CN1232338C - 非对称多孔膜及其制造方法 - Google Patents

非对称多孔膜及其制造方法 Download PDF

Info

Publication number
CN1232338C
CN1232338C CNB028092031A CN02809203A CN1232338C CN 1232338 C CN1232338 C CN 1232338C CN B028092031 A CNB028092031 A CN B028092031A CN 02809203 A CN02809203 A CN 02809203A CN 1232338 C CN1232338 C CN 1232338C
Authority
CN
China
Prior art keywords
polymer
perforated membrane
dense layer
based polyalcohol
negative electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028092031A
Other languages
English (en)
Other versions
CN1505541A (zh
Inventor
金成泰
山本千惠子
小泉智德
斋藤政利
真庭俊嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Publication of CN1505541A publication Critical patent/CN1505541A/zh
Application granted granted Critical
Publication of CN1232338C publication Critical patent/CN1232338C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • B01D63/0231Manufacturing thereof using supporting structures, e.g. filaments for weaving mats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/80Block polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • B01D2325/0231Dense layers being placed on the outer side of the cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/14Membrane materials having negatively charged functional groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明的一个目的是提供一种具有优异的血浆蛋白质选择分离(截断)性能,几乎没有内生的凝聚活性,补体活性,和奎宁活性,明显具有优异的生物相容性,并可用于血液透析,血浆分离等的非对称多孔膜。主要由合成聚合物形成的非对称多孔膜至少在加载所要处理的液体的那侧的最外表面上具有实质上没有电荷的密实层且至少部分的除最外表面之外的膜是带负电荷的。在本发明中,至少存在于最外表面上的没有电荷的密实层用作胶隔绝层且除最外表面之外的部分的膜用作电荷隔绝层。本发明涉及一种制造非对称多孔膜的方法。

