CN1230917A - 光催化剂薄膜及具备该薄膜的物品 - Google Patents

光催化剂薄膜及具备该薄膜的物品 Download PDF

Info

Publication number
CN1230917A
CN1230917A CN97198095.0A CN97198095A CN1230917A CN 1230917 A CN1230917 A CN 1230917A CN 97198095 A CN97198095 A CN 97198095A CN 1230917 A CN1230917 A CN 1230917A
Authority
CN
China
Prior art keywords
film
photochemical catalyst
tio
photocatalyst film
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN97198095.0A
Other languages
English (en)
Other versions
CN1254365C (zh
Inventor
石川敬郎
大石知司
嘉本大五郎
高桥研
川口卓男
石川铁雄
广田由香
嶋崎典子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of CN1230917A publication Critical patent/CN1230917A/zh
Application granted granted Critical
Publication of CN1254365C publication Critical patent/CN1254365C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • B01J35/30
    • B01J35/39

Abstract

本发明涉及主要应用于室内环境中使用的电器制品的空气通道、过滤部分、外部部件部分、被内藏的照明装置照射的部分上的光催化剂薄膜。通过各种添加剂提高了催化剂作用。即使利用一般室内可获得的光线,如荧光灯、白炽灯泡、水银灯、透过玻璃窗的太阳光等非常弱的光线也可分解有机物,还可分解附着的香烟烟雾或手的皮脂等形成的污垢,获得防污效果。同样以微弱光线,能够分解分散在空气中的有机胺或硫醇类等各种会产生恶臭的物质,使其分解为低臭或无臭的物质,所以,能够获得减少室内臭气的除臭效果。

Description

光催化剂薄膜及具备该薄膜的物品
技术领域
本发明涉及在涂膜中分散了具有光催化剂功能的粒子的光催化剂薄膜及具备该薄膜的物品,特别涉及在耐热性较差的有机高分子材料上,尤其是在常用的热塑性塑料制品表面形成了薄层状氧化物光催化剂薄膜的物品。另外,还涉及在不能获得紫外灯和室外太阳光等较强紫外光线、且适用于室内的物品的全部或部分表面具备氧化物光催化剂薄膜的物品。
例如涉及空气净化器、换气扇、电风扇、吸尘器、衣物烘干机、餐具烘干机、洗碗机、厨房垃圾处理机、暖气机、加湿器、除湿机、空气调节器、加热烹饪装置、电磁灶、电吹风、除臭机、暖炉等利用电动送风机,使空气流通的装置。
还涉及利用周围生活环境中的光,通过光催化剂作用使附着在上述电器制品表面、且在空气中浮游的各种污染成分和微生物分解而获得防污、除臭、抗菌、防霉、改善润湿性能等表面特性的技术及其物品。
背景技术
近年,倍受人们瞩目的是利用具备TiO2光催化剂的有机物的分解作用,来达到防污、除臭、抗菌效果的材料。如《(新陶瓷)》(《ニュ-セラミックス》)(1996)No.2,55记载的利用半导体光催化剂的氧化还原反应,在陶瓷片上形成了TiO2薄膜的材料。
另外,还有分别利用溅射这样的物理成膜法和溶胶-凝胶法等涂布法这样的化学成膜法在基板上形成的氧化物薄膜。前者能够使用真空装置等,在较低温度下成膜。后者能够利用旋转涂布器、喷雾器等简单装置在基板上进行涂布,一般在数百度的温度下进行处理就能够获得薄膜。作为抗菌除臭用材料的TiO2如果是锐钛矿型结晶则有效,有报道认为结晶化有助于功能的显现(Patent No.(PTC)WO94/11092,(PTC)WO95/15816)。另外,还有报道认为在TiO2中添加V、Fe等,能够提高其性能功效(W.Chio,A.Termin,M.R.Hoffmann,J.Phys.Chem.,98,13669-13679(1994))。
通过以下所示的使用上述材料和方法,使氧化物光催化剂薄膜应用于各种装置的实例,可以充分了解本发明。
空气净化器就是以除去室内空气中的尘埃和恶臭物为目的的装置,如日本专利公开公报平8-266841号、日本专利公开公报平8-166605号和日本专利公开公报平8-309148号记载的在内部包藏载有以TiO2为主成分的光催化剂的过滤器,在其中设置采用紫外灯等装置照射短波长光的技术。
另外,作为电风扇的应用例,如日本专利公开公报平7-303819号记载的,在金属部件表面于600℃左右烧制以TiO2为主成分的光催化剂薄膜的技术。
日本专利公开公报平9-38189号记载的风扇的应用例中公知的是附设发光二极管照射紫外光线的结构。
作为适用于换气扇的例子,公知的是日本专利公开公报平5-157305号记载的并用紫外灯的构造。
作为设置在吸尘器和厨房垃圾处理机的通气路径中的除臭过滤器的应用例,如日本专利公开公报平7-108175号提出的将以TiO2为主成分的光催化剂做成粉末状,用塑料纤维片包裹,然后进行热封的技术。
发明的揭示
利用以往技术,在耐热性较差的基材,例如塑料制品上形成氧化物薄膜时存在缺陷。利用溶胶-凝胶法成膜时,记载于上述文献的作为抗菌、防臭材料的抗菌片,为了使氧化钛结晶化,有必要进行数百℃,至少300℃以上的热处理,因此,在塑料类尤其是广泛应用的热塑性塑料这样的耐热性较差的基材上成膜是很困难的。
此外,在室内这样光强度较弱的环境中,TiO2本身的有机物分解等的分解速度不够快,还存在必须特别配设其他光源的问题。
前述作为本发明使用对象的装置大多为一般家庭和办公室等室内所用的家用电器,这些产品主要由有机高分子材料(塑料)构成。较多使用玻璃部件的电视机和电脑显示屏作为例外,一般家用电器的部件材料以重量比计,约40~50%为塑料,其余几乎都由金属构成。以容积比计,塑料占近90%。由于塑料较轻、有较高可塑性、且价格便宜,所以被广泛使用。尤其是热塑性塑料,由于其成形操作时的产量高,所以被大量使用。
作为最广泛范围内使用的构造材料的普通塑料,包括聚丙烯(PP)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、丙烯腈-苯乙烯共聚物(AS)、聚苯乙烯(PS)、尼龙(PA)、聚碳酸酯(PC)、氯乙烯(PVC)、甲基丙烯酸(PMMA)、聚乙烯(PE)、聚甲醛(POM)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)等,但上述任何材料在温度高于300℃的环境中都会发生变形。
例如,ASTM、D-648(18.6kg/cm2)的热变形温度在250℃附近,另外还有作为特殊高耐热性树脂的在其中熔入玻璃纤维等的聚对苯硫、聚二苯醚、聚醚亚胺等,但由于它们的价格非常高,所以难以大量使用。
一般,耐热性越好的材料,其价格也越高,特别是大量被用作外壳部件的PE、PS、ABS、PP、PVC,它们平均占全部塑料部件的75%以上。其中,即使耐热性最好的ABS的前述ASTM热变形温度也在120℃以下,到300℃温度将完全熔化为液状,并进行氧化分解。
另外,即使以在金属等无机材料表面涂布了涂料的面为对象时,耐热程度超过300℃的材料也是有限的。一般作为涂料使用的是热固性树脂,其中具有代表性的例子为聚酯树脂、丙烯酸树脂、三聚氰胺树脂、环氧树脂、聚氨酯树脂等,一般能够在150℃的温度下进行烘烤。这些涂料如果暴露在温度超过300℃的环境中,大多会出现失去光泽,发生剥落等问题。
如上述实例所述,利用以往的技术,通过溶胶-凝胶法在常用材料表面成膜时,在耐热性方面存在很大问题。
另一方面,在温度不超过300℃的范围内成膜的方法包括溅射(喷镀)法、CVD、真空蒸镀法等物理方法,由于需要真空装置等较大装置,所以生产成本较高。另外,由于成膜是在高度真空状态下进行的,所以氧化物光催化剂的组成比变化较大,这样光催化剂性能就会变差。而且,成膜时如果以有机材料为基板,则会对经过溅射处理的基板造成损伤,导致基板变形等。此外,采用溶胶-凝胶法这样的涂布法等化学方法时,如果使用的是使氧化物微粒分散的二氧化硅溶胶,则在无耐热性的基板上成膜时,由于热处理温度较低,所以不能够进行充分的烧结,所形成的氧化物膜的强度和耐水性不理想。
从上述理由可看出,利用以往技术,如果不对用于一般电器制品的有机高分子材料表面产生变形或劣化等不良影响,事实上是很难形成以TiO2为主成分的光催化剂薄膜的。
本发明的目的是提供能够在耐热性较差的材料,例如塑料或涂料表面形成高活性光催化剂薄膜,以及形成了上述薄膜并具备抗菌、防污、除臭效果的物品。
另一方面,还对前述光催化剂应用技术的发明中没有提及的提高以TiO2等为主成分的光催化剂的有机物本身的分解效果作了研究。
即,以往在改善含有TiO2膜的光活性度时没有对材料的配合使用作研究。所以,例如以除臭为目的的以往公知的方法,如日本专利公开公报平8-309148号、日本专利公开公报平8-266605号或以分解香烟的焦油污染为目的的方法,如日本专利公开公报平9-38189号,以分解烹饪时油等形成的污染的应用例,如日本专利公开公报平5-157305号等中,因为任何一个的光催化剂本身的活性度都不够充分,所以,需要附设照射紫外线的装置和加热装置等来提高分解反应的效果。
导致上述情况的最大原因是光强度较小时TiO2本身的有机物分解速度不够快,由于没有对提高分解速度作研究,所以一般用并用紫外灯的方法来增加光强度。紫外灯可使用高压水银灯或金属卤化物灯等,但还需要电源装置和冷却装置等,这样整个产品的重量和价格均有所提高。另外,灯的寿命一般为2000小时左右,需要定期更换,这也给实际使用带来问题。
以往技术中,公知的是在TiO2中添加Fe、V以提高分解效率,但使其高性能化需要进行数百℃的高温处理,所以,很难应用于低熔点的耐热性较差的基板材料上。
本发明的另一目的是使低温成膜的光催化剂膜的光分解效率高于TiO2单体的分解效率,这样就能够以低于以往所需的光强度的强度来分解附着物。
另外,以往技术用于抗菌、防臭或除臭之类的用途时,其对象物为有机物,因为对象物是微细粒子或分子状,所以,附着的液状有机物或微粒状有机物能够被分解,但如果是较大的纤维类物质或尘埃,即使同样是有机物,分解也需要化费较长时间,还有很难分解以尘土为主的无机物,这样就不能够充分防污。由于这些污染物一般以带电状态浮游在空气中,所以,一旦与电绝缘性较高的个体表面接触,就不容易释放静电而完全呈附着状态。光被附着的无机污染物掩盖,使光催化剂表面不能够获得充分的光照,这样就造成有机物分解效率降低的问题。
本发明的另一目的是使理论上利用上述光催化剂的氧化分解效果难以分解除去的较大的尘埃类或无机物类污染物不因静电力的作用吸附在作为对象的部件上。
为达到上述目的的本发明的特征是,在主要用于室内的空气净化器、换气扇、电风扇、吸尘器、衣物烘干机、餐具烘干机、洗碗机、厨房垃圾处理机等具有启动电动送风机使空气流通的装置的电气制品部件中,如在空气通道或空气通道中的过滤装置,或室内照明光的外壳部件的表面设置低温固化型高活性氧化物光催化剂薄膜。
作为使用对象的部件材料的熔点或分解温度一般在300℃以下,特别是在常用的热塑性塑料制得的成形部件、纤维部件、发泡体部件或片状部件上设置低温固化型高活性氧化物光催化剂薄膜,能够解决污染、微生物繁殖、恶臭产生等以往遗留下来的问题。
