WO2009151085A1 - 電磁波吸収材料 - Google Patents

電磁波吸収材料 Download PDF

Info

Publication number
WO2009151085A1
WO2009151085A1 PCT/JP2009/060636 JP2009060636W WO2009151085A1 WO 2009151085 A1 WO2009151085 A1 WO 2009151085A1 JP 2009060636 W JP2009060636 W JP 2009060636W WO 2009151085 A1 WO2009151085 A1 WO 2009151085A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
wave absorbing
film
absorbing material
magnetic
Prior art date
Application number
PCT/JP2009/060636
Other languages
English (en)
French (fr)
Inventor
実 長田
佐々木 高義
Original Assignee
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人物質・材料研究機構 filed Critical 独立行政法人物質・材料研究機構
Priority to JP2010516872A priority Critical patent/JP5626649B2/ja
Priority to US12/997,338 priority patent/US20110183133A1/en
Priority to EP09762515.6A priority patent/EP2306799B1/en
Publication of WO2009151085A1 publication Critical patent/WO2009151085A1/ja
Priority to US13/559,986 priority patent/US20120292554A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/193Magnetic semiconductor compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • H05K9/0096Shielding materials being light-transmitting, e.g. transparent, translucent for television displays, e.g. plasma display panel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/007Thin magnetic films, e.g. of one-domain structure ultrathin or granular films
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention relates to a transparent electromagnetic wave absorbing material that exhibits suitable electromagnetic wave absorbing performance when applied to a wide field of information communication technology such as a mobile phone, a wireless LAN, and a mobile electronic device.
  • Electromagnetic waves have been used for broadcasting, radar, ship communication, microwave ovens, etc. for some time, but in recent years, their use has expanded dramatically due to remarkable developments in information and communication technology.
  • the use of GHz band electromagnetic waves capable of transmitting large-capacity information has increased rapidly, and cellular phones (1.5 GHz), ETC (5.8 GHz), satellite broadcasting (12 GHz), wireless LANs (2.45 to 60). .0 GHz), in-vehicle rear-end collision prevention radar (76 GHz), and the like.
  • electromagnetic wave absorbers those based on magnetic materials have been used as electromagnetic wave absorbing materials for a long time because they have the property of absorbing electromagnetic wave energy by magnetic resonance.
  • Ni—Zn and Ni—Zn—Co ferrite magnetic materials have excellent electromagnetic wave absorption characteristics in current high frequency electromagnetic wave use bands (0.1 to 15 GHz) such as mobile phones and wireless LANs.
  • An electromagnetic wave absorber in which a magnetic material is combined with rubber or resin, and an electromagnetic wave absorbing film produced by a sputtering method or a plating method have been developed.
  • an electromagnetic wave absorber called a composite sheet in which ferrite magnetic particles are dispersed in a resin is used, and this electromagnetic wave absorptive composite sheet is stuck on a printed circuit board and its magnetic permeability is used.
  • a method of removing a noise component in the GHz band superimposed on a signal conducted by an imaginary part (magnetic loss) of the signal is employed.
  • the electromagnetic wave absorbing materials that have been developed so far need to have a thickness of at least 0.05 to 0.1 mm in order to obtain sufficient performance, leading to further miniaturization and higher integration of mobile devices. It was difficult to respond.
  • conventional ferrite-based electromagnetic wave absorbing materials can absorb electromagnetic waves only in a specific narrow frequency range depending on the chemical composition of the powder and the thickness of the radio wave absorber, and can be widely used in various frequency bands.
  • a product with general versatility has not been developed. For this reason, it is necessary to prepare an electromagnetic wave absorber having a specific chemical composition and thickness according to the target frequency.
  • Patent Document 1 a titania nanosheet in which a magnetic element such as cobalt or iron has already been substituted has been proposed (Patent Document 1).
  • these titania nanosheets have been confirmed to have excellent magneto-optical Faraday characteristics in the short wavelength region, and the cobalt substitution substance alone is about 10,000 degrees / cm in the ultraviolet region, and the cobalt substitution product and the iron substitution product.
  • Non-Patent Document 1 reports that a giant magneto-optical effect of about 300,000 degrees / cm is manifested in two types of superlattice films. JP 2006-199556 A Advanced Materials 18, 295-299 (2006).
  • the present invention is to provide a highly versatile electromagnetic wave absorbing material that is transparent and stably exhibits electromagnetic wave absorbing performance in various GHz bands.
  • Invention 1 is an electromagnetic wave absorbing material mainly comprising a magnetic film, wherein the magnetic film is composed of a titania nanosheet in which a 3d magnetic metal element is substituted at a titanium lattice position.
  • Invention 2 is the electromagnetic wave absorbing material of Invention 1, wherein the titania nanosheet is a two-dimensional combination of a titanium oxygen octahedron block and a 3d magnetic metal element oxygen octahedron block as constituent minimum units.
  • Invention 3 is the electromagnetic wave absorbing material of Invention 1 or 2, wherein the titania nanosheet is obtained by peeling off any one of the layered titanium oxides represented by the following composition formula or a hydrate thereof. It is characterized by.
  • Composition formula A x Ti 1-y M y O 2 (A is at least one selected from H, Li, Na, K, Rb, Cs, and 0 ⁇ x ⁇ 1; M is V, Cr, It is at least one selected from Mn, Fe, Co, Ni, and Cu, and 0 ⁇ y ⁇ 1).
  • Invention 4 is the electromagnetic wave absorbing material according to any one of Inventions 1 to 3, wherein the transparent magnetic material includes a titania nanosheet and a binder.
  • Invention 5 is the electromagnetic wave absorbing material of Invention 4, characterized in that the nonmagnetic polymer compound is an organic polycation.
  • Invention 6 is the electromagnetic wave absorbing material according to Invention 4 or 5, characterized in that the magnetic film is a laminate of a titania nanosheet and a binder.
  • Invention 7 is the electromagnetic wave absorbing material according to any one of Inventions 4 to 5, wherein the magnetic film is formed on a substrate.
  • Invention 8 is characterized in that, in the electromagnetic wave absorbing material according to any one of Inventions 1 to 5, the thickness of the magnetic film is 10 nm to 10 ⁇ m.
  • an electromagnetic wave absorbing material utilizing the visible light transparency possessed by a transparent magnetic material. Further, such an electromagnetic wave absorbing material is manufactured at a low cost by using a titanium oxide-based safe material. We were able to.
  • the second invention by using a titania nanosheet having two-dimensional anisotropy, magnetic resonance is manifested in a high frequency range due to magnetic anisotropy due to shape anisotropy, and the GHz band It was possible to produce a material exhibiting a high electromagnetic wave absorption effect.
  • the third invention further enables precise control of the magnetic properties of the titania nanosheet, and enables the production of a material exhibiting a high electromagnetic wave absorption effect in the GHz band and free control of the properties.
  • a magnetic film made of a titania nanosheet can be easily and accurately realized, and is suitable for various mobile electronic devices such as mobile phones and wireless LANs. It can be used as an electromagnetic wave absorbing element.
  • the fifth invention it has become possible to design and manufacture a high-quality electromagnetic wave absorbing film using a titania nanosheet and having a desired film thickness and electromagnetic wave absorbing characteristics.
  • an electromagnetic wave absorbing element that can manufacture a magnetic film with higher accuracy and quality by multilayering of titania nanosheets and a binder and is excellent in electromagnetic wave absorption is realized.
  • an electromagnetic wave absorbing material having high versatility is provided by forming a magnetic film on various base materials.
  • the electromagnetic wave absorbing performance can be realized in the band of 1 to 15 GHz. Therefore, along with the development of a versatile electromagnetic wave absorbing material that stably exhibits the electromagnetic wave absorbing performance in various GHz bands, Applications to the quasi-microwave band (1-5 GHz) suitable for various mobile electronic devices such as telephones and wireless LANs have become possible.
  • FIG. 1 is a diagram schematically illustrating a cross-sectional structure of an electromagnetic wave absorber composed of a multilayer film of titania nanosheets of the present invention.
  • FIG. 2 is an ultraviolet / visible absorption spectrum and optical photograph of the electromagnetic wave absorber film shown in Example 1.
  • FIG. 3 is a graph showing the results of measuring the electromagnetic wave absorption characteristics of the electromagnetic wave absorber film shown in Example 1 by the free space method.
  • FIG. 4 is an ultraviolet / visible absorption spectrum and optical photograph of the electromagnetic wave absorber film shown in Example 2.
  • FIG. 5 is a graph showing the results of measuring the electromagnetic wave absorption characteristics of the electromagnetic wave absorber film shown in Example 2 by the free space method.
  • FIG. 6 is a graph showing the results of measuring electromagnetic wave absorption characteristics of the electric field absorber film shown in Example 3 by the free space method.
  • the present invention has the characteristics as described above, and an embodiment thereof will be described below.
