RU2225251C2 - Продукт для обработки воды и способ - Google Patents

Продукт для обработки воды и способ Download PDF

Info

Publication number
RU2225251C2
RU2225251C2 RU2000127716/15A RU2000127716A RU2225251C2 RU 2225251 C2 RU2225251 C2 RU 2225251C2 RU 2000127716/15 A RU2000127716/15 A RU 2000127716/15A RU 2000127716 A RU2000127716 A RU 2000127716A RU 2225251 C2 RU2225251 C2 RU 2225251C2
Authority
RU
Russia
Prior art keywords
water
product
water treatment
iron
alumina
Prior art date
Application number
RU2000127716/15A
Other languages
English (en)
Other versions
RU2000127716A (ru
Inventor
Фарид АЗИЗИАН (GB)
Фарид АЗИЗИАН
Original Assignee
Алкан Интернэшнл Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9807071.7A external-priority patent/GB9807071D0/en
Priority claimed from GBGB9817295.0A external-priority patent/GB9817295D0/en
Application filed by Алкан Интернэшнл Лимитед filed Critical Алкан Интернэшнл Лимитед
Publication of RU2000127716A publication Critical patent/RU2000127716A/ru
Application granted granted Critical
Publication of RU2225251C2 publication Critical patent/RU2225251C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/583Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing fluoride or fluorine compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/911Cumulative poison
    • Y10S210/912Heavy metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Removal Of Specific Substances (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Physical Water Treatments (AREA)

Abstract

Продукт для обработки воды представляет собой состоящий из макрочастиц материал, имеющий удельную площадь поверхности, равную по крайней мере 1,0 м2/г, или изделие, полученное связыванием такого состоящего из макрочастиц материала, и имеющий нерастворимое покрытие из гидратированного оксида трехвалентного железа. Предпочтительно, состоящий из макрочастиц материал представляет собой материал на основе оксида алюминия. Продукт эффективен при обработке воды для удаления органических веществ, катионов или анионов, особенно As, Se или F. 3 с. и 12 з.п. ф-лы, 3 ил., 3 табл.