本发明中,通过TiO2为主体的氧化物光催化剂薄膜膜厚的最适化,TiO2粒径的最适化,电负性较低的适当离子的添加,以SiO2为粘合剂时与TiO2的混合比的最适化,电子亲和力较高的氧化物半导体的添加,适当的贵金属类的添加等配合手段,在上述电器制品的空气通道或外壳部件表面形成了光催化剂的反应活性度有所提高的薄膜,这样就能够获得以往所不可能有的利用室内光水平达到的防污、除臭和抑制微生物繁殖效果。
同时,在本发明的形成以SiO2和TiO2为主体的无机聚合物薄膜的工序中,为了破坏有机金属化合物的金属原子和有机基团的结合,有必要采取照射含有特定波长的电磁波以促进水解反应的手段,由于无机聚合物的高分子化是在低温状态下进行的,所以,在不发生变形与熔融、分解等的低温下,即使在上述耐热性较差的被大量使用的热塑性塑料表面也能够形成具备一定强度的氧化物光催化剂薄膜。
以下,对低温固化型高活性氧化物光催化剂薄膜的详细情况进行说明。
在分散了作为氧化物光催化剂的TiO2微粒的氧化物光催化剂薄膜中添加电负性小于1.6、离子半径小于0.2nm的元素的化合价在2以下的离子,能够改善反应效率。添加的具体元素中最有效的是Na、Li、K、Sr、Mg、Ca、Zn,这些元素的添加量较好为0.5~20wt%,如果将TiO2微粒的大小调整为5~20nm则最有效。
又,在SiO2中分散了TiO2微粒的氧化物光催化剂薄膜中,TiO2/SiO2的重量比较好为9-5。
前述氧化物薄膜的膜厚较好为100~500nm。
所添加的成分除了前述离子之外,还可在其中分散以由电子亲和力至少在1.2以上的金属元素构成的氧化物半导体为主体的氧化物微粒,这样效果将更好。特别合适的是Sn、Fe、Cr等元素构成的半导体。其添加量较好为2-50wt%。其中,以ATO(添加了锑的氧化锡,锑的重量占1%~10%为佳)为主体的氧化物微粒特别有效。这些半导性微粒的添加能够减小膜自身的表面电阻,这样包括难以氧化分解的无机污染物在内的污染物就很难静电吸附。
另外,将氧化物光催化剂薄膜制成数层层叠的结构也同样有效,从表面数第1层为在SiO2分散了TiO2微粒的薄膜,该膜中添加了前述离子,从表面数第2层为分散了以前述氧化物半导体为主体的氧化物微粒的薄膜,这样即使对氧化耐久性较差的塑料等的表面也不会产生不良影响,就能够有效地获得光催化剂作用,此外,如果在上述第2层中添加Fe、Al、Zn中的至少一种元素,将会更有效。
添加成分除了前述离子外,如果添加Pt、Rh、Pd、Ag、Cu、Ni中的至少一种也有效。
TiO2具有光催化剂的功能,通过分解有机物而具有抗菌、除臭和防污等效果。其功能起源于用光,特别是紫外光照射作为半导体的TiO2后产生的电子和孔穴。作为半导体的TiO2经过具有带隙以上的能量的光照射,就会产生电子和孔穴。产生的电子和孔穴分解吸附在TiO2表面的水分后,生成H自由基和OH自由基。OH自由基与有机物反应,就能够对有机物进行分解。上述结构虽然能够使光催化剂分解有机物等,但要大幅度提高反应速度,还有以下两种方法。第1,增加一个活性点的工作量,第2,增加活性点的个数。增加活性点的个数就是增大表面积,即,通过使TiO2微粒化而实现。又,为了增加活性点的工作量,可充分进行TiO2(锐钛矿)的结晶化,防止电子和孔穴的再结合。满足以上条件后就可提高反应速度。但是,充分进行TiO2(锐钛矿)的结晶化和增大表面积正好是相反的,要两方面都满足是很困难的。即,结晶性增加会导致粒径的增加,从而使表面积减小。所以,在增加结晶性方面和增大表面积方面之间有一个最佳粒径范围。根据本发明的多次实验结果发现,最佳粒径范围为5~20nm。使TiO2微粒分散时,即使改变作为无机粘合剂使用的氧化物种类,只要在上述粒径范围内就可加快分解速度。
防止电子和孔穴的再结合以加快反应速度可通过提高电子和孔穴的分离效率来实现。TiO2表面存在Ti缺陷,该缺陷成为电子和孔穴的再结合点,阻碍了反应的进行。如果添加离子半径与Ti相近的离子,就能够侵入表面的Ti缺陷,使缺陷消除,从而减少再结合点。而且,由于存在正离子,所以,能够吸引电子使其与孔穴分离,促进有机物的氧化反应。本发明发现,具备以上有效效果的添加剂的条件是电负性小于1.6、离子半径小于0.2nm。
另外,本发明发现通过添加其他氧化物半导体微粒也能够达到高性能化的目的,这可通过从载体浓度较大的氧化物半导体向载体浓度较小的TiO2的方向注入载体来实现。所以,载体必须能够很容易地从氧化物半导体流向TiO2。如果氧化物半导体的电子亲和力小于Ti,则会形成肖特基势垒(阻挡层)。因此,添加材料的电子亲和力需在1.2ev以上。
此外,本发明还发现添加了Fe、Al、Zr而使TiO2的光催化剂作用消失的情况。使用以有机物为主体的基板材料时,出现了由于光催化剂作用而使基板本身受到破坏的问题。
所以,本发明虽然在基板和光催化剂之间形成了隔层,但如果在隔层中添加Fe、Al、Zr,就能够完全抑制上述自身破坏。而且,由于上述隔层是一种高性能的隔层,所以膜可以十分薄。添加了ATO等导电性微粒时或层叠时,在提高光催化剂性能的同时,还有防止带电的作用,这样不仅能够进行有机物的分解,还可防止浮游在空气中的尘埃等无机物的吸附,提供更为高性能的防污性能。另外,由于本发明的上述活性较高,以比以往微弱的光亮度就能够进行分解,并具有防带电作用,所以,具有成为污染物的微粒本身难以静电吸附的特性的高活性光催化剂薄膜以低廉的价格被广泛使用,采用以往的膜形成方法,能够在耐热性不够充分的材料表面成膜。
因此,在使包含钛或硅的低分子量有机金属化合物和水的溶液进行无机聚合这样的高分子化时,为了破坏该有机金属化合物的金属原子和有机基团的结合,需要用具有特定波长的电磁波进行照射,这样能够促进该有机金属化合物的水解反应,在前述溶液中形成金属氧化物的预聚物,使膜形成温度降低。
该特定波长的电磁波最好为紫外线光。将含有低分子量的有机金属化合物和水的溶液涂布在被覆体表面后,为了破坏有机金属化合物的金属原子和有机基团的结合,最好用紫外光等具有必要的特定波长的电磁波进行照射,同时还进行加热干燥,或在电磁波照射后对涂膜进行加热干燥。
另外,将以往技术中使用的具有光催化剂性能的氧化钛粒子分散在无机薄膜中而形成的光催化剂与仅有氧化钛构成的光催化剂相比,由于氧化钛所占的面积较小,所以性能较差。特别是对膜强度有一定要求时,如果大量添加无机粘合剂,虽然强度有所增加,但活性却明显降低。
本发明的目的是提供将氧化钛分散在粘合剂中,但却具有高活性的光催化剂材料,还提供在日常生活环境下也能够充分发挥光催化剂作用的制品。特别是利用光催化剂的自我清洗特性,能够减少产品的部件更换和洗涤次数。
为了解决上述课题,本发明在氧化钛构成的光催化剂中添加了ATO、RuO2,还添加了Li、Na、Mg中的任何一种。
另外,本发明为在氧化钛粉末上直接涂布ATO粒子来改善异种半导体界面的接合状态的制造方法。进一步来讲,本发明是以高温处理为前处理,涂布时可以120℃的低温成膜的涂布方法。
氧化物半导体的电子亲和力小于Ti时,在微粒的粒子表面形成了肖特基势垒,这样就不能够将添加了氧化物半导体的载体注入TiO2中,使效果不能够显现。针对这种情况,在氧化物半导体的电子亲和力小于Ti时,不使其在微粒的粒子界面形成肖特基势垒,而是形成电阻性接合,这样就能够容易地将氧化物半导体的载体注入TiO2中,从而有效地发挥作用。特别是ATO的电子亲和力虽然比Ti小一些,但其差基本没有,所以能够显现性能的提高。这是因为作为导电性氧化物ATO的载体浓度较高,可将ATO大量载体注入TiO2中,从而提高了光催化剂的活性。
另外,近年ATO作为导电性氧化物正倍受瞩目,其超微粒在市场上有售。在TiO2光催化剂中添加超微粒ATO,能够更简便地制备添加了ATO的TiO2光催化剂。但是,使用上述超微粒ATO时,超微粒ATO的添加虽然使ATO粒子与TiO2微粒接触,但SiO2中也存在粒子,这是无效的。另一方面,本发明的制备方法中,由于TiO2微粒中预先添加了ATO溶液进行烧成,所以,ATO和TiO2粒子的接触面积较大,利用烧成以良好的接合状态使异种半导体间的电子转移变得顺利。此外,由于p型半导体RuO2能够吸引n型半导体TiO2、ATO吸光而产成的电子和孔穴中的孔穴,所以抑制了电子和孔穴的再结合。因此,吸光而产生的电子和孔穴能够有效地应用于催化反应,使分解效率进一步提高。
此外,由于添加的Li、Na、Mg的离子半径与Ti离子半径接近,所以,容易进入TiO2表面的Ti缺陷中,这样就增加了结晶的稳定性。而且,由于Li、Na、Mg的离子性较强,容易吸引电子,所以,可使吸光而产生的电子和孔穴分离,从而提高反应效率。
本发明的成膜方法可在120℃左右进行,不仅可用于陶瓷基板,也可用于塑料材料上。由于一般的溶胶-凝胶法需要400℃左右的温度,所以,很难用于塑料制品,而且,TiO2的结晶化也需要10分钟以上的时间。但本发明的制作方法可在低温下成膜,所以,能够使用的基材很多,在任何表面都可形成光催化剂薄膜。而且,处理时间很短,只需几分钟,这样就可大幅度降低生产成本。
本发明是在氧化钛形成的光催化剂中添加RSO(RuSrO3)而形成的。具体来讲,本发明为由STO(SrTiO3)、RSO和粘合剂组成的光催化剂。更进一步讲,本发明是以添加了Li、Na、Mg中的任何一种金属为特征的光催化剂。
本发明是在半导体光催化剂粉末上直接涂布RSO,以改善异种半导体间的界面接合状态的制作方法,具体讲是前处理为高温处理,涂布时以120℃左右的低温成膜的涂布方法。
RSO和TiO2接触时,TiO2光催化剂利用RSO的孔穴使添加了RSO的光催化剂的性能有所提高。另外,催化剂的氧化活性起源于吸光而产生的电子和孔穴的氧化还原作用,特别是生成的孔穴产生了OH自由基,有很强的氧化作用。RSO为p型半导体,带有大量孔穴。利用RSO和TiO2的接触,将孔穴带入TiO2中,可使TiO2表面的有机物等发生氧化,从而提高光催化剂活性。
Li、Na、Mg的离子半径与Ti离子半径接近,所以,容易进入TiO2表面的Ti缺陷中,这样就增加了结晶的稳定性。而且,由于Li、Na、Mg的离子性较强,容易吸引电子,所以,可使吸光而产生的电子和孔穴分离,从而提高反应效率。
RSO的添加方法包括在TiO2粉末中混合入RSO粉末的方法,以及在氧化钛粉末上涂布烧成RSO溶胶的方法。前者虽然RSO粒子也与TiO2微粒接触,但也有粒子存在于作为粘合剂使用的SiO2中,这是无效的。后者能够预先在TiO2微粒中添加RSO溶液而进行烧成,这样RSO和TiO2粒子的接触面积就增加,通过烧成可使接合状态良好的异种半导体间的电子转移变得顺利。但是,制备RSO需要700~850℃这样的温度,如果低于上述温度,RSO就不能够结晶化,这样就不具备p型半导体的功能。温度为600℃以上时,TiO2的结晶为金红石型。能充分显现光催化剂作用的是锐钛矿型,为金红石型时光催化剂作用急剧下降。所以,如果在添加RSO后对TiO2进行高温处理,RSO转变为p型半导体,而TiO2则相转移为金红石型,这样就失去了光催化剂的作用。因此,可望使用与TiO2光催化剂具备同样功能的STO(SrTiO3),这样添加了RSO的STO光催化剂才有效。STO与TiO2具有基本相同的光带(波段)结构。另外,其制备方法需要进行700~850℃的高温处理,使其结晶化,RSO和STO的结晶都为钙钛矿型,其晶格常数与Sr-O通用,几乎相同。因此,制备条件也与RSO非常接近,接合状态也良好,使光催化剂活性有所提高。
另外,由于以往光催化剂的分解速度都较慢,所以分解除去气体需要一定时间。而且,无光照射时不起作用仅在光照射时才起作用。所以,虽然能够利用抗菌作用使细菌等的数量有所减少,但如果长时间不进行光照,细菌就可能会繁殖。
因此,本发明的目的是在加快除去气体速度的同时,增强无光照时间的抗菌作用。
为了解决上述问题,本发明在氧化钛构成的光催化剂中添加了吸附剂。所添加的吸附剂为泡沸石。具体来讲,本发明是在氧化钛构成的光催化剂中,将Cu、Ag、Li、Na、Mg中任何金属元素进行了离子交换的泡沸石。