  • FIG. 1 is a diagram schematically illustrating a cross-sectional structure of an electromagnetic wave absorber composed of a multilayer film of titania nanosheets according to an embodiment of the present invention.
  • (1) shows a substrate made of, for example, quartz glass
  • (2) shows a binder such as a nonmagnetic polymer formed on the substrate
  • (3) shows a 3d magnetic metal element constituting the magnetic film.
  • a titania nanosheet substituted at the position of a titanium lattice (hereinafter, simply expressed as a titania nanosheet in the present invention) is shown.
  • the substrate (1) is not limited to quartz glass, for example, and may be other types of materials such as metal electrodes such as gold and platinum, Si substrates, plastics, etc.
  • the titania nanosheet (3) may be disposed directly on the top.
  • the titania nanosheet (3) is obtained by peeling a layered titanium compound obtained by substituting a 3d magnetic metal element into a titanium lattice position into one layer which is a basic minimum unit of crystal structure by soft chemical treatment. It is a transparent magnetic body having a shape. Although titania nanosheets containing no 3d magnetic metal element have no magnetic properties, ferromagnetism is exhibited by substituting the 3d magnetic metal element for the titanium lattice position.
  • the magnetic material film which is a main constituent material, is composed of such a titania nanosheet (3).
  • the titania nanosheet (3) is composed of its constituent minimum units. It is a two-dimensional combination of a titanium oxygen octahedral block and a 3d magnetic metal element oxygen octahedral block. Specifically, it is a transparent magnetic material having a sheet shape with a thickness of about 1 nm (corresponding to several atoms).
  • the greater the width and length of titania nanosheet (3) and the greater the anisotropy with respect to thickness the better the electromagnetic wave absorbing performance can be expected. It is difficult to do at this time.
  • the width and length can be controlled by adjusting the heat treatment (firing) temperature of the starting layered titanium compound before peeling or by using a single crystal for the starting layered titanium compound. It is possible to synthesize a titania nanosheet (3) having a width and length adjusted in the range of 100 nm to 100 ⁇ m. Thus, even if the nanosheets have various widths and lengths, a general-purpose electromagnetic wave absorber can be constructed because it has a unique property that electromagnetic waves can be stably and stably absorbed in a wide frequency range.
  • Such a titania nanosheet (3) is obtained by separating a single layer from a layered titanium oxide obtained by substituting a 3d magnetic metal element into a titanium lattice position to one layer which is a structural unit thereof.
  • Various titania nanosheets (3) may be used as long as they have magnetic properties obtained by substituting the 3d magnetic metal element at the titanium lattice position.
  • the composition formula Ti 1- y My Examples include O 2 (where M is at least one selected from magnetic metals selected from V, Cr, Mn, Fe, Co, Ni, Cu, and 0 ⁇ y ⁇ 1). Specifically, for example, it can be exemplified those represented by a composition formula such as Ti 0.8 Co 0.2 O 2, Ti 0.75 Co 0.15 Fe 0.1 O 2.
  • the treatment for single-layer peeling can be called soft chemical treatment, and soft chemical treatment is a treatment combining acid treatment and colloidalization treatment. That is, when titanium oxide powder having a layered structure is contacted with an acid aqueous solution such as hydrochloric acid, and the product is filtered, washed, and dried, all alkali metal ions present between the layers before the treatment are replaced with hydrogen ions. A hydrogen-type substance is obtained. Next, when the obtained hydrogen-type substance is placed in an aqueous solution of amine or the like and stirred, it is colloidalized.
  • the layers constituting the layered structure (specifically, the two-dimensional combination of the titanium oxygen octahedron block and the 3d magnetic metal element oxygen octahedron block, which are the minimum structural units) are peeled up to one by one. To do.
  • the film thickness can be controlled in the sub-nm to nm range.
  • the electromagnetic wave absorbing material of the present invention functions as an electromagnetic wave absorber by forming a titania nanosheet filling structure into a film to form a magnetic film.
  • the filling structure here means a structure in which the nanosheets are in contact with each other or in close proximity, and constitutes a three-dimensional structure, and is not a term meaning close-packing.
  • it is necessary to maintain the filling structure.
  • a film-like filling structure is formed by fixing individual titania nanosheets using a binder.
  • an electromagnetic wave absorber with a filled structure is constructed by applying the titania nanosheet (3) of the present invention to the surface of the substrate (1), etc., using a nonmagnetic polymer or the like as a binder (2). can do.
  • a film-like electromagnetic wave absorber it is also possible to use a layered form based on the alternating self-organized lamination technique (Patent Document 2 and Patent Document 3) already proposed by the present inventors. it can.
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-270022
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-255684
  • the substrate is [1] immersed in a binder solution ⁇ [2] washed with pure water ⁇ [3] titania
  • the binder and titania nanosheets can be alternately laminated by repeating a necessary number of cycles as a series of operations of immersing in a nanosheet sol solution ⁇ [4] washing with pure water as one cycle.
  • the binder can be appropriately selected from non-magnetic binders according to the production method, desired characteristics, and the like.
  • a nonmagnetic polymer compound can be used, and an organic polycation such as polydiallyldimethylammonium chloride (PDDA) described in the examples, or a polyethyleneimine (PEI) having a similar cationic property.
  • organic polymers such as polyallylamine hydrochloride (PAH) are suitable.
  • a nonmagnetic inorganic compound can also be used without being limited to the organic polymer.
  • a positive charge can be introduced on the surface in order to adsorb and fix a negatively charged titanium nanosheet, so that it has a positive charge instead of an organic polymer.
  • Inorganic compounds containing inorganic polymers and polynuclear hydroxide ions can also be used.
  • the surface of the substrate (1) may be sufficiently adsorbed and coated with the nanosheet (3) or polymer.
  • spin coating or dip coating is used. It is also possible to use.
  • the film thickness of the magnetic film in the electromagnetic wave absorber also affects the frequency band of the electromagnetic wave to be absorbed, and it is 10 nm or more, preferably 14 nm or more, more preferably 70 nm or more, that the 1 to 15 GHz band is stably absorbed. Is reasonable. Further, the upper limit is 10 ⁇ m or less, more preferably 5 ⁇ m or less, and still more preferably 2 ⁇ m or less. When the film thickness is excessive, there arises a problem that the optical transparency of the electromagnetic wave absorbing material in the visible light region is lowered.
  • the electromagnetic wave absorbing material prepared in this way has a high stacking order, and exhibits, for example, a clear X-ray diffraction peak based on the repetition period of titania nanosheets and PDDA.
  • a Bragg peak showing a periodic structure of around 1.4 nm appeared, and the intensity increased as the number of adsorptions increased. That is, it is shown that the nanosheets and PDDA adsorbed and accumulated in order maintain an orderly multilayered nanostructure without being disturbed after film formation.
  • More direct film forming process monitoring methods include measurement of film thickness by ultraviolet / visible absorption spectrum and ellipsometry. It can be seen that the film thickness gradually increases in the sub-nm to ⁇ m range for each adsorption operation. That is, the film thickness can be controlled in such an extremely fine region.
  • a titania nanosheet and a binder such as an organic polycation are adsorbed in a monolayer in a self-organized manner from the liquid phase, and a film is formed by repeating this process.
  • a film processing such as being capable of controlling a very fine film thickness, and having a high degree of freedom in selecting and controlling the composition and structure of the film.
  • the film thickness accuracy of multilayer ultra-thin films composed of titania nanosheets and binders such as organic polycations is 1 nm or less, and the final film thickness depends on the number of adsorption cycles, and should be increased to the ⁇ m level. Is also possible.
  • an electromagnetic wave absorber is realized by a manufacturing method including at least a part of the above steps.
  • a titania nanosheet is produced using a layered titanium oxide as a starting material, and as shown in FIG. 1, an alternating self-organized lamination technique or a spin coat method is used on a quartz glass substrate. A multilayer film is produced.
  • the present invention is not limited to the following examples.
  • the electromagnetic wave absorber in which the filling structure is maintained by kneading the electromagnetic wave absorbing titania nanosheet of the present invention together with a non-magnetic polymer base material as a binder to obtain a kneaded material and applying it to the surface of a substrate or the like Is built.
  • the blending amount of the electromagnetic wave absorbing titania nanosheet in the kneaded product is preferably 60% by mass or more.
  • an appropriate material may be selected from resin (nylon or the like), gel (silicone gel or the like), thermoplastic elastomer, rubber or the like. Two or more polymer compounds may be blended to form a base material, or gelatin or the like may be added to increase the viscosity.
