CN1289707C - 二氧化钛·钴磁性膜及其制造方法 - Google Patents

二氧化钛·钴磁性膜及其制造方法 Download PDF

Info

Publication number
CN1289707C
CN1289707C CNB01802601XA CN01802601A CN1289707C CN 1289707 C CN1289707 C CN 1289707C CN B01802601X A CNB01802601X A CN B01802601XA CN 01802601 A CN01802601 A CN 01802601A CN 1289707 C CN1289707 C CN 1289707C
Authority
CN
China
Prior art keywords
titanium dioxide
magnetic film
dioxide cobalt
cobalt magnetic
described titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB01802601XA
Other languages
English (en)
Other versions
CN1388838A (zh
Inventor
鲤沼秀臣
松本祐司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Publication of CN1388838A publication Critical patent/CN1388838A/zh
Application granted granted Critical
Publication of CN1289707C publication Critical patent/CN1289707C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/20Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by evaporation
    • H01F41/205Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by evaporation by laser ablation, e.g. pulsed laser deposition [PLD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/658Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing oxygen, e.g. molecular oxygen or magnetic oxide
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/007Thin magnetic films, e.g. of one-domain structure ultrathin or granular films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/193Magnetic semiconductor compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/26Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers
    • H01F10/28Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers characterised by the composition of the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12986Adjacent functionally defined components

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

提供作为催化剂能力高的光催化剂、同时具有电·光·磁功能的半导体材料及透明磁铁有用的二氧化钛·钴磁性膜,该膜以化学式:Ti1-xCoxO2表示,式中0<x≤0.3,同时Co置换到Ti晶格位置上,且在单晶衬底上外延生长。其晶体结构是锐钛矿结构或金红石结构,带隙能量根据置换到前述Ti晶格位置的前述Co浓度,在3.13eV~3.33eV的范围变化,即使在不低于室温的温度也能保持磁化,且在可见光中透明。制造该膜时,在规定的氧压气氛的真空槽内,以规定的照射条件将规定的激光照射到由以规定的混合比混合的TiO2和Co构成的靶上,使TiO2和Co蒸发,在加热到规定的衬底温度的单晶衬底上成膜。