Description

Поскольку пределы по выбросу металлов становятся более жесткими, адсорбционные процессы для высокоэффективной обработки содержащих металлы жидких отходов становятся весьма привлекательными. Адсорбция способна удалять многие металлы в более широком диапазоне рН и до значительно более низких уровней, чем осаждение. Кроме того, адсорбцией часто можно удалять металлы, находящиеся в виде комплексов, которые не контролируются традиционными способами обработки.
Адсорбент, обычно присутствующий в процессах обработки металлов, представляет собой аморфный оксид железа, называемый ферригидрит. Недостаток такой обработки состоит в том, что ферригидрит образует продукт в виде осадка, из которого трудно удалить очищенную воду. Для того чтобы обратиться к этой проблеме, был описан продукт для обработки воды, который состоит из промытого песка, покрытого ферригидритом (М. Edwards and M. M. Benjamin, Jnl. Water Poll Control Fed, Vol.61, Part 9, 1989, pages 1523-1533). Этот продукт был также испытан на удаление мышьяка из питьевой воды (F. G.A. Vagliasindi et al., Proceedings Water Quality Technology Conference, Part 2, New Orleans, 12-16 November 1995, pages 1829-1853).
В Европе и США разрешенные количества мышьяка в питьевой воде были, или в скором времени будут, уменьшены от 200 мкг/л до 50 мкг/л и до 20 или 10 мкг/л. В качестве продукта для обработки воды с целью удаления мышьяка был предложен активированный оксид алюминия (патент Канады 2090989). Частицы активированного оксида алюминия являются жесткими и легко отделяемыми от обработанной воды. Хотя активированный оксид алюминия сам является активным адсорбентом мышьяка и других тяжелых металлов, существует необходимость в еще более эффективном материале. В связи с этой необходимостью было сделано обращение к WO 96/37438, который предлагает составы для обработки воды, включающие в себя оксиды лантана и оксид алюминия. Однако оксиды лантана были бы чрезмерно дорогими для обработки очень больших объемов воды.
Согласно настоящему изобретению обеспечивается продукт для обработки воды, который представляет собой состоящий из макрочастиц материал, имеющий удельную площадь поверхности, равную по крайней мере 1,0 м2/г, или изделие, полученное связыванием такого состоящего из макрочастиц материала, и имеющий нерастворимое покрытие трехвалентным железом. Предпочтительно, состоящий из макрочастиц материал является пористым и может иметь открытые поры, закрытые поры или поры обоих типов. Изделия, полученные из состоящего из макрочастиц материала, как правило, имеют цилиндрическую форму или форму кирпича.
Состоящий из макрочастиц материал предпочтительно представляет собой неметаллический, минеральный или неорганический материал. Предпочтительные материалы, которые могут работать в качестве подложек для покрытия трехвалентным железом, включают цеолиты, феррьерит, морденит, содалит, глины со слоистой структурой и активированные глины. Предпочтительными являются материалы на основе оксида алюминия, включающие в себя сам оксид алюминия и боксит. Состоящий из макрочастиц материал или полученное из него изделие предпочтительно являются крепкими, устойчивыми к дроблению и не образуют мелкий порошок во время использования.
Необходимо, чтобы индивидуальные частицы в состоящем из макрочастиц материале, которые могут получаться а результате сращивания маленьких частиц, были бы достаточно большими, чтобы легко отделяться от обрабатываемой воды. Индивидуальные частицы могут быть мелкими, со средним размером, равным 5 или 10 мкм, хотя грубые частицы более легко отделяются от обработанной воды. Предпочтительно, когда индивидуальные частицы имеют средний размер от 100 до 5000 мкм, например, от 200 до 1000 мкм. Их можно сформовать аггломерированием или гранулированием или дроблением.
Используемый по настоящему изобретению состоящий из макрочастиц материал может представлять собой тригидрат оксида алюминия, например, производимый в процессе Ваyer, или кальцинированный оксид алюминия. Предпочтительно, здесь используют активированный оксид алюминия, продукт, полученный нагреванием тригидрата оксида алюминия при 300-800oС. Активированный оксид алюминия имеет преимущество, заключающееся в огромной удельной площади поверхности. Так, например, коммерческий продукт AAS400G имеет удельную площадь поверхности, равную 260-380 м2/г. И наоборот, пористая среда может представлять собой боксит или другой содержащий оксид алюминия минерал, такой как цеолит, глина или гидротальцит. Не летучие компоненты боксита включают в себя от 40 или 50-95 вес.% оксида алюминия вместе с от 3 или 5-25 вес.% оксида железа (III). Активированный боксит, предпочтительно, представляет собой материал, который можно получить нагреванием минерала при температуре в диапазоне 300-800oС, и обычно может иметь удельную площадь поверхности, равную от 100 или 150-200 м2/г. Поскольку содержащееся в боксите железо скорее присутствует внутри, чем на поверхности частицы, оно обычно не рассматривается как часть нерастворимого покрытия трехвалентного железа по настоящему изобретению.
Состоящие из макрочастиц материалы, имеющие высокую удельную площадь поверхности, показывают высокую емкость при адсорбции загрязнений и удаления их из воды. Продукт для обработки воды по настоящему изобретению предпочтительно имеет удельную площадь поверхности, равную 1,0-400 м2/г, например по крайней мере 10 м2/г, в частности по крайней мере 100 м2/г.