  • plasticizer in order to improve the compatibility and dispersibility with the polymer substrate, plasticizer, reinforcing agent, heat resistance improver, thermal conductive filler, Various additives such as an adhesive can be added.
  • An electromagnetic wave absorber having a main component of the magnetic film in which the filling structure is maintained is obtained by forming the kneaded material into a predetermined sheet thickness by rolling. Moreover, it can also shape
  • a titania nanosheet (Ti 0.8 Co 0 ) is obtained using a layered titanium oxide (for example, K 0.4 Ti 0.8 Co 0.2 O 2 ) in which Co is substituted at the titanium lattice position. .2 O 2 ) transparent magnetic material (3) was prepared, and as shown in FIG. 1, on the quartz glass substrate (1), the titania nanosheet (3) and the cationic polymer (2) A magnetic film in which diallyldimethylammonium chloride (PDDA) was alternately laminated was formed as follows to prepare an electromagnetic wave absorber film.
  • PDDA diallyldimethylammonium chloride
  • Layered titanium oxide (K 0.4 Ti 0.8 Co 0.2 O 2 ) is composed of potassium carbonate (K 2 CO 3 ), titanium oxide (TiO 2 ) and cobalt oxide (CoO) in a K: Ti: Co ratio. Then, the mixture was mixed at a ratio of 4: 4: 1 and baked at 800 ° C. for 40 hours.
  • the hydrophilization treatment was performed.
  • FIG. 2 shows an ultraviolet / visible absorption spectrum and optical properties of an electromagnetic wave absorber film having a thickness of 14 nm in which 10 layers of Ti 0.8 Co 0.2 O 2 titania nanosheets and PDDA obtained in this manner are alternately laminated. It is a photograph.
  • the electromagnetic wave absorber film composed of the titania nanosheet has a wide band gap (300 nm) due to the quantum size effect, and the sample prepared on the quartz glass substrate has an absorbance of 0 at a wavelength of 350 nm or more as shown in FIG. .15 or less, it was transparent in a wide visible light region.
  • the free space method is a method for obtaining electromagnetic wave absorption characteristics by irradiating a measurement sample placed in free space with a plane wave and measuring an S parameter at that time.
  • An electromagnetic wave absorber film was formed in a ring shape having an outer diameter of 6.9 mm and an inner diameter of 3.1 mm, and a disk-shaped filling structure having an outer diameter of 6.9 mm ⁇ thickness of 10 mm was formed using quartz glass and epoxy resin. .
  • An electromagnetic wave absorber sample having this filling structure was placed at the center of the transmitting antenna and the receiving antenna, and the electromagnetic wave was irradiated perpendicularly to the sample, and the reflected wave and the transmitted wave (that is, the reflection coefficient S 11 and the transmission coefficient S 21 ) were measured. .
  • the energy absorption amount was calculated by 1 ⁇
  • this electromagnetic wave absorber sample is an ultrathin film
  • the absorption rate is 1 dB at 2.3 GHz centered around 7.8 GHz, 1.7 dB at 12 GHz, 2.3 to It was confirmed that stable electromagnetic wave absorption occurred in the 12 GHz band.
  • the magnetic resonance frequency is shifted to near 5.2 GHz on the low frequency side.
  • the absorption rate is 2.3 dB
  • the absorption rate is 4.8 dB. It was possible to produce a material exhibiting a high electromagnetic wave absorption effect in the -15 GHz band.
  • a titania nanosheet (Ti 0 ) was obtained using a layered titanium oxide (K 0.4 Ti 0.75 Co 0.15 Fe 0.1 O 2 ) in which Co and Fe were substituted at the titanium lattice position. .75 Co 0.15 Fe 0.1 O 2 ), and an electromagnetic wave in which the titania nanosheet (3) and PDDA as the binder (2) are alternately laminated on a quartz glass substrate. An absorber film was prepared.
  • Layered titanium oxide (K 0.4 Ti 0.75 Co 0.15 Fe 0.1 O 2 ) is composed of potassium carbonate (K 2 CO 3 ), titanium oxide (TiO 2 ), cobalt oxide (CoO) and iron oxide. (Fe 2 O 3 ) obtained by mixing K: Ti: Co: Fe at a ratio of 0.8: 0.75: 0.15: 0.1 and firing at 800 ° C. for 40 hours It is.
  • the obtained titania nanosheet was alternately laminated with a titania nanosheet and PDDA on a quartz glass substrate by the same alternate adsorption method as in Example 1 to prepare an electromagnetic wave absorber film.
  • FIG. 4 shows an ultraviolet / visible absorption spectrum and an optical photograph of an electromagnetic wave absorber film having a thickness of 14 nm in which 10 layers of Ti 0.75 Co 0.15 Fe 0.1 O 2 titania nanosheets and PDDA obtained in this manner are alternately laminated. It is.
  • the electromagnetic wave absorber film composed of the titania nanosheet has a wide band gap (300 nm) due to the quantum size effect, and the sample produced on the quartz glass substrate has an absorbance of 0 at a wavelength of 350 nm or more as shown in FIG. .2 or less, it was transparent to a wide area of visible light.
  • FIG. 5 shows the electromagnetic wave absorption characteristics of the electromagnetic wave absorber film composed of an alternating laminate of Ti 0.75 Co 0.15 Fe 0.1 O 2 titania nanosheet and PDDA by the free space method described in Example 1. It is the result of measurement. As can be seen from FIG. 5, this electromagnetic wave absorber sample has an absorption rate of 1.3 dB at about 0.1 GHz centered around 5.3 GHz, and an absorption rate of 2. It was confirmed that stable electromagnetic wave absorption occurred in the range of 2 dB and 0.1 to 15 GHz.
  • the Co and Fe co-substituted titania nanosheet of this example showed 1.5 to 3 times higher electromagnetic wave absorption effect in the 2 to 10 GHz band than the Co-only substituted titania nanosheet shown in Example 1. This is because different magnetic elements are simultaneously concentrated in the same nanosheet at a high concentration, and in the two-dimensional nanostructure, strong electron-spin interactions between different magnetic elements, which cannot be realized by Co alone, are expressed and magnetized. This is because the rate increases.
  • Example 3 an electromagnetic wave absorber film having a thickness of several ⁇ m was formed by spin coating using a transparent magnetic material made of the titania nanosheet (Ti 0.75 Co 0.15 Fe 0.1 O 2 ) produced in Example 2. Was made.
  • composition formula A sol solution in which rectangular nanosheets (2) having a thickness of about 1 nm and a lateral size of 1 to 10 ⁇ m represented by Ti 0.75 Co 0.15 Fe 0.1 O 2 were dispersed was prepared.
  • an electromagnetic wave absorber film having a magnetic film having a desired film thickness on a quartz glass substrate is prepared by repeating the following series of operations as many times as necessary. did.
  • FIG. 6 shows Ti 0.75 thus obtained.
  • An electromagnetic wave absorber film composed of Co 0.15 Fe 0.1 O 2 titania nanosheets and having a film thickness of 2 ⁇ m (the number of nanosheets is considered to be 500 or more) is measured by the free space method described in Example 1. It is the result of having measured the electromagnetic wave absorption characteristic. As can be seen from FIG.
  • this electromagnetic wave absorber sample is centered around 2.4 GHz, and at 0.01 GHz, the absorption rate is 1.08 dB, 0.9 GHz and 6.4 GHz, and the absorption rate is 10 dB and 10.5 GHz. It was confirmed that the electromagnetic wave was stably absorbed in the 0.01 to 15 GHz band with an absorption rate of 5.1 dB. Furthermore, in comparison with the electromagnetic wave absorber sample having a film thickness of 14 nm described in Example 2, in the electromagnetic wave absorber sample having a film thickness of 2 ⁇ m described in this example, the magnetic resonance frequency shifts to a lower frequency side, particularly 0.9. In the ⁇ 6.4 GHz band, a material exhibiting a high electromagnetic wave absorption effect of 10 dB or more can be produced.
  • the absorption band is changed by increasing the thickness, and the absorption band that can be handled is limited.
  • the electromagnetic wave absorber sample of the present invention has a wide frequency even if the thickness is changed. The unique electromagnetic wave absorption behavior that stable electromagnetic wave absorption occurs in the band was maintained.
  • the production and characteristics of an electromagnetic wave absorber that exhibits stable and continuous electromagnetic wave absorption performance in the 1 to 15 GHz band. Can be controlled freely.
  • a ferrite material that has been put to practical use as an electromagnetic wave absorber needs to have a thickness of at least about 0.05 to 0.1 mm in order to obtain a sufficient electromagnetic wave absorption effect.
  • the body can function even with a thickness of 2 ⁇ m or less.
  • the frequency at which electromagnetic wave absorption occurs depending on the thickness does not change sharply, and electromagnetic wave absorption occurs stably in a wide frequency range even if the thickness is changed. Therefore, it is possible to cope with further downsizing and high integration of mobile devices.
  • the electromagnetic wave absorber of the present invention is transparent. Excellent electromagnetic wave absorption characteristics can be realized with materials, so it can be applied to transparent electronic devices such as large liquid crystal televisions and electronic papers, which can be fused with transparent media such as window glass, which was impossible with conventional materials. Become.
  • the electromagnetic wave absorber of the present invention can be manufactured by a low-cost, low environmental load process that does not require an expensive film forming apparatus, which is the mainstream of conventional electromagnetic wave absorbers. Therefore, it is concluded that the electromagnetic wave absorber of the present invention is extremely useful when used in a wide field of information communication technology such as a mobile phone, a wireless LAN, and a mobile electronic device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Laminated Bodies (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 磁性体膜を主たる構成材とする電磁波吸収材料であって、前記磁性体膜は、3d磁性金属元素をチタン格子位置に置換したチタニアナノシートからなる電磁波吸収材料とすることで、携帯電話、無線LAN、モバイル電子機器に有用で、透明な媒体への融合や、大型液晶テレビや電子ペーパーなど透明電子デバイスに応用可能な、1~15GHz帯域において、安定して連続的に電磁波吸収性能を発揮する電磁波吸収体が提供される。

