CN1303353A - 水处理产品及其方法 - Google Patents

水处理产品及其方法 Download PDF

Info

Publication number
CN1303353A
CN1303353A CN99806597.8A CN99806597A CN1303353A CN 1303353 A CN1303353 A CN 1303353A CN 99806597 A CN99806597 A CN 99806597A CN 1303353 A CN1303353 A CN 1303353A
Authority
CN
China
Prior art keywords
water
particulate material
treated prod
prod
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN99806597.8A
Other languages
English (en)
Other versions
CN1183042C (zh
Inventor
F·阿滋滋安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto Alcan International Ltd
Original Assignee
Alcan International Ltd Canada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9807071.7A external-priority patent/GB9807071D0/en
Priority claimed from GBGB9817295.0A external-priority patent/GB9817295D0/en
Application filed by Alcan International Ltd Canada filed Critical Alcan International Ltd Canada
Publication of CN1303353A publication Critical patent/CN1303353A/zh
Application granted granted Critical
Publication of CN1183042C publication Critical patent/CN1183042C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/583Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing fluoride or fluorine compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/911Cumulative poison
    • Y10S210/912Heavy metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Removal Of Specific Substances (AREA)
  • Physical Water Treatments (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

水处理产品,该产品是具有至少1.0m2/g的比表面积的颗粒材料,或通过这些颗粒材料结合在一起形成的人工制品,并具有不可溶的三价铁覆盖层。优选所述颗粒材料为氧化铝基材料。所述产品可用于处理水以除去有机物质、阳离子或阴离子,和更具体为重金属、As、Se或F。还提供了制备所述水产品的方法。