Description

非对称多孔膜及其制造方法
技术领域
本发明涉及一种用于从液体中分离特定溶质和/或分散质的非对称多孔膜和及其制造方法。
本发明非对称多孔膜具有显著改进的从所要处理的液体中分离溶质和/或分散质的性能并具有一种生物相容性优异的膜结构。该非对称多孔膜因此可尤其在所要处理的液体是血液时适合使用,且最适用作用于体外循环如渗析治疗的分离膜。
背景技术
使用膜的分离已常用于从由溶剂和多种溶质和/或分散质(以下简单地称作″溶质″)组成的多分散流体中分离或冷凝特定溶质。作为分离方法,通过在膜中产生具有特定尺寸的孔根据尺寸分离溶质的″胶隔绝层分离″和使用带电膜并根据溶质所具有的电荷使溶质电排斥而分离溶质的″电荷隔绝层分离″是已知的。另外,作为使用膜的分离方法,利用溶质在用膜处理时所表现出的在性能如吸附力,离子-交换容量,和溶解度-分散性上的差异的方法是已知的。这些分离方法在工业上广泛用于脱盐,水处理,食品和药物制造,气体分离,和类似处理。
血液纯化治疗作为一种医疗处理用于去除积聚在血液中的各种毒素,其目的是改善疾病如肾衰竭和肝衰竭。使用膜分离的方法已应用于血液纯化治疗。血液纯化治疗在用于治疗慢性或急性肾衰竭的人工肾中具有悠久的历史。使用火棉胶平坦膜,由合成聚合物制成的中空纤维膜,和类似物的各种人造肾膜已实际使用。采用具有较大孔直径的血液处理膜的方法也用于血液纯化如血浆交换和分馏血浆组分。
用于体外循环的这些血液处理膜包括渗析膜,过滤膜,渗滤膜,和类似物。抑制由于血浆蛋白质的吸附而产生的孔堵塞和防止由于接触膜而产生的蛋白质变性是使用分离膜的血液处理所首先需要的。为此,需要使包括与血液接触的孔的膜表面亲水。
另一方面,有效地从血液中去除废物是用于治疗肾机能不全疾病的人工肾的渗析分离膜所必不可少的。近年来,为了确认所要去除的废物和确定造成伴随长期或短期渗析的各种并发症的物质,除了已在常规渗析中去除的低分子量化合物如脲和氨,目前所要去除的物质包括低分子量血浆蛋白质如β2-微球蛋白(以下称作β2MG)和高级糖化最终产物(以下称作AGE)。
考虑到这种情况,各种高性能血液处理膜是市场上可买到的。主要膜材料包括天然聚合物如再生纤维素和其改性的产物,纤维素聚合物如纤维素乙酸酯,和合成聚合物如聚丙烯腈-基聚合物,聚甲基丙烯酸甲酯-基聚合物,聚酰胺-基聚合物,聚砜-基聚合物,和乙烯-乙烯基醇共聚物。
在结构方面,膜广义上划分为整体上具有密实结构的均相膜和由密实选择分离层和多孔承载层组成的在均相(非对称)膜。考虑到渗透性,后者膜由于最低的耐渗透性和通过支撑层确保物理膜强度的能力而更优选。
其中,憎水芳族聚砜-基聚合物近年来由于作为树脂材料的通用性,作为结构材料的强度,对热或辐射消毒处理的耐性,和在制造膜时对孔直径和膜结构的优异的可控制性而赢得其作为代表性膜材料的地位。但因为芳族聚砜-基聚合物是高度憎水的,并因此影响血液凝固系统,脱气等,将该聚合物与亲水聚乙烯基吡咯烷酮(以下称作PVP)共混以用作中空分离膜。该膜被认为没有据报道在未处理纤维素膜与血液接触时发生的补体活性,而且没有对人体有害的生理活性如在特定条件下在使用具有负电荷的聚丙烯腈膜渗析的过程中出现的由血管舒缓激肽产生所引起的过敏性。
PVP-共混聚砜膜可在湿纺丝工艺中制造,包括将芳族聚砜-基聚合物和水可溶PVP的掺杂共混物从圆筒状喷嘴的外圆筒体挤出,使纺丝材料与含水凝结剂接触以进行相分离,和去除通过从体系中相分离而形成的包含大量PVP的相。
尽管在该方法中可以通过改变含水凝结剂的组成而控制与血液接触的膜表面上的平均孔尺寸,但所得分离膜表面上的孔尺寸分布往往由于掺杂物中的PVP分子量分布和聚合物浓度的波动,掺杂物排出时的剪切力等而变得较宽。为此,如果低分子量血浆蛋白质在高比率使用该分离膜去除,作为一种对人体有用的血浆蛋白质的白蛋白被不必要地去除。
另外,因为留在所得分离膜中的一部分PVP在膜制造工艺中必须使用大量溶剂和长时间而被去除以防膜在血液处理过程中被洗脱。这在制造工艺中产生严重的问题如生产率下降和需要处理大量废液。
为了克服这些缺陷,已经研究和开发出一种使用在表面上引入有带阴电荷的基团的分离膜模拟肾血管小球基底膜而用于分离具有不同等电点的血浆蛋白质的方法。Okayama Medical杂志,Vol.105,317(1993)报道,使用一种膜表面上引入有磺酸基团的由乙烯-乙烯基醇共聚物制成的用于渗析的带阴电荷的膜分离三种具有不同等电点的分子量14,300-66,000内的血浆蛋白质。该报道描述,具有不同等电点的血浆蛋白质的筛分系数不同且负电荷的渗透选择性可通过增加膜中的负电荷的量而提高。
日本专利申请延迟公开No.5-131125公开,一种由磺化芳族聚砜-基聚合物和芳族聚砜-基聚合物的共混物制成的血液透析膜同时具有高β2MG筛分系数和低白蛋白筛分系数。这样,与血液接触的在表面上具有带负电荷的基团的超过滤膜已知具有高对血浆蛋白质的选择渗透性。
但生理学上熟知,带阴电荷的基团在与血液接触时激活凝血因子XII(固有的凝血因子之一),且所得碎片XIIa在存在高分子量激肽原时激活凝血因素XI(如E.Cenni,等人″生物材料和生物工程手册″Chap.8,205,D.L.Wise ed.,Mercel Dekker,N.Y.,(2000)和KidneyInt.1999Mar.55(3)11097-103)。该活化起着触发器的作用以激活用于固有血液凝固体系的级联。因子XIIa将前激肽释放酶转化成激肽释放酶,后者作用于高分子量激肽原以产生血管舒缓激肽(以下简称BKN)。如果用于血液透析处理,所得BKN诱导类过敏性反应如微热和手指和口唇的麻醉。因此,带阴电荷的基团与血液的直接接触必须在血液透析时避免。
日本专利申请延迟公开No.8-505311公开一种使用由非磺化聚砜-基聚合物和磺化芳族聚砜-基聚合物的共混物制成的膜抑制从聚合物共混物中产生缓激肽的方法,其中磺化聚砜-基聚合物的磺化度和磺化聚砜-基聚合物在共混物中的含量的乘积是100或更低。但使用该方法降低总磺酸残基导致蛋白质选择渗透性的下降,这不可避免地带来截断性能的下降。另外,公开于该专利申请的对缓激肽产生控制的程度简单地低于其中聚合物共混包含大量磺化聚砜的情形。这不一定表明缓激肽的产生量下降至不影响活体的程度。具体地,尚未知道缓激肽的产生量是否是用于人造肾的安全水平。
日本专利申请延迟公开No.11-313886公开了一种使用中性或阳离子聚合物用于基于带阴电荷的聚丙烯腈的渗析半透性膜以防血液或血浆在与半透性膜接触时活化的方法。因为在该方法中在整个膜的孔表面上的负电荷覆盖有中性或阳离子聚合物,在处理之后的缓激肽的产生量预期会下降。但该膜由于使用聚丙烯腈作为基材的渗析半透性膜的负电荷少而不具有足够的分级性能。
这样,任何常规方法不能提供具有足够的截断性能,同时抑制对由于带阴电荷的基团与血液直接接触而产生的对生物体系的副作用的分离膜。
本发明的公开内容
本发明的一个目的是提供一种具有优异的血浆蛋白质选择分离(截断)性能,几乎没有内生的凝聚活性,补体活性,和奎宁活性,明显具有优异的生物相容性,并可用于血液透析,血浆分离等的非对称多孔膜。尤其是,本发明的第一目的是提供一种使用可在高精度下以AGE表示的具有分子量30,000-40,000的蛋白质中分离具有分子量约67,000的人血清白蛋白的合成聚合物作为基材的非对称多孔膜。
本发明的第二目的是提供一种制造具有生物相容性和选择分离能力的非对称多孔膜的方法。
考虑到以上情况,本发明的发明人对主要由合成聚合物形成的非对称多孔膜进行深入研究。结果,发明人已经发现,以上目的可通过至少在最外表面上在加载所要处理的液体的那侧提供实质上没有电荷的密实层和通过使至少一部分非最外表面的膜带负电而实现。该发现已导致本发明的完成。
在本发明中,至少在最外表面上实质上没有电荷的密实层用作胶隔绝层(根据分子尺寸的筛分功能)和非最外表面的膜部分用作电荷隔绝层(根据电荷排斥的筛分功能)
因此,本发明涉及:
(1)一种主要由合成聚合物形成的非对称多孔膜,其横截面结构中,实质上没有电荷的密实层至少存在于其上加载所要处理的液体的那侧的最外表面上且非最外表面的膜至少有一部分是带负电荷的。
(2)以上(1)中所述的非对称多孔膜,其中密实层整体上实质上没有电荷。
(3)以上(2)中所述的非对称多孔膜,其中负电荷密实地就在密实层下面。
(4)以上(2)中所述的非对称多孔膜,其中负电荷存在于除密实层之外的整个膜上。
(5)在以上任何一项(1)-(4)中所述的非对称多孔膜,其中负电荷源自不同于形成多孔膜的合成聚合物的带电聚合物。
(6)在以上任何一项(1)-(4)中所述的非对称多孔膜,其中负电荷源自主要构成除密实层外的那部分多孔膜的合成聚合物。
(7)以上(1)中所述的非对称多孔膜,其中仅密实层的最外表面实质上没有电荷。
(8)以上(7)中所述的非对称多孔膜,其中负电荷密实地存在于最外表面层下面。
(9)以上(7)中所述的非对称多孔膜,其中负电荷存在于除密实层最外表面之外的整个膜上。
(10)在以上任何一项(7)-(9)中所述的非对称多孔膜,其中负电荷源自不同于形成多孔膜的合成聚合物的带电聚合物。
(11)在以上任何一项(7)-(9)中所述的非对称多孔膜,其中负电荷源自主要构成除密实层最外表面外的那部分多孔膜的合成聚合物。
(12)在以上(6)或(11)中所述的非对称多孔膜,其中具有负电荷的合成聚合物在pH 7.4下具有ξ电势-2mV或更低,针对由该聚合物得到的基材膜测定。
(13)在以上(12)中所述的非对称多孔膜,其中具有负电荷的合成聚合物是一种包含至少一种选自磺化聚砜-基聚合物和脂族聚砜-基聚合物的聚合物的聚砜-基聚合物。
(14)在以上(13)中所述的非对称多孔膜,其中磺化聚砜-基聚合物是至少一种选自以下的聚合物:磺化芳族聚砜-基聚合物,磺化脂族聚砜-基聚合物,和亲水聚合物和芳族聚砜-基聚合物的共聚物的磺化产物,
(15)在以上任何一项(1)-(14)中所述的非对称多孔膜,其中实质上没有电荷的层由非带电亲水材料制成。
(16)在以上(15)中所述的非对称多孔膜,其中非带电亲水材料是至少一种选自以下的聚合物:亲水聚合物,亲水聚合物和芳族聚砜-基聚合物的混合物,和亲水聚合物和芳族聚砜-基聚合物的共聚物。
(17)在以上(16)中所述的非对称多孔膜,其中亲水聚合物是直链或支链氧化烯聚合物或聚乙烯基吡咯烷酮。
(18)在以上任何一项(1)-(17)中所述的非对称多孔膜,其中膜通过过滤和/或扩散分离所要处理的液体中的多种溶质和/或分散质。
(19)在以上(18)中所述的非对称多孔膜,其中膜是用于透析血液的膜和/或用于过滤血液的膜。
(20)一种用于制造根据任何一项权利要求(1)-(5)的非对称多孔膜的方法,包括提供一种主要由实质上没有电荷的合成聚合物制成的在加载液体的那侧具有密实层的具有非对称结构的多孔基材膜,由与密实层相对的面过滤或扩散可被通过密实层阻断的带负电荷的聚合物的溶液,阻止带负电荷的聚合物透过密实层,将负电荷引入除密实层外的那部分并使带负电荷的材料固定至除密实层外的部分。
(21)在以上(20)中所述的方法,其中负电荷通过阻断就在密实层下面的带负电荷的聚合物而以高密度下被引入密实层下。
(22)一种用于制造根据任何一项权利要求(1),(2),(4),和(6)-(19)的非对称多孔膜的方法,包括由包含具有负电荷的合成聚合物作为主要组分的聚合物溶液形成多孔基材膜,使基材膜的表面与实质上没有电荷的合成聚合物的溶液接触,和凝固该聚合物以形成实质上没有电荷的层。
(23)一种用于制造根据任何一项权利要求(1)-(19)的非对称多孔膜的方法,包括将包含具有负电荷的合成聚合物作为主要组分的聚合物溶液从双圆筒状纺丝头的外圆筒体挤出并将实质上没有电荷和具有凝固以上合成聚合物的作用的合成聚合物的溶液由双圆筒状纺丝头的内圆筒体喷射。
(24)一种用于制造根据任何一项权利要求(1)-(19)的非对称多孔膜的方法,包括将包含具有负电荷的合成聚合物作为主要组分的聚合物溶液由三圆筒状纺丝头的外圆筒体喷射,将实质上没有电荷的合成聚合物由三圆筒状纺丝头的中圆筒体喷射,和将具有凝固具有负电荷的合成聚合物和实质上没有电荷的合成聚合物的作用的溶剂从三圆筒状纺丝头的内圆筒体喷射。
附图的简要描述
图1是示意断面图,给出了本发明非对称多孔膜的一个实施方案。
图2是示意图,给出了一种将负电荷引入本发明非对称多孔膜的密实层下的方法。
图3是显示用于各种膜的α1-微球蛋白和白蛋白的筛分系数。
本发明和优选的实施方案的详细描述
尽管可以使用常用作分离膜的任何合成聚合物而对主要构成本发明非对称多孔膜的合成聚合物没有特别限制,优选用于处理血液的合成聚合物是理想的。具体地,合成聚合物优选选自聚丙烯腈-基聚合物,聚甲基丙烯酸甲酯-基聚合物,聚酰胺-基聚合物,聚砜-基聚合物,和乙烯-乙烯基醇共聚物。其中,聚砜-基聚合物由于优异的强度,优异的对消毒处理的耐性,和在膜制备过程中对孔直径和结构的可控制性而最优选。
术语″-基聚合物″在本发明中是指包含该聚合物作为主要组分的合成聚合物。例如,聚丙烯腈-基聚合物在本发明中是指包含聚丙烯腈作为主要组分的合成聚合物。
除了主要组分,合成聚合物可包含具有任何可有可无的官能团如阴离子基团的单体。另外,一部分聚合物可化学改性的以引入官能团如阴离子基团。
因为这种合成聚合物是用于形成膜的主要组分,可以结合使用其它组分如用于提供亲水性能的亲水聚合物或孔形成剂。
在本发明中,加载到膜上的液体是包含多种溶质和/或分散质的液体。典型例子是包含具有低至高分子量的各种溶质以及血细胞作为分散质的血液。血液不仅包括全血,而且包括已从中分离出组分如血浆和红血球的血液。因此,本发明非对称多孔膜的典型例子是可用于血液透析,血液过滤,和血浆分离等的膜。
主要由本发明合成聚合物形成的非对称多孔膜优选具有横截面结构,该结构在加载所要处理的液体的那侧具有密实层和在内部形成的孔直径大于密实层孔直径的具有多孔结构的承载层,其中平均孔直径朝向与所要处理的液体的加载侧相对的那侧增加。该膜可以是平整膜或中空纤维膜,对构型没有任何限制,只要可保持该结构。
如果密实层薄,血液中的有用蛋白质白蛋白容易透过膜,而如果密实层厚,耐渗透性增加,导致总渗透量的下降。因此,密实层的厚度优选为约1-20μm,和更优选2-10μm。密实层的平均孔直径应该被确定以保证低分子量血浆蛋白质和造成渗析淀粉样变性的AGE的渗透性的增加和泄漏血浆白蛋白的量的下降。在确定孔直径时的另一重要的因素是避免具有负电荷的承载层与凝聚因子XII,高分子量激肽酶,和前激肽释放酶的接触。因此,密实层的截断分子量优选为约10-100kD,和更优选30-100kD.截断分子量在此是指阻断率是90%的右旋糖酐分子的平均分子量。
以上密实层必须至少在最外表面上实质上没有电荷。密实层可在其整体或仅在最外表面上没有电荷。术语″实质上没有电荷″在此是指在pH 7.4下的电荷ξ电势为-2mV至30mV(根据实施例的ξ电势测量确定)的层的状态。术语″最外表面″在此不指宏观上可被膜的横截面照相确认的密实层或类似物,而是指可通过表面分析方式如X-射线光电子光谱分析的薄层。
除了用作胶(size)隔绝层的密实层功能,本发明非对称多孔膜至少在非最外表面的一部分膜中必须包含用作电荷隔绝层的负电荷。
对于负电荷分布,如果密实层整体上不带电,负电荷可存在于排除密实层的一部分或所有的膜上,但至少一部分负电荷必须用作电荷隔绝层。因为本发明多孔膜是一种在与所要处理的液体的加载侧相对的那侧具有大平均孔直径的非对称多孔膜,如果负电荷至少在平均孔直径接近密实层的那侧上存在,该部分预期有效地用作主要电荷隔绝层。如果负电荷在高密度下存在于密实层的下面,这些负电荷更优选作为电荷隔绝层。在血液渗析的情况下,负电荷优选存在于除密实层之外的整个膜上以防具有负电荷的生理物质如内毒素的逆流。
另一方面,如果仅密实层的最外表面不具有负电荷,负电荷可存在于排除密实层的部分或所有的膜,但至少一部分负电荷必须用作电荷隔绝层。如果负电荷至少在非密实层最外表面的一部分膜中存在,该部分预期有效地用作电荷隔绝层。在血液透析的情况下,负电荷优选存在于除密实层上最表面之外的整个膜上以防具有负电荷的生理物质如内毒素的逆流。