Description

電磁波吸収材料
 本発明は、携帯電話、無線LAN、モバイル電子機器など、情報通信技術の広い分野に応用して好適な電磁波吸収性能を発揮する透明電磁波吸収材料に関する。
 電磁波は、以前より、放送、レーダー、船舶通信、電子レンジ等に利用されてきたが、近年、情報通信技術のめざましい発展により、その利用は飛躍的に拡大している。中でも、大容量情報の伝送が可能となるGHz帯の電磁波の利用が急増し、携帯電話(1.5GHz)、ETC(5.8GHz)、衛星放送(12GHz)、無線LAN(2.45~60.0GHz)、車載追突防止レーダー(76GHz)等で用いられるようになっている。
 また、一般家庭においても、従来のケーブル配線に加え、マイクロ波、ミリ波を用いた無線通信でパソコンやテレビ、各種情報家電をネットワーク化して、いつでもコンピューターに繋がるユビキタス社会が始まっている。
 このように、数多くの電磁波発生源が我々の周囲を取り巻き、高周波域の電磁波の利用形態が多様化すると、通信デバイスの小型化、高速化、薄肉化と相まって、不要な電磁波の放射と、それによる電子部品同士の干渉、誤動作、機能不全などの危険性は、格段に高まっているものと考えられる。デジタル機器の高速動作処理に伴い、クロック周波数は、23年で2倍の速さで高周波化されており、その結果、ノイズ周波数もますます高くなって、既に5GHz程度にまで広帯域化している。特に、ノート型コンピューターや携帯電話等のモバイル電子機器においては、電子素子の高周波化・高密度化・高集積化に伴い、機器内部での電磁波干渉は深刻な問題となっており、百数百MHzの信号に高調波として重畳されるGHz帯域の伝導性ノイズの除去が重要な課題となっている。
 このようなGHz帯域の電磁波ノイズを解決する1つの手段として、電磁波吸収体を用いて不要な電磁波を吸収し、電磁波の反射および侵入を防ぐ方法が有効である。電磁波吸収体の中で、磁性材料をベースとしたものは、電磁波のエネルギーを磁気共鳴現象によって吸収する性質をもつことから、電磁波吸収材料として古くから利用されている。中でも、Ni-Zn系やNi-Zn-Co系フェライト磁性体は、携帯電話、無線LANなど現行の高周波電磁波利用帯域(0.1~15GHz)において優れた電磁波吸収特性を有し、これらのフェライト磁性体をゴムや樹脂と複合化させた電磁波吸収体や、スパッター法やメッキ法で作製した電磁波吸収膜が開発されている。実際、現在のモバイル電子機器においては、フェライト磁性粒子を樹脂中に分散させた複合シートと呼ばれる電磁波吸収体が利用されており、この電磁波吸収性複合シートをプリント基板上に貼り付け、その透磁率の虚数部分(磁気損失)によって伝導する信号に重畳されたGHz帯域のノイズ成分を除去する方法が採用されている。
 しかし、これまでに開発されている電磁波吸収材料は、十分な性能を得るためには、少なくとも0.05~0.1mm程度の厚みが必要であり、モバイル機器のさらなる小型化・高集積化への対応が困難であった。また、従来のフェライト系電磁波吸収材料は、粉末の化学組成と電波吸収体の厚さに依存して、特定の狭い周波数領域でのみ電磁波吸収が起きるものであり、種々の周波数帯域で幅広く使用できる汎用性を有するものは開発されていない。このため、目的の周波数に応じて固有の化学組成および板厚の電磁波吸収体を用意する必要があった。
 さらに、近年の携帯電話、無線LAN、モバイル電子機器等の急速な発展により、医療現場、旅客機等、様々な場所で電磁波障害が問題となっている。将来は、大型液晶テレビや電子ペーパーなど透明電子デバイスにおける高周波数帯域の電磁波利用も考えられる。これらの電磁波利用が盛んになるのに伴い、ガラス等の透明な媒体への融合が可能で、かつ様々な周波数帯域で安定した電磁波吸収性能を発揮する透明磁性体の出現が望まれている。
 一方、透明磁性体としては、既にコバルト、鉄などの磁性元素を置換したチタニアナノシートが提案されている(特許文献1)。また、これらのチタニアナノシートでは、短波長領域において優れた磁気光学ファラデー特性を有することが確認されており、コバルト置換体単体では紫外線領域で約1万度/cm、コバルト置換体と鉄置換体の2種類からなる超格子膜では約30万度/cmの巨大な磁気光学効果が発現することが非特許文献1で報告されている。
特開2006-199556号公報 Advanced Materials 18, 295-299 (2006).
 本発明は、以上のとおりの背景から、透明で、かつ種々のGHz帯域で電磁波吸収性能を安定して発揮する汎用性の高い電磁波吸収材料を提供しようというものである。
 発明1は、磁性体膜を主たる構成材とする電磁波吸収材料であって、前記磁性膜は、3d磁性金属元素をチタン格子位置に置換したチタニアナノシートからなることを特徴とする。
 発明2は、発明1の電磁波吸収材料において、前記チタニアナノシートは、その構成最小単位であるチタン酸素八面体ブロック及び3d磁性金属元素酸素八面体ブロックの二次元結合体であることを特徴とする。
 発明3は、発明1又は2の電磁波吸収材料において、前記チタニアナノシートは、以下の組成式で表される層状チタン酸化物のいずれか又はその水和物を剥離して得られたものであることを特徴とする。
   組成式:ATi1-y(Aは、H、Li、Na、K、Rb、Csから選ばれる少なくとも1種であり、0<x≦1;Mは、V,Cr,Mn,Fe,Co,Ni,Cuから選ばれる少なくとも1種であり、0<y<1)。
 発明4は、発明1~3の何れかの電磁波吸収材料において、前記透明磁性体は、チタニアナノシートとバインダーを含むことを特徴とする。
 発明5は、発明4の電磁波吸収材料において、前記非磁性高分子化合物が有機ポリカチオンであることを特徴とする。
 発明6は、発明4又は5のいずれかの電磁波吸収材料において、前記磁性体膜が、チタニアナノシートとバインダーの積層体であることを特徴とする。
 発明7は、発明4から5のいずれかの電磁波吸収材料において、前記磁性体膜が、基材上に形成されていることを特徴とする。
 発明8は、発明1から5のいずれかの電磁波吸収材料において、前記磁性体膜の厚さが10nm~10μmであることを特徴とする。
 第1の発明により、透明磁性体の有する可視光透明性を活用した電磁波吸収材料の開発が可能となり、さらに、このような電磁波吸収材料を酸化チタン系の安全な材料を用いて低コストで製造することができた。
 第2の発明により、さらに、2次元異方性を有するチタニアナノシートを利用することで、形状異方性に起因する磁気異方性のために、高周波数域で磁気共鳴が発現し、GHz帯において高い電磁波吸収効果を示す材料の作製が可能となった。
 第3の発明により、さらに、チタニアナノシートの磁気特性の精密制御が可能となり、GHz帯において高い電磁波吸収効果を示す材料の作製と特性の自在な制御が可能となった。
 第4の発明により、チタニアナノシートよりなる磁性体膜を簡便に精度よく実現でき、携帯電話、無線LANなど各種モバイル電子機器用途に好適な、電磁波吸収性複合シート、ガラス、半導体素子など各種材料と電磁波吸収素子としての利用が可能となった。
 第5の発明により、さらに、チタニアナノシートを利用した高品位電磁波吸収膜の、目的の膜厚と電磁波吸収特性を有する素子の設計と製造が可能となった。
 第6の発明により、チタニアナノシートとバインダーの多層化により磁性体膜を更に精度よく、品質よく製造でき、電磁波吸収性に優れた電磁波吸収素子が実現される。
 第7の発明により、磁性体膜を様々な基材上に形成することで汎用性の高い電磁波吸収材料が提供される。
 第8の発明により、さらに、1~15GHzの帯域で電磁波吸収性能を実現できたため、種々のGHz帯域で電磁波吸収性能を安定して発揮する汎用性の高い電磁波吸収材料の開発と共に、現行の携帯電話、無線LANなど各種モバイル電子機器用途に好適な、準マイクロ波帯域(1~5GHz)への応用が可能となった。
図1は、本発明のチタニアナノシートの多層膜からなる電磁波吸収体の断面構造を概略的に例示した図である。 図2は、実施例1に示す電磁波吸収体膜における紫外・可視吸収スペクトルと光学写真である。 図3は、実施例1に示す電磁波吸収体膜の自由空間法による電磁波吸収特性を測定した結果を示すグラフである。 図4は、実施例2に示す電磁波吸収体膜における紫外・可視吸収スペクトルと光学写真である。 図5は、実施例2に示す電磁波吸収体膜の自由空間法による電磁波吸収特性を測定した結果を示すグラフである。 図6は、実施例3に示す電場吸収体膜の自由空間法による電磁波吸収特性を測定した結果を示すグラフである。
 1 基板
 2 バインダー
 3 チタニアナノシート
 本発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。
 図1は、本発明の一実施の形態に係わるチタニアナノシートの多層膜からなる電磁波吸収体の断面構造を概略的に例示した図である。図1において、(1)はたとえば石英ガラスからなる基板を示し、(2)は該基板上に形成された非磁性ポリマー等のバインダー、(3)は磁性体膜を構成する3d磁性金属元素をチタン格子位置に置換したチタニアナノシート(以下、本発明においては単にチタニアナノシートと表現する場合もある)を示している。
 そして、この図1の実施形態では、上記のチタニアナノシート(3)がバインダー(2)を介して積層されて磁性体膜を構成する場合について例示している。
 なお、本発明においては、基板(1)は、たとえば石英ガラスに限定されることはなく、金、白金等の金属電極、Si基板、プラスチックなど他の種類の材質であってよく、また、基板上に直接チタニアナノシート(3)が配設されていてもよい。