Description

水处理产品及其方法
由于对金属排放的限制越来越紧,高水平处理含金属废的吸附方法也变得倍受注意。吸附方法能够在很宽的pH值范围内并在比沉淀方法低得多的水平下除去许多金属。另外,吸附方法经常能够除去常规处理方法无法探测到的配合的金属。
在金属处理方法中通常出现的吸附剂是称为水铁矿的非晶态氧化铁。这种处理的不利之处在于水铁矿形成污泥产物使得难于回收到净化水。为了解决该问题,人们描述了含有水铁矿覆盖的洗净的沙的水处理产品(M Edwards和M M Benjamin,Jnl.Water Poll ControlFed,第61卷,第19章,1989年,第1523-1533页)。还进行了该产品从饮用水中除去砷的测试。(F G A Vagliasindi等,Proceedings WaterQuality Technology Conference,第2部分,New Orlean,1995年11月12-16日,第1829-1853页)。
在欧洲和美国,饮用水中砷的允许含量已经或很快将从200μg/L降到50μg/L及降到20或10μg/L。人们提议使用活性铝土作为除去砷的水处理产品(加拿大专利2,090,989)。活性铝土颗粒较为坚固并容易从已处理的水中分离。虽然活性铝土本身是砷和其它重金属的活性吸附剂,还是需要一种更好的材料。这个需要已经在WO96/37438中着手解决,该方法提出的水处理组合物含有氧化镧和氧化铝。但氧化镧在处理非常大量的水时昂贵的花费使其受到限制。
根据本发明提供了水处理产品,该产品是具有至少1.0m2/g的比表面积的颗粒材料,或通过这些颗粒材料结合在一起形成的人工制品,并具有不可溶的三价铁覆盖层。优选所述颗粒材料为多孔的并具有通孔、闭孔或两者均有。由所述颗粒材料形成的人工制品一般为圆柱状或砖块状。
优选所述颗粒材材为非金属和矿物或无机材料。优选主要作为三价铁覆盖层的基材的材料包括沸石、镁碱沸石、丝光沸石、方钠石、柱(Pillared)粘土和活性粘土。优选的是包括氧化铝本身和铁铝氧石的氧化铝基材料。优选所述颗粒材料或由它们形成的人工制品为坚固的、抗压碎并且在使用过程中不形成细粉末或污泥。
在所述颗粒材料中可由细颗粒生长的单个颗粒必需具有足够大以容易从已处理的水中分离。虽然粗颗粒更容易从已处理的水中分离,但单个颗粒仍可细到具有5μm或10μm的平均尺寸。优选单个颗粒具有100μm至5000μm,如200μm至1000μm的平均尺寸。它们可通过凝聚或造粒或破碎形成。
这里使用的颗粒材料可为如通过Bayer方法生产的三水合氧化铝或煅烧的氧化铝。优选使用通过在300至800℃下加热三水合氧化铝形成的活性铝土。活性铝土具有较大的比表面积的有利之处。因疏松介质可为铁铝氧石,或其它含氧化铝的矿物,如沸石、粘土或水滑石。铁铝氧石的非挥发成分含有40或50至95%(重量)的氧化铝同时含有3或5至25%(重量)的氧化铁。活性铁铝氧石为优选的材料,该材料可在300至800℃的温度下加热矿物形成,并且一般具有100或150至200m2/g的比表面积。因为铁铝氧石所含的铁是在颗粒里面,而不是在其表面,因此一般不当作本发明的不可溶三价铁覆盖层部分。
具有高比表面积的颗粒材料在从水中吸附污染物并将它们除去中表现出高的能力。优选本发明的水处理产品具有1.0至400m2/g,如至少10m2/g,特别是至少100m2/g的比表面积。
将所述颗粒材料浸泡在铁溶液中,如硫酸铁或氯化铁的含水溶液中使其覆盖一层沉淀的不可溶三价铁覆盖层。随后通过蒸发将水除去或在升高温度,如50至500℃并优选50至200℃下干燥所述产品将铁盐转化为不可溶的三价铁覆盖层,或许为水合氧化铁或水合铁。在上述M Edwards的参考文献中描述的制备技术是适合的。所述三价铁覆盖层可构成0.01%至50%,优选0.1%至10%(重量)的水处理产品。
根据本发明的另一个制备水处理产品的方法包括采用酸性液体处理含铁矿石以从矿石中浸出铁,随后提高液体的pH值在所述矿石的表面形成沉淀的三价铁覆盖层。例如,采用pH值为大约3的氢氯酸处理矿石,接着使用氢氧化钠将pH值提高至大约7。将得到的产物过滤、洗涤并优选在如前面升高的温度下干燥。在本发明的范围内还包括在表面具有沉淀三价铁覆盖层的含铁矿石的水处理产品。优选所述矿石为铁铝氧石,特别是活性铁铝氧石。