Состоящий из макрочастиц материал с осажденным покрытием нерастворимого трехвалентного железа может быть получен посредством пропитывания его раствором трехвалентного железа, например, водным раствором сульфата железа (III) или хлорида железа (III). Воду затем удаляют выпариванием или иным способом и продукт сушат при повышенной температуре, например при 50-500oС и предпочтительно при 50-200oС, чтобы превратить соль железа (III) в нерастворимое покрытие трехвалентного железа, вероятно гидратированный оксид железа (III) или ферригидрат. Подходящей является методика приготовления, описанная в цитированной ранее ссылке М. Edwards. Покрытие железа (III) может составлять от 0,01% до 50%, предпочтительно от 0,1% до 10% от веса продукта для обработки воды.
Другим путем получения покрытого материала, состоящего из макрочастиц, пригодного для крупномасштабного производства, является следующий: активированный оксид алюминия подходящего качества (такой как AA400G 28-48 меш) насыщают в растворе трехвалентного железа, например, хлорида трехвалентного железа или, предпочтительно, сульфата трехвалентного железа с периодическим перемешиванием в течение примерно 6 ч. Для завершения гидролиза и образования покрытия нерастворимого гидратированного оксида трехвалентного железа на активированном оксиде алюминия добавляют раствор гидроксида натрия с применением таких средств, как рН-метр для регулирования рН до 7,5-8. Продукт тщательно промывают для удаления всего тонкоизмельченного материала и сушат при комнатной температуре или при повышенной температуре.
Альтернативный способ получения продукта для обработки воды по настоящему изобретению включает в себя обработку железосодержащей руды кислотосодержащей жидкостью так, чтобы обеспечить выщелачивание железа из руды, а затем увеличение рН жидкости так, чтобы получить покрытие осажденного железа (III) на поверхности руды. Например, руду можно обработать хлористоводородной кислотой при рН примерно 3 и затем рН увеличить до примерно 7 посредством использования гидроксида натрия. Полученный в результате продукт фильтруют, промывают и сушат предпочтительно при повышенной температуре, как указано ранее. В рамки настоящего изобретения также включается продукт для обработки воды, который представляет собой железосодержащую руду, имеющую осажденное железо (III) в качестве покрытия на своей поверхности. Предпочтительно руда является бокситом, особенно активированным бокситом.
Как показано в приведенных ниже примерах, продукт для обработки воды по настоящему изобретению имеет комбинацию положительных свойств: превосходную емкость и силу для быстрой адсорбции неорганических загрязнений из воды, которую необходимо обработать; это жесткий материал, который легко отделяется от обработанной воды и может быть переработан, чтобы удалить неорганические загрязнения, и, таким образом, это позволяет проводить повторное использование без потери его структуры.
Настоящее изобретение также включает в себя способ обработки воды, который включает в себя контакт воды, которую необходимо обработать, с описываемым здесь продуктом для обработки воды, и затем удаление обработанной воды, содержащей пониженную концентрацию органического вещества или катиона или аниона, в частности по крайней мере одного тяжелого металла или As, или Se, или F. Обработка в периодическом режиме обычно включает энергичное перемешивание воды, которую следует обработать, с аликвотой продукта для обработки воды, количество которого выбирают таким образом, чтобы достичь желательной степени очистки воды за желательное время, как правило менее чем 1 ч. Как это хорошо известно, также возможны непрерывные способы.
Оптимальные условия для удаления органических веществ и неорганических веществ, как правило, различаются. В зависимости от природы загрязнения, которое необходимо удалить, может являться благоприятным регулировать рН воды, чтобы улучшить действие продукта для обработки воды. Так, например, мышьяк лучше удаляется при рН от 5 до 7, предпочтительно при 5,5, в то время как фтор лучше удаляется при рН от 6 до 8, предпочтительно при 7.
Пример 1
Процедура введения добавок
В качестве растворов соли трехвалентного железа вначале используют хлорид и сульфат. Как хлорид трехвалентного железа, так и сульфат трехвалентного железа классифицируют как реагенты чистоты питьевой воды, чистота которых является подходящей при обработке годной для питья воды. Раствор хлорида железа (III) поставляют как 10,58 вес.% иона железа и раствор сульфата железа (III) поставляют как 12,0 вес.% по иону железа.
Активированный оксид алюминия AA400G (размер 28•48 меш; 0,3-0,6 мм) добавляют в растворы соли железа (III) по следующим образцам:
Образец 1:
9,5 г концентрата хлорида железа (III) разбавляют до 1000 мл дистиллированной водой. К этому раствору добавляют 1000 г AA400G и взвесь перемешивают, чтобы обеспечить равномерное покрытие соли на оксиде алюминия. Как только оксид алюминия захватил (адсорбировал) всю жидкость, образец переносят в лоток и сушат в печи при 160oС в течение 3 ч. После этого периода сушки все образцы обладают свободной текучестью. После сушки образцы промывают, чтобы удалить поверхностную пыль. Предпочтительно, чтобы затем их погрузили в раствор вода/карбонат натрия в течение 24 ч, чтобы обеспечить почти полный гидролиз соли железа (III) и предотвратить какое-либо выщелачивание соли железа. Продукт содержит приблизительно 0,15 вес.% Fe в виде Fе2О3.
Образец 2:
47,2 г концентрата хлорида железа (III) разбавляют до 1000 мл дистиллированной водой. К этому раствору добавляют 1000 г AA400G и взвесь перемешивают, чтобы обеспечить равномерное покрытие соли на оксиде алюминия. Процедуру затем доводят до конца, как в образце 1. Продукт содержит приблизительно 0,61 вес.% Fe в виде Fе2О3.
Образец 3:
8,3 г концентрата сульфата железа (III) разбавляют до 1000 мл дистиллированной водой. К этому раствору добавляют 1000 г AA400G и взвесь перемешивают, чтобы обеспечить равномерное покрытие соли на оксиде алюминия. Процедуру затем доводят до конца, как в образце 1. Продукт содержит приблизительно 0,15 вес.% Fe в виде Fе2О3.
Образец 4:
41,2 г концентрата сульфата железа (III) разбавляют до 1000 мл дистиллированной водой. К этому раствору добавляют 1000 г AA400G и взвесь перемешивают, чтобы обеспечить равномерное покрытие соли на оксиде алюминия. Процедуру затем доводят до конца, как в образце 1. Продукт содержит приблизительно 0,63 вес.% Fe в виде Fе2O3.
Образец 5:
412 г концентрата сульфата железа (III) разбавляют до 1000 мл дистиллированной водой. К этому раствору добавляют 1000 г AA400G и взвесь перемешивают, чтобы обеспечить равномерное покрытие соли на оксиде алюминия. Процедуру затем доводят до конца, как в образце 1. Продукт содержит приблизительно 6,0 вес.% Fe в виде Fе2О3.
Тестовые эксперименты в сосуде
a. Тест в сосуде провели при комнатной температуре (~20oС). Использованные материалы, состоящие из макрочастиц, включали активированный оксид алюминия AA400G и AA400G, в который добавили железо по вышеуказанным процедурам. Предварительно установленное количество состоящего из макрочастиц материала, в диапазоне 0,05, 0,1, 0,5 и 1 г, поместили в 250-мл коническую колбу, оборудованную магнитной мешалкой. К этому добавили 200 мл неочищенной воды (загрязненной воды) и перемешали магнитной мешалкой в течение периода времени от 10 мин до нескольких дней. После перемешивания растворы профильтровали, используя 0,2 мкм мембранные фильтры.
b. В колбу, оборудованную магнитной мешалкой, поместили 5 г состоящего из макрочастиц материала. Добавили 1000 мл неочищенной воды (загрязненной воды) и перемешали магнитной мешалкой в течение периода времени, равного 1 ч, в течение которого при интервалах, равных 1, 5 и 10 мин, отбирали и фильтровали образцы, используя 0,2-мкм мембранные фильтры.
Анализ
Мышьяк в растворе измеряют атомно-абсорбционной спектрометрией (метод атомной абсорбции с водородным генерированием), который может определить следовые количества, равные 2 мкг/л или, при благоприятных условиях, до 0,5 мкг/л.
Пример 2
Использование активированного оксида алюминия, покрытого оксидом железа, для удаления фтора
Чтобы исследовать эффективность удаления фтора активированным оксидом алюминия, который покрыт оксидом железа, по сравнению с необработанным активированным оксидом алюминия, провели следующий тест.
1. Приготовили раствор, содержащий ~20 мг/л F, и проанализировали его на содержание фтора, используя ион-селективный электрод.
2. В контейнеры поместили 0,05, 0,1 и 0,5 г образцы различных состоящих из макрочастиц материалов.
3. В каждый контейнер добавили 200 мл раствора фтора.
4. Используя магнитные мешалки, перемешали содержимое контейнеров в течение ночи при комнатной температуре.
5. Из каждого контейнера шприцом отобрали и профильтровали приблизительно 50 мл взвеси.
6. Проанализировали концентрацию фтора в каждом профильтрованном растворе, используя ион-селективный электрод.
Протестированные среды представляли собой:
- AA400G - имеющийся в продаже активированный оксид алюминия
- Образец 2
- Образец 4
- Образец 5
Результаты
Исходная концентрация фтора была 21 мг/л F. Результаты, показанные в таблице 1, представляют собой конечную концентрацию F в мг/л.
Выводы
Использование активированного оксида алюминия, покрытого железом, делает возможным большее удаление фтора, чем в случае необработанного активированного оксида алюминия, в частности, при уровнях добавления среды, равных 0,1 г и выше. Увеличение количества оксида железа, присутствующего на поверхности активированного оксида алюминия, увеличило количество удаленного фтора.
Пример 3
Тестовый эксперимент в сосуде провели, как описано в примере 1. Испытываемая вода представляла собой сточные воды, содержащие 26 мг/л мышьяка. Испытываемые состоящие из макрочастиц материалы представляли собой образец 5 (пример 1, содержащий 6,0 вес. % Fe в виде Fе2О3), упоминаемый здесь как AAFS50, и (для сравнения) коммерческий активированный оксид алюминия AA400G. 1,5 г или 2 г состоящего из макрочастиц материала находились в контакте с 200 мл сточных вод в течение 30 или 60 мин. Результаты помещены в таблице 2.
Пример 4
Тестовые эксперименты в сосуде провели, как описано в примере 1, используя воду из скважины, содержащую начальную концентрацию мышьяка 14,7 мкг/л. Образцы воды объемом 200 мл перемешали с различными количествами состоящего из макрочастиц материала в течение различных времен контакта. Результаты представлены в таблице 3.
Пример 5
Тестовые эксперименты в сосуде провели, как было описано выше, используя деионизированную воду, меченную примерно от 31 до 33 мкг/л мышьяка в виде арсената натрия. Два состоящих из макрочастиц материала были такими, как описано ранее, активированный оксид алюминия AA400G и активированный оксид алюминия AAFS50, покрытый оксидом железа. Различные количества каждого состоящего из макрочастиц материала (0,1, 0,5 и 1,0 г) перемешали с 200 мл испытываемой воды в течение различных периодов времени (10, 20, 30, 60 мин и 16 ч (960 мин)). Результаты приводятся на фиг.1 и 2, которые представляют собой графики, показывающие конечную концентрацию мышьяка от времени контакта.
Пример 6
Тестовые эксперименты в сосуде провели, как было описано выше, используя деионизированную воду, меченную примерно до 1700 мкг/л мышьяка в виде арсената натрия. Два состоящих из макрочастиц материала были такими, как описано в примере 5, и они были использованы в пропорции 0,05 г материала на 1000 мл раствора мышьяка и перемешаны в течение 960 мин. Результаты показаны на фиг. 3.