 チタニアナノシート(3)は、3d磁性金属元素をチタン格子位置に置換した層状チタン化合物をソフト化学的な処理により結晶構造の基本最小単位である層1枚にまで剥離することにより得られる、シート状形状を有する透明磁性体である。3d磁性金属元素を含まないチタニアナノシートについては磁性特性は認められないものの、3d磁性金属元素をチタン格子位置に置換することで強磁性を発現する。
 本発明の電磁波吸収体は、主たる構成材である磁性体膜がこのようなチタニアナノシート(3)から構成されるものであるが、より好適にはチタニアナノシート(3)は、その構成最小単位であるチタン酸素八面体ブロック及び3d磁性金属元素酸素八面体ブロックの二次元結合体である。具体的には厚み約1nm(数原子に相当)のシート形状を有する透明磁性体である。電磁波吸収材料としての用途では、チタニアナノシート(3)の幅と長さがが大きく、厚みに対しての異方性が大きいほど電磁波吸収性能の向上が期待できるが、100μm以上の大きな粒子を合成することは現時点において困難である。
 発明者らの検討によれば、剥離前の出発層状チタン化合物の熱処理(焼成)温度を調整することや、出発層状チタン化合物に単結晶を利用することにより、幅と長さのコントロールが可能であり、100nm~100μmの範囲で幅と長さを調整したチタニアナノシート(3)を合成することが可能である。このように様々な幅と長さのナノシートであっても、広い周波数領域で連続して安定的に電磁波吸収が可能という特異な性質を有するため汎用的な電磁波吸収体を構築することができる。
 このようなチタニアナノシート(3)は、3d磁性金属元素をチタン格子位置に置換した層状チタン酸化物よりその構成単位である層一枚にまで単層剥離されて得られる。この際のチタニアナノシート(3)としては、3d磁性金属元素をチタン格子位置に置換した磁性特性を有するものであれば各種のものでよいが、たとえば好適には、組成式Ti1-y(ただし、Mは、V、Cr、Mn、Fe、Co、Ni、Cuから選ばれる磁性金属から選ばれる少なくとも1種であり、0<y<1)ものが例示される。具体的には、たとえば、Ti0.8Co0.2、Ti0.75Co0.15Fe0.1等の組成式で表わされるものを例示することができる。
 単層剥離のための処理は、ソフト化学処理と呼ぶことができるものであって、ソフト化学処理とは、酸処理とコロイド化処理を組み合わせた処理である。すなわち、層状構造を有するチタン酸化物粉末に塩酸などの酸水溶液を接触させ、生成物をろ過、洗浄後、乾燥させると、処理前に層間に存在していたアルカリ金属イオンがすべて水素イオンに置き換わり、水素型物質が得られる。次に、得られた水素型物質をアミンなどの水溶液中に入れ撹拌すると、コロイド化する。このとき、層状構造を構成していた層(具体的には、構成最小単位であるチタン酸素八面体ブロック及び3d磁性金属元素酸素八面体ブロックの二次元結合体)が1枚1枚にまで剥離する。膜厚はサブnm~nmの範囲で制御可能である。
 本発明の電磁波吸収材料は、チタニアナノシートの充填構造を膜状に形成させて磁性体膜とすることによって、電磁波吸収体として機能する。ここでいう充填構造は、ナノシート同士が接しているかまたは近接している状態で、立体構造を構成しているものを意味し、最密充填を意味する用語ではない。電磁波吸収体の実用に供するためには充填構造を維持させる必要がある。その手法として、バインダーを用いて、個々のチタニアナノシートを固着させることによって膜状の充填構造を形成させることが例示される。
 具体的には、本発明のチタニアナノシート(3)を、非磁性ポリマー等をバインダー(2)として、基板(1)等の表面に塗布することによって、充填構造が維持された電磁波吸収体を構築することができる。こうした膜状の電磁波吸収体の作製には、本発明者らがすでに提案している交互自己組織化積層技術(特許文献2、特許文献3)を踏まえて積層した形態のものを利用することもできる。
   特許文献2:特開2001-270022号公報
   特許文献3:特開2004-255684号公報
 実際の操作としては、基板を[1]バインダー溶液に浸漬→[2]純水で洗浄→[3]チタニアナノシートのゾル溶液に浸漬→[4]純水で洗浄するという一連の操作を1サイクルとしてこれを必要回数分反復することで、バインダーとチタニアナノシートを交互積層することができる。
 バインダーとしては、非磁性のものから製法や所望の特性等に応じて適宜選択することができる。具体的には、たとえば、非磁性高分子化合物を使用することができ、実施例記載のポリジアリルジメチルアンモニウム塩化物(PDDA)等の有機ポリカチオンや、さらに同様なカチオン性を有するポリエチレンイミン(PEI)、塩酸ポリアリルアミン(PAH)などの有機ポリマーが適当なものとして例示される。さらに、有機ポリマーに限定されることなく、非磁性の無機化合物も使用することができる。たとえば、交互積層に際しては、バインダーとしては、マイナスに帯電しているチタンナノシートを吸着固着するために、表面に正電荷を導入することができれば問題ないため、有機ポリマーの代わりに、正電荷を持つ無機高分子、多核水酸化物イオンを含む無機化合物を使用することもできる。
 また、交互積層に基づく成膜に際しては、基板(1)表面が充分にナノシート(3)またはポリマーで吸着・被覆されば良く、交互自己組織化積層技術の他に、スピンコート法あるいはディップコート法を利用することも可能である。
 電磁波吸収体における磁性体膜の膜厚は、吸収する電磁波の周波数帯域にも影響し、1~15GHzの帯域を安定して吸収させるのは、10nm以上、好ましくは14nm以上、より好ましくは70nm以上とするのが妥当である。またその上限は10μm以下、より好ましくは5μm以下、さらに好ましくは2μm以下とする。膜厚が過剰になると、電磁波吸収材料の可視光域での光学透明性が低下するという問題が生じる。
 このようにして調製される電磁波吸収材料は高い積層秩序を有しており、たとえば、チタニアナノシートとPDDAの繰り返し周期に基づく明瞭なX線回折ピークを示す。この場合、実際、チタニアナノシートとPDDAの多層膜の形成過程をX線回折測定によりモニターすると、1.4nm前後の周期構造を示すブラッグピークが出現し、吸着回数の増大にしたがって強度が増大した。すなわち順番に吸着・累積されたナノシートとPDDAが製膜後に、入り乱れることなく、整然とした多層ナノ構造を保持していることを示している。より直接的な製膜プロセスのモニター法として、紫外・可視吸収スペクトルやエリプソメトリーによる膜厚の測定があげられる。各吸着操作毎に膜厚がサブnm~μmのレンジで段階的に増大していく様子が読み取れる。すなわち膜厚をこのような極めて微細な領域でコントロールできることになる。
 以上のように、本発明では、チタニアナノシートと有機ポリカチオン等のバインダーをそれぞれ液相から自己組織化的にモノレイヤーで吸着させ、これを繰り返すことによって製膜を行うため、サブnm~nmレンジの極めて微細な膜厚の制御が可能であること、膜の組成、構造を選択、制御できる自由度が高いことなどの製膜プロセッシング上の特徴がある。特に、チタニアナノシートと有機ポリカチオン等のバインダーからなる多層超薄膜での膜厚精度は、1nm以下であり、最終的な膜厚は吸着サイクルの反復回数に依存し、μmレベルにまで厚くすることも可能である。
 本発明では、たとえば上記の工程を少くとも一部として含む製造方法により、電磁波吸収体が実現されることになる。たとえば以下の実施例に示した形態では、層状チタン酸化物を出発原料に、チタニアナノシートを作製し、図1に示したように、石英ガラス基板上に交互自己組織化積層技術あるいはスピンコート法により多層膜を作製している。なお、本発明は以下の実施例によって限定されるものでないことは言うまでもない。
 また、本発明の電磁波吸収性チタニアナノシートをバインダーとしての非磁性の高分子基材とともに混練して混練物を得、基板等の表面に塗布することによっても、充填構造が維持された電磁波吸収体が構築される。この際の混練物中における電磁波吸収性チタニアナノシートの配合量は60質量%以上とすることが好ましい。
 このように混練物中にチタニアナノシートを分散させる場合、バインダーとしては、使用環境に応じて、耐熱性、難燃性、耐久性、機械的強度、電気的特性を満足する各種の高分子基材を使用することが例示される。例えば、樹脂(ナイロン等)、ゲル(シリコーンゲル等)、熱可塑性エラストマー、ゴムなどから適切なものを選択すれば良い。また2種以上の高分子化合物をブレンドして基材としてもよいし、粘性を高めるためにゼラチン等を添加しても良い。さらに、高分子基材との相溶性や分散性を改善するために、電磁波吸収材料粉体と高分子基材との混合に際し、可塑剤、補強剤、耐熱向上剤、熱伝導性充填剤、粘着剤などの各種添加剤を添加することができる。
 上記混練物を圧延により所定のシート厚に成形することで前記充填構造が維持された磁性体膜を主たる構成材とする電磁波吸収体が得られる。また、圧延の替わりに混練物を射出成形することにより所望の電磁波吸収体形状に成形することもできる。
  <実施例1>
 本実施例においては、Coをチタン格子位置に置換した層状チタン酸化物(たとえば、K0.4Ti0.8Co0.2)を出発原料に、チタニアナノシート(Ti0.8Co0.2)からなる透明磁性体(3)を作製し、図1に示したように、石英ガラス基板(1)上に、前記チタニアナノシート(3)とカチオン性ポリマー(2)であるポリジアリルジメチルアンモニウム塩化物(PDDA)とが交互に積層した磁性体膜を以下のように形成して、電磁波吸収体膜を作製した。
 層状チタン酸化物(K0.4Ti0.8Co0.2)は、炭酸カリウム(KCO)、酸化チタン(TiO)および酸化コバルト(CoO)をK:Ti:Co比にして4:4:1の割合に混合し、800℃で40時間焼成して得られたものである。