图1给出了本发明非对称多孔膜的一个实施方案。如图1所示,在液体渗透方向的横截面中,具有最小孔尺寸的密实层(a)被提供在与所要处理的液体的接触的那侧。密实层优选具有厚度几个mm或更低以用作对渗透的阻抗。具有负电荷的层(b)被提供在密实层的下面的膜的渗透侧。带电层(b)的孔半径大于密实层(a)的孔半径。尽管没有特别限制,约1μm或更多的厚度对于带电层是足够的。在该实施方案中,密实层(a)整体上实质上没有电荷。
其中至少一部分用作电荷隔绝层的负电荷源自当所形成的膜不具有电荷时在膜形成之后所供给的带电物质或当该膜本身具有负电荷时源自膜本身。
如果负电荷源自在膜形成之后所供给的带电物质,该膜由作为基材的实质上没有电荷的非对称多孔膜通过固定来自与基材膜密实层的相对侧的带负电荷的聚合物而制成。如果负电荷按照该方式被提供至实质上没有电荷的基材膜,至少一部分负电荷在所需区域中用作电荷隔绝层。
如果负电荷源自基材膜本身所具有的电荷,实质上没有电荷的最外表面在具有负电荷的该膜的表面上形成很充分。作为这种膜的例子,可以给出通过将实质上没有电荷的合成聚合物涂覆到具有负电荷的非对称多孔膜的密实层的表面上而制成的膜,通过在具有负电荷的多孔膜的表面上形成实质上没有电荷的凝固合成聚合物的密实层而制成的复合膜,和类似物。也可使用通过将具有负电荷的多孔基材膜和至少其最外表面实质上没有电荷的密实层在膜形成过程中使用多个狭缝型纺丝头整合在一起而制成的膜。另外,具有提供在一部分基材膜上的负电荷的膜可通过改变由两个或多个狭缝挤出的合成聚合物的组成而得到。适当选择这些替代方案。这样,如果基材膜是具有负电荷的多孔膜,该膜本身所具有的至少一部分负电荷在该膜的所需区域中用作电荷隔绝层。
本发明中的具有负电荷的基材膜可以是一种主要由任何一种前述合成聚合物形成的膜。通常,这种膜是一种在pH 7.4下具有电荷ξ电势-2mV或更低,和优选-4mV或更低和-50mV或更多的非对称多孔膜。可以使用任何适当制备的膜或市售非对称多孔膜而与聚合物或组合物的种类无关,只要满足以上ξ电势要求。
具有负电荷的上述合成聚合物是可得到具有以上ξ电势的基材膜的聚合物。
本发明中的实质上没有电荷的基材膜可主要由上述的任何合成聚合物制成且是指在pH 7.4下具有电荷ξ电势超过-2mV,和优选超过-2mV和低于+30mV的非对称多孔膜。可以使用任何适当制备的膜或市售非对称多孔膜而与聚合物或组合物的种类无关,只要满足以上ξ电势要求
实质上没有电荷的上述合成聚合物是可得到具有以上ξ电势的基材膜的聚合物。
如果使用具有这些负电荷的非对称多孔膜,负电荷在除了没有电荷的最外表面之外的区域中用作电荷隔绝层以电静电排斥人血清白蛋白和抑制血浆白蛋白的渗透性,这样可降低血浆白蛋白的泄漏量。
术语″主要由合成聚合物形成″在此是指,50%或更多的形成非对称多孔膜的组分是一种特定聚合物。例如,在聚砜-基聚合物的情况下,50wt%或更多,和优选60%或更多的形成非对称多孔膜的组分应该是聚砜-基聚合物。
本发明以下描述一个实施方案,其中负电荷源自基材膜本身所具有的电荷和合成聚合物是聚砜-基聚合物。但本发明不应局限于该实施方案。
术语″聚砜-基聚合物″在本发明中是指具有砜键的所有的聚合物且包括都磺化聚合物和非磺化聚合物。还包括具有亲水聚合物的共聚物。在此,亲水聚合物包括表示为聚氧化乙烯的直链或支链氧化烯-基聚合物,聚乙烯基吡咯烷酮,聚乙二醇,和类似物。
聚砜-基聚合物广义上划分为芳族聚砜-基聚合物和脂族聚砜-基聚合物。术语″芳族聚砜-基聚合物″在本发明中表示非磺化芳族聚砜-基聚合物,不同于磺化芳族聚砜-基聚合物。同样,术语″脂族聚砜-基聚合物″在本发明中表示非磺化脂族聚砜-基聚合物,不同于磺化脂族聚砜-基聚合物。
作为用于本发明的芳族聚砜-基聚合物的具体例子,可以给出包含具有以下化学结构式(1),化学结构式(2),化学结构式(3),化学结构式(4),或化学结构式(5)的重复单元的芳族聚砜-基聚合物。其中,包含具有化学结构式(1),化学结构式(2),或化学结构式(3)的重复单元的工业上容易得到的芳族聚砜-基聚合物是优选的。
化学式(1)
Figure C0280920300161
化学式(2)
Figure C0280920300162
化学式(3)
化学式(4)
化学式(5)
尽管对以上结构式中的符号n所表示的聚合度没有特别限制,但聚合物的重均分子量优选为1,000-1,000,000,和更优选5,000-100,000。作为用于本发明的脂族聚砜-基聚合物的具体例子,可以给出包含由以下化学结构式(6)所示的重复单元的聚合物。
化学式(6)
          -(CH2-CH2-SO2)m-(CHCH3-CH2-SO2)l-
尽管对以上结构式(6)中的符号m和l所表示的聚合度没有特别限制,但聚合物的重均分子量优选为6,000-600,000,和更优选10,000-200,000。
在本发明中,聚砜-基聚合物可用作与亲水聚合物的共聚物。作为使用在本发明中的非磺化聚砜-基聚合物和亲水聚合物的共聚物的例子,可以给出亲水聚合物和芳族聚砜-基聚合物的共聚物,表示为聚氧化乙烯的直链或支链聚氧化烯-基聚合物的特定嵌段或接枝共聚物,聚乙烯基吡咯烷酮,聚乙二醇,或类似物和以上芳族聚砜-基聚合物。其中,表示为聚氧化乙烯的直链或支链聚氧化烯-基聚合物的嵌段或接枝共聚物和以上芳族聚砜-基聚合物是优选的。
除了亲水聚合物和芳族聚砜-基聚合物的以上嵌段或接枝共聚物,使用在本发明中的非磺化聚砜-基聚合物和亲水聚合物的共聚物包括具有亲水聚合物中的重复单元和芳族聚砜-基聚合物中的重复单元在的无规共聚物。其中,亲水聚合物和芳族聚砜-基聚合物的嵌段或接枝共聚物是更优选的。
在本发明中,聚砜-基聚合物优选包含至少一种选自磺化聚砜-基聚合物和脂族聚砜-基聚合物的聚合物。
磺化聚砜-基聚合物一般是指具有砜键的磺化聚合物和包括,但不限于此,磺化芳族聚砜-基聚合物,磺化脂族聚砜-基聚合物,和这些磺化聚合物与亲水聚合物的共聚物。
作为这些磺化芳族聚砜-基聚合物和磺化脂族聚砜-基聚合物的具体例子,给出并可优选使用上述特定聚砜-基聚合物的磺化化合物。
作为与亲水聚合物的共聚物的例子,可以给出亲水聚合物和芳族聚砜-基聚合物磺化产物的共聚物,具体地,表示为聚氧化乙烯的直链或支链聚氧化烯-基聚合物的嵌段或接枝共聚物,聚乙烯基吡咯烷酮,聚乙二醇,或类似物和以上芳族聚砜-基聚合物的磺化产物。其中,表示为聚氧化乙烯的直链或支链聚氧化烯-基聚合物的嵌段或接枝共聚物和芳族聚砜-基聚合物的磺化产物是优选的。
芳族聚砜-基聚合物或脂族聚砜-基聚合物可使用已知的方法磺化。在磺化芳族聚砜-基聚合物的情况下,这种方法的一个例子包括,将芳族聚砜-基聚合物在二氯甲烷中的溶液与氯磺酸在二氯甲烷中的溶液在反应容器中搅拌的同时进行反应以生成聚合物,在异丙醇中沉淀所得聚合物,然后洗涤和干燥沉淀物以得到聚合物粉末。但磺化工艺不限于该方法。
用于合成亲水聚合物和芳族聚砜-基聚合物磺化产物的共聚物的方法包括,但不限于,(a)一种磺化芳族聚砜-基聚合物和亲水聚合物的共聚物的方法,(b)一种磺化芳族聚砜-基聚合物并将所得磺化聚合物与亲水聚合物共聚的方法,和(c)一种磺化用于芳族聚砜-基聚合物的原料单体,合成磺化芳族聚砜-基聚合物,并将磺化芳族聚砜-基聚合物与亲水聚合物共聚的方法。
如果如此通过磺化得到的磺化聚砜-基聚合物是一种具有替换度1或更多的磺化芳族聚砜-基聚合物,亲水性能由于磺化而强烈,使得所得聚合物往往变得水溶性且难以使用。
如果替换度是0.5或更多至低于1.0,该磺化芳族聚砜-基聚合物可用水溶胀且不能单独使用。这种聚合物必须与一种为非磺化聚砜-基聚合物的芳族聚砜-基聚合物混合使用。在这种情况下,磺化芳族聚砜-基聚合物与芳族聚砜-基聚合物在原浆溶液中的重量比优选为0.02-0.75,和更优选0.05-0.5。
如果替换度是0.05或更多至低于0.5,磺化芳族聚砜-基聚合物可单独使用或与芳族聚砜-基聚合物混合。如果用作混合物,磺化芳族聚砜-基聚合物与芳族聚砜-基聚合物在原浆中的重量比优选为0.1-1,和更优选0.1-0.9。通过改变替换度和混合比率,可以在整个膜中具有所需量的负电荷(磺化密度)。可因此调节由负电荷造成的静电排斥。如果替换度低于0.05,磺化产生的负电荷太低,不能使膜具有足够的截断性能,即使磺化芳族聚砜-基聚合物单独使用。
另一方面,如果替换度低于0.3,因为亲水性在磺化芳族聚砜-基聚合物单独使用或与芳族聚砜-基聚合物磺化的情况下不足,亲水聚合物必须结合使用以增加亲水性。在此,作为结合使用的亲水聚合物,可以给出表示为聚氧化乙烯的直链或支链氧化烯-基聚合物,聚乙烯基吡咯烷酮,聚氧化乙烯,或类似物,和亲水聚合物和芳族聚砜-基聚合物的共聚物。
本发明非对称多孔膜的一个优选实施方案是结合使用亲水聚合物以增加亲水性而与替换度无关。亲水聚合物在原浆溶液中的量优选为0.5-20wt%,和更优选1-10wt%。替换度(磺化度或DS)在此是指聚砜骨架每个重复单元所存在的磺酸基团的数目。
在聚砜-基聚合物中,脂族聚砜-基聚合物具有强负电荷而没有被磺化。例如,包含具有化学结构式(6)的重复单元的脂族聚砜-基聚合物可通过上述已知的方法磺化,但可用于替代磺化聚砜-基聚合物而无需磺化。
磺化脂族聚砜-基聚合物和脂族聚砜-基聚合物可单独或与芳族聚砜-基聚合物结合使用。如果结合使用,磺化脂族聚砜-基聚合物或脂族聚砜-基聚合物与芳族聚砜-基聚合物在原浆溶液中的重量比优选为0.1-0.9,和更优选0.15-0.8,取决于磺化脂族聚砜-基聚合物和脂族聚砜-基聚合物所具有的负电荷。
结合使用亲水聚合物以增加亲水性是一个优选的实施方案。亲水聚合物在原浆溶液中的量优选为0.5-20wt%,和更优选1-10wt%。
磺化芳族聚砜-基聚合物,磺化脂族聚砜-基聚合物,和脂族聚砜-基聚合物可结合用作组分以形成本发明的具有负电荷的非对称多孔膜。
没有电荷的密实层至少存在于本发明非对称多孔膜的液体加载侧的最外表面上。该最外表面优选包含非带电亲水材料。具体地,如果密实层在其整体上没有电荷,密实层可由非带电亲水材料形成或实质上没有电荷的最外表面可包含非带电亲水材料。如果仅密实层的最外表面不具有电荷,该最外表面优选由非带电亲水材料形成。
在本发明中,非带电亲水材料是指实质上没有电荷的亲水材料。如果材料实质上没有电荷,那么该材料在pH 7.4下具有电荷ξ电势超过-2mV和低于+30mV,根据实施例所述的ξ电势测量测定。
具体地,即使材料具有负电荷,这种材料包括d在本发明中非带电亲水材料中,只要在血液透析处理过程中不出现由与血液接触产生的缓激肽(BKN)所诱导的过敏性样反应如微热和手指和口唇的麻醉,具体地,只要负电荷的程度超过-2mV,以在pH 7.4下根据ξ电势测量测定的ξ电势计。
非带电亲水材料现以其中聚砜-基聚合物用作合成聚合物的情形作为例子更详细描述。但本发明不限于该例子。
亲水材料是指通过氢键-型官能团如羟基基团,丙烯酰胺基团,或醚基团或电解离解官能团如羧基基团,磺酸基团,或季氨基基团而具有与水分子的亲和性的合成或天然存在的聚合物或其衍生物。实施例包括天然存在的聚合物和低聚物如淀粉,果胶,明胶,酪蛋白,和右旋糖酐;半合成聚合物和低聚物如甲基纤维素,羧基甲基纤维素,和羟基乙基纤维素;直链或支链聚氧化烯如聚氧化乙烯;聚乙二醇,聚乙烯基醇,聚乙烯基甲基醚,聚乙烯基吡咯烷酮,聚丙烯酸钠酯,聚乙烯亚胺,和聚丙烯酰胺;至少一种这些聚合物和低聚物和芳族聚砜-基聚合物的混合物;和至少一种这些聚合物和低聚物和芳族聚砜-基聚合物的共聚物。
其中,亲水聚合物如直链或支链聚氧化烯,聚乙二醇,和聚乙烯基吡咯烷酮,亲水聚合物和芳族聚砜-基聚合物的混合物,和亲水聚合物和芳族聚砜-基聚合物的共聚物是优选的,其中更优选的亲水材料是直链或支链氧化烯-基聚合物,氧化烯-基聚合物和芳族聚砜-基聚合物的混合物,氧化烯-基聚合物和芳族聚砜-基聚合物的共聚物,聚乙烯基吡咯烷酮,聚乙烯基吡咯烷酮和芳族聚砜-基聚合物的混合物,和聚乙烯基吡咯烷酮和芳族聚砜-基聚合物的共聚物。尤其优选的亲水材料是聚氧化乙烯,聚乙烯基吡咯烷酮,这些聚合物和芳族聚砜-基聚合物的混合物,和这些聚合物和芳族聚砜-基聚合物的共聚物。
在本发明中,用作非带电亲水材料或具有聚砜-基聚合物的共聚物的组分的聚氧化烯不限于直链聚氧化烯,但也可使用支链聚氧化烯。聚氧化烯可向基材膜提供优异的生物相容性,因为它能够在膜表面上形成扩散层且可明显抑制蛋白质如高分子量激肽酶与基材膜的接触。用于制造具有支链聚氧化烯的芳族聚砜共聚物的方法公开于USPNo.6,172,180,例如。
直链或支链氧化烯-基聚合物,氧化烯-基聚合物和芳族聚砜-基聚合物的混合物,氧化烯-基聚合物和芳族聚砜-基聚合物的共聚物,聚乙烯基吡咯烷酮,聚乙烯基吡咯烷酮和芳族聚砜-基聚合物的混合物,和聚乙烯基吡咯烷酮和芳族聚砜-基聚合物的共聚物,尤其聚氧化乙烯,聚乙烯基吡咯烷酮,聚氧化乙烯或聚乙烯基吡咯烷酮和芳族聚砜-基聚合物的混合物,和聚氧化乙烯或聚乙烯基吡咯烷酮和芳族聚砜-基聚合物的共聚物可具有非常低的对血小板,内生凝聚体系,补体体系,和喹啉体系的活化作用(在与血液接触时),具有优异的生物相容性,和仅让非常少量的血浆蛋白质粘附。这些材料可因此抑制作为血液处理膜例如在渗析过程中渗透性随着时间的变化。
这些非带电亲水材料在宽范围的混合比率下不仅在形成多孔膜作为基材膜的聚砜-基聚合物的良溶剂中,而且在由用于聚砜-基聚合物的良溶剂和非溶剂组成的混合溶剂。因此,可以通过在制备基材膜时溶解在混合溶剂中或通过在制备之后将该溶液施用到基材膜上而在基材膜的血液接触面上形成这些非带电亲水材料的表面层。
实质上没有电荷的层在密实层的最外表面层上的存在或不存在可在本发明中根据形成基材膜的合成聚合物的种类和带电聚合物的种类通过合适选择表面分析方法如X-射线光电子光谱而评估。例如,如果合成聚合物是聚砜-基聚合物,包含非带电亲水材料的层作为实质上没有电荷的层在密实层的最外表面上的存在或不存在可评估如下。
氧原子与硫原子([O]/[S])的比率或氮原子与硫原子([N]/[S])的比率通过X-射线光电子光谱(以下称作″XPS″)确定为非带电亲水材料的表面浓度指数。在此,[O]/[S]或[N]/[S]根据非带电亲水材料的种类而选择。如果聚合物包含聚乙烯基吡咯烷酮,例如,使用值[N]/[S]。如果聚合物包含聚氧化烯,使用值[O]/[S]。如果聚合物包含都聚乙烯基吡咯烷酮和聚氧化烯两者,使用值[N]/[S]和[O]/[S]中的一个。
在本发明中具有包含非带电亲水材料的层是指,如果非带电亲水材料的表面浓度指数是[O]/[S],满足不等式[O]/[S]>6,或优选[O]/[S]>7;和如果非带电亲水材料的表面浓度指数是[N]/[S],满足不等式[N]/[S]>1.5,或优选[N]/[S]>2.0。如果聚合物包含都聚乙烯基吡咯烷酮和聚氧化烯两者,满足用于值[N]/[S]或[O]/[S]的任何不等式是足够的。
现在描述用于制造非对称多孔膜的方法。广义上有七种用于制造本发明非对称多孔膜的方法。
具体地,它们是:
(1)使用具有负电荷的多孔膜作为基材膜和通过凝固实质上没有电荷的合成聚合物而在基材膜的表面上形成密实层,
(2)提供包含带电聚合物的溶液,所述带电聚合物的尺寸使得不能由承载层侧透过密实层至实质上没有电荷的非对称多孔膜的基材膜的密实层侧,这样将带电聚合物物质固定在膜中。
(3)将包含具有负电荷的合成聚合物的原浆溶液由双圆筒状纺丝头的外圆筒体挤出,将实质上没有电荷的合成聚合物在包含非溶剂和良溶剂的混合溶剂中的溶液由双圆筒状纺丝头的内圆筒体挤出,然后凝固该合成聚合物以形成膜,
(4)将原浆溶液由三圆筒状纺丝头的外圆筒体注射,将包含实质上没有电荷的合成聚合物由三圆筒体纺丝头喷嘴的中圆筒体注射,和将具有凝固实质上没有电荷的合成聚合物的作用的溶剂由三圆筒体纺丝头喷嘴的内圆筒体注射以形成膜,
(5)将原浆溶液由双圆筒状纺丝头的外圆筒体挤出,将非溶剂和良溶剂的混合物从内圆筒体挤出,凝固该合成聚合物以形成多孔膜,和使所得中空膜的密实层接触表面与包含实质上没有电荷的合成聚合物的溶液接触,这样形成膜,