Claims (17)

1. Продукт для обработки воды, включающий состоящий из частиц материал, покрытый нерастворимым оксидом трехвалентного железа, отличающийся тем, что средний размер частиц равен, по крайней мере, 5 мкм и удельная поверхность частиц составляет, по крайней мере, 10 м2/г, а покрытие выполнено из гидратированного оксида трехвалентного железа.
2. Продукт для обработки воды по п.1, в котором состоящий из частиц материал имеет средний размер частиц, равный 100-5000 мкм.
3. Продукт для обработки воды по п.1 или 2, в котором состоящий из частиц материал представляет собой материал на основе оксида алюминия.
4. Продукт для обработки воды по п.3, в котором материал на основе оксида алюминия выбирают из боксита, тригидрата оксида алюминия и оксида алюминия.
5. Продукт для обработки воды по п.3 или 4, в котором материал на основе оксида алюминия представляет собой активированный оксид алюминия или активированный боксит.
6. Продукт для обработки воды по любому из пп.1-5, в котором состоящий из частиц материал имеет удельную площадь поверхности, равную по крайней мере 100 м2/г.
7. Продукт для обработки воды по любому из пп.1-6, в котором продукт обладает способностью адсорбировать неорганические загрязнения из подлежащей обработке воды.
8. Способ получения продукта для обработки воды, охарактеризованного в любом из пп.1-7, предусматривающий пропитку частиц материала водным раствором трехвалентного железа, удаление воды и сушку с обеспечением получения нерастворимого покрытия из гидратированного оксида трехвалентного железа.
9. Продукт для обработки воды по любому из пп.1-7, который представляет собой железосодержащую руду, имеющую осажденное покрытие трехвалентного железа на своей поверхности.
10. Продукт для обработки воды по п.9, где руда представляет собой боксит.
11. Продукт для обработки воды по п.10, где боксит является активированным бокситом.
12. Способ получения продукта для обработки воды по любому из пп.9-11, предусматривающий обработку железосодержащей руды кислотосодержащей жидкостью с выщелачиванием железа из руды, с последующим повышением рН жидкости до получения нерастворимого покрытия из гидратированного оксида железа (III) на поверхности руды.
13. Способ обработки воды, включающий контактирование воды с продуктом, охарактеризованным в любом из пп.1-7 или 9-11, с удалением обработанной воды с пониженной концентрацией органических веществ или катионов или анионов.
14. Способ обработки воды по п.13, где отработанная вода имеет уменьшенную концентрацию, по крайней мере, одного тяжелого металла, или As, или Se, или F.
15. Способ обработки воды по п.14, где отработанная вода имеет пониженную концентрацию As, равную или не более чем 10 мкг/л.
Приоритет по признакам:
01.04.1999 приоритет признака, касающегося размера частиц "по меньшей мере 5 мкм" установлен по п.1;
01.04.1998 - всех остальных признаков по пп.1-15.
RU2000127716/15A 1998-04-01 1999-04-01 Продукт для обработки воды и способ RU2225251C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GBGB9807071.7A GB9807071D0 (en) 1998-04-01 1998-04-01 Water treatment product and method
GB9807071.7 1998-04-01
GB9817295.0 1998-08-07
GBGB9817295.0A GB9817295D0 (en) 1998-08-07 1998-08-07 Water treatment product & method

Publications (2)

Publication Number Publication Date
RU2000127716A RU2000127716A (ru) 2002-10-27
RU2225251C2 true RU2225251C2 (ru) 2004-03-10

Family

ID=26313411

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000127716/15A RU2225251C2 (ru) 1998-04-01 1999-04-01 Продукт для обработки воды и способ

Country Status (15)