Description

二氧化钛·钴磁性膜及其制造方法
技术领域
本发明涉及二氧化钛·钴磁性膜及其制造方法,进一步地,涉及利用该磁性膜的在光催化剂、具有电·光·磁功能的半导体材料、透明磁铁等方面有用的材料及其制造方法。
背景技术
二氧化钛(TiO2),由于它的光催化剂功能,所以是在水的光分解和分解除去有害物质方面正在实用化的材料,从能源问题和环境问题的观点出发,希望今后的二氧化钛的光催化剂活性更加提高。
此外,作为半导体材料,Si、GaAs是主流,这些现有的半导体材料是能够实现载波控制的电功能或激光二极管、光电二极管的光·电功能的材料,但也能够实现磁存储器的磁功能的半导体材料还不存在。二氧化钛是其带隙能量处于紫外区域的具有光·电功能的半导体晶体,但如果能够具有该光·电功能而且还具有磁功能,就可以得到能同时实现光·电·磁功能的半导体材料。
历来,被称为磁铁的物质,是不透过可见光的乌黑的物质。如果能够实现透明磁铁,则不用说在纸夹等用途上是便利的,显然这面向广泛的产业领域是有用的。
在对透明绝缘物附加磁性的现有技术中,有图14所示的例子。它是在Al2O3等在可见光中透明的非磁性绝缘物粉末中混入由Co等组成的磁性金属粒子,再烧结得到的。这样的透明磁铁,当增加磁性金属粒子的量时,引起混入磁性金属粒子所致的非磁性绝缘物的非晶形化,结晶性丧失,作为母体透明绝缘物的本来性质的透明性和绝缘性丧失。
作为磁性半导体,有在GaAs中混入Mn的半导体和CdMnTe系的半导体,有具有磁功能以及法拉第旋转等光功能的半导体。但是,这些现有的磁性半导体对于可见光不透明。
如上所述,以往还不存在对可见光透明、并且具有磁功能的半导体材料。
本发明的目的在于:鉴于以上课题,提供不失去二氧化钛结晶性并附加磁功能的、可用作光催化剂、同时具有光·电·磁功能的半导体材料及透明磁铁的二氧化钛·钴磁性膜及其制造方法。
发明内容
为达到上述目的,本发明的二氧化钛·钴磁性膜的特征在于:它以化学式:Ti1-xCoxO2表示,式中0<x≤0.3,是Co置换到Ti晶格位置上的、且在单晶衬底上外延生长的二氧化钛·钴磁性膜。
上述磁性膜的晶体结构,优选为锐钛矿结构,或优选为金红石结构。
上述锐钛矿结构的二氧化钛·钴磁性膜的特征在于:带隙能量对应于置换到Ti晶格位置上的Co的浓度(X),在3.13eV~3.33eV的范围变化。
又,上述二氧化钛·钴磁性膜即使在不低于室温的温度也能保持磁化,并且在可见光中透明。
上述单晶衬底,在晶体结构为锐钛矿结构的场合,优选为LaAlO3(001)衬底。
上述单晶衬底,在晶体结构为金红石结构的场合,优选为Al2O3衬底。
上述单晶衬底,在晶体结构为金红石结构的场合,优选为具有金红石晶体结构的TiO2衬底。
按照上述构成,由于在不失去作为二氧化钛的半导体晶体的结晶性的情况下具有磁功能,所以可作为光催化剂、同时具有光·电·磁功能的半导体材料和透明磁铁使用。
本发明的二氧化钛·钴磁性膜的制造方法的特征在于:在氧压气氛的真空槽内,对由以规定的混合比混合的TiO2和Co构成的靶,在规定的照射条件下照射规定的激光,使TiO2和Co蒸发,在加热到规定的衬底温度的单晶衬底上成膜。
优选的是,可设定上述氧压为1.3×10-3~1.3×10-4Pa(10-5~10-6Torr),衬底温度为500~700℃,激光为KrF受激准分子激光(248nm),照射条件是激光的脉冲功率为1~2焦耳/cm2,而且激光脉冲的照射速度为1~10Hz。