 この粉体1gを室温にて1規定の塩酸水溶液100mL中で酸処理を行ない、水素交換体(H0.4Ti0.8Co0.2)を得た。次いで、この水素交換体0.5gにテトラブチルアンモニウム水酸化物(以下、TBAOHと記載する)水溶液100mLを加えて室温にて1週間程度撹拌、反応させて、組成式Ti0.8Co0.2で表される厚さ約1nm、幅と長さ(以下、横サイズと記す)が1~10μmの長方形状のナノシート(3)が分散したゾル溶液を作製した。さらに、これを50倍に希釈した溶液を調整した。
 石英ガラス基板(1)をオゾン雰囲気で紫外線照射することで表面洗浄し、次いで、塩酸:メタノール=1:1の溶液に1/3時間浸漬した後、濃硫酸中に1/3時間浸漬することにより親水化処理を行った。
 この基板(1)を以下に示す一連の操作を1サイクルとしてこれを必要回数分反復することで、所望の電場吸収体に必要な膜厚のチタニアナノシート薄膜を作製した。
   [1]上記PDDA溶液に1/3時間浸漬
   [2]Milli-Q純水で充分に洗浄
   [3]撹拌した上記ナノシートゾル溶液中に浸漬
   [4]1/3時間経過後にMilli-Q純水で充分に洗浄
 図2は、こうして得られたTi0.8Co0.2チタニアナノシートとPDDAが交互に10層積層した、膜厚14nmの電磁波吸収体膜における紫外・可視吸収スペクトルと光学写真である。チタニアナノシートからなる電磁波吸収体膜は、量子サイズ効果に起因した広いバンドギャップ(300nm)を有し、石英ガラス基板に作製したサンプルは、図2に示したように、波長350nm以上では、吸光度0.15以下という、可視光域の広い領域において透明であった。
 次に、同様に得られた膜厚14nmおよび70nmの電磁波吸収体膜に対して、自由空間法によりその電磁波吸収特性を測定した。自由空間法とは、自由空間に置かれた測定試料に平面波を照射し、そのときのSパラメータを測定することにより電磁波吸収特性を求める方法である。電磁波吸収体膜を外径φ6.9mm、内径φ3.1mmのリング状に形成し、石英ガラスおよびエポキシ樹脂を用いて、外径φ6.9mm×厚さ10mmの円板状の充填構造を形成した。この充填構造からなる電磁波吸収体試料を送信アンテナと受信アンテナの中央に置いて、電磁波を試料に垂直に照射し、反射波および透過波(すなわち反射係数S11および透過係数S21)を測定した。そして、エネルギー吸収量を、1-|S11-|S21により算出し、これを電磁波吸収率(dB)として表示した。測定は、0.01~15GHz帯域で行った。結果を図3に示す。
 図3からわかるように、この電磁波吸収体試料は極薄膜にもかかわらず、7.8GHz付近を中心に2.3GHzでは、吸収率1dB、12GHzでは、吸収率1.7dBと、2.3~12GHz帯域で安定した電磁波吸収が起きることが確認された。さらに、膜厚を14nmから70nmに増加させることにより、磁気共鳴周波数が低周波数側の5.2GHz付近にシフトし、1GHzでは、吸収率2.3dB、15GHzでは、吸収率4.8dBと、1~15GHz帯において高い電磁波吸収効果を示す材料の作製が可能となった。
   <実施例2>
 本実施例においては、CoおよびFeをチタン格子位置に置換した層状チタン酸化物(K0.4Ti0.75Co0.15Fe0.1)を出発原料に、チタニアナノシート(Ti0.75Co0.15Fe0.1)からなる透明磁性体膜を作製し、石英ガラス基板上に、前記チタニアナノシート(3)とバインダー(2)としてのPDDAとが交互に積層した電磁波吸収体膜を作製した。
 層状チタン酸化物(K0.4Ti0.75Co0.15Fe0.1)は、炭酸カリウム(KCO)、酸化チタン(TiO)、酸化コバルト(CoO)および酸化鉄(Fe)をK:Ti:Co:Fe比にして0.8:0.75:0.15:0.1の割合に混合し、800℃で40時間焼成して得られたものである。
 この粉体1gを室温にて1規定の塩酸水溶液100mL中で酸処理を行ない、水素交換体(H0.4Ti0.75Co0.15Fe0.1)を得、次いで、この水素交換体0.5gにTBAOH水溶液100mLを加えて室温にて1週間撹拌、反応させて、組成式Ti0.75Co0.15Fe0.1で表される厚さ約1nm、横サイズ1~10μmの長方形状のナノシート(3)が分散したゾル溶液を作製した。さらに、これを50倍に希釈した溶液を調整した。
 得られたチタニアナノシートに対し、実施例1と同様の交互吸着法により、石英ガラス基板上に、チタニアナノシートとPDDAを交互に積層して磁性体膜とし、電磁波吸収体膜を作製した。
 図4は、こうして得られたTi0.75Co0.15Fe0.1チタニアナノシートとPDDAが交互に10層積層した膜厚14nmの電磁波吸収体膜における紫外・可視吸収スペクトルと光学写真である。チタニアナノシートからなる電磁波吸収体膜は、量子サイズ効果に起因した広いバンドギャップ(300nm)を有し、石英ガラス基板に作製したサンプルは、図4に示したように、波長350nm以上では、吸光度0.2以下という、可視光の広い領域に対して透明であった。
 図5は、Ti0.75Co0.15Fe0.1チタニアナノシートとPDDAの交互積層体からなる電磁波吸収体膜に対し、実施例1で記載の自由空間法によりその電磁波吸収特性を測定した結果である。図5からわかるように、この電磁波吸収体試料は、膜厚14nmという極薄膜にもかかわらず、5.3GHz付近を中心に0.1GHzでは、吸収率1.3dB、12GHzでは、吸収率2.2dBと、0.1~15GHz帯域で安定した電磁波吸収が起きることが確認された。
 さらに、本実施例のCo、Fe同時置換チタニアナノシートは、実施例1に示したCo単独置換チタニアナノシートよりも、2~10GHz帯域において、1.5~3倍高い電磁波吸収効果を示した。これは、同一ナノシート内に異なる磁性元素を高濃度で同時することより、2次元ナノ構造内で、Co単独では実現しえない、異なる磁性元素間の強い電子・スピン相互作用が発現し、磁化率が増大するためである。
 なお、現時点では、実施例1、2で製造したようにバインダーを用いる方が得られる磁性体膜の膜質が良好なため、電磁波吸収特性が良好な傾向が伺える。
   <実施例3>
 本実施例においては、実施例2において作製したチタニアナノシート(Ti0.75Co0.15Fe0.1)からなる透明磁性体を用い、スピンコート法により数μm厚の電磁波吸収体膜を作製した。
 CoおよびFeをチタン格子位置に置換した層状チタン酸化物(K0.4Ti0.75Co0.15Fe0.1)を出発原料に、実施例2と同様な手法により、組成式Ti0.75Co0.15Fe0.1で表される厚さ約1nm、横サイズ1~10μmの長方形状のナノシート(2)が分散したゾル溶液を作製した。
 次いで、このナノシート分散溶液100mLに対して、スピンコート用ゼラチン分散剤20mLを加えて室温にて撹拌させて、ナノシート溶液を作製した。
 このナノシート混合溶液を用い、以下に示す一連の操作を1サイクルとしてこれを必要回数分反復することで、石英ガラス基板上に所望の膜厚を有する磁性体膜を備えた電磁波吸収体膜を作製した。
   [1]ナノシート溶液を基板上に滴下
   [2]スピンコート法により基板面上に均一に塗布
   [3]室温、乾燥空気ガス還流下で乾燥
 図6は、このようにして得たTi0.75Co0.15Fe0.1チタニアナノシートからなる、膜厚2μm(ナノシートの積層数は、500以上と思われる)の電磁波吸収体膜に対し、実施例1で記載の自由空間法によりその電磁波吸収特性を測定した結果である。図6からわかるように、この電磁波吸収体試料は、2.4GHz付近を中心に、0.01GHzでは、吸収率1.08dB、0.9GHz及び6.4GHzでは、吸収率10dB、10.5GHzでは、吸収率5.1dBと、0.01~15GHz帯域で安定した電磁波吸収が起きることが確認された。さらに、実施例2で記載した膜厚14nmの電磁波吸収体試料と比較し、本実施例記載の膜厚2μmの電磁波吸収体試料では、磁気共鳴周波数が低周波数側にシフトし、特に0.9~6.4GHz帯においては10dB以上の高い電磁波吸収効果を示す材料の作製が可能となった。従来の電磁波吸収体では、厚さが増大することでその吸収帯域が変化して対応可能な吸収帯域が制限されていたが、本願発明の電磁波吸収体試料では、厚さを変えても広い周波数帯域で安定した電磁波吸収が起きるという特異な電磁波吸収挙動が維持された。
 以上説明した通り、本発明によればチタニアナノシートの有する特異な電磁波吸収特性を活用することで、1~15GHz帯域において、安定して連続的に電磁波吸収性能を発揮する電磁波吸収体の作製と特性の自在な制御が可能になる。
 現在、電磁波吸収体として実用化されているフェライト系材料は、十分な電磁波吸収効果を得るためには、少なくとも0.05~0.1mm程度の厚みが必要であったが、本発明の電磁波吸収体は、2μm以下の厚さでも機能することができる。特に、従来の電磁波吸収体のように、厚さに依存して電磁波吸収が起きる周波数が鋭敏に変化することがなく、厚さを変えても広い周波数領域で安定して電磁波吸収が起きるという特異な電磁波吸収挙動が維持されるため、モバイル機器のさらなる小型化・高集積化への対応が可能となる。
 また、近年の携帯電話、無線LAN、モバイル電子機器等の急速な発展により、医療現場、旅客機等、様々な場所で電磁波障害が問題となっているが、本発明の電磁波吸収体は、透明な材料で優れた電磁波吸収特性を実現できるため、従来の材料では不可能であった、窓ガラス等の透明な媒体への融合や、大型液晶テレビや電子ペーパーなど透明電子デバイスへの応用が可能になる。
 さらに、本発明の電磁波吸収体は、従来の電磁波吸収体の主流である、高価な成膜装置を必要としない、低コスト、低環境負荷プロセスで製造することができる。従って、本発明の電磁波吸収体を、携帯電話、無線LAN、モバイル電子機器など、情報通信技術の広い分野に使用すれば極めて有用であると結論される。