如在以下的实施例中所说明,本发明的水处理产品具有以下有用特征的结合:在从被处理的水中快速吸附无机污染物的优异的能力和活性;坚固的材料使得容易从已处理的水中分离并可被处理以回收无机污染物,因此可以重复使用而不会损坏其结构。
本发明还包括水处理方法,该方法包括使要进行处理的水与这里描述的水处理产品接触,随后回收含有减少了有机物质或阳离子或阴离子,特别是至少一种重金属或As或Se或F的浓度的已处理的水。分批处理一般包括搅拌处理的水和等份的水处理产品,选择所述产品的量是为了在所需的时间内(一般少于1小时)完成净化水至所需程度。如在本领域所熟知,连续的方法也是可能的。
除去有机物质和除去无机物质的最佳条件一般是不同的。根据所要除去的污染物的性质调节水的pH值以提高所述水处理产品的性能是有利的。因此如除去砷的最佳pH值为5至7、优选5.5,而除去氟化物的最佳pH值为6至8、优选7。
实施例1涂覆方法
优选使用氯化物和硫酸盐作为铁盐溶液。氯化铁和硫酸铁溶液均采用饮用水级,它们适合在饮用水处理中使用。提供的氯化铁溶液含10.58%(重量)的Fe离子,提供的硫酸铁溶液含12.0%(重量)的Fe离子。
按照以下样品,将活性铝土AA400G(28×48目大小:0.3-0.6mm)在铁盐溶液中涂覆:样品1:
采用蒸馏水将9.5g氯化铁浓缩液稀释至1000ml。往该溶液中加入1000g AA400G,并将所得的淤浆搅拌至确保所述盐在氧化铝上均匀覆盖。一旦氧化铝吸取(吸收)了所有的液体,将所述样品转移到盘上并在烘箱中在160℃下干燥3小时。经过这个阶段的干燥后,所有的样品均能自由流动。经过干燥后,洗涤样品以除去表面粉尘。优选随后将它们浸渍在水/碳酸钠溶液中24小时以确保所述铁盐几乎完全水解并阻止任何铁盐浸出。所得产品含有大约0.15%(重量)的Fe2O3形式的Fe。样品2:
采用蒸馏水将47.2g氯化铁浓缩液稀释至1000ml。往该溶液中加入1000g AA400G,并将所得的淤浆搅拌至确保所述盐在氧化铝上均匀覆盖。随后如实施例1的步骤进行。所得产品含有大约0.61%(重量)的Fe2O3形式的Fe。样品3:
采用蒸馏水将8.3g硫酸铁浓缩液稀释至1000ml。往该溶液中加入1000g AA400G,并将所得的淤浆搅拌至确保所述盐在氧化铝上均匀覆盖。随后如实施例1的步骤进行。所得产品含有大约0.15%(重量)的Fe2O3形式的Fe。样品4:
采用蒸馏水将41.2g硫酸铁浓缩液稀释至1000ml。往该溶液中加入1000g AA400G,并将所得的淤浆搅拌至确保所述盐在氧化铝上均匀覆盖。随后如实施例1的步骤进行。所得产品含有大约0.63%(重量)的Fe2O3形式的Fe。样品5:
采用蒸馏水将412g硫酸铁浓缩液稀释至1000ml。往该溶液中加入1000g AA400G,并将所得的淤浆搅拌至确保所述盐在氧化铝上均匀覆盖。随后如实施例1的步骤进行。所得产品含有大约6.0%(重量)的Fe2O3形式的Fe。瓶式检验
a)在室温下(~20℃)进行瓶式检验。所用的颗粒材料包括活性铝土AA400G和根据上述方法涂覆铁的AA400G。称量0.05g、0.1g、0.5g和1g的预定量(prefixed amount)的颗粒材料,放进装备有磁随动件的250ml锥形瓶中。往所述瓶中加入200ml的原料水(受污染的水)并采用磁搅拌10分钟至几天的时间。经过搅拌后,使用0.2μm膜滤器将所述溶液过滤。
b)将5g的颗粒材料放在装备有磁随动件的烧瓶中。往所述瓶中加入1000ml的原料水(受污染的水)并采用磁搅拌1小时。在此期间,每隔1、5和10分钟将样品移出并用0.2μm膜滤器过滤。分析
通过原子吸收光谱(氢化物发生-原子吸收方法)测量溶液中的砷,该方法可检测出2μg/L的痕量限或在良好的条件下可低至0.5μg/L的检测限。实施例2使用氧化铁覆盖的活性铝土除去氟化物
为了对氧化铁覆盖的活性铝土与无处理的活性铝土对除去氟化物的效力进行比较,进行以下的测试。
1.制备含有-20mg/L F的溶液并使用离子选择电极分析氟化物浓度。
2.将0.05g、0.1g和0.5g各种颗粒材料的样品放在容器中。
3.往每个容器中加入200ml的氟化物溶液。
4.在室温下,采用磁搅拌器整夜搅拌所装的物质。