另外,也可以对由以规定的混合比混合的TiO2和Co构成的靶和仅由TiO2构成的靶,以对应于规定的Co浓度的脉冲数比交替照射规定的激光脉冲,使规定的Co浓度的二氧化钛·钴磁性膜形成。
按照上述构成,就能得到具有所要求的Co浓度的、本发明的二氧化钛·钴磁性膜。
如果使用本发明的二氧化钛·钴磁性膜作为光催化剂,则催化剂活性高。
如果使用本发明的二氧化钛·钴磁性膜作为半导体材料,则能够制作同时具有载波控制的电功能、收发光功能和磁控制的磁功能的半导体器件。
如果使用本发明的二氧化钛·钴磁性膜作为透明磁铁,则例如作为纸夹是有用的。
附图的简单说明
本发明基于以下的详细说明和表示本发明的几个实施方式的附图,能够更好地被理解。再者,附图所示的实施方式并不想要对本发明作特定或限定,而仅仅是为了说明本发明和容易理解而记载的。
图中,
图1是本发明的二氧化钛·钴磁性膜的制造装置的概略图。
图2是模式地表示二氧化钛的锐钛矿晶体结构和金红石晶体结构的图。
图3是表示按照本发明的制造方法制作的锐钛矿晶体结构的二氧化钛·钴磁性膜的X射线衍射测定结果的图。
图4是表示按照本发明的制造方法制作的金红石晶体结构的二氧化钛·钴磁性膜的X射线衍射测定结果的图。
图5是表示由断面方向看到的按照本发明制作的锐钛矿晶体结构的二氧化钛·钴磁性膜的TEM(透射电子衍射)测定结果的图。
图6是表示对按照本发明使Co浓度作各种变化从而制作的锐钛矿晶体结构的二氧化钛·钴磁性膜的c轴方向的晶格常数进行测定的结果的曲线图。
图7是表示本发明的Co浓度8%的锐钛矿晶体结构的二氧化钛·钴磁性膜的透射率测定结果的曲线图。
图8是用扫描型SQUID显微镜拍摄的、显示锐钛矿晶体结构的二氧化钛·钴磁性膜的磁畴结构的图。
图9是用扫描型SQUID显微镜拍摄的、显示金红石晶体结构的二氧化钛·钴磁性膜的磁畴结构的图。
图10是用扫描型SQUID显微镜拍摄的、显示各种Co浓度的锐钛矿晶体结构的二氧化钛·钴磁性膜的磁畴结构的图。
图11是表示本发明的锐钛矿晶体结构的二氧化钛·钴磁性膜的磁化磁滞特性的图。
图12是表示本发明的锐钛矿晶体结构的二氧化钛·钴磁性膜的磁化特性的温度依存性的图。
图13是表示本发明的Co浓度不同的锐钛矿晶体结构的二氧化钛·钴磁性膜的光吸收特性的图。
图14是说明对透明绝缘物附加磁性的现有技术的图。
实施发明的最佳方式
以下,基于图1~图13,说明本发明的二氧化钛·钴磁性膜的最佳
实施方式。
图1是本发明的二氧化钛·钴磁性膜的制造装置的概略图。
图1中,该制造装置10作为激光烧蚀堆积装置而构成,在真空室17内,装有衬底11和与衬底对向配设的靶12,在真空室17的外方,配设通过窗口对靶12照射脉冲激光的激光装置13和加热衬底11的加热装置14。此外,在衬底11的与靶12对向的表面上,膜片15以部分覆盖的方式可移动地支持着该衬底11。再者,16是导入氧的喷管。
上述衬底11,在使锐钛矿晶体结构的二氧化钛·钴磁性膜外延生长时,由晶格不匹配比较小的透明衬底LaAlO3(001)构成,以其表面成为(001)面的方式成形。另外,上述衬底11,在使金红石晶体结构的二氧化钛·钴磁性膜外延生长时,可以是Al2O3或具有金红石晶体结构的TiO2单晶衬底。
上述靶12,例如是在金红石晶体结构的TiO2中掺杂10mol%的Co,再将其在1000℃烧结所得到的。
再者,也可以使用上述组成的靶和仅由金红石晶体结构的TiO2构成的靶这两个靶,对这些靶交替照射规定数比率的激光脉冲来制作靶12。此时,各个靶保持在可支持多个靶的多靶支架18上,通过多靶支架18的回转轴19,能够选择性地将各靶载带到上述激光装置13的激光照射位置。