(6)使用实质上没有电荷的非对称多孔膜作为基材膜,通过凝固具有负电荷的合成聚合物而在基材膜的表面上单独形成密实层,和使实质上没有电荷的合成聚合物的溶液与密实层的表面接触,和
(7)将原浆溶液由三圆筒状纺丝头的中圆筒体挤出,将包含实质上没有电荷的合成聚合物由三圆筒状纺丝头的外圆筒体挤出,和将具有凝固实质上没有电荷的合成聚合物的作用的溶剂由三圆筒状纺丝头的内圆筒体挤出以形成包含负电荷的密实层,和使实质上没有电荷的合成聚合物与密实层的表面接触,这样形成膜。
在以上方法中,方法(1)和(2)优选应用于其中密实层在整个该层上不具有电荷的情形。方法(3)-(7)优选应用于其中密实层的最外表面不具有电荷的情形。
方法(1)包括,提供具有负电荷的多孔膜而不是所需密实层并通过凝固实质上没有电荷的合成聚合物而在基材膜的表面上单独形成密实层。
基材膜可主要由上述的任何合成聚合物而形成。通常,这种膜是在pH 7.4下具有ξ电势-2mV或更低,和优选-4mV或更低和-50mV或更多的多孔膜。可以使用任何合适制成的膜或市售多孔膜,与聚合物的种类或组成无关,只要满足以上ξ电势要求。
已知的复合膜制造方法可用于形成密实层。具体地,使用形成密实层的合成聚合物在用于合成聚合物但不溶解基材膜的良溶剂中的溶液。在使溶液与基材膜的表面接触之后,该表面随后与一种凝固流体(是形成密实层的合成聚合物的非溶剂且不溶解基材膜)接触,或溶剂通过干燥而去除以使聚合物沉积,这样可得到复合膜。
提供在基材膜的表面上的密实层可由任何一种前述的合成聚合物而形成。使用实质上没有电荷的合成聚合物。可以使用任何种类的聚合物和组合物而没有特别限制,只要可满足以上定义。另外,非带电亲水材料可施用到密实层的最外表面形成上或密实层自身可由非带电亲水材料形成。
在方法(2)中,为了在非对称多孔膜中在密实层的下面形成带电层,带电材料的溶液通过由膜的承载层侧过滤或扩散而供给至密实层侧。如果所用的带电物质的尺寸使得不能透过密实层,正透过膜的承载层趋向密实层的带电物质受到密实层的阻断并被密实层下面的多孔承载层所捕获。所捕获的带电物质随后被固定。
为了固定带电物质,包含可在带电物质的分子之间或在带电物质的分子和膜材料的分子之间造成交联反应的交联剂(固定剂)的溶液通过由膜的承载层侧渗透或扩散而供给以产生局部交联反应,这样物理或化学地将带电物质固定在膜的密实层的下面。尽管交联是优选的方法,可以使用可将带电物质固定在膜中的任何其它方法。
另外,交联剂(固定剂)可通过由密实层侧扩散而供给,尽管通过从膜的承载层侧过滤或扩散而供给带电物质,这样将带电物质固定在密实层的下面。
在凝固非对称膜的步骤中,可以使存在于膜之外的凝固剂直接与使用一种可引入带电官能团的聚合物溶液反应。电荷在膜的横截面方向上的分布可被极化使得电荷可存在于膜之外,但不出现在密实层中。这样可得到其中电荷不在内部暴露的带电膜。
尽管在该方法中的基材膜可由任何一种前述合成聚合物形成,但该膜是实质上没有电荷的非对称多孔膜。实质上没有电荷的膜是指在pH 7.4下电荷ξ电势超过-2mV和低于+30mV的膜,根据实施例中所述的ξ电势测量测定。可以使用任何合适制成的膜或市售非对称多孔膜,与聚合物或组合物的种类无关,这样满足以上ξ电势要求。
尽管提供至基材膜的具有负电荷的带电聚合物可以是任何天然存在的或合成带电聚合物,具有磺酸基团的聚合物由于在生理pHs下的大电解质离解度而是尤其优选的。具体地,可以使用表示为酸性粘膜多糖的任何硫酸化多糖如肝素,类肝素硫酸盐,软骨素硫酸盐,和角质硫酸盐,和半合成多糖如右旋糖酐硫酸盐。可以使用的合成聚合物包括由包含磺酸基团的乙烯基-型单体如甲基烯丙基磺酸钠而生成。水溶性聚合物是优选的,因为在处理过程中不损害基材膜。这些聚合物是尤其优选的,因为它们的化学结构使得聚合物通过用交联试剂处理或通过照射而自身交联或通过与部分的膜反应而被固定。
另外,使用具有不可透过密实层的分子尺寸的带电聚合物并在膜中存在使得负电荷不暴露于密实层的表面上。另外,如果使用具有与基材膜的高亲和性,尤其具有高吸附能力的带电聚合物,可得到一种在除密实层之外的整个基材膜上具有负电荷的膜。
也可在制造方法(2)中将非带电亲水材料施用到密实层的最外表面上。
现在以其中聚砜-基聚合物用作合成聚合物和非带电亲水材料用作实质上没有电荷的合成聚合物的情形作为例子描述制造方法(3)-(5)。当然,本发明不限于这些实施例。
作为形成用于制造非对称多孔膜(是基材膜)的原浆溶液的聚合物,可以给出(1)单独的磺化聚砜-基聚合物,(2)磺化聚砜-基聚合物和芳族聚砜-基聚合物的混合物,(3)单独的脂族聚砜-基聚合物,(4)脂族聚砜-基聚合物和芳族聚砜-基聚合物的混合物,(5)任何一项(1)-(4)的聚合物或聚合物组合物和亲水聚合物的混合物,和类似物。这些聚合物或聚合物组合物之一根据膜性能适当地选择。原浆溶液通过将这些聚合物或聚合物组合物溶解在溶剂中而制成。溶解聚砜-基聚合物的溶剂以下称作良溶剂。
作为良溶剂,优选使用N,N-二甲基乙酰胺,N,N-二甲基甲酰胺,N-甲基-2-吡咯烷酮,二甲基亚砜,和类似物,其中N,N-二甲基甲酰胺和N-甲基-2-吡咯烷酮是尤其优选的。这些良溶剂无需单独使用,但其中的两种或多种可结合使用以调节聚合物的溶解度或原浆溶液的粘度或控制膜性能。另外,可以加入聚砜-基聚合物的非溶剂,如水,醇如异丙基醇和乙醇,无机盐如氯化钠和氯化钙,和二醇如丙二醇,四甘醇,和聚乙二醇(以下称作″非溶剂″)以加速孔形成而影响膜性能或防止空隙形成。非溶剂的种类和量根据多孔膜的所需性能适当地选择和调节。
尽管聚合物在原浆溶液中的浓度取决于聚合物的分子量,考虑到可拉伸性和膜强度,该浓度是10-50wt%,和优选15-40wt%。
在制造方法(3)中,来自外圆筒体的原浆溶液用作纺丝溶液。用于外圆筒体的原浆溶液的溶剂和非溶剂的混合物使用包含由内圆筒体挤出的非带电亲水材料的溶液。作为非溶剂,可以给出水,异丙基醇,乙醇丙基丙二醇,四甘醇,和类似物。其中,水是优选的。良溶剂和非溶剂的混合比是确定基材膜的平均孔直径的最大因素。如果多孔膜主要由聚砜-基聚合物形成,水(是非溶剂)的比率的增加一般会降低密实层的平均孔尺寸。因此,良溶剂与非溶剂的比率优选为10/90-65/35,和更优选20/80-55/45。
在如同制造方法(3)通过凝固同时从外圆筒体和内圆筒体挤出的聚合物溶液而形成的多孔膜中,靠近多孔膜密实层的最外表面形成的表面层可在后处理和类似处理过程中剥离或消除。但如果聚合物溶液同时由外圆筒体和内圆筒体挤出,聚合物在外圆筒体溶液和内圆筒体溶液的界面中在凝固的同时分子链相互缠绕,这样防止这些剥离或消除。即使其中亲水聚合物如聚氧化烯或聚乙烯基吡咯烷酮单独用作非带电亲水材料的混合溶液用作内圆筒体溶液,如果亲水聚合物具有重均分子量5,000或更多,和优选8,000或更多,剥离或消除不出现。另一方面,如果用作非带电亲水材料的亲水聚合物的平均分子量低于5,000,优选使用亲水聚合物和芳族聚砜-基聚合物的混合物或亲水聚合物和芳族聚砜-基聚合物的共聚物,只要这种聚合物混合物或共聚物溶解在用于内圆筒体的混合溶剂中。
作为确定表面层厚度的重要的因素,非带电亲水材料的浓度是约0.01-15wt%,和优选0.05-5wt%。该范围的浓度不仅确保表面层的厚度足够的大以抑制负电荷对基材膜的影响,而且形成具有均匀厚度的薄层。另外,以上浓度范围确保溶液的低粘度以加速聚合物扩散至外圆筒体溶液侧,使得聚合物溶液均匀覆盖孔表面而没有改变靠近基材膜的表面的孔尺寸。
中空纤维膜可如同制造方法(4)使用三圆筒形纺丝头而制成。在制造方法(4)中,非对称多孔膜通过将原浆溶液从三圆筒状纺丝头的外圆筒体挤出,将包含非带电亲水材料的溶液从中圆筒体挤出,和将具有凝固聚砜-基聚合物和非带电亲水材料的作用的溶剂从内圆筒体挤出而制成。
作为用于从中圆筒体挤出的非带电亲水材料的溶液的溶剂,优选使用N,N-二甲基乙酰胺,N,N-二甲基甲酰胺,N-甲基-2-吡咯烷酮,二甲基亚砜,和类似物,其中N,N-二甲基甲酰胺和N-甲基-2-吡咯烷酮是尤其优选的。这些溶剂无需单独使用,但其中的两种或多种可结合使用以调节聚合物在溶液中的溶解度或溶液的粘度或控制膜性能。另外,可以加入聚砜-基聚合物的非溶剂,包括水,醇如异丙基醇和乙醇,无机盐如氯化钠和氯化钙,和二醇如丙二醇,四甘醇,和聚乙二醇以加速孔形成而影响膜性能或防止空隙形成。非溶剂的种类和量根据多孔膜的所需性能适当地选择和调节。
良溶剂和非溶剂的混合物从内圆筒体挤出。作为良溶剂,优选使用N,N-二甲基乙酰胺,N,N-二甲基甲酰胺,N-甲基-2-吡咯烷酮,二甲基亚砜,和类似物,其中N,N-二甲基甲酰胺和N-甲基-2-吡咯烷酮是尤其优选的。这些溶剂无需单独使用,但其中的两种或多种可结合使用。作为非溶剂,可以给出水,异丙基醇,乙醇,丙基丙二醇,四甘醇,和类似物。其中,水是最优选的。良溶剂和非溶剂的混合比是确定基材膜的平均孔直径的最大因素。如果多孔膜主要由聚砜-基聚合物制成,水(是非溶剂)的比率的增加一般会降低密实层的平均孔尺寸。因此,溶剂与非溶剂的比率优选为10/90-65/35,和更优选20/80-55/45。
将通过方法(3)或(4)纺丝的中空膜在凝固浴中凝固,洗涤,和干燥以得到本发明非对称多孔膜。使用高温蒸气或类似物的后处理有效地增加密实层的最外表面的亲水性。水作为非溶剂优选用于凝固浴。水可包含溶剂如N,N-二甲基乙酰胺,N,N-二甲基甲酰胺,N-甲基-2-吡咯烷酮,或聚乙烯基吡咯烷酮。这些溶剂无需单独使用,但其中的两种或多种可结合使用以调节聚合物凝固性能或控制膜性能。可以加入非溶剂如醇,例如,异丙基醇或乙醇。非溶剂的种类和量根据多孔膜的所需性能适当地选择和调节。凝固浴的温度是重要的,因为凝固浴温度明显影响膜性能。温度优选为20-90℃,和更优选50-70℃。
用于方法(5)的基材膜可使用几乎与方法(3)和(4)相同的方法而制成。在这种情况下,与在制造方法(4)中描述为用于三圆筒状纺丝头内圆筒体的混合溶剂相同的良溶剂和非溶剂的溶剂组合物可在纺丝过程中应用于用作内圆筒体溶剂的溶剂。形成多孔膜作为基材膜。在干燥之后,多孔膜的密实层表面与包含非带电亲水材料的溶液接触以形成表面层。
包含非带电亲水材料的溶液具有溶剂/非溶剂比率优选5/95-65/35,和更优选20/80-55/45。非带电亲水材料的浓度是0.1-15wt%,和优选0.05-5wt%。并不特别限定使多孔膜的密实层表面与包含非带电亲水材料的溶液接触的方法。在典型的方法中,在通过已知的方法制备中空纤维组件之后,将包含非带电亲水材料的溶液加料到组件的密实层表面侧,随后溶液被替换为水直至不再发生溶解,这样凝固和固定非带电亲水材料,并根据需要将凝固非带电亲水材料干燥。在这种情况下,该表面优选保持与溶液接触足够长的时间以使基材膜的表面变得溶胀或温度保持高于室温,优选约50-70℃以防表面层的剥离或消除。
实施例
本发明通过实施例更详细描述,但不应理解为限定本发明。
<评估方法>
(替换度的测量)
磺酸基团的摩尔数通过描述于分析化学Manual(1971第二版,由日本分析化学学会,p 367,2-47-3定量分析)的中和滴定方法而确定。聚砜骨架的重量百分数由聚氧化乙烯的芳族部分和亚甲基链部分在NMR中的积分值。将该值转化成聚砜骨架的每个重复单元的值。磺酸基团的数,即替换度(磺化度或DS)随后由所得值和以前确定的磺酸基团的量确定。
(测量重均分子量的方法)
分子量通过连接到GPC柱(由具有shodex Co.制造的KD-806M,KD-803,KD-802)上的测量仪器(体系-21,由Shodex Co。制造)使用二甲基乙酰胺(DMAc)作为显影溶液在柱温度50℃在流速1ml/min下测定。转化的分子量使用聚苯乙烯标准样品(TSK标准聚苯乙烯,由TosohCorp.制造)测定。
(测量截断分子量的方法)
测定中空纤维膜的内直径。得到恒定性能的中空纤维的数目使用下式计数。通过使用环氧粘合剂粘结两端而制备出具有有效的长度18cm的组件。在试验之前,将中空纤维使用注射用生理盐水溶液(Otsuka正常盐水,由Otsuka药物有限公司制造)充分洗涤。
线数=流速/(π/4)×(内径/10,000)2×直链速度×60min)
其中直链速度是1cm/sec和流速是2.0ml/min。
然后,将10g右旋糖酐40,000(由Sigma Corp.制造,Mw=41,272)和10g右旋糖酐70,000(由Sigma Corp.制造,Mw=71,000)溶解在注射用生理盐水溶液(Otsuka正常盐水,由Otsuka药物有限公司制造)中将。右旋糖酐溶液加热至37℃并在流速2.0ml/min下经过该组件。如果右旋糖酐溶液由组件的出口流出,施加压力以产生跨膜压力(TMP)25mmHg。在10分钟之后,收集滤液5分钟并用作评估样品。超过滤速率(UFR,ml/mmHg·m2·hr)是由所得滤液的量计算。评估样品和用于性能试验的右旋糖酐溶液通过HPLC在以下条件下分析。柱:(分析柱)Shodex GF-710HQ,(保护柱)GF-1G-7B,柱温度:40℃,检测器:RI(Shimadzu RID-6A),移动相:生理盐水溶液,流速:0.3ml/min,6种标准右旋糖酐(Mw=186,000,100,000,48,000,23,700,12,200,和5,800)用于准备分子量校正曲线并将色谱图的保持时间转化成右旋糖酐分子量。将每个评估样品的色谱图中的峰强度除以右旋糖酐溶液的色谱中的峰强度以确定筛系数(SC)。阻断率定义为(1-SC)×100。
(测量多孔膜的ξ电势的方法)
ξ电势使用由Anton Paar GmbH制造的电动力学分析器(EKA)测定如下。将EKA泵设定为电压20V。将测量样品通过夹在Ag/AgCl电极之间使得施加压力-930-至-950mba而放在宽度3-5cm的圆筒形池的中心。500ml 0.001mol/l KCl水溶液在25℃下由用于试验的0.01mol/l KCl溶液(由Kishida Chemical Co.制造)和蒸馏水(由Otsuka药物有限公司制造)制备。在用KCl溶液填充整个测量回路之后,加入0.1mol/l KOH溶液(用于容量分析,由Wako Pure ChemicalIndustries,Ltd.制造)以调节pH至11。然后,在范围pH 11-3内每次在pH改变0.8时测定中空纤维膜的ξ电势,同时使用RTU(遥控滴定装置(由Anton Paar GmbH制造))滴定0.1mol/l HCl溶液(用于容量分析,由Wako Pure Chemical Industries,Ltd.制造)
(测量XPS的方法)
切割中空纤维膜并打开以暴露内部。将按照该方式切割的7种中空纤维膜在可测视力内排列,使用XPS装置(由物理电子公司制造的PHI-5400)在以下条件下测定XPS。
激发源:MgKa(15kV/26.7mA),分析区域:3.5mm×1mm,吸收区域:观测扫描(用于定量分析)1,100-0eV,窄扫描(用于定量分析和化学分析)Cls,Ols,S2p,通过能量:观测扫描:178.9eV和窄扫描:35.75eV。元素浓度由窄扫描光谱得到的面积强度使用该装置的库相对敏感度系数而计算。XPS使用所得元素浓度计算。所用的相对敏感度系数是Cls:0.296,Ols:0.711,S2p:0.666,和Nls:0.477。
(作为血小板活化指数的乳酸盐脱氢酶(LDH)和蛋白质吸附量的试验方法)
由56个具有有效的长度15cm(膜面积:50mm2),两端使用环氧粘合剂粘结的中空纤维制成的微型组件通过将10ml生理盐水溶液(Otsuka正常盐水,由Otsuka药物有限公司制造)加入中空纤维(以下称作″涂底″)的内部和外部而洗涤。将放在7ml注射器泵中的肝素化人血液在流速1.2ml/min下装入组件,随后用10ml生理盐水溶液洗涤中空纤维的内部和外部。将中空纤维从洗涤组件中收集,28个用于LDH确定和23个用于吸附蛋白质,分别具有长度14cm,并细切割以用作测量样品。