Country Link
US (1) US6599429B1 (ru)
EP (1) EP1070019B1 (ru)
JP (1) JP4630456B2 (ru)
CN (1) CN1183042C (ru)
AT (1) ATE298314T1 (ru)
AU (1) AU743349B2 (ru)
BR (1) BR9909332A (ru)
CA (1) CA2327087C (ru)
CZ (1) CZ301421B6 (ru)
DE (1) DE69925903T2 (ru)
HU (1) HUP0102208A3 (ru)
RO (1) RO121424B1 (ru)
RU (1) RU2225251C2 (ru)
SK (1) SK285261B6 (ru)
WO (1) WO1999050182A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2592525C2 (ru) * 2014-12-23 2016-07-20 Общество с ограниченной ответственностью "Научно-инновационный центр электроимпульсных технологий" ООО "НИЦ ЭИТ" Сорбент для очистки водных сред от тяжелых металлов и способ его получения

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0004579D0 (en) * 2000-02-25 2000-04-19 Capital Controls Ltd Apparatus and method for water treatment
AU2002212269A1 (en) * 2000-09-26 2002-04-08 Bayer Aktiengesellschaft Contact and adsorber granulates
WO2002026630A1 (de) 2000-09-26 2002-04-04 Bayer Aktiengesellschaft Kontakt- und adsorber-granulate
US20020074292A1 (en) 2000-09-26 2002-06-20 Andreas Schlegel Adsorption vessels
DE50115837D1 (de) * 2000-09-26 2011-05-12 Lanxess Deutschland Gmbh Adsorptionsbehälter und eisenoxidadsorber
US7341661B2 (en) 2000-11-16 2008-03-11 Unit Process Technologies, L.L.C. Clarification and sorptive-filtration system for the capture of constituents and particulate matter in liquids and gases
US6468942B1 (en) * 2000-11-16 2002-10-22 John J. Sansalone Absorptive-filtration media for the capture of waterborne or airborne constituents
US6921739B2 (en) 2000-12-18 2005-07-26 Aquatic Treatment Systems, Inc. Anti-microbial and oxidative co-polymer
US7429551B2 (en) * 2001-08-27 2008-09-30 Calgon Carbon Corporation Adsorbents for removing heavy metals
US20050247635A1 (en) * 2001-08-27 2005-11-10 Vo Toan P Adsorbents for removing heavy metal cations and methods for producing and using these adsorbents
US20050093189A1 (en) * 2001-08-27 2005-05-05 Vo Toan P. Adsorbents for removing heavy metals and methods for producing and using the same
WO2005061099A1 (en) * 2003-12-16 2005-07-07 Calgon Carbon Corporation Adsorbents for removing heavy metals and methods for producing and using the same
US6914034B2 (en) * 2001-08-27 2005-07-05 Calgon Carbon Corporation Adsorbents for removing heavy metals and methods for producing and using the same
US7429330B2 (en) * 2001-08-27 2008-09-30 Calgon Carbon Corporation Method for removing contaminants from fluid streams
DE10210786A1 (de) 2002-03-12 2003-10-02 Bayer Ag Mischungen aus Adsorbermaterialien
US20040050795A1 (en) * 2002-09-18 2004-03-18 Park Jae Kwang Removal of arsenic and other anions using novel adsorbents
US6849187B2 (en) 2002-12-10 2005-02-01 Engelhard Corporation Arsenic removal media
US6863825B2 (en) 2003-01-29 2005-03-08 Union Oil Company Of California Process for removing arsenic from aqueous streams
GB0311154D0 (en) * 2003-05-15 2003-06-18 Alcan Int Ltd Method of preparing a water treatment product
DE10327110A1 (de) * 2003-06-13 2005-01-05 Bayer Chemicals Ag Arsenadsorbierende Ionenaustauscher
US20050029198A1 (en) * 2003-08-08 2005-02-10 Frederick Tepper Heavy metals absorbent and method of use
US20050051493A1 (en) * 2003-09-05 2005-03-10 Carl Hensman Material and method for water treatment
WO2005082523A1 (en) * 2003-12-16 2005-09-09 Calgon Carbon Corporation Adsorbents for removing heavy metal cations and methods for producing and using these adsorbents
AU2003296270A1 (en) * 2003-12-23 2005-07-14 Ihe Delft Method for the removal of metals from a metal-containing aqueous medium
JP3740491B1 (ja) * 2004-07-23 2006-02-01 三井金属鉱業株式会社 亜鉛電解製錬における電解液中のフッ素を吸着かつ脱離できるフッ素吸脱剤、及び、当該フッ素吸脱剤を用いたフッ素除去方法
GB0506041D0 (en) * 2005-03-24 2005-04-27 Ge Healthcare Ltd Stripping method
US20060237370A1 (en) * 2005-04-21 2006-10-26 Craft Frank S Sr Method of removing arsenic from potable water
US20070114179A1 (en) * 2005-09-07 2007-05-24 Badger Timothy J Removal of fluoride ions from aqueous solutions
US20080047902A1 (en) 2006-08-28 2008-02-28 Basf Catalysts Llc Media for the removal of heavy metals and volatile byproducts from drinking water
US8066874B2 (en) 2006-12-28 2011-11-29 Molycorp Minerals, Llc Apparatus for treating a flow of an aqueous solution containing arsenic
WO2009049321A1 (en) * 2007-10-11 2009-04-16 Acuity Sparkle , Ltd. Method and device for fluoride removal from drinking water
US8349764B2 (en) 2007-10-31 2013-01-08 Molycorp Minerals, Llc Composition for treating a fluid
US8252087B2 (en) 2007-10-31 2012-08-28 Molycorp Minerals, Llc Process and apparatus for treating a gas containing a contaminant
WO2011016038A1 (en) 2009-08-05 2011-02-10 Technion Research And Development Foundation Ltd Method for removal of selenium contaminants from aqueous fluids
US9233863B2 (en) 2011-04-13 2016-01-12 Molycorp Minerals, Llc Rare earth removal of hydrated and hydroxyl species
IN2014CN04255A (ru) * 2011-12-15 2015-07-17 Gen Electric
WO2014150419A1 (en) * 2013-03-12 2014-09-25 MAR Systems, Inc. Removal of copper from aqueous streams using an iron promoted activated alumina
US9885095B2 (en) 2014-01-31 2018-02-06 Goldcorp Inc. Process for separation of at least one metal sulfide from a mixed sulfide ore or concentrate
CN106457073A (zh) 2014-03-07 2017-02-22 安全自然资源有限公司 具有杰出的砷去除性质的氧化铈(iv)
US10526215B2 (en) * 2014-07-21 2020-01-07 The Frazer And Cruickshank Living Trust Selenium and other contaminants removal process
US10343154B2 (en) * 2014-11-25 2019-07-09 Graver Technologies Llc High capacity adsorbent for fluoride ion and oxyanions of phosphorous and arsenic and method for making the same
US11583846B2 (en) 2014-11-25 2023-02-21 Graver Technologies Llc High capacity adsorbent for oxyanions and cations and method for making the same
CN106900923A (zh) * 2015-12-22 2017-06-30 云南天士力帝泊洱生物茶集团有限公司 一种降低速溶茶中重金属含量的方法
US11944952B2 (en) 2021-05-28 2024-04-02 Fuel Tech, Inc. Removing contaminants from water with adsorbents