Claims (8)

  1. 磁性体膜を主たる構成材とする電磁波吸収材料であって、前記磁性体膜は、3d磁性金属元素をチタン格子位置に置換したチタニアナノシートからなることを特徴とする電磁波吸収材料。
  2. 請求項1に記載の電磁波吸収材料において、前記チタニアナノシートは、その構成最小単位であるチタン-酸素八面体ブロック及び3d磁性金属元素-酸素八面体ブロックの二次元結合体であることを特徴とする電磁波吸収材料。
  3. 請求項1又は2に記載の電磁波吸収材料において、前記チタニアナノシートは、以下の組成式で表される層状チタン酸化物のいずれか又はその水和物を剥離して得られたものであることを特徴とする電磁波吸収材料。
       組成式:ATi1-y
    (Aは、H、Li、Na、K、Rb、Csから選ばれる少なくとも1種であり、0<x≦1;Mは、V,Cr,Mn,Fe,Co,Ni,Cuから選ばれる少なくとも1種であり、0<y<1)。
  4. 請求項1~3の何れかに記載の電磁波吸収材料において、前記磁性体膜は、前記チタニアナノシートとバインダーを含むことを特徴とする電磁波吸収材料。
  5. 請求項4に記載の電磁波吸収材料において、前記非磁性高分子化合物が有機ポリカチオンであることを特徴とする電磁波吸収材料。
  6. 前記磁性体膜が、チタニアナノシートとバインダーの積層体であることを特徴とする請求項4または5に記載の電磁波吸収材料。
  7. 前記磁性体膜が、基材上に形成されていることを特徴とする請求項4から6の何れかに記載の電磁波吸収材料。
  8. 請求項1から7のいずれかに記載の電磁波吸収材料において、その磁性体膜の厚さが10nm~10μmであることを特徴とする電磁波吸収材料。
PCT/JP2009/060636 2008-06-10 2009-06-10 電磁波吸収材料 WO2009151085A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010516872A JP5626649B2 (ja) 2008-06-10 2009-06-10 電磁波吸収材料
US12/997,338 US20110183133A1 (en) 2008-06-10 2009-06-10 Electromagnetic wave absorbent material
EP09762515.6A EP2306799B1 (en) 2008-06-10 2009-06-10 Electromagnetic wave absorbent material
US13/559,986 US20120292554A1 (en) 2008-06-10 2012-07-27 Electromagnetic wave absorbent material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-151636 2008-06-10
JP2008151636 2008-06-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/559,986 Division US20120292554A1 (en) 2008-06-10 2012-07-27 Electromagnetic wave absorbent material