将0.5ml通过将Triton X-100(由Nakalai Tesque,Inc.制造)在磷酸盐缓冲剂溶液(PBS)(由Wako Pure Chemical Industries,Ltd.制造)中而得到的TritonX-100/PBS溶液(0.5vol)加入用于测量LDH的spitz管。在超声处理60分钟之后,将0.1ml提取物与3ml LDH反应试剂(LDH mo注t,由Boehringer Mannheim制造)反应。在反应之后立即将0.5ml反应物取样以测定在340nm下的吸光率。剩余的反应物在37℃下进一步反应1小时并测定在340nm下的吸光率以确定吸光率的下降。未反应的膜的吸光率按照相同的方式测定以确定Δ340nm=(在样品反应之后不久的吸光率-在样品反应之后60分钟的吸光率)-(在空白反应之后不久的吸光率-在空白反应之后60分钟的吸光率)。下降的速率越大,膜的LDH活性越高。
2ml通过将月桂基硫酸钠(SDS)(由Nakalai Tesque Inc.制造)溶解在PBS中而得到的1vol%SDS/PBS溶液加入用于测量吸附蛋白质的瓶中并将该混合物在室温下搅拌4小时。将提取物滤过0.45μm过滤纸。0.2ml滤液用作试验溶液。将3ml二辛可宁酸(BCA)蛋白质分析试剂(由Pierce生物技术公司制造)加入试验溶液。混合物在37℃下反应30分钟以测定在562nm下的吸光率。吸光率按照不与血液反应的膜时的相同的方式测定,从试验溶液的吸光率中减去所得值。校正曲线由标准蛋白质吸光率的直线准备以确定试验溶液的蛋白质吸光率的量。
(用于缓激肽(BKN)的测量方法)
100个分别具有长度16cm的样品纤维用硅粘合剂粘结并将聚氯乙烯覆盖物连接到外周(膜面积:100m2)上。在用纯化水和生理盐水溶液按此顺序涂底之后,将样品在热水浴中在37℃下加热。加入了人新鲜肝素的肝素化血液使用注射器泵加料以使血液与纤维的内层接触。将5ml在出口处的血液回收在试验管(包含2ml由SRL制造的抑制剂:组分:抑肽酶,大豆胰蛋白酶抑制剂,精蛋白硫酸盐,和EDTA-2Na)中作为样品。血液流速是0.44ml/min以确保4分钟的接触时间。血液随后冷却和离心处理以收集血浆,然后冻干储存。采用放射免疫分析(RIA方法)用于测量。
(使用牛血清的分级性能的评估方法)
白蛋白(Mw=66,000),α1微球蛋白(α1MG和Mw=33,000),和β2微球蛋白(β2M和Mw=11,800)的筛分系数作为用于分级性能的指数通过以下方法确定。
测定膜的内径。计算得到膜面积120mm2的膜的数目。纤维的两端用环氧粘合剂内径以得到有效的长度15cm。纤维用生理盐水溶液充分洗涤以制备出用于试验的微型组件。将在37℃下加热熔化的牛血清(冻干产品,由Valley Biomedical and Inc.制造)用生理盐水溶液稀释以得到总蛋白质浓度6.5g/密实层。加入α1微球蛋白(8mg/l)(α1-M高级Eiken,由Eiken Chemical Co.,Ltd.制造)和β2微球蛋白(5mg/l)(β2-M高级Eiken,由Eiken Chemical Co.,Ltd.制造)以得到血清试验样品。血清在37℃下加热并在流速1ml/min下滤过组件。施加压力以使TMP=34mmHg。在60分钟之后,收集滤液用作评估样品。UFR(ml/mmHg·m2·hr)由所得滤液的量计算。加入白蛋白着色试剂并测定在630nm下的吸光率以确认白蛋白过滤。白蛋白SC通过将原血清的吸光率除以样品的吸光率而计算。全自动免疫化学分析器(LX-6000,由Eiken Chemical Co.,Ltd.制造)用于确定α1微球蛋白和β2微球蛋白的SC。
参考实施例1
(磺化芳族聚砜-基聚合物的磺化)
二(2-氯苯磺酸盐)-5,5’-磺酸钠根据描述于J.Polym.Sci.,PartA:Polym.Chem.,31,853-858(1993)的方法合成。
向1,000ml三颈可分离烧瓶中装入29.02g双酚A(Tokyo KaseiKogyo Co.,Ltd.),31.56g 4,4’-二氯二苯基砜(Tokyo Kasei KogyoCo.,Ltd.)10.23g以上二(2-氯苯磺酸盐)-5,5’-磺酸钠,52.76g碳酸钾(Wako Pure Chemical Industries,Ltd.),80.8ml甲苯(WakoPure Chemical Industries,Ltd.),和194.6ml N-甲基-2-吡咯烷酮(Tokyo Kasei Kogyo Co.,Ltd.)。烧瓶中的气氛替换为氮气,同时搅拌混合物2小时。在混合物在155℃下保持之后,甲苯回流3小时,同时使用deanstack汽水阀从混合物中去除共沸蒸馏所产生的水。混合物加热至190℃。在去除甲苯之后,混合物在190℃下保持5小时。反应混合物冷却至室温并在搅拌下慢慢滴加10,000ml蒸馏水,得到纤维支链聚砜-基聚合物。将过滤得到的残余物倒入5,000ml蒸馏水。加入浓氢氯酸以得到混合物pH2,随后过滤。滤液洗涤至pH达到7。在用6,000ml 40%乙醇水溶液在70℃下洗涤3小时之后,将混合物过滤。残余物用乙醇洗涤并在50℃下在真空下干燥以得到具有磺化度(DS)0.3的磺化芳族聚砜-基聚合物。产量是65g。所得聚合物的重均分子量是75,000。
参考实施例2
(支链聚氧化乙烯和芳族聚砜-基聚合物的嵌段共聚物的制备)
向1,000ml三颈可分离烧瓶中装入29.02g双酚A(Tokyo KaseiKogyo Co.,Ltd.),43.08g 4,4’-二氯二苯基砜(Tokyo Kasei KogyoCo.,Ltd.),50.00g碳酸钾(Wako Pure ChemicalIndustries,Ltd.),50ml甲苯(Wako Pure ChemicalIndustries,Ltd.),和130ml N-甲基-2-吡咯烷酮(Tokyo Kasei KogyoCo.,Ltd.)。烧瓶中的气氛替换为氮气,同时搅拌混合物。在反应混合物在155℃下保持之后,甲苯回流3小时,同时使用deanstack汽水阀从反应混合物中去除共沸蒸馏所产生的水。反应混合物加热至190℃。在去除甲苯之后,混合物在190℃下保持4小时以得到在两端键接有氯原子的聚砜预聚物。向1,000ml三颈可分离烧瓶中装入129.86g聚乙二醇#4000(Tokyo Kasei Kogyo Co.,Ltd.,羟基值36mgKOH/g),26.72g通过氧化丙烯和氧化乙烯在亚乙基二胺上的渐近加成而得到的四-官能嵌段共聚物(BASF,Tetronic 304:羟基值68mgKOH/g),200.00g碳酸钾(Wako Pure Chemical Industries,Ltd.),150ml甲苯(Wako Pure Chemical Industries,Ltd.),和350ml N-甲基-2-吡咯烷酮(Tokyo Kasei Kogyo Co.,Ltd.)。烧瓶中的气氛替换为氮气,同时搅拌混合物。在反应混合物在155℃下保持之后,甲苯(WakoPure Chemical Industries,Ltd.)回流3小时,同时使用deanstack汽水阀从反应混合物中去除共沸蒸馏所产生的水。反应混合物加热至190℃。在通过蒸发去除甲苯之后,加入4.91g 4,4’-二氟二苯基砜(Tokyo Kasei Kogyo Co.,Ltd.)。混合物在190℃下保持6小时以得到支链聚氧化乙烯预聚物。将支链聚氧化乙烯预聚物加入两端键接有氯原子的以上聚砜预聚物的反应混合物。混合物在190℃下在氮气氛中保持8小时。将反应混合物在搅拌下慢慢滴加至10,000ml蒸馏水,得到纤维支链PEO-聚砜共聚物。将过滤得到的残余物倒入5,000ml蒸馏水。加入浓氢氯酸以得到混合物pH 2,随后过滤。滤液洗涤至pH达到7。在用6,000ml 40%乙醇水溶液在70℃下洗涤3小时之后,将混合物过滤。残余物用乙醇洗涤并在50℃下在真空下干燥以得到支链聚氧化乙烯和芳族聚砜的嵌段共聚物。产量是151.66g。所得共聚物的ξ电势是-0.3mV和重均分子量是60,000。
参考实施例3
(接枝磺化聚砜的制备)
将200g芳族聚砜(由Amoco工程聚合物有限公司制造的UDELP-1700)在干冰气氛中用y-射线在1Mrd/hr下照射10小时并加入30g甲基丙烯酸3-磺基丙酯(接枝剂)在1kg H2O和t-BOH的3∶1混合物中的溶液。混合物在40℃下在氮气氛中反应四小时。在反应之后,将反应产物用醇,随后用水洗涤,并干燥得到用于制备原浆的接枝磺化聚砜。所得聚合物的磺化度是0.2。
参考实施例4
(亚乙基砜-亚丙基砜共聚物的制备)
将4.9g亚乙基硫化物和14.0g亚丙基硫化物(都由Kanto KaseiCo.,Ltd.制造)与其中溶解有44.8mg过氯酸镁(由Wako PureChemical Industries,Ltd.)的254mg乙酸乙酯混合。混合物在70℃下在10密封容器中搅拌5小时。将反应产物溶解在40ml 1-甲基-2-吡咯烷酮(由Wako Pure Chemical Industries,Ltd.制造)中并加入1,000ml乙醇以得到聚合物的白色沉淀物。
将沉淀物用乙醇充分洗涤并将乙醇在减压下在60℃下去除以得到14.0g聚硫化物。将1g聚硫化物溶解在60ml 1-甲基-2-吡咯烷酮中。在搅拌下慢慢滴加4ml 30%过氧化氢溶液和20ml甲酸的混合物。混合物立即产生放热和硫化物被氧化成砜,得到亚乙基砜-亚丙基砜共聚物的沉淀物。沉淀物通过重复洗涤步骤而纯化,包括离心处理,随后更换上层清液三次并在60℃下在减压下干燥4小时以得到0.85g白色固体亚乙基砜-亚丙基砜共聚物(具有化学式6的脂族聚砜)。所得共聚物的重均分子量是78,000。
参考实施例5(支链聚氧化乙烯-磺化聚砜共聚物的制备)
二(2-氯苯磺酸盐)-5,5’-磺酸钠根据描述于J.Polym.Sci.,PartA:Polym.Chem.,31,853-858(1993)的方法而合成。
向1,000ml三颈可分离烧瓶中装入29.02g双酚A(Tokyo KaseiKogyo Co.,Ltd.),36.61g 4,4’-二氯二苯基砜(Tokyo Kasei KogyoCo.,Ltd.),11.86g以上二(2-氯苯磺酸盐)-5,5’-磺酸钠,52.76g碳酸钾(Wako Pure Chemical Industries,Ltd.),80.8ml甲苯(WakoPure Chemical Industries,Ltd.),和194.6ml N-甲基-2-吡咯烷酮(Tokyo Kasei Kogyo Co.,Ltd.)。烧瓶中的气氛替换为氮气,同时搅拌混合物2小时。在混合物在155℃下保持之后,甲苯回流3小时,同时使用deanstack汽水阀从混合物中去除共沸蒸馏所产生的水。混合物加热至190℃。在去除甲苯之后,将混合物在190℃下保持5小时以得到两端氯化的磺化聚砜(以下称作聚砜)预聚物。
向1,000ml三颈可分离烧瓶中装入129.84g聚乙二醇#4000(Tokyo Kasei Kogyo Co.,Ltd.,羟基值36mg KOH/g),26.74g通过氧化丙烯和氧化乙烯在亚乙基二胺上的渐近加成而得到的四-官能嵌段共聚物(BASF,Tetronic 304:羟基值68mg KOH/g),200.03g碳酸钾,173.0ml甲苯,和340.6ml N-甲基-2-吡咯烷酮。烧瓶中的气氛替换为氮气,同时搅拌混合物2小时。在混合物在155℃下保持之后,甲苯回流3小时,同时使用deanstack汽水阀从混合物中去除共沸蒸馏所产生的水。然后,加入溶解在50g N-甲基-2-吡咯烷酮中的9.83g 4,4’-二氟二苯基砜(Tokyo Kasei Kogyo Co.,Ltd.)。混合物加热至190℃。在去除甲苯1小时之后,混合物在190℃下保持5小时以得到支链聚氧化乙烯预聚物。
将支链聚氧化乙烯预聚物的反应混合物加入两端氯化的磺化预聚物的反应混合物中,随后加入100ml甲苯。气氛被替换为氮。在反应混合物在155℃下保持之后,甲苯回流3小时,同时使用deanstack汽水阀从混合物中去除共沸蒸馏所产生的水。混合物加热至190℃。在去除甲苯1小时之后,混合物在190℃下保持8小时以得到支链聚氧化乙烯-磺化聚砜共聚物。将反应混合物在搅拌下慢慢滴加至10,000ml蒸馏水,得到纤维支链聚氧化乙烯-磺化聚砜共聚物。将过滤得到的残余物倒入5,000ml蒸馏水。加入浓氢氯酸以得到混合物pH 2,随后过滤。滤液洗涤至pH达到7。在为了洗涤在6,000ml 40%乙醇水溶液中在70℃下搅拌3小时之后,将混合物过滤。残余物用乙醇洗涤并在50℃下在真空下干燥以得到支链聚氧化乙烯-磺化聚砜共聚物。产量是215g。所得聚合物的磺化度(DS)是0.3和重均分子量是37,000。
使用双纺丝头喷嘴或三纺丝头喷嘴制造非对称多孔膜的实施例在
实施例1-7中给出。
实施例1
制备出由18重量份芳族聚砜(由Amoco工程聚合物有限公司制造的UDEL P-1700),7重量份根据描述于参考实施例1的方法制成的磺化聚砜共聚物,15重量份四甘醇,和60重量份N-甲基-2-吡咯烷酮组成的纺丝溶液。该纺丝溶液保持在50℃下并同时与内圆筒体流体一起由双圆筒形纺丝头挤出,所述流体由50重量份水,49.5重量份N-甲基-2-吡咯烷酮,和0.5重量份根据描述于参考实施例2的方法制成的支链聚氧化乙烯和芳族聚砜的嵌段共聚物组成。使挤出的中空纤维在平均温度40℃下穿过一个充满水蒸气的罩,浸渍在安装在纺丝头下方600mm处的纺丝浴的55℃水中,然后在速率50m/min下旋绕在线轴上。将卷绕的中空纤维用热水在90℃下洗涤90分钟并在70℃下干燥以得到用于评估的中空纤维。所得中空纤维根据上述方法评估。结果在表1中给出。
实施例2
制备出由15重量份芳族聚砜(由Amoco工程聚合物有限公司制造的UDEL P-1700),7重量份根据描述于参考实施例1的方法制成的磺化聚砜共聚物,8重量份根据描述于参考实施例2的方法制成的支链聚氧化乙烯和芳族聚砜的嵌段共聚物,10重量份四甘醇,和60重量份N-甲基-2-吡咯烷酮组成的纺丝溶液。该纺丝溶液保持在50℃下并同时与内圆筒体流体一起由双圆筒形纺丝头挤出,所述流体由50重量份水,49.5重量份N-甲基-2-吡咯烷酮,和0.5重量份根据描述于参考实施例2的方法制成的支链聚氧化乙烯和芳族聚砜的嵌段共聚物组成。使挤出的中空纤维在平均温度40℃下穿过一个充满水蒸气的罩,浸渍在安装在纺丝头下方600mm处的纺丝浴的55℃水中,然后在速率50m/min下旋绕在线轴上。将卷绕的中空纤维用热水在90℃下洗涤90分钟并在70℃下干燥以得到用于评估的中空纤维。所得中空纤维根据上述方法评估。结果在表1中给出。
实施例3
制备出由18重量份根据描述于参考实施例3的方法制成的接枝磺化聚砜,30重量份四甘醇,和52重量份N-甲基-2-吡咯烷酮组成的纺丝溶液。该纺丝原流体保持在50℃下并由同时与内圆筒体流体一起由双圆筒形纺丝头挤出,所述流体由50重量份水,49.5重量份N-甲基-2-吡咯烷酮,和0.5重量份根据描述于参考实施例2的方法制成的支链聚氧化乙烯和芳族聚砜得到嵌段共聚物组成。使挤出的中空纤维在平均温度40℃下穿过一个充满水蒸气的罩,浸渍在安装在纺丝头下方600mm处的纺丝浴的55℃水中,然后在速率50m/min下旋绕在线轴上。将卷绕的中空纤维用热水在90℃下洗涤90分钟并在70℃下干燥以得到用于评估的中空纤维。所得中空纤维根据上述方法评估。结果在表1中给出。
实施例4