以往的光催化剂由以氧化钛为代表的半导体光催化剂材料构成。这些材料的特征是利用光催化剂的氧化还原反应可进行抗菌和自身清洁。如果污染较严重时进行自身清洁可能会使催化剂劣化,而抗菌性又是目视很难判断的。特别是不顾膜剥落或性能劣化等功能变差的情况下,不加注意地使用,就有可能促进细菌等繁殖的危险。
因此,本发明提供了目视就可简单地进行性能判断的光催化剂材料。
为了解决上述问题,本发明提供了以目视就可判断性能劣化为特征的由光催化剂构成的抗菌、防污材料。也就是在氧化钛构成的光催化剂中添加了能吸收可见光的颜料的光催化剂。
光催化剂一般吸收了紫外线后会产生催化剂作用。日常生活环境中只有少量的紫外线存在,光催化剂利用这些微弱的光进行抗菌和防污。如果能够有效地利用可见光,就能够在日常生活环境下提供高性能的光催化剂。在太阳能电池领域,已经研制出了使用能利用可见光的氧化钛的湿式太阳能电池。这种电池利用了层叠能吸收可见光的色素,色素吸收可见光而激发的电子刺激氧化钛,使电流流动这样的增光(激活)作用。同样的减少在光催化剂中也能够获得同样的效果。在氧化钛中添加能吸收可见光的材料,吸收可见光而激发的电子会刺激氧化钛,这样就有利于光催化剂的氧化还原反应。但是,具备上述增光作用的色素多为有机物,不仅会被紫外线直接分解,还容易受到光催化剂作用而分解。而且,由于有效利用了可见光,所以性能有所提高,使分解变得更为容易,这样在日常生活环境中也会很快劣化。因此,本发明对不受紫外线影响的颜料类进行了深入研究,发现了分解速度较慢且具备增光作用的颜料类。由于颜料的原料以有机物为主,所以都会分解而劣化。但是,颜料添加后在日常生活环境中会慢慢地分解,如果利用这一特性将分解速度调整到与产品部件的更换周期一致,就能够从材料的颜色获知产品部件是否需要更新。
另外,以往的光催化剂由以氧化钛为代表的半导体光催化剂材料构成。这些材料的特征是利用光催化剂的氧化还原反应可进行抗菌和自身清洁。如果污染较严重时进行自身清洁可能会使催化剂劣化,而抗菌性又是目视很难判断的。特别是不顾膜剥落或性能劣化等功能变差的情况下,不加注意地使用,就有可能出现促进危险的细菌等繁殖的问题。
因此,本发明提供了目视就可简单地进行性能判断的光催化剂材料。本发明为以目视就可判断性能劣化为特征的由光催化剂构成的抗菌、防污材料。也就是在氧化钛构成的光催化剂中添加了能吸收可见光的色素的光催化剂。
光催化剂一般吸收了紫外线后会产生催化剂作用。日常生活环境中的紫外线很弱,光催化剂利用这些微弱的光线进行抗菌和防污。如果能够有效地利用可见光,就能够在日常生活环境下提供高性能的光催化剂。在太阳能电池领域,已经研制出了使用能利用可见光的氧化钛的湿式太阳能电池。这种电池利用了层叠能吸收可见光的色素,色素吸收可见光而产生的电子刺激氧化钛,使电流流动这样的增光作用。同样的减少在光催化剂中也能够获得同样的效果。在氧化钛中添加能吸收可见光的材料,吸收可见光而激发的电子会刺激氧化钛,这样就有利于光催化剂的氧化还原反应。但是,具备上述增光作用的色素多为有机物,不仅会被紫外线直接分解,还容易受到光催化剂作用而分解。而且,由于有效利用了可见光,所以性能有所提高,使分解变得更为容易,这样在日常生活环境中也会很快劣化。因此,本发明对不受紫外线影响的颜料类进行了深入研究,发现了分解速度较慢且具备增光作用的色素。由于颜料的原料以有机物为主,所以都会分解而劣化。但是,颜料添加后在日常生活环境中会慢慢地分解,如果利用这一特性将分解速度调整到与产品部件的更换周期一致,就能够从材料的颜色获知产品部件是否需要更新。
以往,用于塑料制品的光催化剂为在氧化钛中添加了二氧化硅等无机粘合剂的物质。这些在无机粘合剂中分散了氧化钛粒子的光催化剂与仅由氧化钛构成的光催化剂相比,氧化钛所占的面积较小,有性能较差的问题。特别是在要求膜强度的情况下,由于添加大量无机粘合剂,所以强度虽然有所增加,但活性却显著降低。而且,光催化剂虽有利于有机物的分解,但对无机污染物却无能为力。可是,无机污染物必定会附着在有机污染物上,如果利用光催化剂作用除去有机污染物,则可在一定程度上防止无机污染物的附着。然而,一旦附着了无机污染物,则光不能够透过被附着的部分,这样光催化剂就会失去作用,不能够对有机污染物进行分解,其结果是污染更为严重。因此,可采用提高亲水性进行洗涤以除去附着无机物的对策。但是,对于需洗涤的光催化剂材料和产品,有必要大量使用构成光催化剂的粘合剂以提高强度,但这样会使光催化剂作用减弱。
因此,本发明提供了即使大量添加粘合剂也不会造成光催化剂性能减弱、在进行水洗等洗涤时不会发生膜剥落现象的光催化剂材料。这样不仅能够简单地除去有机污染物,还能够对无机污染物进行洗涤,减少了产品的洗涤次数和部件更换。
本发明的由光催化剂构成、且具有抗菌防污作用的材料能够通过水洗除去无机污染物,还能够通过添加有机树脂增加强度。
另外,本发明的光催化剂中作为粘合剂使用的有机树脂具有硅烷醇基或UV固化性。使用UV固化性树脂时,添加了Al、Ti、Si类偶合剂。
在塑料表面涂布光催化剂时,如果以二氧化硅为粘合剂,则与塑料表面的粘合不够充分。而选择可与基材配合使用的有机树脂,则粘合力相当好,而且耐水洗。但是,有机树脂会因光催化剂作用而分解。为了防止这种情况的出现,较好的是使用无机材料,但这样强度将有所降低。因此,在有机树脂的侧链上导入无机官能团,利用该无机基团使氧化钛表面与有机树脂接触接合,这样就能够抑制分解。
此外,使用有机树脂的情况与使用二氧化硅之类的陶瓷材料不同,前者即使不加热也会发生固化。例如,使用室温固化树脂就会出现上述特征。但是,室温固化树脂除了瞬间粘合剂之外,一般都需要24小时作用才固化。瞬间粘合剂虽然会在短时间内固化,但由于光催化剂的作用会慢慢地分解。例如UV固化树脂就是可在短时间内固化、且耐光性良好的树脂。UV固化树脂会因为紫外线照射而固化,被荧光灯照射出的紫外光照射后慢慢聚合固化。但是,也受光催化剂影响而慢慢固化。因此,光固化和光分解进行适当组合能够提高耐光性能。
如果UV固化树脂完全覆盖TiO2粒子表面,则催化剂会失去活性。于是通过添加偶合剂,能够增加TiO2表面的露出部分。另外,光催化剂分解了吸附在表面的水分,产生了自由基,但由于添加了偶合剂,所以能够使吸附在表面的水分大量保存,使催化剂作用能够显现。
对附图的简单说明
图1为本发明实施状态中的过滤型空气净化器主体的结构图。
图2为本发明实施状态中的过滤型空气净化器主体的侧视图。
图3为本发明实施状态中的静电集尘式空气净化器主体的剖面图。
图4为本发明实施状态中的厨房用换气扇主体的剖面图。
图5为本发明实施状态中的电风扇主体的侧视图。
图6为本发明实施状态中的吸尘器的侧视图。
图7为本发明实施状态中的吸尘器主体的剖面图。
图8为本发明实施状态中的衣物烘干机主体的剖面图。
图9为本发明实施状态中的餐具烘干机主体的侧视图。
图10为本发明实施状态中的餐具烘干机的排气口部分的放大剖面图。
图11为本发明实施状态中的餐具烘干机主体的剖面图。
图12为本发明实施状态中的洗碗机主体的侧视图。
图13为本发明实施状态中的洗碗机主体的剖面图。
图14为本发明实施状态中的洗碗机主体的剖面图。
图15为本发明实施状态中的厨房垃圾处理机主体的侧视图。
图16为本发明实施状态中的厨房垃圾处理机主体的剖面图。
图17为本发明实施状态中的在PET膜上形成的分散了TiO2的SiO2膜的剖面图。
图18为本发明实施状态中的在被覆体上形成的低温固化型高活性光催化剂薄膜的剖面图。
图19为本发明实施状态中的在被覆体上形成的2层层叠的低温固化型高活性光催化剂薄膜的剖面图。
图20表示本发明实施状态中的有机色素的分解试验结果。
图21表示本发明实施状态中的电负性和分解率的关系。
图22表示本发明实施状态中的电负性和离子半径的关系。
图23表示本发明实施状态中的低温固化型高活性光催化剂薄膜的烟雾捕集效果。
图24表示本发明实施状态中的吸附了烟雾的过滤器的光分解效果。
图25表示本发明实施状态中的低温固化型高活性光催化剂薄膜的氨气捕集效果。
图26表示本发明实施状态中的氨气的光分解效果。
图27表示本发明实施状态中的吸附了烟雾的ABS板的光分解效果。
图28表示本发明实施状态中的色拉油的光分解效果。
图29表示本发明实施状态中的有机色素的分解试验结果。
图30表示本发明实施状态中的泡沸石的添加效果。
图31表示本发明实施状态中的Si和Al比例的影响。
图32表示本发明实施状态中的离子交换泡沸石的添加效果。
图33表示本发明实施状态中的添加了泡沸石后的抗菌效果。
图34表示本发明实施状态中的香烟烟雾的分解试验结果。
图35表示本发明实施状态中对应于粘合剂添加量的香烟烟雾的分解试验结果。
图36表示本发明实施状态中的对应于甲硅烷醇导入量的香烟烟雾的分解试验结果。
图37表示本发明实施状态中的对应于偶合剂添加量的香烟烟雾的分解试验结果。
实施发明的最佳状态
以下,参考图1~图37对一例本发明的实施状态进行说明。
形成于各种成型品、涂装钢板和过滤器等表面的低温固化型高活性氧化物光催化剂薄膜的配比构成和实施例效果如表1~表9所示。
(实施例1)
参考图1、图2和图3对作为本发明实施例1的空气净化器进行说明。
图1为过滤型空气净化器主体的结构图,图2为主体的侧视图。空气净化器的主体1的构成如下:用螺丝8将电容式电动机7固定在后盖12上,再固定用于驱动电动机的电容器11和运转开关9,风扇6通过螺母5固定在电容式电动机7上,后盖12和框架4用螺丝13固定。另外,过滤器3固定在定型模板(吸入口)2上,取下模板(吸入口)2可抽出过滤器3。开关按钮10固定在运转开关9上。
利用电容式电动机7的驱动力使风扇6运转,空气流通。通过空气流通将被尘埃、烟雾、油粒、微生物及微生物残骸、花粉和恶臭等污染的室内空气吸入模板(吸入口)2中。被吸入的受污染的空气经过滤器3部分过滤净化后,从格栅14的排气口15排出。过滤器3部分为具备除去各种污染和臭气功能的复合结构。过滤器3由覆盖外表面的一层外过滤器3a和位于外过滤器3a内部的内过滤器3b构成(图中未显示)。为了过滤尘埃,任何一种过滤器的基本结构都是使用了聚酯、聚氨酯、纤维素纤维、尼龙或经过驻极体化处理的聚烯烃类等的非织造布层或海绵状多孔质层。内过滤器3b除了具备上述基本结构之外,为了吸附臭气,还混合、混纺或封入了活性炭粒子和纤维类物质。另外,有时为中和纤维本身的异味还浸入一些药物或使其铺展在表面。所用的药物除了各种有机酸或类黄酮生物碱等之外,为抑制微生物繁殖还可并用抗菌剂类物质。近年,也使用安全性较高的甲壳质、壳聚糖和儿茶酸衍生物等。产生的风量约为2~3(m3/分),在8席大的室内运转30分钟可除去70~95%的香烟烟雾。
本实施例中,外过滤器3a由聚丙烯腈纤维的非织造布制成,其表面形成了后述表3所示的试样No.21的低温固化型高活性氧化物光催化剂薄膜。聚丙烯腈非织造布过滤器经电晕放电处理后,在其上形成只含SiO2的薄膜,即表1中试样No.12表示的底层,形成该膜后,再形成试样No.21的低温固化型高活性氧化物光催化剂薄膜。关于膜形成方法将在后述的实施例9中详细说明,简单地说,就是调制规定的溶胶,再用各种方法涂布制品,然后在120℃的氛围气中用低压水银灯照射使其固化。以下各实施例中的实用例也是用同样的方法成膜的。涂布方法可根据制品的形状用喷雾、浸渍、毛刷等不同方法进行。
外过滤器3a是最先过滤被模板(吸入口)2吸入的受污染空气的部件,其上吸附了大量尘埃、烟雾、油粒、微生物及微生物残骸、花粉和恶臭等异物。为了有效地吸入空气,在模板(吸入口)2上设置了多个开口,外过滤器3a的空气吸入面受到来自开口部分的室内照明和太阳光等光的照射。利用这些光线使捕集在外过滤器3a表面的异物氧化分解,特别是烟雾和油粒,由于它们以薄膜状吸附在过滤器表面的低温固化型高活性氧化物光催化剂上,所以能够有效地被分解。浮游在空气中的细菌或霉菌等各种微生物通过高活性光催化剂的分解作用被杀灭或抑制其繁殖。另外,如果用玻璃质薄膜覆盖非织造布过滤器的纤维表面,则能改善其与烟雾粒子的润湿性能,这样就可增加烟雾捕集效果。