5.从每个容器中用注射器抽取出大约50ml的淤浆并过滤。
6.使用离子选择电极分析每个过滤溶液的氟化物浓度。
测试的介质为●AA400G-商业可得的活性铝土●样品2●样品4●样品5结果
初始氟化物的浓度为21mg/L F。在下表中显示的结果为最终的F浓度,单位mg/L。
           加入的颗粒材料
     0.05g    0.1g    0.5g
    AA400G      19.5    19.0    17.3
    样品2      15.9    11.9    12.5
    样品4      19.0    18.1    13.2
    样品5      19.3    18.1    11.4
结论
具体在介质添加水平为0.1g和更高的情况下,使用铁覆盖的活性铝土可比无处理的活性铝土除去更多的氟化物。增加在活性铝土表面存在的氧化铁的量将增加除去的氟化物的量。
实施例3
进行在实施例1中描述的瓶式检验。进行测试的水为含有26mg/L的砷的废水。进行测试的颗粒材料为样品5的产物(实施例1,含有大约6.0%(重量)Fe2O3形式的Fe。),在这里指AAFS50,和(为了对照)作为商品的活性铝土AA400G。在30或60分钟内使1.5g或2g的颗粒材料连续与200ml的废水接触。结果在下表1中列出。
              表1:使用铁覆盖的活性铝土从废水中除去的砷
    介质  颗粒材料的重量(g)   接触时间(分钟)   最终砷的浓度(mg/L)
    AAFS50      1.5     30     0.58
    AA400G      1.5     30     3.32
    AAFS50      2     60     0.35
    AA400G      2     60     0.78
实施例4
进行在实施例1中描述的瓶式检验,使用含有初始砷浓度为14.7μg/L的钻孔水。将200ml的水样品与不同量的颗粒材料一起搅拌不同的接触时间。结果在表2中列出。
    表2:使用活性铝土AA400G或氧化铁覆盖的AAFS50从钻孔水中除去的砷
颗粒材料的重量(g)   接触时间(分钟)     AA400G最终砷的浓度(μg/L)     AAFS50最终砷的浓度(μg/L)
    0.1     10        4     <=0.5
    0.1     20        2     <=0.5
    0.1     30        1.7     <=0.5
    0.1     60        0.6     <=0.5
    0.1     960        0.5     <=0.5
    0.5     10        0.97     <=0.5
    0.5     20        <=0.5     <=0.5
    0.5     30        <=0.5     <=0.5
    0.5     60        <=0.5     <=0.5
    0.5     960        <=0.5     <=0.5
    1     10        0.56     <=0.5
    1     20        <=0.5     <=0.5
    1     30        <=0.5     <=0.5
    1     60        <=0.5     <=0.5
    1     960        <=0.5     <=0.5
实施例5
使用掺入了大约31至33μg/L的砷(砷酸钠)的去离子水进行上述的瓶式检验。两种颗粒材料为在前面描述的活性铝土AA400G和氧化铁覆盖的活性铝土AAFS50。将不同的量的(0.1g、0.5g和1.0g)每一种颗粒材料与200ml测试水一起搅拌不同的时间(10、20、30、60分钟和16小时(960分钟))。结果在附图1和2中列出,其中以最终砷的浓度对接触时间作图。
实施例6
使用掺入了至多为1700μg/L的砷(砷酸钠)的去离子水进行上述的瓶式检验。两种颗粒材料为在实施例5中描述的,每1000ml的砷溶液使用0.05g的材料并搅拌960分钟。结果显示在图3中。