制备出由5重量份根据描述于参考实施例4的方法制成的亚乙基砜-亚丙基砜共聚物(具有化学式6的脂族聚砜),18重量份芳族聚砜(由Amoco工程聚合物有限公司制造的UDEL P-1700),15重量份四甘醇,和62重量份N-甲基-2-吡咯烷酮组成的纺丝溶液。该脂族聚砜原样用于该纺丝溶液而没有磺化,因为聚砜具有强负电荷。该纺丝溶液保持在50℃下并同时与内圆筒体流体一起由双圆筒形纺丝头挤出,所述流体由50重量份水,49.5重量份N-甲基-2-吡咯烷酮,和0.5重量份根据描述于参考实施例2的方法制成的支链聚氧化乙烯和芳族聚砜的嵌段共聚物组成。使挤出的中空纤维在平均温度40℃下穿过一个充满水蒸气的罩,浸渍在安装在纺丝头下方600mm处的纺丝浴的55℃水中,然后在速率50m/min下旋绕在线轴上。将卷绕的中空纤维用热水在90℃下洗涤90分钟并在70℃下干燥以得到用于评估的中空纤维。所得中空纤维根据上述方法评估。结果在表1中给出。
实施例5
制备出由18重量份芳族聚砜(由Amoco工程聚合物有限公司制造的UDEL P-1700),7重量份根据描述于参考实施例1的方法制成的磺化聚砜共聚物,15重量份四甘醇,和60重量份N-甲基-2-吡咯烷酮组成的纺丝溶液。该纺丝溶液保持在50℃下并同时与由50重量份水和50重量份N-甲基-2-吡咯烷酮组成的内圆筒体流体一起由双圆筒形纺丝头喷嘴挤出。使挤出的中空纤维在平均温度40℃下穿过一个充满水蒸气的罩,浸渍在安装在纺丝头下方600mm处的纺丝浴的55℃水中,然后在速率50m/min下旋绕在线轴上。将卷绕的中空纤维用热水在90℃下洗涤90分钟并在70℃下干燥以得到中空纤维。微型组件由该中空纤维制成。在通过在50℃下将70重量份水,29.5重量份N-甲基-2-吡咯烷酮,0.5份根据描述于参考实施例2的方法制成的支链聚氧化乙烯和芳族聚砜的嵌段共聚物的混合溶液充分装填到中空纤维中而涂底之后,将微型组件用水洗涤并干燥得到用于评估的中空纤维。所得中空纤维根据上述方法评估。结果在表1中给出。
实施例6
制备出由18重量份芳族聚砜(由Amoco工程聚合物有限公司制造的UDEL P-1700),7重量份根据描述于参考实施例1的方法制成的磺化聚砜,10重量份四甘醇,和65重量份N-甲基-2-吡咯烷酮组成的用于从三纺丝头喷嘴外圆筒体挤出的纺丝溶液并保持在50℃下。制备出由18重量份芳族聚砜(由Amoco Performance Products Inc.制造的UDELP-1700),7重量份根据描述于参考实施例2的方法制成的支链聚氧化乙烯和芳族聚砜的嵌段共聚物,10重量份四甘醇,和65重量份N-甲基-2-吡咯烷酮组成的用于从三圆筒形纺丝头得到中间圆筒体挤出的另一纺丝溶液并保持在50℃下。这些纺丝溶液同时与由50重量份水和50重量份N-甲基-2-吡咯烷酮组成的内圆筒体流体一起由三圆筒形纺丝头挤出。使挤出的中空纤维在平均温度40℃下穿过一个充满水蒸气的罩,浸渍在安装在纺丝头下方1,100mm处的纺丝浴的60℃水中,然后在速率50m/min下旋绕在线轴上。将卷绕的中空纤维用热水在90℃下洗涤90分钟并在70℃下干燥以得到用于评估的中空纤维。所得中空纤维根据上述方法评估。结果在表1中给出。
实施例7
制备出由5重量份根据描述于参考实施例5的方法制成的支链聚氧化乙烯-磺化聚砜共聚物,18重量份芳族聚砜(由Amoco工程聚合物有限公司制造的UDEL P-1700),15重量份四甘醇,和62重量份N-甲基-2-吡咯烷酮组成的纺丝溶液。该纺丝溶液保持在50℃下并同时与内圆筒体流体一起由双圆筒形纺丝头挤出,所述流体由50重量份水,49.5重量份N-甲基-2-吡咯烷酮,和0.5重量份根据描述于参考实施例2的方法制成的支链聚氧化烯和芳族聚砜的嵌段共聚物组成。使挤出的中空纤维在平均温度40℃下穿过一个充满水蒸气的罩,浸渍在安装在纺丝头下方600mm处的纺丝浴的55℃水中,然后在速率50m/min下旋绕在线轴上。将卷绕的中空纤维用热水在90℃下洗涤90分钟并在70℃下干燥以得到用于评估的中空纤维。所得中空纤维根据上述方法评估。结果在表1中给出。
对比例1
制备出由18重量份芳族聚砜(由Amoco工程聚合物有限公司制造的UDEL P-1700),7重量份聚乙烯基吡咯烷酮,和76重量份N-甲基-2-吡咯烷酮组成的均相纺丝溶液。该纺丝溶液保持在50℃下并同时与由50重量份水和50重量份N-甲基-2-吡咯烷酮组成的内圆筒体流体一起由双圆筒形纺丝头喷嘴挤出。使挤出的中空纤维在平均温度40℃下穿过一个充满水蒸气的罩,浸渍在安装在纺丝头下方600mm处的纺丝浴的55℃水中,然后在速率50m/min下旋绕在线轴上。将卷绕的中空纤维用热水在90℃下洗涤90分钟,在60℃下浸渍在20wt%甘油水溶液中1小时,和在70℃下干燥以得到用于评估的中空纤维。所得中空纤维根据上述方法评估。结果在表1中给出。
对比例2
将与实施例1相同的纺丝溶液保持在50℃下并同时与由50重量份水和50重量份N-甲基-2-吡咯烷酮组成的内圆筒体流体一起由双圆筒形纺丝头挤出。使挤出的中空纤维在平均温度40℃下穿过一个充满水蒸气的罩,浸渍在安装在纺丝头下方600mm处的纺丝浴的55℃水中,然后在速率50m/min下旋绕在线轴上。将卷绕的中空纤维用热水在90℃下洗涤90分钟并在70℃下干燥以得到用于评估的中空纤维。所得中空纤维根据上述方法评估。结果在表1中给出。
对比例3
将与实施例2相同的纺丝溶液保持在50℃下并同时与由50重量份水和50重量份N-甲基-2-吡咯烷酮组成的内圆筒体流体一起由双圆筒形纺丝头挤出。使挤出的中空纤维在平均温度40℃下穿过一个充满水蒸气的罩,浸渍在安装在纺丝头下方600mm处的纺丝浴的55℃水中,然后在速率50m/min下旋绕在线轴上。将卷绕的中空纤维用热水在90℃下洗涤90分钟并在70℃下干燥以得到用于评估的中空纤维。所得中空纤维根据上述方法评估。结果在表1中给出。
对比例4
将与实施例3相同的纺丝溶液保持在50℃下并同时与由50重量份水和50重量份N-甲基-2-吡咯烷酮组成的内圆筒体流体一起由双圆筒形纺丝头挤出。使挤出的中空纤维在平均温度40℃下穿过一个充满水蒸气的罩,浸渍在安装在纺丝头下方600mm处的纺丝浴的55℃水中,然后在速率50m/min下旋绕在线轴上。将卷绕的中空纤维用热水在90℃下洗涤90分钟并在70℃下干燥以得到用于评估的中空纤维。所得中空纤维根据上述方法评估。结果在表1中给出。
对比例5
将与实施例4相同的纺丝溶液保持在50℃下并同时与由50重量份水和50重量份N-甲基-2-吡咯烷酮组成的内圆筒体流体一起由双圆筒形纺丝头喷嘴挤出。使挤出的中空纤维在平均温度40℃下穿过一个充满水蒸气的罩,浸渍在安装在纺丝头下方600mm处的纺丝浴的55℃水中,然后在速率50m/min下旋绕在线轴上。将卷绕的中空纤维用热水在90℃下洗涤90分钟并在70℃下干燥以得到用于评估的中空纤维。所得中空纤维根据上述方法评估。结果在表1中给出。
表1
  LDH(lU/m2)   吸附蛋白质的量(mg/m2)   BKN生产*1   β2MG SC   α1 MG SC   白蛋白SC   截断MW(Mw×10-3)   XPS*2   ξ电势*3(mV)
  实施例1   1.2   1.4   2.1   1.00   0.22   0.004   40±5   7.8   -4
  实施例2   1.0   1.3   1.9   1.00   0.24   0.004   40±5   8.5   -3
  实施例3   1.2   1.3   2.1   1.00   0.18   0.005   40±5   8.0   -3
  实施例4   2.0   1.8   2.3   1.00   0.18   0.005   40±5   7.1   -5
  实施例5   1.3   1.5   2.2   1.00   0.22   0.004   40±5   7.9   -4
  实施例6   1.5   1.6   2.1   1.00   0.18   0.005   40±5   7.5   -4
  实施例7   1.2   1.8   2.1   1.00   0.16   0.005   40±5   7.8   -4
  对比例1   5.5   4.2   2.1   1.00   0.09   0.011   40±5   1.8   -1
  对比例2   70.2   4.8   16.6   1.00   0.19   0.006   40±5   5.9   -10
  对比例3   84.5   7.5   8.5   1.00   0.20   0.006   40±5   5.8   -7
  对比例4   82.2   5.4   5.8   1.00   0.18   0.006   40±5   5.6   -9
  对比例5   200   5.8   69.8   1.00   0.18   0.006   40±5   5.5   -13
*1:BKN产量是用作对照的非接触血液的BKN值(1)的一部分。
*2:XPS表示对比例1中的值[N]/[S]以及实施例和其它对比例中的[O]/[S]。
*3:多孔膜在pH 7.4下的值。
可以看出,缓激肽产量在对比例1的方法中被抑制至低水平,因为没有引入负电荷。但对比例1的中空纤维泄漏许多白蛋白,导致低分级性能。另一方面,在对比例2-5的方法中,泄漏的白蛋白的量被抑制至低水平和分级性能由于负电荷的作用而得到提高。但因为具有负电荷的砜基团集中在内表面或血液接触表面上,不仅缓激肽产量增加,而且LDH和蛋白质吸附增加。在任何情况下,这些多孔膜不能实际使用。
相反,在实施例1-7所得到的产物中,由于所引入的负电荷的静电排斥,白蛋白的泄漏明显受到抑制且分级性能得到提高,而且缓激肽产量,LDH,和蛋白质吸附明显受到抑制。这些结果表明,本发明的方法可优异地分离和去除低分子量血浆蛋白质和造成淀粉样变性的后阶糖基化蛋白,而没有导致为生物体所不受欢迎的生物反应如血液凝固,补体活性,和缓激肽生产,同时抑制泄漏血浆白蛋白至最低。
以下描述通过将带负电荷的材料的溶液由密实层的相对侧引入而用于制造非对称多孔膜的方法。
实施例8
实施例8的膜制造方法的一个实施方案和膜性能参照图2进行描述。
作为基材膜,选择一种具有梯度非对称结构的聚砜中空纤维膜,所述结构具有在现有膜内部的密实层(a)和在外部的承载层(c),它是其中密实层(a)的分级分子量是60-100kD的超过滤膜。这种膜不能用于常规的血液处理,因为白蛋白的泄漏量太大(大筛分系数)。
将带电层(e)引入在以上膜的密实层下面的承载层中。具体地,制备出具有高分子量(约200-500kD)的稀(约1%)蛋白质肝素水溶液的带电聚合物溶液(d)。然后,如图2A所示,将聚合物溶液(d)相反地从外部过滤至中空纤维膜的内部(按照箭头的方向)以使蛋白质肝素作为带负电荷的分子被膜密实层下面的承载层(c)所捕获,这样如图2B所示形成带电层(e)。
然后立即将固定溶液(0.075M偏高碘酸钠-0.037M赖氨酸-pH 6.2缓冲剂溶液)(f)如图2C所示,按照相同方式相反地过滤(按照箭头的方向),通过用偏高碘酸钠氧化将肝素糖链5元环上的二醇基团转化成醛基团并通过具有两个氨基基团的赖氨酸分子而交联不同分子的多糖链,这样聚合物分子盘绕在聚砜聚合物的网状结构中并固定在密实层的下面。因为偏高碘酸钠还将聚砜聚合物的双酚醚键氧化成醛,该醛基团通过赖氨酸桥形成与氧化肝素的醛基团的键接。一部分肝素分子通过化学键直接固定到膜上。过量固定溶液通过用水充分洗涤而去除。
如果分子量(7-25kD)小于蛋白质肝素的肝素用作带负电荷的物质,肝素分子优选通过使用交联剂聚合而事先放大,这样肝素分子有效地被承载层(多孔层)所捕获。
如此制备的带电膜是具有密实层(具有分级分子量60-100kD和厚度1μm)作为内最层和在密实层下面并具有大于密实层的孔直径(分级分子量:100kD或更多)的承载层中包含负电荷的非对称多孔膜。该带电膜满足图1所示的基本特性。
如果如此制备的非对称多孔膜用于清血法(血液透析,血液过滤,或血液透析过滤),可以增加从小至大分子量毒素的具有分子量30-80kD的毒素的去除率,同时抑制具有分子量66kD的白蛋白的损失至容许范围(2-6g)。
实施例9
在具有梯度非对称结构(具有在现有膜的内部的密实层和在外部的承载层)的聚醚砜中空纤维膜中,选择其中密实层的截断分子量是20-40kD的超过滤膜。制备出具有高分子量(约100-200kD)的稀(约1%)类肝素硫酸盐蛋白聚糖水溶液并相反地由中空纤维膜的外部过滤至内部,以使类肝素硫酸盐蛋白聚糖被膜密实层下面的承载层所捕获,这样形成带电层。在反向过滤过程中,交联促进剂(0.075M偏高碘酸钠-0.037M赖氨酸-pH 6.2缓冲剂溶液)由中空纤维膜侧加料并分散在密实层下方以引发聚合反应。该方法可确实地将肝素固定在密实层的下面。
通过相同的方式的过滤,肝素糖链5元环上的二醇基团通过用偏高碘酸钠氧化而转化成醛基团和不同分子的多糖链通过具有两个氨基基团的赖氨酸分子而交联,这样聚合物分子盘绕在聚砜聚合物的网状结构中并被固定在密实层的下面。因为偏高碘酸钠还将聚醚砜聚合物的双酚醚键氧化成醛,该醛基团通过赖氨酸桥形成与氧化肝素的醛基团的键接。一部分类肝素硫酸盐分子通过化学键直接固定到膜上。最终过量固定溶液通过用水充分洗涤而去除。
如此制备的带电膜是一种具有的非对称多孔膜,具有截断分子量20-40kD和厚度1μm的密实层作为内最层且在位于密实层的下面和孔直径(截断分子量:40kD或更多)大于密实层的承载层中包含负电荷。该带电膜满足图1所示的基本特点。
如果尿,例如使用如此制备的非对称多孔膜过滤,α1-微球蛋白(一种大量包含在尿中的具有分子量33kD的蛋白质),和β2-微球蛋白(一种具有分子量11.7kD的酸性蛋白质)可同时被阻断,且肽和尿中非常少量的具有分子量20kD或更低的蛋白质可在滤液中在高产率下分离。
以下显示具有密实层(具有截断分子量约60-80kD和厚度1μm)和在密实层下面具有截断分子量约80至几百个kD的带负电荷的层的膜在血液中用于治疗疾病如肾衰竭或肝衰竭的作用。血液过滤,血液渗滤,和血液透析可选择作为血液纯化治疗。血液过滤和血液透析过滤是更有效的。
因为本发明分离膜与常规血液纯化膜相比在密实层中具有大孔尺寸,使用常规处理难以去除的具有分子量20kD或更多的大毒性分子的去除性能在本发明中得到明显提高。
图3A给出了在过滤人血浆时确定具有分子量33kD的α1-微球蛋白的筛分系数(通过将溶质在滤液中的浓度除以溶质在负荷液体中的浓度而确定的膜渗透指数)的实验的结果。使用以下三种过滤样品。
(1)在市售常规血液过滤膜(普通血液过滤膜)中具有最高性能的血液过滤膜。材料是具有截断分子量10-20kD的聚砜膜。
(2)具有非对称多孔结构的大孔尺寸超过滤膜,不用于血液过滤。材料是具有截断分子量60-80kD的聚醚砜膜。和
(3)具有非对称多孔结构,引入有带负电荷的层的大孔尺寸超过滤膜(大孔尺寸带电膜)。
α1-微球蛋白筛分系数在后两种大孔尺寸膜中自然地高。这些两种膜具有几乎相同的筛分系数值,表明筛分功能不因为引入带负电荷的物质而受影响。
另一方面,尽管具有非对称多孔结构的大孔尺寸超过滤膜的密实层能够让白蛋白分子从中透过,但白蛋白阻断性能可通过密实层下面的带负电荷的层利用白蛋白分子的电排斥而优化控制。图3B给出了以上三种膜的白蛋白筛分系数测定的结果。从该图可以看出,具有与大孔尺寸膜(2)相同的大孔尺寸结构的大孔尺寸带电膜(3)由于引入负电荷而抑制白蛋白渗透至相当于或低于普通血液过滤膜的水平。结果,被去除但仅利用与被阻断的白蛋白的分子尺寸差异难以去除的大分子毒素(例如,A1-微球蛋白)的分离性能得到明显增加。
工业实用性
本发明非对称多孔膜可从多组分溶液中分离特定溶质和/或分散质。膜具有双隔绝层结构,一种是胶隔绝层和另一是负电荷的电荷隔绝层。另外,负电荷存在于膜的内部,其中至少密实层的最外表面实质上没有电荷。
结果,本发明的非对称多孔膜具有明显改进的从多组分溶液中分离溶质和/或分散质的性能,同时防止所要处理的溶液由于电荷而化学或生物地反应。
本发明非对称多孔膜可尤其优选在所要处理的液体是血液和可优异地分离和去除低分子量血浆蛋白质和造成淀粉样变性的后阶糖基化蛋白,而没有导致生物体所不受欢迎的生物反应如血液凝固,补体活性,和血管舒缓激肽生产,同时抑制血浆白蛋白泄漏至最低。