此外,本空气净化器主体1的外部部件,如模板(吸入口)2、框架4、运转开关9和后盖12都为热塑性塑料ABS的注入成型品。在这些部件的外侧面上形成了低温固化型高活性氧化物光催化剂薄膜。
本实施例的形成于上述ABS部件表面的后述表6所示试样聚丙烯腈非织造布过滤器表面的薄膜的模拟剖面图如图19所示。图中的塑料被覆体189为聚丙烯腈纤维;低温固化型高活性氧化物光催化剂薄膜由表面第1层194和表面第2层192构成,都是在SiO2膜186中分散了TiO2微粒187和锂190的状态,表面第2层192中分散了添加了锑的氧化锡微粒193。
形成了No.86的低温固化型高活性氧化物光催化剂薄膜。聚丙烯腈非织造布过滤器经过电晕放电处理后形成第1层,形成该膜后,再形成试样No.86的含有ATO的低温固化型高活性氧化物光催化剂的第2层。
这些外部部件受室内照明和太阳光等光线的照射,所以,即使吸附了前述各种异物,也能够与过滤器的情况一样被氧化分解。
图3为静电集尘式空气净化器的剖面图。整体由前盖16和后盖17构成。在前盖16和模板18上设置了吸气口19和排气口20,在吸气口19和连接吸气口19与排气口20的通风道中设置了装卸自如的预过滤器21。后方相对设置了集尘电极22和放电电极23,还设置了为除去集尘电极22和放电电极23产生的臭氧的除臭氧过滤器24,预过滤器21、集尘电极22、放电电极23、除臭氧过滤器24一起装入框架25构成集尘单元。再后面设置了与集尘单元接触的缓冲材料26、连接送风机27和集尘单元的通风道28和送风机27,缓冲材料26安装在通风道28上,通风道28则被安装在送风机27上,三者连为一体构成送风单元。经过净化的空气从排气口20排出。
上述预过滤器21与过滤型空气净化器的外过滤器3a发挥同样的作用。
本实施例中,预过滤器21是尼龙制成的网状物,其表面形成了后述表3所示的试样No.21的低温固化型高活性氧化物光催化剂薄膜。尼龙制网状物经过紫外线照射处理后,在其上形成试样No.21的低温固化型高活性氧化物光催化剂薄膜。该尼龙网状物表面薄膜的模拟剖面图如图18所示。塑料被覆体189为尼龙纤维,低温固化型高活性氧化物光催化剂薄膜191是在SiO2膜186中分散了TiO2微粒187和锂190的状态。
后盖17为ABS注入成型品,前盖16由经过增塑加工的镀锌钢板制成,外侧面涂上了聚酯类烘漆。与前述同样,在上述后盖17、前盖16的外侧面上形成了No.86的低温固化型高活性氧化物光催化剂薄膜。
(实施例2)
参考图4对作为本发明的实施例2的换气扇进行说明。
图4为厨房用换气扇的侧剖面图。在箱型框架29上安装了电动机30,电动机30上安装了叶轮31。在框架29的室外侧(排气侧)安装了遮阳棚32,在框架29的室内侧(吸气侧)设置了测流孔33。测流孔33的室内侧(吸气侧)的上部设置了附有荧光管34的照明装置35。在测流孔33、照明装置35的室内侧(吸气侧)设置了过滤器36,过滤器36下部有积油袋37。
一般如果叶轮31的直径为25cm,则换气能力约为800~1000(m3/时间)。
图4表示的厨房用换气扇的结构,一般室内用、厕所用、浴室用换气扇在安装角度及部件位置上略有不同,但基本结构是相同的。
过滤器36的结构与前述空气净化器相同,是适用于各种用途的复合结构,具备除臭功能和抗菌功能。
本实施例的过滤器36为由聚丙烯腈纤维非织造布制成的单层过滤器,其表面形成了表3所示的试样No.22的低温固化型高活性氧化物光催化剂薄膜。聚丙烯腈非织造布经过电晕放电处理后,先形成只含有SiO2的薄膜,即表1所示的试样No.12表示的底层,该膜形成后,再形成试样No.22的低温固化型高活性氧化物光催化剂薄膜。
框架29为PS(聚苯乙烯树脂)的注入成型品,测流孔33和叶轮31为ABS注入成型品。这些成型部件表面形成了与前述空气净化器同样的试样No.86的低温固化型高活性氧化物光催化剂薄膜。
另外,室外侧的部件,如遮阳棚32由经过熔融镀锌处理的冷轧钢板制成,其表面电镀了丙烯酸系树脂,其表面还形成了与前述同样的试样No.86的低温固化型高活性氧化物光催化剂薄膜。
过滤器36的朝向室内的面上受到室内照明光线的照射,其反面受到来自照明装置35的光线的照射。另外框架29、测流孔33、叶轮31和积油袋37等部件也受到照射装置35发出的光线的照射。处于室外的遮阳棚8表面受到太阳光的照射。
本实施例为厨房用换气扇,所以,与一般的换气扇相比,其污染程度大大增加。即,其表面附着了大量烹饪时飞散的食用油微粒。历来厨房用换气扇一般都具备照明装置35,这是为了在烹饪时便于操作而设计的,既可以在换气扇工作时同时使用,也可以单独用于照明。由于本发明的光催化剂的有机物分解效率大于以往,所以,如果是污染较少的场合,不用再特别设置照明装置,只要利用室内照明水平就能够获得充分的分解效果,但厨房等污染严重的地方就不能够获得令人满意的效果。但如果如本实施例所示,并用了一般的荧光灯或白炽灯泡,即使是厨房或厕所之类污染较严重的场所也能够获得充分的效果。
(实施例3)
参考图5,对作为本发明实施例3的电风扇进行说明。
图5为电风扇结构的外观侧视图。电风扇主体的底座38上安装了支撑柱39,支撑柱39中插入了能够自由伸缩的滑动管40。滑动管40支撑位于其上方的由叶轮41、防护装置42和电动机43等构成的头部44。考虑到强度的问题,支撑柱39的直径越往下越大。利用电动机43的驱动力使叶轮41运转,从主体背面向前方制造空气流。防护装置42的作用是防止手指与转动着的叶轮41接触,为了防止儿童等出事故,用网状物45(图中未显示)将整个防护装置42罩住,这样将更安全。支撑柱39下部安装了遥控座46,一般遥控装置47被装入遥控座46中。利用遥控装置47的开关操作可设定动作模式,即,从遥控装置47的红外线发光部分48发射出红外信号,再通过主体底座38上面的红外线受光部分49接收信号,这样就进行了设定操作。
本实施例中,叶轮41为AS树脂的注入成型品,叶轮41的表面形成了与前述ABS等成型品同样的试样No.86的低温固化型高活性氧化物光催化剂薄膜。
防护装置42由经过聚酯类烘漆涂布的钢丝材料构成,其表面也形成了同样的试样No.86的低温固化型高活性氧化物光催化剂薄膜。网状物45由尼龙纤维构成,其表面同样形成了试样No.86的低温固化型高活性氧化物光催化剂薄膜。
另外,遥控装置47的红外线发光部分48和主体底座38上面的红外线受光部分49是透明的部件,由AS树脂构成。
这些透明部件表面也形成了试样No.86的低温固化型高活性氧化物光催化剂薄膜。在对象部件表面形成作为第1层的钛酸酯类偶合剂薄膜,该膜形成后,再形成作为第2层的试样No.86的低温固化型高活性氧化物光催化剂薄膜。
叶轮41和防护装置42等的表面与前述空气净化器和换气扇的叶轮及框架相同,因吸附浮游在空气中的异物而被污染,但由于形成了本发明的低温固化型高活性氧化物光催化剂薄膜,所以,以室内照明光的亮度水平就可使吸附的污染物氧化分解,具有难以污染的效果。
另外,本实施例具备利用红外线的远距离操作装置,由于在这些红外信号发射和接收部分所用的透明部件表面形成了低温固化型高活性氧化物光催化剂薄膜,所以,不会因为部件表面附着的污染物而影响信号的接收。
本实施例为使用了螺旋式叶轮的电风扇实例,如果是使用了多叶片型叶轮的电风扇,也能够以同样的构成获得同样的效果。
(实施例4)
参考图6、图7,对作为本发明实施例4的吸尘器进行说明。
图6为吸尘器的外观侧视图,图7为吸尘器主体的剖面图。
吸尘器主体50由覆盖下部的合成树脂成型品下盖51、覆盖上部的上盖52、中盖53、格栅盖54和手柄部分55构成,后方下部的左右两侧设置了一对直径较大的后轮56,在前方下部的底部中央设置了直径较小的可自由转动的车轮57。上盖52中央设置了主体开关部分58,该主体开关部分58由位于中央的红外受光部分59和电源开关60及信号线轴按钮61构成。集尘室62与由吸入管部分63、延长管部分64、吸入口部分65构成的吸入管组合体66相连。延长管部分64的上部连接了手柄部分67,该手柄部分67上安装了手动操作部分68。该手动操作部分68上装置了红外信号的发射部分69,将红外信号发射部分69发出的红外信号传递到吸尘器主体50的红外接收部分59为无线操作。吸尘器主体50的内部前方设置了集尘室62,内部后方并列设置了电动送风机70和信号线轴部分71,还在电动送风机70和信号线轴部分71上部设置了控制基板72。
另外,在电动送风机部分70的后方,从吸尘器主体50的背面下端到上端沿上下方向形成了第一排气通风道73,该第一排气通风道73下端再与形成于电动送风机部分70下部的第二排气通风道74相连,由上述第一排气通风道73和第二排气通风道74构成排气通风道75(图中未显示),使第二排气通风道74与电动送风机部分70相连,第一排气通风道73与排气通风道76相连。集尘室62上部设置了纸制过滤器安装部位77和78,该纸制过滤器安装部位77和78上装有纸制过滤器79的厚纸,关闭构成集尘室62上部的中盖53,可将安装口80和纸制过滤器79固定在规定位置上。可自由转动的轮子57回转自如地沿水平方向安装在形成于下盖51前方底部的凹部。随着空气流动从安装口80吸入的垃圾、尘埃、壁虱、微生物等被收集在纸制过滤器79中。
然后,将除去了上述固形物的空气流通过设置在集尘室62和电动送风机70之间的隔板81上、且具备辅助过滤器82的连通口83被导入电动送风机70,冷却电动送风机70后,冷却过的空气流经过第二排气通风道74和第一排气通风道73,从具备排气过滤器84的排气通风部分76排出。
本实施例中,吸尘器主体上的上盖52、中盖53、格栅盖54、手柄部分55、吸入管组合体66的延长管部分64、吸入口部分65和手柄部分67都为ABS注入成型品,这些成型品表面形成了试样No.86的低温固化型高活性氧化物光催化剂薄膜。在对象部件表面形成作为第1层的钛酸酯系偶合剂薄膜,形成该膜后,再形成试样No.86的含有ATO的低温固化型高活性氧化物光催化剂薄膜,构成第2层。
吸尘器与其他实施例的物品相比,由于它的移动性较强,所以外部部件表面容易受损。即,吸尘器主体和吸入口部分在地面运转时经常会与家具或壁面等发生摩擦和碰撞,这样不仅会渐渐形成刮痕而失去光泽,对外观有所影响,而且可能因此造成破损。为了防止上述情况的出现,以往都是涂布紫外线固化型丙烯酸树脂等以确保表面硬度,而本发明的构成低温固化型高活性氧化物光催化剂薄膜的TiO2和作为粘合剂使用的SiO2膜的硬度都大于ABS,其硬度达到铅笔硬度2H~4H的程度,所以,用于外装部件时,在获得难以形成刮痕的效果的同时,还能够获得其本身具备的防污、抑制微生物繁殖等效果。
尤其是手柄部分67为手直接接触的部件,以吸附在其上的汗水等的体脂为营养成分,很容易造成细菌的繁殖,以往都是在成型树脂中混合入咪唑类、噻唑啉类等有机抗菌剂或铜类、锌类、银类无机抗菌剂,以获得抗菌效果,但本发明就不需要进行这些处理。
另外,由于吸入口部分和车轮部分可进行滑动或旋转,所以,在干燥环境下使用吸尘器时容易产生静电,使地毯等的纤维或尘埃等大量吸附在上述部件表面。为了防止上述情况的产生,以往都是在成型树脂中混合入各种表面活性剂或聚酰胺、聚乙二醇类等亲水性高分子物,使表面电阻减小来达到目的,本发明的低温固化型高活性氧化物光催化剂薄膜的电阻值较小,即使是电阻值较大的ABS成型树脂,也能够获得防止尘埃等附着的效果。前述手柄部分67上设置了手动操作部分68,该手动操作部分68的背面安装了载有电子元件的控制基板,如果手动操作部分68附近产生了静电,也会诱发控制基板的错误操作,本发明的防静电效果不仅能够防止尘埃等的吸附,还能够防止控制基板的错误操作。