上述激光装置13所用的激光,例如是发射248nm激光的KrF受激准分子激光,将该激光的脉冲光能量密度调整为1~2J/cm2中的任一个值,以1~10个/秒、即速度1~10Hz照射该激光脉冲。
上述加热装置14,是使用Nd:YAG激光的衬底加热装置,即使是氧化性气氛也可将衬底11加热到高温。再者,衬底加热装置也可以是通常的灯光加热器。
在上述真空室内保持至约1.3×10-7Pa(1×10-9Torr)的真空后,通过气体导入阀16导入氧,使氧分压成为约1.3×10-3~1.3×10-4Pa(10-5~10-6Torr)。
接着,说明本发明的二氧化钛·钴磁性膜的晶体结构。图2是模式地表示二氧化钛(TiO2)的晶体结构的图,图2(a)图示了锐钛矿晶体结构和金红石晶体结构中的Ti配位位置(黑点),图2(b)模式地示出由锐钛矿晶体结构及金红石晶体结构中的Ti和O构成的8面体配位体的配置。此外,图2(c)是锐钛矿晶体结构和金红石晶体结构中的Ti和O的键架构模型。
图3是表示按照本发明的制造方法制作的锐钛矿晶体结构的二氧化钛·钴磁性膜的X射线衍射测定结果。图3(a)示出XRD(X射线衍射仪)的衍射图形。图3(b)示出成膜时的RHEED(反射电子衍射)结果。
测定中所用的二氧化钛·钴磁性膜,是在LaAlO3(001)衬底上,通过对在金红石晶体结构的TiO2中掺杂10mol%的Co的靶和仅由金红石晶体结构的TiO2构成的靶,交替照射规定数比率的上述激光脉冲而成膜的Co浓度5.8%的二氧化钛·钴磁性膜。再者,Co浓度采用EPMA(电子探针微量分析器)确定。衬底温度、氧分压分别为650℃、1.3×10-4Pa(10-6Torr)。
由图3(a)的衍射图形判断,按照本发明的制造方法制作的二氧化钛·钴磁性膜具有锐钛矿晶体结构,在衬底上呈c轴取向。另外,由图3(b)的RHEED的结果判断,每个单分子层都外延生长。
图4是按照本发明的制造方法制作的金红石晶体结构的二氧化钛·钴磁性膜的X射线衍射测定结果。
该测定中用的金红石结构的二氧化钛·钴磁性膜,除了将Al2O3衬底、或金红石结构的TiO2衬底用于外延单晶衬底外,与上述的锐钛矿晶体结构的二氧化钛·钴磁性膜的制作条件相同。
由图4的衍射图形判断,按照本发明的方法制作的二氧化钛·钴磁性膜具有金红石晶体结构,在衬底上呈(101)轴取向。另外,虽未图示,但由RHEED的测定结果确认,每个单分子层外延生长。
图5是表示上述锐钛矿晶体结构的二氧化钛·钴磁性膜的断面方向的TEM(透射电子衍射)测定结果的衍射图象。如图5表明的那样,由于可看到基于Ti和Co的晶格排列的有序排列的衍射点,因此判断在本发明的锐钛矿晶体结构的二氧化钛·钴磁性膜中,Co置换到Ti的晶格点位置上。此外,虽省略了图示,但确认:在金红石晶体结构的二氧化钛·钴磁性膜中,也同样地是Co置换到Ti的晶格点位置上。
图6是表示对使Co浓度作各种变化而制作的锐钛矿晶体结构的二氧化钛·钴磁性膜的c轴方向的晶格常数进行测定的结果的图。如图6表明的那样,判断出晶格常数大致与Co浓度成比例地变大。由其结果还判断,Co置换到Ti的晶格点位置上。
如图5、图6表明的那样,判断出本发明的二氧化钛·钴磁性膜,即使含有具有磁性特性的Co原子,也维持着作为半导体的晶体结构。
图7是表示Co浓度8%的上述锐钛矿晶体结构的二氧化钛·钴磁性膜的透射率测定结果的曲线图。由该图判断出,本发明的二氧化钛·钴磁性膜在可见光中透明。另外,虽省略了图示,但也可确认,金红石晶体结构的二氧化钛·钴磁性膜对可见光也是透明的。