Claims (14)

1.水处理产品,该产品是具有至少1.0m2/g的比表面积的颗粒材料,或通过这些颗粒材料结合在一起形成的人工制品,并具有不可溶的三价铁覆盖层。
2.权利要求1的水处理产品,其中所述颗粒材料具有至少5μm的平均粒径。
3.权利要求1或权利要求2的水处理产品,其中所述颗粒材料为氧化铝基材料。
4.权利要求3的水处理产品,其中所述氧化铝基材料选自铁铝氧石、三水合氧化铝和氧化铝。
5.权利要求3或权利要求4的水处理产品,其中所述氧化铝基材料为活性铝土或活性铁铝氧石。
6.权利要求1至5的任何一项的水处理产品,其中所述颗粒材料具有至少10m2/g的比表面积。
7.制备权利要求1至6的任何一项的水处理产品的方法,该方法包括将所述颗粒材料或由所述颗粒材料形成的人工制品在铁溶液中浸泡,并将经浸涂的颗粒材料或人工制品回收和干燥。
8.制备水处理产品的方法,该方法包括采用酸性液体处理含铁矿石以从矿石中浸出铁,随后提高所述液体的pH值以在所述矿石的表面形成沉淀的三价铁覆盖层。
9.水处理产品,该产品为在其表面具有沉淀三价铁覆盖层的含铁矿石。
10.权利要求9的水处理产品,其中所述矿石为铁铝氧石。
11.权利要求10的水处理产品,其中所述铁铝氧石为活性铁铝氧石。
12.水处理方法,该方法包括使要处理的水与权利要求1至6或9至11的任何一项的水处理产品接触,随后回收含有减少了有机物质或阳离子或阴离子浓度的已处理的水。
13.权利要求12的水处理方法,其中所述已处理的水己降低了至少一种重金属或As或Se或F的浓度。
14.权利要求13的水处理方法,其中所述已处理的水具有不超过10μg/L的降低了的As浓度。
CNB998065978A 1998-04-01 1999-04-01 水处理产品及其方法 Expired - Lifetime CN1183042C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GBGB9807071.7A GB9807071D0 (en) 1998-04-01 1998-04-01 Water treatment product and method
GB9807071.7 1998-04-01
GB9817295.0 1998-08-07
GBGB9817295.0A GB9817295D0 (en) 1998-08-07 1998-08-07 Water treatment product & method

Publications (2)

Publication Number Publication Date
CN1303353A true CN1303353A (zh) 2001-07-11
CN1183042C CN1183042C (zh) 2005-01-05

Family

ID=26313411

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB998065978A Expired - Lifetime CN1183042C (zh) 1998-04-01 1999-04-01 水处理产品及其方法

Country Status (15)

Country Link
US (1) US6599429B1 (zh)
EP (1) EP1070019B1 (zh)
JP (1) JP4630456B2 (zh)
CN (1) CN1183042C (zh)
AT (1) ATE298314T1 (zh)
AU (1) AU743349B2 (zh)
BR (1) BR9909332A (zh)
CA (1) CA2327087C (zh)
CZ (1) CZ301421B6 (zh)
DE (1) DE69925903T2 (zh)
HU (1) HUP0102208A3 (zh)
RO (1) RO121424B1 (zh)
RU (1) RU2225251C2 (zh)
SK (1) SK285261B6 (zh)
WO (1) WO1999050182A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1443600B (zh) * 2002-03-12 2012-08-15 朗盛德国有限责任公司 吸附剂混合物
CN104066503A (zh) * 2011-12-15 2014-09-24 通用电气公司 砷污染整治方法和用于此方法的包覆吸附剂的组合物
CN106900923A (zh) * 2015-12-22 2017-06-30 云南天士力帝泊洱生物茶集团有限公司 一种降低速溶茶中重金属含量的方法
CN106999909A (zh) * 2014-11-25 2017-08-01 格瑞福技术有限公司 用于氟离子和磷、砷的含氧阴离子的高容量吸附剂及其制备方法