另外,设置在手动操作部分68的红外信号发射部分69和吸尘器主体1的红外受光部分59与前述实施例3的电风扇一样,都是透明的AS树脂制成型品,由于其表面形成了低温固化型高活性氧化物光催化剂薄膜,所以,能够防止因污染而对红外信号发射和接收造成的影响。
又,设置在主体的排气通风部分76的排气过滤器84由聚丙烯腈和PP的混纺非织造布构成,在排气过滤器84的表面形成了试样No21的低温固化型高活性氧化物光催化剂薄膜。排气通风部分76上设有多个开口,由于排气过滤器84的空气排出面受来自开口部分的室内照明和太阳光等光线的照射,所以,过滤器表面也得到净化。
另外,覆盖主体上部的上盖52、中盖53、格栅盖54和手柄部分55等部件都是透明的,所以,外部光线可以照射到内部,如果在集尘室62内部的纸制过滤器79和辅助过滤器82的过滤器纤维表面形成本发明的低温固化型高活性氧化物光催化剂薄膜,也可获得抗菌效果和除臭效果。
(实施例5)
参考图8,对作为本发明实施例5的衣物烘干机进行说明。
图8为衣物烘干机主体的剖面图。85为外部框架,86为开关盖子,87为旋转滚筒,88为热源,89为排气口,90为双翼风扇,91为风扇罩、92为形成动力的电动机,93为将电动机92的动力传递到旋转滚筒87的传送带,94为将电动机92的动力传递到双翼风扇90的圆形传送带,95为第一密封毡,96为第二密封毡,97为隔板,98为将从风扇罩91排出的循环风导向热源88的循环通风道,99为布制过滤装置,100为将风扇罩91固定在外部框架85上的FD轴,101为安装轴承102的安装环(轴承套),旋转滚筒87由轴承102支撑,可自由转动。旋转滚筒87利用传送带93传递的电动机92产生的驱动力与双翼风扇90一起旋转。通过旋转搅拌衣物的同时,产生循环风(由实线箭头表示),该循环风在经过热源88时被加热,然后进入旋转滚筒87中,蒸发衣物中的水分使其干燥。接着,利用双翼风扇90使循环风经过循环通风道98内部到达热源88,再次加热使衣物反复干燥,开关盖子86内侧安装了附有荧光灯103的照明装置104。沿着旋转滚筒87的内周面贴上了缓解冲击的缓冲材料105。缓冲材料为PP的发泡体
本实施例中,作为旋转滚筒87的内部部件是受照明装置的光线照射的部件,如缓冲材料105、布制过滤器装置99、开关盖子86的内侧面等部件都由ABS或PP树脂构成,它们的表面都形成了试样No.86的低温固化型高活性氧化物光催化剂薄膜。在对象部件表面形成作为第1层的有机硅烷偶合剂膜,形成该膜后,再形成作为第2层的试样No.86的含有ATO的低温固化型高活性氧化物光催化剂薄膜。
照明装置可在干燥过程中使用,也可与干燥操作无关而单独使用,如果用荧光灯103的光线进行照射,则能够有效地氧化分解附着在上述部件表面的有机物和包含在所接触的空气中的恶臭物质,这样就可有效地抑制微生物的繁殖及除臭。
干燥过程中由于衣物在进行着转动,所以,光线不可能到达每一处,如果在干燥结束后,将照明装置打开一段时间以净化旋转滚筒87内部则更有效。
另外,外部框架1由镀锌钢板制成,其外侧涂布了环氧树脂粉体涂料。在涂膜表面形成了试样No.86的含有ATO的低温固化型高活性氧化物光催化剂薄膜。
开关盖子86的外部为PS树脂的注入成型品,其表面也形成了试样No.86的含有ATO的低温固化型高活性氧化物光催化剂薄膜。
上述外部部件,如外部框架85和开关盖子86外侧的光催化剂薄膜的作用与前述实施例1~4的外部部件相同,也是利用室内光线就能够获得充分的防污、抗菌等效果。
(实施例6)
参考图9、图10和图11,对作为本发明实施例6的餐具烘干机进行说明。
图9为餐具烘干机的外观侧视图。图10为将排气口128附近放大后的剖面图。图11为主体剖面图。
主体106的内部用隔板109区分为干燥室107和运转控制室108上下两个部分。运转控制室108中设置了用于送出干燥空气的由扇形马达110、送风风扇111、罩子112和加热机113构成的加热送风单元114,在通过通风道115与干燥室107相连的配置了吸气过滤器116的吸气口117和加热送风单元114之间设置了控制机118。干燥室107内为收集餐具,在其上部设置了上篮119和下篮120。下篮120设置在与铰链122相连的可动杆125上的用于接水的器皿124上,可向门121的下部自由倾斜。同样,上篮119也被设置在可动杆123上。可动杆123、125安装在设置于干燥室107侧壁上可自由旋转的滚筒(图中未显示)上,能够前后移动。用手拉门121的把手126时,该下篮120离开干燥室107,由于篮子的前端受到牵拉,所以,下篮120和上篮119都从干燥室107移到外部。设置于模板127的排气口128为格子状,具备排气过滤器129。设置于主体106的隔板109的开口部分130通过排气通风道131与干燥室107相连。为使温度检测器132免受外部温度的影响,将其设置在排气通风道131内部。
吸气口117为PP的注入成型品,吸气过滤器116为尼龙制网状物,其表面形成了后述表7所示的试样No.91的低温固化型高活性氧化物光催化剂薄膜。尼龙制网状物经紫外线照射处理后,形成试样No.91的含有银的低温固化型高活性氧化物光催化剂薄膜。
由于吸气过滤器116表面受到室内照明光线的照射,所以吸附着的有机物及吸收的空气中的恶臭物质能够被氧化分解。排气口128和排气过滤器129上也同样形成了试样No.91的低温固化型高活性氧化物光催化剂薄膜。由于排出的湿气在吸排气口周围结露,所以容易造成润湿状态,使霉菌和细菌繁殖,但使用了本发明的分解效率较高的光催化剂,就能够以室内光有效地抑制上述微生物的繁殖。试样No.91的组成中,包含在组合物中的银本身具有抗菌作用,所以效果更好。为了提高抗菌效果,也可混合入载有银的泡沸石或磷灰石等陶瓷粒子。
另外,干燥室107内部还设置了附有荧光灯133的照明装置134。照明装置的作用不仅是在打开门121时照明,以确认内部餐具的干燥程度(此为照明原有的功能),还具有净化干燥室107内部的功能。即,通过在干燥室107内部部件表面形成光催化剂薄膜,对经过光照射的部分产生抗菌和防污效果。本实施例中,上篮119和下篮120是在铁制框架上烘涂聚酰胺类粉体树脂而形成的,该油漆的表面经紫外线照射处理后,形成了试样No.92的含有铜的低温固化型高活性氧化物光催化剂薄膜。上下篮是与餐具直接接触的部件,所以保持其清洁是非常重要的,利用光催化剂的作用可防止表面污染及抑制微生物的繁殖,这样就可达到保洁目的。铜和银一样,也是自身具备抗菌作用的金属,所以能够提高抗菌效果。
与实施例5的衣物烘干机相同,干燥过程中餐具会出现影子,这样光就不能够照到每一处,如果在干燥结束后将照明装置打开一段时间,对干燥室107内部进行净化,这样效果将更好。
门121是ABS树脂的成型品,其表面形成了试样No.86的含有ATO的低温固化型高活性氧化物光催化剂薄膜。门121表面的光催化剂薄膜的效果与前述实施例1~5的外部部件相同,利用室内光线就能够获得充分的防污、抗菌等效果。
(实施例7)
参考图12、图13和图14,对作为本发明实施例7的洗碗机进行说明。
图12为洗碗机的外观侧视图。图13和图4为洗碗机的剖面图。
在外部框架135内部设置了餐具收集槽136,在设置了开关其前部开口部分的门137的餐具收集槽136的侧壁下部设置了段部138。段部138上设置了可自由装卸的餐具收集用下篮139。餐具收集槽136底部外侧设置了泵140,泵140备有泵马达141。在餐具收集用下篮139的垂直下方设置了可转动的下喷管142,该下喷管142上配置了多个孔穴143。餐具收集用下篮139上设置了将来自泵140的净水送达上喷管144的文丘里管145。上喷管144在餐具收集用上篮146的垂直下方以其中心为支点转动。上喷管144上面设置了多个孔穴147。餐具收集槽136外侧底部或背部设置了加热器148。为包住加热器148还设置了加热器罩149。在餐具收集槽136的外侧面部设置了给水电磁阀150。在餐具收集槽136外侧上部设置了排气通风道151,它与排气口152相连。门137外侧上部设置了控制模板153。餐具收集槽136底部外侧设置了排水泵154和送风单元155。
在洗涤时,由给水电磁阀150供水,使泵140启动,将压出的水供给下喷管142的同时,接通加热器148,使水温上升。水从孔143喷出的同时,经过文丘里管145送达上喷管144,使水也从孔147喷出,这样就可一边转动上下喷管一边将温水无一遗漏地喷射到餐具收集篮146内的餐具上,洗去污垢。洗涤结束后,接通排水泵154,将污水排出,然后将上述操作重复数次冲洗内部污垢,这样就可彻底洗净。冲洗结束后进行干燥。接通送风单元155,使送风风扇156运转,通过设置于餐具收集槽136底部的送风通道157和加热器148将风送至餐具收集槽136内。此时,使加热器148间歇通电一定时间,使冷风转变为温热的风,利用温热的风,使内部水滴、残留水分以及附着在餐具上的水滴转变为水蒸汽,通过排气通道151从排气口152排出。
本实施例中,排气口152为ABS树脂的成型品,与前述餐具烘干机同样,形成了试样No.91的含有银的低温固化型高活性氧化物光催化剂薄膜。由于排出的湿气在排气口周围结露,所以容易形成润湿状态,这样就导致了霉菌和细菌的繁殖,但如果使用了本发明的分解效率较高的光催化剂,就能够以室内光线有效地抑制上述微生物的繁殖。
餐具收集槽136内部设置了附有荧光灯158的照明装置159。照明装置的作用不仅是在打开门137时照明,以确认内部餐具的洗净和干燥程度(此为照明原有的功能),还具有净化餐具收集槽136内部的功能。即,通过在餐具收集槽136内部部件表面形成光催化剂薄膜,对经过光照射的部分产生抗菌或防污效果。
本实施例中,餐具收集用上篮146和餐具收集用下篮139是在铁制框架上烘涂聚酰胺类粉体树脂而形成的,在该涂膜表面形成了试样No.92的含有铜的低温固化型高活性氧化物光催化剂薄膜。
由于上下篮是与餐具直接接触的部件,所以保持其清洁是非常重要的,利用光催化剂的作用可防止表面污染及抑制微生物的繁殖,这样就可达到保洁目的。
其他受照明装置159的光线照射的部件有餐具收集槽136、上喷管144、下喷管142、文丘里管145等,这些部件使用的是PP树脂的注入成型品或SUS塑性变形品。这些部件表面经过电晕放电处理后,形成了只含有SiO2的薄膜,即表1中以试样No.12表示的底层,该膜形成后,再形成试样No.21的低温固化型高活性氧化物光催化剂薄膜。
在餐具收集槽136内部部件上形成了光催化剂薄膜,附有照明装置159的洗碗机所特有的作用是提高干燥效率。本发明的低温固化型高活性氧化物光催化剂薄膜的基本材料TiO2和SiO2都是水润湿性良好的材料,即使附着了从餐具除去的油脂等不沾水的物质,也能够利用照明装置159的光进行分解,所以,能够经常保持较高的水润湿性。
洗涤餐具过程中,进行最终的冲洗操作时的水温上升到60~70℃,内部温度提高后,虽然通过送风将湿气排到机器外,但残留在餐具收集槽136内部的水分的干燥效率却有所降低。由于对餐具收集槽136、上喷管144、下喷管142和文丘里管145等部件的耐水性要求较高,所以大多采用疏水性材料,一般表面的水润湿性较差。在水润湿性不良的材料表面,水不是以薄膜状的润湿状态存在,而是以接触角较大的水滴状附着。由于洗涤时使用了含有表面活性剂的洗涤剂,所以,洗涤用水的表面张力有所下降,接触角减小,转变为润湿情况良好的状态,但最终冲洗时水中几乎不含洗涤剂,所以水的表面张力非常高。因此,最终的冲洗操作结束时,在餐具收集槽136内部的各部件表面附着了无数个具有较大接触角的水滴。
这些接触角较大的水滴与展开为薄膜状的水膜相比,水量大,不易干燥。而且,水滴状的水在干燥时始终保持水滴状地缩小干燥,由于表面积变小,所以干燥速度更慢,干燥所需的时间约为3倍。餐具多由水润湿性良好的玻璃、陶瓷或木材制成,能够比较快地干燥,但如果洗碗机本身以附着水滴的状态结束洗涤操作,则打开门137时,由于取出上下餐具收集篮时产生的振动会使水滴在餐具上,这样就导致已经干燥的餐具再次被弄湿的不良情况发生。
