B1 (ko) 2006-01-16 2007-02-26 엘에스전선 주식회사 2차 전지용 음극재, 그 제조방법 및 이를 이용한 2차 전지
KR100816586B1 (ko) 2006-01-27 2008-03-24 엘에스전선 주식회사 2차 전지용 음극재, 이를 이용한 2차 전지, 2차 전지용음극재 제조방법 및 이를 이용한 2차 전지
JP5537929B2 (ja) * 2006-05-10 2014-07-02 エルジー・ケム・リミテッド 高性能リチウム2次電池材料
ATE556447T1 (de) * 2006-12-26 2012-05-15 Santoku Corp Positivelektroden-aktivmaterial für eine sekundärbatterie mit wasserfreiem elektrolyt, positivelektrode und sekundärbatterie
CA2691798C (en) * 2007-06-29 2013-11-05 Umicore High density lithium cobalt oxide for rechargeable batteries
US9698418B2 (en) * 2011-02-07 2017-07-04 Umicore High nickel cathode material having low soluble base content
KR101821291B1 (ko) * 2011-05-31 2018-01-23 프리포트 코발트 오와이 리튬 코발트 산화물
US10351440B2 (en) 2011-05-31 2019-07-16 Freeport Colbalt Oy Lithium cobalt oxide material
JP6233175B2 (ja) * 2014-02-05 2017-11-22 住友金属鉱山株式会社 水酸化コバルト粒子及びその製造方法、並びに正極活物質及びその製造方法
KR102195722B1 (ko) 2014-06-19 2020-12-28 삼성에스디아이 주식회사 리튬 이차 전지용 리튬 코발트 산화물, 그 제조방법 및 이를 포함한 양극을 구비한 리튬 이차 전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1226876A (zh) * 1996-08-02 1999-08-25 N.V.米尼埃尔股份有限公司 锂镍钴二氧化物的合成
JPH11292549A (ja) * 1998-04-13 1999-10-26 Ishihara Sangyo Kaisha Ltd 水酸化コバルトおよびその製造方法
CN1289738A (zh) * 1999-09-27 2001-04-04 北京有色金属研究总院 制备锂离子电池正极材料的方法
JP2001291507A (ja) * 2000-04-10 2001-10-19 Japan Storage Battery Co Ltd 非水電解質二次電池とその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273678A (ja) * 1998-03-23 1999-10-08 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法ならびに該正極活物質を用いた非水系電解質二次電池
KR100326455B1 (ko) * 1999-03-30 2002-02-28 김순택 리튬 이차 전지용 양극 활물질 및 그 제조 방법
JP2002321921A (ja) * 2001-04-24 2002-11-08 Sony Corp コバルト酸リチウムの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1226876A (zh) * 1996-08-02 1999-08-25 N.V.米尼埃尔股份有限公司 锂镍钴二氧化物的合成
JPH11292549A (ja) * 1998-04-13 1999-10-26 Ishihara Sangyo Kaisha Ltd 水酸化コバルトおよびその製造方法
CN1289738A (zh) * 1999-09-27 2001-04-04 北京有色金属研究总院 制备锂离子电池正极材料的方法
JP2001291507A (ja) * 2000-04-10 2001-10-19 Japan Storage Battery Co Ltd 非水電解質二次電池とその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104868108A (zh) * 2014-02-24 2015-08-26 钛工业株式会社 包含钛-铌复合氧化物的电极用活性物质及其制造方法
CN104868108B (zh) * 2014-02-24 2019-04-02 钛工业株式会社 包含钛-铌复合氧化物的电极用活性物质及其制造方法

Also Published As

Publication number Publication date
WO2004088776A1 (ja) 2004-10-14
US20050220701A1 (en) 2005-10-06
JPWO2004088776A1 (ja) 2006-07-06
TW200501486A (en) 2005-01-01
CN1701452A (zh) 2005-11-23
TWI341047B (zh) 2011-04-21
US7270797B2 (en) 2007-09-18
KR20050044770A (ko) 2005-05-12
JP4268613B2 (ja) 2009-05-27

Similar Documents

Publication Publication Date Title
CN100382363C (zh) 锂二次电池用正极活性物质及其制备方法
CN1312793C (zh) 锂二次电池用正极活性物质的制造方法
JP4943145B2 (ja) リチウム二次電池用正極活物質粉末
JP4268392B2 (ja) リチウム二次電池用の正極活物質及びその製造方法
US7192672B2 (en) Process for producing positive electrode active material for lithium secondary battery
KR100601064B1 (ko) 리튬 이차전지 양극용 리튬코발트 복합산화물의 제조방법
JP4276442B2 (ja) リチウム二次電池用正極活物質粉末
KR101104664B1 (ko) 리튬 2 차 전지 양극용의 리튬 함유 복합 산화물의 제조방법
CN101694874A (zh) 锂离子二次电池正极材料钴酸锂的制备方法
JP4777543B2 (ja) リチウムコバルト複合酸化物の製造方法
JP3974396B2 (ja) リチウム二次電池用正極活物質の製造方法
JP4199506B2 (ja) リチウム二次電池用の正極活物質の製造方法
JP4209646B2 (ja) 二次電池正極用のリチウムコバルト複合酸化物の製造方法
JP4472430B2 (ja) リチウム二次電池正極用のリチウム複合酸化物の製造方法
KR20070015637A (ko) 리튬 2차 전지용 양극활물질의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070425

Termination date: 20150331

EXPY Termination of patent right or utility model