图8是用扫描型SQUID显微镜拍摄的、显示锐钛矿晶体结构的二氧化钛·钴磁性膜的磁畴结构测定结果的象图。
在图8中,横轴的浓度标度表示以微特斯拉表示的磁化强度,+、-表示磁化方向。此项测定是用扫描型SQUID显微镜测定的,测定温度分别是3K、30K及60K,测定面积为200μm×200μm。
图9是用扫描型SQUID显微镜拍摄的、显示金红石晶体结构的二氧化钛·钴磁性膜的磁畴结构测定结果的象图。
纵轴的浓度标度表示以微特斯拉表示的磁化强度,测定温度是3K,测定面积为200μm×200μm。
该测定中所用的金红石晶体结构的二氧化钛·钴磁性膜,是在图中由左向右连续变化Co浓度而制作的。左端的Co浓度为14.6%,右端的Co浓度为15.4%。
图10是使用与图8同样的手段测定各种Co浓度的锐钛矿晶体结构的二氧化钛·钴磁性膜的磁畴结构的图。横轴的浓度标度表示以微特斯拉表示的磁化强度,+、-表示磁化方向。由图10表明的那样,判断出随着Co浓度变大,磁化变大。
图11是表示上述锐钛矿晶体结构的二氧化钛·钴磁性膜的磁化特性的曲线图,图11(a)是显示磁滞特性的图,纵轴以μB单位表示平均一个Co原子的磁矩,横轴表示平行施加到磁性膜表面的磁场强度,测定温度为300K。此外,图11(b)表示剩余磁矩、即剩余磁化因温度造成的退磁特性。
图12是表示上述锐钛矿晶体结构的二氧化钛·钴磁性膜的磁化特性的温度依存性的曲线图。施加的磁场强度为200高斯(Gauss),测定温度范围为0~400K。
如图7~图12表明的那样,本发明的二氧化钛·钴磁性膜具有磁畴结构,随着Co浓度增大其磁化变大。此外,在0~400K的温度范围,能够产生剩余磁化。即能够磁铁化,而且即使在400K的高温中其磁化也不消失。
图13是表示本发明的Co浓度不同的锐钛矿晶体结构的二氧化钛·钴磁性膜的光吸收特性的曲线图。各个吸收曲线显示为良好的半导体晶体,由吸收端求出的带隙能量为3.13~3.33eV.
如图14表明的那样,判断出本发明的二氧化钛·钴磁性膜是带隙能量根据Co浓度的不同而变化的良好的半导体晶体。
由以上的说明可以理解,本发明的二氧化钛·钴磁性膜是Co原子置换到Ti的晶格位置上的半导体晶体,具有磁畴结构,能够形成剩余磁化,该剩余磁化即使在400K时也不消失。而且在可见光中透明,并能根据掺杂的Co浓度的不同而改变带隙能量。另外,按照本发明的二氧化钛·钴磁性膜的制造方法,能够制作本发明的二氧化钛·钴磁性膜。
TiO2的光催化剂反应,是吸收具有不低于TiO2的带隙能量的光子而产生的空穴和自由电子所致的氧化还原反应,但这些空穴和自由电子在生成的同时,再结合的比例也相当高,光催化剂效率不太高。如果使用本发明的二氧化钛·钴磁性膜作为光催化剂,则通过Co所致的磁化,能够使空穴和自由电子的再结合比例减少。因而光催化剂效率变高。
历来,电子计算机等中使用的数据是记录保存在磁性薄膜圆盘等上。但是,这种以往方法,必须在CPU外部设置这样的记录装置,另外,由于必需机械驱动部分,所以欠缺紧凑性和可靠性。如果使用本发明的二氧化钛·钴磁性膜作为半导体材料,就能够将CPU和数据记录部集成在同一衬底上。因而可以使这种装置的紧凑性和可靠性提高。进一步地期待着作为充分利用其透明性的透明显示器和电子纸等电路驱动部的透明元件材料而加以利用。
产业上的利用可能性
如以上说明的那样,使用本发明的二氧化钛·钴磁性膜,能够提供催化剂能力高的光催化剂、同时具有电·光·磁功能的半导体材料、以及透明磁铁。
进一步地,按照本发明的二氧化钛·钴磁性膜的制造方法,能够可靠地制造上述二氧化钛·钴磁性膜。