餐具收集槽136、上喷管144、下喷管142、文丘里管145等部件为PP成型品时,冲洗结束时附着水滴的残留水量约为30g,而形成本发明的光催化剂膜时,附着的残留水量将减少为5g左右。另外,由于本发明的低温固化型高活性氧化物光催化剂薄膜的光活性较高,利用照明装置159的光就可分解附着的油脂类物质,所以,不会因为油脂类物质的附着而降低水润湿性能。
与实施例6的餐具烘干机同样,干燥过程中餐具会出现影子,这样光就不能够照到每一处,如果在于燥结束后将照明装置打开一定时间,就可对餐具收集槽136内部进行净化,这样效果将更好。
门137是PP树脂的成型品,其表面经过电晕放电处理后,先形成试样No.12表示的底层,该膜形成后,再形成试样No.21的低温固化型高活性氧化物光催化剂薄膜。
门137表面的光催化剂薄膜的效果与前述实施例1~6的外部部件相同,利用室内光线就能够获得充分的防污、抗菌等效果。本实施例对安装型洗碗机进行了说明,但台式洗碗机也能够获得同样的光催化剂薄膜的效果。如果洗碗机为台式的,由于室内光线照射到外部部件前方,所以,若在其侧面或顶部的外壁面部件表面形成光催化剂薄膜将很有效。
(实施例8)
参考图15、图16对作为本发明实施例8的厨房垃圾处理机进行说明。
图15为厨房垃圾处理机的外观侧视图,图16为主体剖面图。
框架160内部的中央具有可自由旋转的搅拌翼161,其上部设置了装有垃圾投入口163的处理槽164,其中投入了培养基材165。培养基材165是将以木质素等微生物难以分解的纤维素为主成分的锯末子、稻壳、稻草剪断后形成的材料,其每一粒都具有多孔质的空隙,且粒径不一致,粒与粒间也有较大的空隙。
旋转轴166上装有3根搅拌翼161,由设置在处理槽164中的轴承167支撑,一方突出的旋转轴端部与电动机168通过链条等传动手段169以适当的减速比相连。处理槽164上部开口部分170上设置了可自由开闭上部模板172的内盖171。另外,在处理槽164上部附近还设置了换气扇173、吸气口174和排气口175,利用换气扇173的旋转,将在处理槽164内分解出的气体及水分从排气口175排出。又,在吸气口174和排气口175上都分别设置了有大小适当的网眼的过滤器。
此外,还设置了吸气口174的开关盖子176,它利用设置在框架160的电磁线圈177的往返运动来打开或关闭吸气口174。另外,上部模板172上设置了控制运转的操作部分178,由该操作部分对控制机179的运转进行控制,使厨房垃圾处理机进行运转。
培养基材165在数月之后因空隙部分被分解物等填满,因而其空隙率有所降低,不能够再对垃圾进行处理,所以有更换的必要。为此,在处理槽164底部设置了排出口180和排出通道181,进入排出通道181的培养基材165可从框架160中排出。
处理槽164的培养基材165上部的空隙部分的空气中除了含有湿气之外,还含有大量分解气体,如三甲胺、甲硫醇、氨气、硫化氢等非常臭的气体。由于臭气非常强烈,所以,以往都不将厨房垃圾处理机放置在厨房内,而是放置在住宅小区的阳台上,但即使这样,臭气仍会弥漫出来。
以往的除臭方法是使用活性炭等吸附性材料或锰系热分解催化剂等,但它们的效果都不好或使用寿命不长,因此都不太理想。
本实施例中,在排气口175部分设置了排气过滤器182、183,在其间隙中设置了紫外灯184。排气过滤器182以泡沸石为主成分,排气过滤器183以活性炭为主成分,所以,它们都是蜂窝状结构,由紫外灯184发出的紫外线能够照射到蜂窝状结构的内部。该排气过滤器182和183的蜂窝状结构内表面上形成了表5所示的试样No.62的低温固化型高活性氧化物光催化剂薄膜。
本发明的低温固化型高活性氧化物光催化剂薄膜的分解效率较高,在前述实施例1~7这样有机物负载较小的用途中,利用室内照明装置水平,即波长为250~350(nm)的紫外光以0.001~0.01mW/cm2的亮度,或用荧光灯及白炽灯以0.01~0.1mW/cm2的亮度就可分解有机物,但如本实施例所示,如果是氨气浓度为数ppm这样的高负载的情况,就需要设置紫外线发射装置。
一般可使用水银灯或金属卤化物灯等紫外灯,但本发明的分解效率高于以往的氧化物光催化剂,所以,除臭效果较好,对紫外线强度要求也比使用了以往的氧化物光催化剂的情况低。当投入的垃圾分解最活跃时,也就是前述恶臭物质产生最多的时候。
由于垃圾的分解一般在投入后1小时至8小时这段时间最活跃,所以,配合适时打开紫外灯184,能够延长灯的使用寿命。排气过滤器183以活性炭为主成分,臭气浓度较小时,臭气可吸附在上述活性炭中,但随着吸附量的增加,吸附效率会慢慢降低,所以,定期照射紫外线,使吸附着的恶臭物质分解,能够使活性炭再生。
另外,框架160由油漆钢板制成,外盖171为PP树脂的注入成型品,其表面涂布了氯乙烯有机涂膜,该涂膜表面形成了试样No.21的低温固化型高活性氧化物光催化剂薄膜。
上述外部框架160和外盖171表面的光催化剂薄膜的效果与前述实施例1~7的外部部件相同,即利用室内光线就能够获得充分的防污、抗菌等效果。特别是利用厨房垃圾处理机对垃圾进行处理时,由于垃圾产生的污水经常会污染外部部件,所以用本发明的低温固化型高活性氧化物光催化剂薄膜的防污效果就较好。当厨房垃圾处理机被放置在室外时,外部部件受太阳光照射,太阳光的波长为250~350(nm)的紫外光亮度为0.1~5.0mW/cm2,比室内照明光线强,也能够分解垃圾产生的污水。
形成于上述实施例1~8中的各种热塑性塑料等的被覆体,电动机产生的空气流的通道、设置在通道中的过滤器等过滤装置,以及受室内照明装置等外部光线照射的外部部件、设置在装置内部的由照明装置的光线照射的部件表面的低温固化型高活性氧化物光催化剂薄膜的配比情况,以及膜的固化条件和各配比组成的特性等,将在以下的实施例9~16中进行说明。
(实施例9)
制备在SiO2溶胶中分散了TiO2微粒的溶液。使用该溶液在PET膜上形成TiO2膜,制得图17的PET膜。以下是操作过程。
首先,对SiO2溶胶的制备方法进行说明。将5g四乙氧基硅烷溶于100ml水-乙醇-丙醇(3∶27∶70)的混合溶液中,于40℃搅拌5小时左右,再将所得溶液在室温下放置2周,使其成为SiO2溶胶。
下面对在SiO2溶胶中分散了TiO2微粒的溶液的制备方法进行说明。首先,以TiO2/SiO2=9的重量比,在所得的SiO2溶胶中加入TiO2微粒,然后,加入必要量的水使固形成分的浓度调整为4wt%。接着,为使TiO2微粒分散在SiO2溶胶中,用5mm的氧化锆小球通过球磨机处理24小时,这样就制得了在SiO2溶胶中分散了TiO2微粒的溶液。
然后,在PET膜185上涂布上述制得的分散了TiO2微粒的SiO2溶胶,于120℃用低压水银灯(强度:15mW/cm2)照射5分钟,形成涂布了在SiO2膜186中分散了TiO2微粒187的分散了TiO2微粒的SiO2膜188的塑料薄膜。形成于PET膜185的薄膜的膜质和强度均良好,其膜厚为300nm。
对氧化钛的有机物分解活性进行评估。活性试验是在薄膜上涂布红紫系有机色素,然后在254nm以1(mW/cm2)的光强度进行照射。从初期的色素透过率的变化量可求出分解速度。图20为上述试验结果。
图中,为了进行比较,除了分散了TiO2的SiO2膜之外,还显示了无膜和SiO2膜的结果。无分散了TiO2的SiO2膜和SiO2膜的情况下,色素量几乎没有变化,有分散了TiO2的SiO2膜的情况,在30分钟后约有45%进行了分解。
这样,就能够制得涂布了分散有具备光催化剂作用的TiO2的SiO2膜的PET膜。本发明的成膜方法可在120℃左右进行,除了硼硅酸玻璃基板之外,还可用于塑料材料。由于一般的溶胶-凝胶法需要400℃左右的温度,所以很难用于塑料制品,而且,TiO2的结晶化也需10分钟以上,但利用本发明的制备方法能够在低温下成膜,所以,可使用的基材很多,在任何材料表面都可形成光催化剂薄膜。另外,成膜时间仅需数分钟这样的短时间,所以可大幅度降低产生成本。
然后,为了提高光催化剂性能,可添加辅助催化剂。即,在上述制得的SiO2溶胶中分散了TiO2微粒的溶液中添加各种硝酸盐,然后在PET膜上成膜,进行色素的分解反应,其结果如表1所示。
                              表1    添加剂的添加效果
   试样No.   添加物 添加量(wt%)  TiO2/SiO2(重量比) 10分钟后的分解率(wt%)
    1   NaNO3     5     9     70
    2   LiNO3     5     9     100
    3   Mg(NO3)2     5     9     50
    4   Ca(NO3)2     5     9     40
    5   Sr(NO3)2     5     9     30
    6   Ba(NO3)2     5     9     20
7 Al(NO3)3 5 9 0
    8   Fe(NO3)3     5     9     0
    9   Zn(NO3)4     5     9     35
    10   Zr(NO3)4     5     9     5
    11   -     -     9     25
    12   -     -     0(SiO2)     0
从表1可看出,添加了Na、Li、K、Mg、Ca、Sr、Zn的光催化剂是有效的,而Fe、Al为失活剂。
图21表示电负性和辅助催化剂的添加效果的曲线图。从图中可看出,电负性越小效果越好,特别是添加了Li、Na、Mg后很有效,可见除了电负性之外,离子半径也是相当重要的。图22表示电负性、离子半径和添加效果间的关系,从图中可看出,如果元素的电负性小于1.6、离子半径小于0.2nm,则添加其价数在2以下的离子将有效。
(实施例10)
制备几种在SiO2溶胶中分散了不同粒径的TiO2粒子的溶液。TiO2/SiO2的重量比为9,Li添加量为5wt%,与实施例1同样操作,在PET膜上形成分散了TiO2的SiO2膜,然后用有机色素检测10分钟后的分解率。
                      表2  对应于TiO2粒径的色素分解率
  试样No.  Li添加量(wt%)  TiO2/SiO2(重量比)  TiO2粒径(nm) 10分钟后的分解率(wt%)
    13     5     9     2     40
    14     5     9     5     86
    15     5     9     8     94
    16     5     9     10     100
    17     5     9     20     100
    18     5     9     30     65
表2表示所制备试样的各种条件和试验结果。从上述结果可看出,分散的TiO2粒子的粒径为8~10nm时最有效。根据粒径的不同分解速度也有所变化,如果TiO2/SiO2比变小,则TiO2粒子的最适粒径也将发生变化,其范围为5~20nm,这时的分解速度较理想。所以,添加了Li催化剂的TiO2粒子的半径为5~20nm时最好。除了Li之外,Na、K、Mg、Ca、Sr、Zn也能够获得同样的结果。
(实施例11)
表3表示Li添加量、TiO2/SiO2发生变化时色素分解率(10分钟后的分解率)和膜强度的情况。溶液的制备方法和成膜方法都与实施例1相同。从这些结果可看出,对分解率和膜强度都有效的条件是Li添加量为0.5~20wt%、TiO2/SiO2为9~5。
                表3  对应于Li添加量、TiO2/SiO2的色素分解率
    试样No.     Li添加量(wt%)     TiO2/SiO2(重量比)     10分钟后的分解率   膜强度