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0004579D0 (en) * 2000-02-25 2000-04-19 Capital Controls Ltd Apparatus and method for water treatment
BR0114198B1 (pt) * 2000-09-26 2012-02-22 unidades de filtração percorrìveis por meios para remoção de substáncias nocivas de lìquidos.
US20020074292A1 (en) 2000-09-26 2002-06-20 Andreas Schlegel Adsorption vessels
WO2002026630A1 (de) * 2000-09-26 2002-04-04 Bayer Aktiengesellschaft Kontakt- und adsorber-granulate
CN1466548B (zh) 2000-09-26 2013-01-02 朗盛德国有限责任公司 接触剂和吸附剂颗粒
US6468942B1 (en) * 2000-11-16 2002-10-22 John J. Sansalone Absorptive-filtration media for the capture of waterborne or airborne constituents
US7341661B2 (en) 2000-11-16 2008-03-11 Unit Process Technologies, L.L.C. Clarification and sorptive-filtration system for the capture of constituents and particulate matter in liquids and gases
US6921739B2 (en) 2000-12-18 2005-07-26 Aquatic Treatment Systems, Inc. Anti-microbial and oxidative co-polymer
US6914034B2 (en) * 2001-08-27 2005-07-05 Calgon Carbon Corporation Adsorbents for removing heavy metals and methods for producing and using the same
US7429330B2 (en) * 2001-08-27 2008-09-30 Calgon Carbon Corporation Method for removing contaminants from fluid streams
US20050093189A1 (en) * 2001-08-27 2005-05-05 Vo Toan P. Adsorbents for removing heavy metals and methods for producing and using the same
US20050247635A1 (en) * 2001-08-27 2005-11-10 Vo Toan P Adsorbents for removing heavy metal cations and methods for producing and using these adsorbents
US7429551B2 (en) * 2001-08-27 2008-09-30 Calgon Carbon Corporation Adsorbents for removing heavy metals
WO2005061099A1 (en) * 2003-12-16 2005-07-07 Calgon Carbon Corporation Adsorbents for removing heavy metals and methods for producing and using the same
WO2004026464A1 (en) * 2002-09-18 2004-04-01 Wisconsin Alumni Research Foundation Removal of arsenic and other anions using novel adsorbents
US6849187B2 (en) 2002-12-10 2005-02-01 Engelhard Corporation Arsenic removal media
US6863825B2 (en) 2003-01-29 2005-03-08 Union Oil Company Of California Process for removing arsenic from aqueous streams
GB0311154D0 (en) * 2003-05-15 2003-06-18 Alcan Int Ltd Method of preparing a water treatment product
DE10327110A1 (de) * 2003-06-13 2005-01-05 Bayer Chemicals Ag Arsenadsorbierende Ionenaustauscher
US20050029198A1 (en) * 2003-08-08 2005-02-10 Frederick Tepper Heavy metals absorbent and method of use
US20050051493A1 (en) * 2003-09-05 2005-03-10 Carl Hensman Material and method for water treatment
WO2005058482A1 (en) * 2003-12-16 2005-06-30 Calgon Carbon Corporation Adsorbents for removing heavy metals and methods for producing and using the same
EP1697263B1 (en) * 2003-12-23 2014-04-23 IHE Delft Method for the removal of metals from a metal-containing aqueous medium
JP3740491B1 (ja) * 2004-07-23 2006-02-01 三井金属鉱業株式会社 亜鉛電解製錬における電解液中のフッ素を吸着かつ脱離できるフッ素吸脱剤、及び、当該フッ素吸脱剤を用いたフッ素除去方法
GB0506041D0 (en) * 2005-03-24 2005-04-27 Ge Healthcare Ltd Stripping method
US20060237370A1 (en) * 2005-04-21 2006-10-26 Craft Frank S Sr Method of removing arsenic from potable water
US20070114179A1 (en) * 2005-09-07 2007-05-24 Badger Timothy J Removal of fluoride ions from aqueous solutions
US20080047902A1 (en) 2006-08-28 2008-02-28 Basf Catalysts Llc Media for the removal of heavy metals and volatile byproducts from drinking water
US8066874B2 (en) 2006-12-28 2011-11-29 Molycorp Minerals, Llc Apparatus for treating a flow of an aqueous solution containing arsenic
WO2009049321A1 (en) * 2007-10-11 2009-04-16 Acuity Sparkle , Ltd. Method and device for fluoride removal from drinking water
US8252087B2 (en) 2007-10-31 2012-08-28 Molycorp Minerals, Llc Process and apparatus for treating a gas containing a contaminant
US8349764B2 (en) 2007-10-31 2013-01-08 Molycorp Minerals, Llc Composition for treating a fluid
WO2011016038A1 (en) 2009-08-05 2011-02-10 Technion Research And Development Foundation Ltd Method for removal of selenium contaminants from aqueous fluids
US9233863B2 (en) 2011-04-13 2016-01-12 Molycorp Minerals, Llc Rare earth removal of hydrated and hydroxyl species
US9725335B2 (en) * 2013-03-12 2017-08-08 The Frazer And Cruickshank Living Trust Dated 3/24/1982 Removal of copper from aqueous streams using an iron promoted activated alumina
PE20161083A1 (es) 2014-01-31 2016-11-19 Goldcorp Inc Proceso para la separacion de al menos un sulfuro de metal a partir de una mena o concentrado de sulfuros mixtos
EP3113859A4 (en) 2014-03-07 2017-10-04 Secure Natural Resources LLC Cerium (iv) oxide with exceptional arsenic removal properties
US10526215B2 (en) 2014-07-21 2020-01-07 The Frazer And Cruickshank Living Trust Selenium and other contaminants removal process
US11583846B2 (en) 2014-11-25 2023-02-21 Graver Technologies Llc High capacity adsorbent for oxyanions and cations and method for making the same
RU2592525C2 (ru) * 2014-12-23 2016-07-20 Общество с ограниченной ответственностью "Научно-инновационный центр электроимпульсных технологий" ООО "НИЦ ЭИТ" Сорбент для очистки водных сред от тяжелых металлов и способ его получения
US11944952B2 (en) 2021-05-28 2024-04-02 Fuel Tech, Inc. Removing contaminants from water with adsorbents