Claims (23)

1.一种用于血液透析和/或血液过滤的主要由合成聚合物形成的非对称多孔膜,其横截面结构中,至少其上加载所要处理的液体的那侧的最外表面上的密实层实质上没有电荷且非最外表面的膜至少有一部分是带负电荷的。
2.根据权利要求1的非对称多孔膜,其中密实层整体实质上没有电荷。
3.根据权利要求2的非对称多孔膜,其中负电荷密实地就在密实层下面。
4.根据权利要求2的非对称多孔膜,其中负电荷存在于除密实层之外的整个膜上。
5.根据权利要求1-4中任何一项的非对称多孔膜,其中负电荷源自不同于形成多孔膜的合成聚合物的带电聚合物。
6.根据权利要求1-4中任何一项的非对称多孔膜,其中负电荷源自主要构成除密实层外的那部分多孔膜的合成聚合物。
7.根据权利要求1的非对称多孔膜,其中仅密实层的最外表面实质上没有电荷。
8.根据权利要求7的非对称多孔膜,其中负电荷密实地就在最外表面层下面。
9.根据权利要求7的非对称多孔膜,其中负电荷存在于除密实层最外表面之外的整个膜上。
10.根据权利要求7-9中任何一项的非对称多孔膜,其中负电荷源自不同于形成多孔膜的合成聚合物的带电聚合物。
11.根据权利要求7-9中任何一项的非对称多孔膜,其中负电荷源自主要构成除密实层最外表面外的那部分多孔膜的合成聚合物。
12.根据权利要求6或11的非对称多孔膜,其中具有负电荷的合成聚合物在pH7.4下具有ξ电势-2mV或更低,针对由该聚合物得到的基材膜测定。
13.根据权利要求12的非对称多孔膜,其中具有负电荷的合成聚合物是一种包含至少一种选自磺化聚砜-基聚合物和脂族聚砜-基聚合物的聚合物的聚砜-基聚合物。
14.根据权利要求13的非对称多孔膜,其中磺化聚砜-基聚合物是至少一种选自以下的聚合物:磺化芳族聚砜-基聚合物,磺化脂族聚砜-基聚合物,和亲水聚合物和芳族聚砜-基聚合物的共聚物的磺化产物,
15.根据权利要求1-14中任何一项的非对称多孔膜,其中实质上没有电荷的层由非带电亲水材料制成。
16.根据权利要求15的非对称多孔膜,其中非带电亲水材料是至少一种选自以下的聚合物:亲水聚合物,亲水聚合物和芳族聚砜-基聚合物的混合物,和亲水聚合物和芳族聚砜-基聚合物的共聚物。
17.根据权利要求16的非对称多孔膜,其中亲水聚合物是直链或支链氧化烯聚合物或聚乙烯基吡咯烷酮。
18.根据权利要求1-17中任何一项的非对称多孔膜,其中膜通过过滤和/或扩散分离所要处理的液体中的多种溶质和/或分散质。
19.一种用于制造根据权利要求1-15中任何一项的非对称多孔膜的方法,包括提供一种主要由实质上没有电荷的合成聚合物制成的在加载液体的那侧具有密实层的具有非对称结构的多孔基材膜,并由与密实层相对的面过滤或扩散可被通过密实层阻断的带负电荷的聚合物的溶液,以阻止带负电荷的聚合物透过密实层,将负电荷引入除密实层外的那部分并使带负电荷的材料固定至除密实层外的那部分。
20.根据权利要求19的方法,其中负电荷通过阻断就在密实层下面的带负电荷的聚合物而以高密度下被引入密实层下。
21.一种用于制造根据权利要求1,2,4,和6-18中任何一项的非对称多孔膜的方法,包括由包含具有负电荷的合成聚合物作为主要组分的聚合物溶液形成多孔基材膜,使基材膜的表面与实质上没有电荷的合成聚合物的溶液接触,和凝固该聚合物以形成实质上没有电荷的层。
22.一种用于制造根据权利要求1-18中任何一项的非对称多孔膜的方法,包括将包含具有负电荷的合成聚合物作为主要组分的聚合物溶液从双圆筒状纺丝头的外圆筒体挤出并将实质上没有电荷和具有凝固以上合成聚合物的作用的合成聚合物的溶液由双圆筒状纺丝头的内圆筒体喷射。
23.一种用于制造根据权利要求1-18中任何一项的非对称多孔膜的方法,包括将包含具有负电荷的合成聚合物作为主要组分的聚合物溶液由三圆筒状纺丝头的外圆筒体喷射,将实质上没有电荷的合成聚合物由三圆筒状纺丝头的中圆筒体喷射,和将具有凝固具有负电荷的合成聚合物和实质上没有电荷的合成聚合物的作用的溶剂从三圆筒状纺丝头的内圆筒体喷射。
CNB028092031A 2001-04-18 2002-04-18 非对称多孔膜及其制造方法 Expired - Fee Related CN1232338C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP119817/2001 2001-04-18
JP2001119817 2001-04-18
JP2002081803 2002-03-22
JP81803/2002 2002-03-22