Claims (13)

1.一种二氧化钛·钴磁性膜,其特征在于:它以化学式:Ti1-xCoxO2表示,式中0<x≤0.3,并且,Co置换到Ti晶格位置上、且在单晶衬底上外延生长。
2.权利要求1所述的二氧化钛·钴磁性膜,其特征在于:晶体结构是锐钛矿结构。
3.权利要求1所述的二氧化钛·钴磁性膜,其特征在于:晶体结构是金红石结构。
4.权利要求1或2所述的二氧化钛·钴磁性膜,其特征在于:带隙能量根据置换到前述Ti晶格位置上的前述Co的浓度,在3.13eV~3.33eV的范围变化。
5.权利要求1~3的任一项所述的二氧化钛·钴磁性膜,其特征在于:即使在不低于室温的温度也能保持磁化,并且在可见光中透明。
6.权利要求1或2所述的二氧化钛·钴磁性膜,其特征在于:上述单晶衬底为LaAlO3(001)衬底。
7.权利要求1或3所述的二氧化钛·钴磁性膜,其特征在于:上述单晶衬底为Al2O3衬底。
8.权利要求1或3所述的二氧化钛·钴磁性膜,其特征在于:上述单晶衬底为具有金红石晶体结构的TiO2衬底。
9.权利要求1所述的二氧化钛·钴磁性膜的制造方法,其特征在于:在1.3×10-3~1.3×10-4Pa的氧压气氛的真空槽内,以脉冲功能密度为1~2焦耳/cm2和激光脉冲的照射速度为1~10Hz将波长248nm的KrF受激准分子激光照射到由TiO2和Co构成的靶上,使上述TiO2和Co蒸发,在加热到500~700℃的衬底温度的单晶衬底上成膜。
10.权利要求1所述的二氧化钛·钴磁性膜的制造方法,其特征在于:在1.3×10-3~1.3×10-4Pa的氧压气氛的真空槽内,对由TiO2和Co构成的靶和仅由TiO2构成的靶,在脉冲功能密度为1~2焦耳/cm2和激光脉冲的照射速度为1~10Hz条件下,以对应于Co浓度的脉冲数比交替照射波长248nm的KrF受激准分子激光,在加热到500~700℃的衬底温度的单晶衬底上形成上述Co浓度的二氧化钛·钴磁性膜。
11.一种光催化剂,其特征在于:使用了权利要求1~3的任一项所述的二氧化钛·钴磁性膜。
12.一种半导体材料,其特征在于:使用了权利要求1~3的任一项所述的二氧化钛·钴磁性膜,并具有磁功能。
13.一种透明磁铁,其特征在于:使用了权利要求1~3的任一项所述的二氧化钛·钴磁性膜。
CNB01802601XA 2000-08-30 2001-08-17 二氧化钛·钴磁性膜及其制造方法 Expired - Fee Related CN1289707C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000261050 2000-08-30
JP261050/00 2000-08-30
JP91276/01 2001-03-27
JP2001091276A JP3569763B2 (ja) 2000-08-30 2001-03-27 二酸化チタン・コバルト磁性膜及びその製造方法