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB490972A (en) * 1936-09-12 1938-08-24 Permutit Co Ltd Improvements in the treatment of water
US3499833A (en) * 1964-10-12 1970-03-10 Laura B Ferris Electrophoresis device
GB1195289A (en) * 1966-11-10 1970-06-17 Universal Oil Prod Co Oxidation of Soluble Sulfide Compounds
US3499837A (en) * 1967-11-20 1970-03-10 Johns Manville Waste water treatment phosphate removal by iron oxide
US4040982A (en) * 1976-01-12 1977-08-09 Nalco Chemical Company Ozonization catalyst
CA1067627A (en) * 1976-08-20 1979-12-04 Gerald D. Lutwick Removal of arsenic from water
DE3131255C2 (de) * 1981-08-07 1986-02-13 VEG-Gasinstituut N.V., Apeldoorn Verfahren zur Herstellung eines Eisen-(III)-Oxid-Katalysators oder - Absorptionsmittels
GB8326845D0 (en) * 1983-10-07 1983-11-09 Alcan Int Ltd Composition for water treatment
ZA873788B (en) 1986-05-30 1989-04-26 Water Res Commission Semipermeable membranes
FR2604920B1 (fr) 1986-10-10 1988-12-02 Ceraver Membrane de filtration ceramique et procede de fabrication
SU1551659A1 (ru) * 1986-10-28 1990-03-23 Производственное объединение "Грузгорнохимпром" Способ очистки сточных вод от соединений мышь ка
US5369072A (en) * 1988-05-10 1994-11-29 University Of Washington Granular media for removing contaminants from water and methods for making the same
US5271848A (en) * 1991-01-18 1993-12-21 Smith Rodney W Treating of waste water with bauxite to remove phosphates from the waste water
CN1086195A (zh) * 1992-10-24 1994-05-04 林传庆 高效净水剂的生产方法及其产品聚硫氯化铁铝
CN1099731A (zh) * 1994-07-06 1995-03-08 卢建国 沸石改水砂的处理方法
CN1136535A (zh) * 1995-05-22 1996-11-27 海南省木材公司 聚氯化铝铁和聚合硫酸铝铁产品及工艺
JP3291994B2 (ja) * 1995-09-06 2002-06-17 住友化学工業株式会社 ヒ酸イオンの除去方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Пахолков В.С. Гранулированная гидроокись железа, ее физико-химические свойства и применение для очистки термальных и природных вод от мышьяка./В сб. "Химия и технология неорганических сорбентов". - Пермь, 1980, с. 26-33. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2592525C2 (ru) * 2014-12-23 2016-07-20 Общество с ограниченной ответственностью "Научно-инновационный центр электроимпульсных технологий" ООО "НИЦ ЭИТ" Сорбент для очистки водных сред от тяжелых металлов и способ его получения