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB490972A (en) * 1936-09-12 1938-08-24 Permutit Co Ltd Improvements in the treatment of water
US3499833A (en) * 1964-10-12 1970-03-10 Laura B Ferris Electrophoresis device
GB1195289A (en) * 1966-11-10 1970-06-17 Universal Oil Prod Co Oxidation of Soluble Sulfide Compounds
US3499837A (en) * 1967-11-20 1970-03-10 Johns Manville Waste water treatment phosphate removal by iron oxide
US4040982A (en) * 1976-01-12 1977-08-09 Nalco Chemical Company Ozonization catalyst
CA1067627A (en) * 1976-08-20 1979-12-04 Gerald D. Lutwick Removal of arsenic from water
DE3131255C2 (de) * 1981-08-07 1986-02-13 VEG-Gasinstituut N.V., Apeldoorn Verfahren zur Herstellung eines Eisen-(III)-Oxid-Katalysators oder - Absorptionsmittels
GB8326845D0 (en) * 1983-10-07 1983-11-09 Alcan Int Ltd Composition for water treatment
ZA873788B (en) 1986-05-30 1989-04-26 Water Res Commission Semipermeable membranes
FR2604920B1 (fr) 1986-10-10 1988-12-02 Ceraver Membrane de filtration ceramique et procede de fabrication
SU1551659A1 (ru) * 1986-10-28 1990-03-23 Производственное объединение "Грузгорнохимпром" Способ очистки сточных вод от соединений мышь ка
US5369072A (en) * 1988-05-10 1994-11-29 University Of Washington Granular media for removing contaminants from water and methods for making the same
US5271848A (en) * 1991-01-18 1993-12-21 Smith Rodney W Treating of waste water with bauxite to remove phosphates from the waste water
CN1086195A (zh) * 1992-10-24 1994-05-04 林传庆 高效净水剂的生产方法及其产品聚硫氯化铁铝
CN1099731A (zh) * 1994-07-06 1995-03-08 卢建国 沸石改水砂的处理方法
CN1136535A (zh) * 1995-05-22 1996-11-27 海南省木材公司 聚氯化铝铁和聚合硫酸铝铁产品及工艺
JP3291994B2 (ja) * 1995-09-06 2002-06-17 住友化学工業株式会社 ヒ酸イオンの除去方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1443600B (zh) * 2002-03-12 2012-08-15 朗盛德国有限责任公司 吸附剂混合物
CN104066503A (zh) * 2011-12-15 2014-09-24 通用电气公司 砷污染整治方法和用于此方法的包覆吸附剂的组合物
CN106999909A (zh) * 2014-11-25 2017-08-01 格瑞福技术有限公司 用于氟离子和磷、砷的含氧阴离子的高容量吸附剂及其制备方法
CN106999909B (zh) * 2014-11-25 2020-07-14 格瑞福技术有限公司 用于氟离子和磷、砷的含氧阴离子的高容量吸附剂及其制备方法
CN106900923A (zh) * 2015-12-22 2017-06-30 云南天士力帝泊洱生物茶集团有限公司 一种降低速溶茶中重金属含量的方法