    19     0     9     25     ○
    20     1     9     90     ○
    21     5     9     100     ○
    22     10     9     100     ○
    23     20     9     100     ○
    24     50     9     65     ×
    25     0     8     25     ○
    26     1     8     88     ○
    27     5     8     100     ○
    28     10     8     100     ○
    29     20     8     100     ○
    30     50     8     60     ×
    31     0     6     25     ○
    32     1     6     86     ○
    33     5     6     100     ○
    34     10     6     100     ○
    35     20     6     100     ○
    36     50     6     60     ×
    37     0     4     15     ○
    38     1     4     15     ○
    39     5     4     20     ○
    40     10     4     20     ○
    41     20     4     20     ○
    42     50     4     15     ○
表4表示TiO2/SiO2和膜厚发生变化时的色素分解率和膜质的情况。溶液的制备和成膜方法与实施例1相同,膜厚以溶液中的固形成分浓度在0.5~8wt%的范围内为限进行调节。
其结果是,如果膜厚为100~500nm,则分解率和膜质不受TiO2/SiO2比的影响,情况良好。
除了Li之外,Na、K、Mg、Ca、Sr、Zn也能够获得与上述同样的结果。
             表4  对应于TiO2/SiO2比和膜厚的色素分解率
  试样No.     Li添加量(wt%)   TiO2/SiO2(重量比)    膜厚(nm) 10分钟后的分解率(wt%)   膜质
  43     10     9     50     80   良好
  44     10     9     100     92   良好
  45     10     9     300     100   良好
  46     10     9     500     100   良好
  47     10     9     600     100   不良
  48     10     8     50     60   良好
  49     10     8     100     74   良好
  50     10     8     300     100   良好
  51     10     8     500     100   良好
  52     10     8     600     100   不良
  53     10     6     50     20   良好
  54     10     6     100     35   良好
  55     10     6     300     100   良好
  56     10     6     500     100   良好
  57     10     6     600     100   良好
(实施例12)
表5表示添加了TiO2之外的氧化物半导体,如ATO、ITO、ZnO、Fe2O3、Cr2O3微粒时的色素分解率测定结果。进行测定色素分解率试验时,紫外灯(254nm)强度为0.2mW/cm2。另外,若没有特别注明,本实施例之后的色素分解试验也是在上述条件下进行的。其结果是,添加ATO、Fe2O3、Cr2O3微粒有效,对添加量没有限定,最有效的是10~20wt%。各氧化物构成元素的电子亲和力如下所示,使用了具有1.2eV以上的电子亲和力的构成元素的氧化物半导体有效。
             表5  对应于各种氧化物半导体添加量的色素分解率
    试样No.     Li添加量(wt%)     TiO2/SiO2(重量比)     氧化物添加量(wt%) 10分钟后的分解率(wt%)
    58     10     9     -     65
    59     10     9     ATO(1.0)     68
    60     10     9     ATO(5.0)     72
    61     10     9     ATO(10.0)     80
    62     10     9     ATO(20.0)     82
    63     10     9     ATO(50.0)     73
    64     10     9     ITO(1.0)     55
    65     10     9     ITO(5.0)     50
    66     10     9     ITO(10.0)     42
    67     10     9     ITO(20.0)     38
    68     10     9     ITO(50.0)     33
    69     10     9     ZnO(1.0)     62
    70     10     9     ZnO(5.0)     56
    71     10     9     ZnO(10.0)     48
    72     10     9     ZnO(20.0)     42
    73     10     9     ZnO(50.0)     35
    74     10     9     Fe2O3(1.0)     66
    75     10     9     Fe2O3(5.0)     68
    76     10     9     Fe2O3(10.0)     70
    77     10     9     Fe2O3(20.0)     71
    78     10     9     Cr2O3(50.0)     72
    79     10     9     Cr2O3(1.0)     65
    80     10     9     Cr2O3(5.0)     67
    81     10     9     Cr2O3(10.0)     69
    82     10     9     Cr2O3(20.0)     73
    83     10     9     Cr2O3(50.0)     48
构成元素   Ti    Sn    In   Zn    Fe    Cr电子亲和力(eV)  1.25    1.2     0.2    -1.2    3.16    3.54
氧化物半导体的电子亲和力小于Ti时,在微粒的粒子表面形成了肖特基势垒,这样就不能够将添加了氧化物半导体的载体注入TiO2中,使效果不能够显现。针对这种情况,在氧化物半导体的电子亲和力小于Ti时,使其不在微粒的粒子界面形成肖特基势垒,而是形成电阻性接合,这样就能够容易地将氧化物半导体的载体注入TiO2中,从而有效地发挥作用。特别有效的是ATO,其电子亲和力虽然略小于TiO2,但其作用差基本没有,能够显现性能的提高。这是因为作为导电性氧化物ATO的载体浓度较高,可将ATO大量载体注入TiO2中,从而提高了光催化剂的活性。而且,在添加上述氧化物半导体时,Li的添加效果也将增大。
此外,作为有效利用具有氧化物半导体的载体的方法,除了添加微粒之外,还可采用层叠的方法。表6表示TiO2/SiO2膜和ATO膜层叠时的试验结果。其结果证明层叠是有效的。而且,如果在上述两种膜中都添加Li,则更能够提高性能。另外,多次交替层叠也同样有效。
                        表6  ATO层叠膜的分解率
    试样No. 第1层     Li添加量(wt%)  第2层   Li添加量(wt%)  20分钟后的分解率(wt%)
    84 TiO2/SiO2=9     0  ATO     0     45
    85 TiO2/SiO2=9     5  ATO     5     70
    86 TiO2/SiO2=9     10  ATO     5     75
    87 TiO2/SiO2=9     20  ATO     5     73
(实施例13)
制备在SiO2溶胶中分散了粒径为5nm的TiO2微粒的溶液,然后对应于TiO2,分别在其中添加2wt%的Ag、Pt、Pd、Rh、Ni、Cu、RuO2微粒。TiO2/SiO2的重量比为9。使用上述制备的添加了Ag、RuO2微粒的分散了TiO2的SiO2溶胶,与实施例1同样操作,在PET膜上形成添加了Ag、Pt、Pd、Rh、Ni、Cu、RuO2微粒的分散了TiO2的SiO2膜,测定有机色素的分解特性。其结果如表7所示,通过添加Ag、Pt、Pd、Rh、Ni、Cu、RuO2微粒,分解速度有很大提高。
               表7  对应于添加贵金属的色素分解率
    试样No.     Li添加量(wt%)     TiO2/SiO2(重量比)  贵金属的添加量(wt%) 20分钟后的分解率(wt%)
    88     10     9     Pt(0.5)     74
    89     10     9     Rh(0.5)     72
    90     10     9     Pd(0.5)     75
    91     10     9     Ag(0.5)     78
    92     10     9     Cu(0.5)     76
    93     10     9     Ni(0.5)     68
    94     10     9     Ru(0.5)     75
    95     10     9     -(0)     65
(实施例14)
用荧光灯、太阳光、白炽灯、水银灯进行照射,比较实施例1制备的添加了Li的光催化剂和未添加Li的光催化剂对香烟烟雾、乙醛、尿素和大肠菌的分解效果。其结果如表8所示,添加了Li的光催化剂不论使用哪一种照明工具,对香烟烟雾、乙醛、尿素和大肠菌的分解效果都是未添加Li的光催化剂的3~5倍。添加了Li的催化剂不仅在紫外灯照射下,即使用日常生活环境中的灯具进行照射,也能够获得充分的效果。另外,除了Li之外,添加Na、K、Mg、Ca、Sr、Zn也能够获得同样的效果。
                          表8
           各种灯具对有机物进行分解的试验结果
        (添加了10wt%Li时/未添加Li时的分解率比)
 香烟烟雾   乙醛   尿素   大肠菌 色素(AcId Red)
荧光灯     3     3     3     3     3
太阳光     5     5     5     5     5
黑光灯     5     5     5     5     5
白炽灯     3     3     3     3     3