Publications (2)

Publication Number Publication Date
CN1388838A CN1388838A (zh) 2003-01-01
CN1289707C true CN1289707C (zh) 2006-12-13

Family

ID=26598791

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB01802601XA Expired - Fee Related CN1289707C (zh) 2000-08-30 2001-08-17 二氧化钛·钴磁性膜及其制造方法

Country Status (6)

Country Link
US (2) US6919138B2 (zh)
EP (1) EP1314793A4 (zh)
JP (1) JP3569763B2 (zh)
KR (1) KR100560553B1 (zh)
CN (1) CN1289707C (zh)
WO (1) WO2002018668A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7521039B2 (en) * 2002-11-08 2009-04-21 Millennium Inorganic Chemicals, Inc. Photocatalytic rutile titanium dioxide
JP4612340B2 (ja) * 2003-05-21 2011-01-12 独立行政法人科学技術振興機構 ビスマスを構成元素に含む多元系酸化物単結晶の製造方法
JP3944584B2 (ja) * 2004-01-23 2007-07-11 国立大学法人東北大学 コバルトドープ二酸化チタン膜の作製方法、コバルトドープ二酸化チタン膜、及び多層膜構造
JP4102880B2 (ja) * 2004-02-23 2008-06-18 国立大学法人東北大学 多層膜構造体、及び素子構造
WO2006103853A1 (ja) * 2005-03-25 2006-10-05 Japan Science And Technology Agency 二酸化チタンを活性層として用いる半導体装置およびその製造方法
SG127749A1 (en) * 2005-05-11 2006-12-29 Agency Science Tech & Res Method and solution for forming anatase titanium dioxide, and titanium dioxide particles, colloidal dispersion and film
CN100350520C (zh) * 2005-06-03 2007-11-21 山东大学 非晶态高掺杂COxTi1-xO2铁磁性半导体薄膜的制备方法
WO2007022462A2 (en) * 2005-08-19 2007-02-22 North Carolina State University Solar photocatalysis using transition-metal oxides combining d0 and d6 electron configurations
JP4604197B2 (ja) * 2005-12-01 2010-12-22 国立大学法人横浜国立大学 磁性粉末微粒子の製造方法
US8313846B2 (en) 2005-12-13 2012-11-20 National Institute Of Materials Science Magnetic artificial superlattice and method for producing the same
CN1929049B (zh) * 2006-08-14 2011-08-03 南京大学 利用激光诱导效应改变CrO2薄膜磁性的方法
JP2008262109A (ja) * 2007-04-13 2008-10-30 Fujitsu Ltd 光送受信装置
WO2009151085A1 (ja) * 2008-06-10 2009-12-17 独立行政法人物質・材料研究機構 電磁波吸収材料
JP5214745B2 (ja) * 2009-02-05 2013-06-19 Jx日鉱日石金属株式会社 酸化チタンを主成分とする薄膜及び酸化チタンを主成分とする焼結体スパッタリングターゲット
WO2010110412A1 (ja) 2009-03-27 2010-09-30 日鉱金属株式会社 Ti-Nb系酸化物焼結体スパッタリングターゲット、Ti-Nb系酸化物薄膜及び同薄膜の製造方法
CN101850251B (zh) * 2010-06-10 2011-12-07 大连大学 可磁分离二氧化钛可见光催化剂的制备方法
JP5603304B2 (ja) * 2011-08-04 2014-10-08 日本電信電話株式会社 光触媒の製造方法
CN102654671B (zh) * 2011-11-14 2014-09-10 京东方科技集团股份有限公司 液晶显示器及其制作方法
JP5891990B2 (ja) * 2012-07-30 2016-03-23 コニカミノルタ株式会社 光学式検体検出装置
WO2014027364A1 (en) 2012-08-17 2014-02-20 Council Of Scientific & Industrial Research A process for decomposition of organic synthetic-dyes using semiconductor-oxides nanotubes via dark-catalysis
JP2016505172A (ja) * 2013-02-05 2016-02-18 リム,ソン−キュ 補助レンズ着脱型眼鏡
JP6145332B2 (ja) * 2013-06-20 2017-06-07 昭和電工株式会社 磁気記録媒体、磁気記憶装置
TW202300959A (zh) * 2021-03-11 2023-01-01 美商應用材料股份有限公司 藉由物理氣相沉積所沉積的氧化鈦光學裝置薄膜

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100210579B1 (ko) * 1990-01-08 1999-07-15 가나이 쓰도무 강자성막 및 그 제조방법과 이것을 사용한 자기헤드
US5145713A (en) * 1990-12-21 1992-09-08 Bell Communications Research, Inc. Stoichiometric growth of compounds with volatile components
ES2155941T5 (es) * 1995-09-15 2012-04-30 Rhodia Chimie Sustrato con revestimiento fotocatalítico a base de dióxido de titanio y dispersiones orgánicas a base de dióxido de titanio
US6027766A (en) * 1997-03-14 2000-02-22 Ppg Industries Ohio, Inc. Photocatalytically-activated self-cleaning article and method of making same
JPH1192176A (ja) * 1997-07-22 1999-04-06 Bridgestone Corp 光触媒膜及びその作製方法