Publications (1)

Publication Number Publication Date
WO2009151085A1 true WO2009151085A1 (ja) 2009-12-17

Family

ID=41416791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060636 WO2009151085A1 (ja) 2008-06-10 2009-06-10 電磁波吸収材料

Country Status (4)

Country Link
US (2) US20110183133A1 (ja)
EP (1) EP2306799B1 (ja)
JP (1) JP5626649B2 (ja)
WO (1) WO2009151085A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101549989B1 (ko) 2014-05-30 2015-09-04 (주)창성 W-band 주파수 영역대의 전자파 흡수체와 그 제조방법
JP2016097599A (ja) * 2014-11-21 2016-05-30 富士通株式会社 層状物質の積層構造及びその製造方法
JP2020189775A (ja) * 2019-05-24 2020-11-26 国立研究開発法人物質・材料研究機構 ナノワイヤ構造体、その製造方法、イオン交換材料、光触媒材料、および、金属固定化材料

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4831629B2 (ja) * 2005-12-13 2011-12-07 独立行政法人物質・材料研究機構 磁性人工超格子とその製造方法
CN203353037U (zh) * 2012-12-28 2013-12-18 中怡(苏州)科技有限公司 无线模块
KR20170016145A (ko) * 2015-08-03 2017-02-13 삼성전자주식회사 도전체 제조 방법, 이로부터 제조된 도전체, 및 이를 포함하는 전자 소자
JP6654319B2 (ja) * 2016-03-15 2020-02-26 国立大学法人千葉大学 構造色発現材料及びセンサ
JP7089634B2 (ja) * 2018-07-27 2022-06-22 クアンチー カッティング エッジ テクノロジー リミテッド 波吸収透過一体化装置及びレドーム
US10559566B1 (en) * 2018-09-17 2020-02-11 International Business Machines Corporation Reduction of multi-threshold voltage patterning damage in nanosheet device structure
FR3119252B1 (fr) * 2021-01-26 2023-01-06 Commissariat A L’Energie Atomique Et Aux Energies Alternatives Dispositif de protection et de supervision d’un système électronique comprenant au moins un composant électronique. Procédé associé de protection et de supervision de l’intégrité du système électronique et du dispositif, et de brouillage d’attaques.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145622A (ja) * 2000-08-30 2002-05-22 Japan Science & Technology Corp 二酸化チタン・コバルト磁性膜及びその製造方法
JP3513589B2 (ja) * 2000-03-24 2004-03-31 独立行政法人物質・材料研究機構 チタニア超薄膜およびその製造方法
JP2006199556A (ja) * 2005-01-24 2006-08-03 National Institute For Materials Science チタニア磁性半導体ナノ薄膜及びその製造方法
WO2007069638A1 (ja) * 2005-12-13 2007-06-21 National Institute For Materials Science 磁性人工超格子とその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3726140B2 (ja) * 2003-02-26 2005-12-14 独立行政法人物質・材料研究機構 高品位チタニアナノシート超薄膜とその製造方法
JP5099710B2 (ja) * 2006-02-13 2012-12-19 独立行政法人物質・材料研究機構 コンデンサ及びその製造方法
JP2007297236A (ja) * 2006-04-28 2007-11-15 Hitachi Cable Ltd ガラス板
US20080311429A1 (en) * 2007-06-15 2008-12-18 Tadao Katsuragawa Magnetic film, magnetic recording/ reproducing device, and polarization conversion component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3513589B2 (ja) * 2000-03-24 2004-03-31 独立行政法人物質・材料研究機構 チタニア超薄膜およびその製造方法
JP2002145622A (ja) * 2000-08-30 2002-05-22 Japan Science & Technology Corp 二酸化チタン・コバルト磁性膜及びその製造方法
JP2006199556A (ja) * 2005-01-24 2006-08-03 National Institute For Materials Science チタニア磁性半導体ナノ薄膜及びその製造方法
WO2007069638A1 (ja) * 2005-12-13 2007-06-21 National Institute For Materials Science 磁性人工超格子とその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101549989B1 (ko) 2014-05-30 2015-09-04 (주)창성 W-band 주파수 영역대의 전자파 흡수체와 그 제조방법
JP2016097599A (ja) * 2014-11-21 2016-05-30 富士通株式会社 層状物質の積層構造及びその製造方法
JP2020189775A (ja) * 2019-05-24 2020-11-26 国立研究開発法人物質・材料研究機構 ナノワイヤ構造体、その製造方法、イオン交換材料、光触媒材料、および、金属固定化材料
JP7252614B2 (ja) 2019-05-24 2023-04-05 国立研究開発法人物質・材料研究機構 ナノワイヤ構造体、その製造方法、イオン交換材料、光触媒材料、および、金属固定化材料

Also Published As

Publication number Publication date
EP2306799A1 (en) 2011-04-06
EP2306799A4 (en) 2014-09-03
US20120292554A1 (en) 2012-11-22
US20110183133A1 (en) 2011-07-28
JPWO2009151085A1 (ja) 2011-11-17
JP5626649B2 (ja) 2014-11-19
EP2306799B1 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
JP5626649B2 (ja) 電磁波吸収材料
Zuo et al. Multimaterial 3D-printing of graphene/Li0. 35Zn0. 3Fe2. 35O4 and graphene/carbonyl iron composites with superior microwave absorption properties and adjustable bandwidth
Peymanfar et al. Preparation and identification of bare and capped CuFe2O4 nanoparticles using organic template and investigation of the size, magnetism, and polarization on their microwave characteristics
Yan et al. Coaxial multi-interface hollow Ni-Al 2 O 3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions
Rayar et al. EMI shielding applications of PANI-Ferrite nanocomposite materials: A review
Li et al. Tailoring microwave electromagnetic responses in Ti3C2T x MXene with Fe3O4 nanoparticle decoration via a solvothermal method
CN111014712B (zh) 一种Co/MnO@C复合电磁波吸收材料及其制备方法与应用
Dorraji et al. Microwave absorption properties of polypyrrole-SrFe12O19-TiO2-epoxy resin nanocomposites: optimization using response surface methodology
Feng et al. Preparation and microwave-absorbing property of EP/BaFe12O19/PANI composites
JP7464944B2 (ja) 電波吸収積層フィルム、その製造方法、及びそれを含む素子
KR20160067051A (ko) 전자파 흡수체 및 막형성용 페이스트
JP2017184106A (ja) 高周波アンテナ素子、及び高周波アンテナモジュール
WO2015094915A1 (en) Electromagnetic interference (emi) shielding products using titanium monoxide (tio) based materials
Zhu et al. Synthesis, oxidation resistance and microwave absorbing properties of FeCo-based heterostructures
CN105436498A (zh) 一种多孔镍-碳纳米复合微球电磁波吸收材料及其制备方法与应用
Rahimi-Nasrabadi et al. Synthesis, characterization, magnetic and microwave absorption properties of iron–cobalt nanoparticles and iron–cobalt@ polyaniline (FeCo@ PANI) nanocomposites
Zhang et al. Development of high-efficient double-layer microwave absorbers based on 3D cabbage-like CoFe2O4 and cauliflower-like polypyrrole
Warski et al. Magnetodielectric and low-frequency microwave absorption properties of entropy stabilised ferrites and 3D printed composites
Motamedi et al. Synthesis and microwave absorption characteristics of BaFe12O19/BaTiO3/MWCNT/polypyrrole quaternary composite
JP2008311255A (ja) 複合磁性体とその製造方法
Thanh et al. Development of high-efficiency tri-layer microwave absorbing materials based on SrMeFe11O19 hexaferrite
Li et al. Fabrication of a flexible microwave absorber sheet based on a composite filler with fly ash as the core filled silicone rubber
Mondal et al. Rare earth ion-infused α-MnO2 nano-rods for excellent EMI shielding efficiency: Experimental and theoretical insights
JP2014165370A (ja) 絶縁性の平板状磁性粉体とそれを含む複合磁性体及びそれを備えたアンテナ及び通信装置並びに複合磁性体の製造方法
Yen et al. Detailed microwave absorption performance of BaFe12O19 nano-hexaplates with a large variety of thicknesses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762515

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010516872

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009762515

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12997338

Country of ref document: US