Also Published As

Publication number Publication date
HUP0102208A2 (hu) 2001-10-28
JP4630456B2 (ja) 2011-02-09
SK285261B6 (sk) 2006-10-05
EP1070019B1 (en) 2005-06-22
EP1070019A1 (en) 2001-01-24
AU3429399A (en) 1999-10-18
CA2327087A1 (en) 1999-10-07
CZ301421B6 (cs) 2010-02-24
CZ20003435A3 (cs) 2001-11-14
DE69925903D1 (de) 2005-07-28
DE69925903T2 (de) 2006-05-04
WO1999050182A1 (en) 1999-10-07
AU743349B2 (en) 2002-01-24
HUP0102208A3 (en) 2005-09-28
BR9909332A (pt) 2000-12-12
RO121424B1 (ro) 2007-05-30
SK14642000A3 (sk) 2001-04-09
CN1303353A (zh) 2001-07-11
ATE298314T1 (de) 2005-07-15
JP2002509801A (ja) 2002-04-02
US6599429B1 (en) 2003-07-29
CA2327087C (en) 2011-01-18
CN1183042C (zh) 2005-01-05

Similar Documents

Publication Publication Date Title
RU2225251C2 (ru) Продукт для обработки воды и способ
AU2019201715B2 (en) Organic-inorganic composite material for removal of anionic pollutants from water and process for the preparation thereof
Neolaka et al. Efficiency of activated natural zeolite-based magnetic composite (ANZ-Fe3O4) as a novel adsorbent for removal of Cr (VI) from wastewater
Prabhu et al. A review on removal of heavy metal ions from waste water using natural/modified bentonite
US6042731A (en) Method of removing arsenic species from an aqueous medium using modified zeolite minerals
Irannajad et al. Removal of Co2+, Ni2+, and Pb2+ by manganese oxide-coated zeolite: equilibrium, thermodynamics, and kinetics studies
US11577215B2 (en) Method for producing absorbent
El Mouzdahir et al. Interaction of stevensite with Cd2+ and Pb2+ in aqueous dispersions
Hashemian MnFe2O4/bentonite nano composite as a novel magnetic material for adsorption of acid red 138
Tokarčíková et al. Experimental verification of regenerable magnetically modified montmorillonite and its application for heavy metals removal from metallurgical waste leachates
US6809062B2 (en) Process for producing an iron-containing sorption material
KR101336824B1 (ko) 칼슘 알루미늄 황산염을 유효성분으로 하는 중금속 처리제
KR20030015599A (ko) 표면개질화된 마그네타이트 분말과 흡착제가 함유된초고속 수처리 분말 및 제조방법
Gorimbo Effect of the Homoionic Form of Clinoptilolite on Ni2 Adsorption Isotherms: A Thermodynamic Study
MXPA00009514A (en) Water treatment product and method
ZA200005116B (en) Water treatment product and method.
Khezami et al. Individual and competitive adsorption of Lead (II) and Nickel (II) ions by chemically activated carbons
Jamil et al. Dolomite as a potential adsorbent in water treatment: pH, turbidity and Pb (II) removal studies
Aloulou et al. Evaluation of TiO2/smectite nanoparticles as an alternative low-cost adsorbent for chromium removal from industrial wastewater
Rasulia et al. Performance of surfactant-modified forms of clinoptilolite and pumice in nitrate removal from aqueous solution
Husni et al. Magnetic-Based Coreshell Nanoparticles as Potential Adsorbents for the Removal of Cu2+ Under Ultraviolet (UV) Light
GB2433217A (en) A filter medium
Kragović et al. Immobilization of lead from aqueous solutions using the natural and Fe (III) modified zeolite
Boddu et al. Adsorption of arsenic (III), arsenic (V) and lead (II) on a new composite chitosan biosorbent
JPH09117777A (ja) クロム含有排水の処理方法