Also Published As

Publication number Publication date
WO2002018668A1 (en) 2002-03-07
EP1314793A1 (en) 2003-05-28
US6919138B2 (en) 2005-07-19
US20030091500A1 (en) 2003-05-15
EP1314793A4 (en) 2007-10-03
CN1388838A (zh) 2003-01-01
KR100560553B1 (ko) 2006-03-15
JP2002145622A (ja) 2002-05-22
JP3569763B2 (ja) 2004-09-29
US20050233163A1 (en) 2005-10-20
KR20020068041A (ko) 2002-08-24

Similar Documents

Publication Publication Date Title
CN1289707C (zh) 二氧化钛·钴磁性膜及其制造方法
JP4298194B2 (ja) 自然超格子ホモロガス単結晶薄膜の製造方法。
Park et al. Position-controlled hydrothermal growth of ZnO nanorods on arbitrary substrates with a patterned seed layer via ultraviolet-assisted nanoimprint lithography
Ma et al. Facile method to prepare CdS nanostructure based on the CdTe films
Rahm et al. Pulsed-laser deposition and characterization of ZnO nanowires with regular lateral arrangement
Wang et al. Magnetic and optical properties of Co-doped ZnO nanorod arrays
Parikh et al. Recent progress in the synthesis of oxide films from liquid solutions
Fan et al. Kinetically Controlled Fabrication of Single‐Crystalline TiO2 Nanobrush Architectures with High Energy {001} Facets
Zhang et al. Large‐Scale Perovskite Single Crystal Growth and Surface Patterning Technologies
CN1313400C (zh) 通过内层电子激发由石墨制造钻石的方法
Katerynchuk et al. Structure of oxidized and unoxidized end faces of GaSe layered crystals
CN1438168A (zh) 激光诱导制备尺寸可控高密度纳米硅量子点列阵
Chanda et al. Study of bio-polymer derived graphene oxide-ZnO nano-composite thin films
Chen et al. Retracted Article: Multifunctional tin dioxide materials: advances in preparation strategies, microstructure, and performance
Akiba et al. Formation of a nanogroove-striped NiO surface using atomic steps
Alshamarti et al. Photoluminescence, Optical Energy Gap and Electrical properties of Mn-Doped ZnO Nanorods Synthesized by CBD Method
Kassim et al. EXPERIMENTAL AND DFT STUDY ON THE EFFECTS OF Mn DOPING ON THE STRUCTURAL AND OPTICAL PROPERTIES OF CUO NANOPARTICLES
Ai et al. Fabrication of GaN nanorods in a large scale on Si (111) substrate by ammoniating technique
SUTJIPTO et al. Piezoelectric Properties of Mg Doped ZnO Thin Film using Sol-Gel Method and Spin Coating
Ab Sukor et al. Piezoelectric Properties of Mg Doped ZnO Thin Film using Sol-Gel Method and Spin Coating
Shim Multifunctional Ceramic Nanostructure Thin Films Prepared by Solution Processing
Abdeltwab et al. Fabrication, Structural Characterization, Dielectric Analysis and Thermal Properties of Novel Flexible Polymer Composite Films
Ogurcovs et al. Photoelectrical and Gas-sensing Properties of Nanostructured ZnO/CuO Samples
Misiurev et al. Brief Theoretical Overview of Bi-Fe-O Based Thin Films. Materials 2022, 15, 8719
Yeh ZnO micro-and nanostructures from Deep-UV photosensitive solutions for electronic and magnetic applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: INDEPENDENT ADMINISTRATIVE LEGAL PERSON S SCIENCE

Free format text: FORMER OWNER: JAPAN SCIENCE + TECH CORPORATION

Effective date: 20040618

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20040618

Address after: Saitama

Applicant after: Independent Administrative Corporation Japan Science & Tech Corp.

Address before: Saitama

Applicant before: Japan Science and Technology Corp.

C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061213

Termination date: 20100817