Publications (2)

Publication Number Publication Date
CN1505541A CN1505541A (zh) 2004-06-16
CN1232338C true CN1232338C (zh) 2005-12-21

Family

ID=26613779

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028092031A Expired - Fee Related CN1232338C (zh) 2001-04-18 2002-04-18 非对称多孔膜及其制造方法

Country Status (9)

Country Link
US (1) US7441666B2 (zh)
EP (1) EP1388364B1 (zh)
JP (1) JP4183509B2 (zh)
KR (1) KR100869203B1 (zh)
CN (1) CN1232338C (zh)
AT (1) ATE415194T1 (zh)
AU (1) AU2002251485A1 (zh)
DE (1) DE60230033D1 (zh)
WO (1) WO2002087735A1 (zh)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0203855L (sv) 2002-12-20 2004-06-21 Gambro Lundia Ab Permselektivt membran
SE0203857L (sv) * 2002-12-20 2004-06-21 Gambro Lundia Ab Permselektivt membran och förfarande för tillverkning därav
JP2004290670A (ja) * 2003-03-12 2004-10-21 Toray Ind Inc 中空糸型液体処理装置およびその製造方法
CN100422741C (zh) * 2003-03-27 2008-10-01 泰尔茂株式会社 试纸和多孔膜
TWI406703B (zh) 2003-11-17 2013-09-01 Asahi Kasei Medical Co Ltd Purify blood with hollow fiber membrane and use its blood purifier
JP2005214919A (ja) * 2004-02-02 2005-08-11 Toray Ind Inc タンパク質および/もしくはペプチド分析前処理用分離膜
US8465696B2 (en) * 2004-02-03 2013-06-18 Polymer Technology Systems, Inc. Dry test strip with controlled flow and method of manufacturing same
US20060062688A1 (en) * 2004-02-03 2006-03-23 Polymer Technology Systems, Inc. Bodily fluid analysis system
US7625721B2 (en) * 2004-02-03 2009-12-01 Polymer Technology Systems, Inc. Non-precipitating bodily fluid analysis system
DE102004008220B4 (de) * 2004-02-19 2006-01-12 Membrana Gmbh High-Flux Dialysemembran mit verbessertem Trennverhalten
DE102004033196A1 (de) * 2004-07-09 2006-01-26 Carl Freudenberg Kg Funktionalisierte Vliesstoffe, Verfahren zu deren Herstellung und deren Verwendung
JP4599934B2 (ja) * 2004-08-10 2010-12-15 東洋紡績株式会社 中空糸膜モジュール
WO2006023679A1 (en) * 2004-08-17 2006-03-02 Polymer Technology Systems, Inc. Apparatus and method for manufacturing bodily fluid test strip
JP4892824B2 (ja) * 2004-11-04 2012-03-07 東レ株式会社 中空糸膜型分離膜の製造方法ならびにその製造方法で製造された中空糸膜型分離膜の使用方法
JP2006194724A (ja) * 2005-01-13 2006-07-27 Toray Ind Inc タンパク質および/もしくはペプチド分析前処理用分離膜
JP4802537B2 (ja) * 2005-03-31 2011-10-26 東レ株式会社 改質基材
JP4893099B2 (ja) * 2005-05-12 2012-03-07 東レ株式会社 人工腎臓
US8028842B2 (en) * 2006-01-18 2011-10-04 Virginia Tech Intellectual Properties, Inc. Chlorine resistant desalination membranes based on directly sulfonated poly(arylene ether sulfone) copolymers
KR101202331B1 (ko) * 2006-02-20 2012-11-16 삼성에스디아이 주식회사 다중 블럭 공중합체, 그 제조방법, 상기 다중 블럭공중합체로부터 제조된 고분자 전해질막, 그 제조방법 및상기 고분자 전해질막을 포함하는 연료전지
MX2010006177A (es) 2007-12-06 2010-07-01 3M Innovative Properties Co Redes de electretos con aditivos que intensifican la carga.
JP2009226268A (ja) * 2008-03-19 2009-10-08 Ngk Insulators Ltd 濾過膜の評価方法及び濾過膜評価システム
US7765698B2 (en) * 2008-06-02 2010-08-03 3M Innovative Properties Company Method of making electret articles based on zeta potential
EP2294257B1 (en) 2008-06-02 2014-01-22 3M Innovative Properties Company Electret webs with charge-enhancing additives
US7964697B2 (en) * 2008-08-13 2011-06-21 General Electric Company Polyarylether membranes
EP2253367B1 (en) * 2009-05-20 2014-11-19 Gambro Lundia AB Membranes having improved performance
EP2253370B1 (en) 2009-05-20 2014-10-01 Gambro Lundia AB Hollow fibre membranes having improved performance
EP2380610B1 (en) * 2010-04-20 2014-05-07 Gambro Lundia AB High cut-off hemodialysis membrane for use in liver dialysis
KR101198644B1 (ko) 2010-05-31 2012-11-07 웅진케미칼 주식회사 투수성이 개선된 폴리술폰계 내오염성 막 및 그의 제조방법
KR101230842B1 (ko) 2010-06-17 2013-02-15 웅진케미칼 주식회사 다공성 비대칭 멤브레인의 제조방법 및 그로부터 제조된 다공성 비대칭 멤브레인
JP2012196590A (ja) * 2011-03-18 2012-10-18 Asahi Kasei Chemicals Corp ろ過膜、ろ過膜の洗浄手段および前処理手段の選択方法
EP2567750B1 (en) * 2011-09-08 2014-12-24 Gambro Lundia AB Hollow fiber membrane
JP2012035265A (ja) * 2011-11-10 2012-02-23 Ngk Insulators Ltd 濾過膜評価システム
WO2014189501A1 (en) 2013-05-22 2014-11-27 Johns Manville Submerged combustion burners, melters, and methods of use
SG10201708956RA (en) 2013-06-19 2017-11-29 Nat Univ Singapore Thin film composite hollow fibers for osmotic power generation
WO2015009300A1 (en) 2013-07-18 2015-01-22 Johns Manville Fluid cooled combustion burner and method of making said burner
PL3412358T3 (pl) 2014-02-06 2022-09-19 Gambro Lundia Ab Membrana do oczyszczania krwi
KR102316246B1 (ko) 2014-02-06 2021-10-25 감브로 룬디아 아베 혈액 정화를 위한 혈액 투석기
US9561473B2 (en) * 2014-02-28 2017-02-07 Pall Corporation Charged hollow fiber membrane having hexagonal voids
EP3212693B1 (en) 2014-10-31 2020-12-09 Basf Se Copolymers for making membranes
CN104524994B (zh) * 2015-01-14 2017-01-18 安得膜分离技术工程(北京)有限公司 一种超滤膜及其制备方法
FR3031683B1 (fr) * 2015-01-16 2017-02-17 Commissariat Energie Atomique Procede de formation d'un film compact de particules a la surface d'un liquide porteur
EP3246085A4 (en) * 2015-01-16 2018-01-03 Asahi Kasei Medical Co., Ltd. Porous hollow fiber membrane
WO2016195916A1 (en) * 2015-06-01 2016-12-08 Tufts University Zwitterionic fiber membranes
WO2017153409A1 (de) * 2016-03-09 2017-09-14 Basf Se Verfahren zur sulfonierung von polymeren
CN106238023B (zh) * 2016-08-22 2018-08-28 成都欧赛医疗器械有限公司 一种用于改善血液净化材料表面生物相容性的包膜方法
US10337732B2 (en) 2016-08-25 2019-07-02 Johns Manville Consumable tip burners, submerged combustion melters including same, and methods
WO2018130394A1 (en) * 2017-01-12 2018-07-19 Basf Se Removing metal ions from aqueous systems with an active layer membrane
CN109248544B (zh) * 2017-07-12 2021-11-09 财团法人工业技术研究院 滤气结构与过滤气体的方法
JP7095292B2 (ja) * 2017-09-29 2022-07-05 東ソー株式会社 表面修飾多孔質膜及びその製造方法
JP7058493B2 (ja) * 2017-10-25 2022-04-22 日本バイリーン株式会社 繊維シート及び繊維シートの製造方法
MX2020010445A (es) * 2018-04-04 2021-01-08 Terapore Tech Inc Dispositivos y sistemas de fraccionamiento de partículas encapsulantes y métodos de uso.
EP3833735A4 (en) * 2018-08-06 2022-05-11 Becton, Dickinson and Company LATERAL FLOW IMMUNOASSAY DEVICE WITH DISCONNECT MEMBRANE

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6087803A (ja) * 1983-10-19 1985-05-17 Sumitomo Bakelite Co Ltd ポリスルホン選択透過膜の製造方法
WO1986000028A1 (fr) * 1984-06-13 1986-01-03 Institut National De Recherche Chimique Appliquee Fibres creuses, leur procede de fabrication et leurs applications notamment dans le domaine des separations par membranes
JPS6219205A (ja) 1985-07-17 1987-01-28 Nok Corp 限外ロ過膜の製造方法
JP2519831B2 (ja) * 1990-11-09 1996-07-31 株式会社クラレ 荷電型分離膜の製造方法
GB2250469B (en) * 1990-12-03 1995-03-22 Aligena Ag Charged asymmetric mosaic membranes
US5762798A (en) * 1991-04-12 1998-06-09 Minntech Corporation Hollow fiber membranes and method of manufacture
CN1213985A (zh) * 1996-03-18 1999-04-14 日东电工株式会社 反渗透复合膜以及用它进行反渗透处理水的方法
US6945411B1 (en) * 1999-03-16 2005-09-20 Pall Corporation Biological fluid filter and system
US6258272B1 (en) * 1999-04-09 2001-07-10 Usf Filtrations And Separations Group, Inc. Internal hydrophilic membranes from blended anionic copolymers
US6183640B1 (en) 1999-04-09 2001-02-06 Usf Filtration And Separations Group, Inc. Highly asymmetric anionic membranes

Also Published As

Publication number Publication date
JPWO2002087735A1 (ja) 2004-08-12
AU2002251485A1 (en) 2002-11-11
DE60230033D1 (de) 2009-01-08
US20040167237A1 (en) 2004-08-26
KR20040020052A (ko) 2004-03-06
JP4183509B2 (ja) 2008-11-19
EP1388364B1 (en) 2008-11-26
WO2002087735A1 (fr) 2002-11-07
ATE415194T1 (de) 2008-12-15
EP1388364A4 (en) 2004-06-23
CN1505541A (zh) 2004-06-16
US7441666B2 (en) 2008-10-28
KR100869203B1 (ko) 2008-11-18
EP1388364A1 (en) 2004-02-11

Similar Documents

Publication Publication Date Title
CN1232338C (zh) 非对称多孔膜及其制造方法
CN1684727A (zh) 血浆净化膜和血浆净化系统
US10471398B2 (en) Graft copolymer functionalized article
CN1265868C (zh) 多层微孔膜
CN1099309C (zh) 合成分离膜
CN1921929A (zh) 具有改进的分离性能的高通量渗析膜
CN1921930A (zh) 改良的除去中分子的透析膜
CN1125669C (zh) 聚砜中空纤维膜,其制法和用途
CN1195577C (zh) 生理活性物质溶液用过滤膜
CN1917935A (zh) 整体非对称膜、所述膜的制备方法和其用途
CN1283702C (zh) 多孔质膜及其制造方法
CN1238086C (zh) 抗菌半透膜
CN1031320C (zh) 用于处理生物液体的不对称半透膜
CN101035576A (zh) 聚砜血液透析器
CN1638851A (zh) Halar膜
US20060060519A1 (en) High-resolution virus removal methodology and filtration capsule useful therefor
CN1674975A (zh) 改性基底材料和改性基底材料的制造方法
CN1759924A (zh) 超滤膜及其制备方法
JPWO2002009857A1 (ja) 改質された中空糸膜
CN1008793B (zh) 膜式人工肺及其制造方法
CN1263534C (zh) 中空线状血液净化膜及其制造方法
JP2016528360A (ja) ポリアリールエーテルを作製する方法及び膜調製における使用
US6258272B1 (en) Internal hydrophilic membranes from blended anionic copolymers
CN1179760C (zh) 血液净化器
CN1842363A (zh) 膜的表面处理和相关产品

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1065271

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP03 Change of name, title or address

Address after: Tokyo, Japan, Japan

Patentee after: Asahi Kasei Kuraray Medical Co.

Address before: Tokyo, Japan, Japan

Patentee before: Asahi Medical Co., Ltd.

C56 Change in the name or address of the patentee

Owner name: ASAHI MEDICAL CO.

Free format text: FORMER NAME: ASAHI MEDICAL CO., LTD.

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1065271

Country of ref document: HK

ASS Succession or assignment of patent right

Owner name: ASAHI KASEI MEDICAL CO., LTD.

Free format text: FORMER OWNER: ASAHI KASEI KURARAY MEDICAL CO., LTD.

Effective date: 20120724

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20120724

Address after: Tokyo, Japan

Patentee after: Asahi Kasei Medical Co., Ltd.

Address before: Tokyo, Japan, Japan

Patentee before: Asahi Kasei Kuraray Medical Co.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20051221

Termination date: 20190418