Also Published As

Publication number Publication date
RO121424B1 (ro) 2007-05-30
CN1183042C (zh) 2005-01-05
EP1070019B1 (en) 2005-06-22
RU2225251C2 (ru) 2004-03-10
EP1070019A1 (en) 2001-01-24
HUP0102208A2 (hu) 2001-10-28
CA2327087C (en) 2011-01-18
CA2327087A1 (en) 1999-10-07
AU3429399A (en) 1999-10-18
JP4630456B2 (ja) 2011-02-09
DE69925903T2 (de) 2006-05-04
ATE298314T1 (de) 2005-07-15
DE69925903D1 (de) 2005-07-28
SK14642000A3 (sk) 2001-04-09
SK285261B6 (sk) 2006-10-05
JP2002509801A (ja) 2002-04-02
CZ301421B6 (cs) 2010-02-24
US6599429B1 (en) 2003-07-29
BR9909332A (pt) 2000-12-12
HUP0102208A3 (en) 2005-09-28
WO1999050182A1 (en) 1999-10-07
AU743349B2 (en) 2002-01-24
CZ20003435A3 (cs) 2001-11-14

Similar Documents

Publication Publication Date Title
CN1183042C (zh) 水处理产品及其方法
US6849187B2 (en) Arsenic removal media
US8648008B2 (en) Arsenic adsorbing composition and methods of use
US7763566B2 (en) Method and composition for sorbing toxic substances
EA014285B1 (ru) Сорбент для очистки воды от ионов тяжелых металлов
Musso et al. pH, ionic strength, and ion competition effect on Cu (II) and Ni (II) sorption by a Na-bentonite used as liner material
Ghosh et al. Studies on management of chromium (VI)–contaminated industrial waste effluent using hydrous titanium oxide (HTO)
AL-Darwish et al. Kinetics of fluoride adsorption onto native and Mg (OH) 2-amended limestone
De Boodt Application of the sorption theory to eliminate heavy metals from waste waters and contaminated soils
Förstner et al. Impact of natural nanophases on heavy-metal retention in zeolite-supported reactive filtration facilities for urban run-off treatment
Namasivayam et al. Adsorptive removal of silica onto ‘waste’Fe (III)/Cr (III) hydroxide: kinetics and isotherms
Anfaresi et al. Bangka’s Tin Sea Sand-Fe3O4 as A Removal of Heavy Metals in By-Product of Tin Ore Processing
MXPA00009514A (en) Water treatment product and method
Noura et al. Kinetics of fluoride adsorption onto native and Mg (OH)
ZA200005116B (en) Water treatment product and method.
Kragović et al. Immobilization of lead from aqueous solutions using the natural and Fe (III) modified zeolite
MAI et al. CHARACTERIZATION AND REUSING OF EXHAUSTED PETROLEUM GAS MOLECULAR SIEVES SORBENT MEDIA TO BE USED IN THE TREATMENT OF INDUSTRIAL WASTEWATER
Leskinen Investigations of the use of natural organic matter as a remediation material
HRP20010752A2 (en) Process for the preparation of gelatinous flocculant for chemical and physical treatment of water
Debasish et al. Removal of Arsenic (V) from Aqueous Solutions by Using Natural Minerals
Al-Laqtaha et al. REMOVAL OF HEAVY METALS AND DYES FROM AQUEOUS SOLUTION BY DATE PITS
EP1215176A1 (en) Method for liquid chromate ion and oxy-metal ions removal and stabilization
Radaideh et al. The influence of pH on heavy metals absorption on natural volcanic tuffs
JPH0749120B2 (ja) 汚泥の処理方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20050105

CX01 Expiry of patent term