水银灯     4     4     4     4     4
(实施例15)
如果在PET膜上直接形成实施例1制备的添加了Li的分散有TiO2的SiO2膜,则光催化剂作用会对作为基材的PET膜造成影响。所以,在涂布实施例9制备的添加了Li的分散有TiO2的SiO2膜时,在其与PET膜之间额外设置了1层SiO2膜。另外,制备在SiO2膜中添加了可使光催化剂失活的成分,如Al、Fe、Zr的硝酸盐的试样或在添加了Li的分散有TiO2的SiO2膜中添加了ATO的试样,进行各种试验。其结果如表9所示。
                                      表9
                   SiO2层叠膜的色素分解试验和耐久性试验结果
                          (TiO2/SiO2=9,Li(wt%)=10)
  试样No.   ATO(wt%)     SiO2(wt%)     添加元素(wt%)  20分钟后的分解率(wt%)      10天后剥落情况(用胶带进行试验的结果)   尘埃附着
  96     0     无     无     65     有(×)   有
  97     20     无     无     82     有(×)   无
  98     0     有     无     65     无(×)   有
  99     0     有     Al(5)     65     无(○)   有
  100     0     有     Fe(5)     66     无(○)   有
  101     0     有     Zr(5)     65     无(○)   有
  102     20     有     Al(5)     83     无(○)   无
  103     20     有     Fe(5)     82     无(○)   无
  104     20     有     Fe(5)     82     无(○)   无
试验结果是,如果在添加了Li分散有TiO2的SiO2膜和PET膜之间设置1层作为隔层的SiO2膜,即使长期使用也能够防止膜的剥落。而且,Al、Fe、Zr的添加可使光催化剂完全失去活性,这样就能够有效保持粘合强度。另外,添加了ATO的膜可增加防带电作用,能够抑制尘埃等的吸附,这样不仅能够分解有机物,还可防止无机物的附着,从而制得防污效果更好的薄膜。
将按照前述实施例9~16所示配比形成的低温固化型高活性氧化物光催化剂薄膜应用于实施例1~8所示的具备利用电动机产生空气流装置的各种物品中,其具体效果的评估结果汇总如下。首先,对本发明的低温固化型高活性氧化物光催化剂薄膜用于设置在空气通道中的过滤装置时的效果进行总结。
室内空气中具有代表性的污染物为香烟烟雾。香烟烟雾是浮游着的焦油类物质和油烟微粒,这些微粒在过滤器上成膜并蓄积,过滤器被慢慢污染着色成茶色。下面对香烟烟雾造成的污染进行评估。在送风量为5(m3/分)的换气扇吸入口侧的前面贴上面积为10cm×10cm的聚酯纤维非织造布薄膜,并固定。将该贴上了非织造布的换气扇放置在容量为45,000(cm3)的容器中密封。同时还在该容器中放置香烟烟雾发生装置。该香烟烟雾发生装置中,将管子安装在点燃香烟的过滤器侧,使该管与隔膜泵相连。以1,800(cm3/秒)的风量驱动隔膜泵,如果香烟侧管口的压力降低,则经过过滤器的香烟烟雾将从泵的出口排出。用约1.5分钟时间点燃1根香烟。如果使上述构成的容器中的烟雾发生装置和换气扇运转,由于换气扇排出的气体也被排入上述同一容器中,所以,充满容器内的香烟烟雾将会多次穿过非织造布过滤器部分。连续点燃5根香烟,使换气扇工作10分钟后,打开容器,取出非织造布作为试样。该非织造布过滤器的纤维表面形成了本发明的低温固化型高活性氧化物光催化剂薄膜。制作方法如实施例9所述。实施例9中以PET膜为对象,而本实施例是在SiO2溶胶中分散了TiO2微粒的溶液中添加硝酸锂,然后将在臭氧氛围中进行过表面氧化处理的非织造布过滤器浸在其中,1分钟后取出该过滤器,通过吹气使不需要的溶液挥散后,于120℃用低压水银灯(强度:15mW/cm2)照射5分钟,使膜固化,在纤维表面形成光催化剂薄膜。该膜的组成为表1中的试样No.2。
用荧光灯的光照射上述制得的试样,评估吸附的污染物的分解度,用色差计(日本电色工业株式会社:Z-1001DP)评估非织造布过滤器的颜色变化。将光照前污染状态的色差作为100%,未吸附污染物前的色差作为0%,对香烟烟雾所造成的污染的防污效果进行评估。作为比较,将在SiO2中只分散了TiO2微粒的膜作为试样No.11,不含TiO2微粒只含有SiO2的膜作为试样No.12,同样在过滤器纤维表面形成薄膜进行评估。
其结果如图23和24所示。图23是在相同条件下,进行烟雾的过滤器通过试验时,根据经时色差对过滤器的污染程度进行评估的结果。与没有进行过处理的聚丙烯腈纤维相比,附着了含有TiO2和SiO2成分的玻璃质氧化物光催化剂薄膜情况下,约50%很快变色,即,使烟雾的捕集效率提高了约50%。图24是用荧光灯的光对在上述条件下吸附烟雾而转变为茶色的过滤器进行照射,利用光催化剂使附着物分解,通过色差的经时测定评估已变色的过滤器再度转变回原来颜色的程度。图中的累积光量用波长为250~350nm的光照射时的累积值表示。图中的试样No.12为不含TiO2只含SiO2的膜,几乎没有分解脱色效果。试样No.11和试样No.2中含有等量的TiO2,虽然都有效果,但试样No.2为添加了LiNO3的本发明的配方,其脱色速度得到大幅度改善。特别是在初期,其分解效率在没有添加LiNO3的膜的2倍以上。实际用于空气净化器或换气扇等时,由于在附着了少量污染的同时受到室内光线的照射,所以,初期的分解速度很重要。随着污染物附着量的增多,光线被污染物遮住,不能够达到纤维薄膜的光催化剂薄膜,所以分解效率降低。因此,在污染物蓄积较厚前就将其分解是十分重要的。
为了在实际生活环境中,使过滤器附着上与使用了上述装置的本试验同样水平的污染量,在密闭的6席(约20m2)中使用上述换气扇,然后点燃20根香烟,换气扇工作120分钟后的污染量即与本试验相同。
以下是将本发明的低温固化型高活性氧化物光催化剂薄膜用于设置在空气通道中的过滤装置时的除臭效果的评估结果。对除去作为具有代表性的恶臭物质的氨气的效果进行评估。以与上述香烟烟雾同样的构成进行研究,但在容器内导入一定量的氨气来代替香烟烟雾发生装置,将容器内的氨气浓度调整为25(ppm)后,使装有形成了低温固化型高活性氧化物光催化剂薄膜的非织造布的换气扇启动。首先,测定与烟雾捕集相同的玻璃质氧化物光催化剂薄膜在初期对氨气的吸附效果,其结果如图25所示。使用没有经过处理的聚丙烯腈纤维时,1小时后仍有90(%)以上的氨气残留,而使用含有TiO2和SiO2的玻璃质氧化物光催化剂薄膜时,1小时后氨气被吸附除去50(%)以上,这就证明该光催化剂薄膜不仅能够捕集烟雾,还能够吸附氨气。
在饱和吸附了氨气后,打开设置在容器内部的白炽灯泡,使光照射到过滤器表面。经时测定容器内的氨气浓度,评估氨气的分解效果。其结果如图26所示。
使用不含TiO2的试样No.12的过滤器时,浓度几乎没有变化。而使用含有TiO2的试样No.2时,随着光的照射,氨气浓度有所下降,这说明它已被分解。No.2是本发明的混合了LiNO3的配方,使分解效率有了很大改善,与试样No.11相比,其分解效率约为3倍。
以空气净化器和换气扇应用实例为代表对上述防污、除臭效果进行了说明,当然在具有同样构造的其他各种物品的过滤器上也能够发挥出同样的效果。
接着,对用于实施例1~8所示的各种物品的外部部件时的具体效果进行评估,结果总结如下。作为试样,最好是使用用于外部部件的注入成型用热塑性ABS塑料(テクノポリマ-株式会社:タフレックス 451,白色着色品)。制作5cm×5cm的板状成型品,对其表面进行电晕放电处理。在该经过电晕放电处理的表面形成实施例12的表6所示的试样No.86组成的低温固化型高活性氧化物光催化剂薄膜。为了进行比较,同样在成型板表面形成在表1的SiO2中只分散了TiO2微粒的试样No.11的薄膜和不含TiO2微粒只含SiO2的试样No.12的薄膜,进行评估。首先,与前述同样对初期的香烟烟雾污染进行评估。以与前述非织造布过滤器试验相同的构成进行探讨。在设置了过滤器部分的中央固定5cm×5cm的ABS板,点燃10根香烟后,使换气扇工作120分钟,白色的ABS被污染成茶色。取出该ABS板,用与前述同样的各种条件的光对其进行照射,根据前后的色差测定评估除去率。其结果如图27所示。
其结果是,获得了与过滤器几乎相同的结果,但由于附着的污垢本身少于使用过滤器的情况,所以,用一半的光量就能够获得相同程度的脱色效果。此外,试样No.86中除了LiNO3之外,还配合添加了ATO组分,与试样No.11相比,能够获得更理想的分解效率。
以下是对厨房等油烟较多的环境中使用的物品上因油脂而造成的污染的防污效果进行评估的结果。在形成了实施例12的表6所示试样No.86的低温固化型高活性氧化物光催化剂薄膜的5cm×5cm玻璃板上涂布厚度约为5(μm)的色拉油薄层,用紫外灯光照射,测定油重量的经时变化,其结果如图28所示。其结果是,不含TiO2的试样No.12几乎没有重量的变化。而含有TiO2的试样No.11和No.2随着光照射,油脂被分解挥散,所以重量有所降低,但No.2由于使用了本发明的混合了LiNO3的配方,所以其分解效率得到了大幅度改善,与试样No.11相比,其分解效率约为2倍。
包括以上一系列实施例在内,在形成本发明的低温固化型高活性氧化物光催化剂薄膜时,为了提高薄膜与底层材料的粘合性,可使用各种方法。作为使用底涂料的方法,可预先涂布各种偶合剂,然后再形成光催化剂薄膜。
以下是硅烷偶合剂和有机钛类化合物的例子。
硅烷偶合剂包括乙烯基三(β甲氧基乙氧基)硅烷、乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、γ-(甲基丙烯酰氧丙基)三甲氧基硅烷、β(3,4环氧基环己基)乙基三甲氧基硅烷、γ-环氧丙氧基丙基三甲氧基硅烷、γ-环氧丙氧基丙基甲基二乙氧基硅烷、N-β(氨基乙基)γ-氨基丙基三甲氧基硅烷、正β(氨基乙基)γ-氨基丙基甲基二甲氧基硅烷、γ-氨基丙基三乙氧基硅烷、N-苯基-γ-氨基丙基三甲氧基硅烷、γ-巯基丙基三甲氧基硅烷等。
有机钛类化合物可使用钛酯、钛酰化物、钛螯合物,特别有效的是四异丙氧基钛、四正丁氧基钛、四(2-乙基己氧基)钛、二异丙氧基·双(乙酰基丙酮)钛、异丙氧基钛酸辛二醇酯、硬脂酸钛等。
另外,采用各种表面改性手段,对对象物表面进行氧化处理,导入羟基、羰基、羧基等基团,使本发明的低温固化型高活性氧化物光催化剂薄膜可牢固结合的方法也同样有效。
具体来讲有紫外线照射、电子射线照射、电晕放电处理、在臭氧氛围中进行处理等方法。在使用聚酰胺树脂和聚酯树脂等亲水性树脂时,不进行上述前处理,就能够获得较理想的粘合力,而对于聚烯烃类树脂和高结晶性树脂来讲,进行上述前处理是有效的。
本发明中,作为提高光催化剂活性的添加成分,如前所述,将Ag和Cu两者混合是有效的。这样不仅能够降低膜自身的电绝缘性,防止带电,还能够获得抑制微生物繁殖的效果。众所周知,Ag和Cu离子的抗菌性,特别是对细菌的抵抗性较强,Ag和Cu并用时,即使不被光照射,也能够抑制微生物的繁殖。
本发明的使用对象范围不仅限于上述具体例子所说明的装置。即,本发明的原理是利用紫外线等特定波长的电磁波的照射促进无机聚合物的高分子化,其结果是,即使在塑料等耐热性较差的基材表面也能够形成以TiO2为主成分的光催化剂无机质薄膜;通过添加各种成分使以TiO2为主成分的光催化剂的反应活性提高数倍,使大量使用的热塑性塑料,热固性塑料或塑料材料的涂膜表面具备光催化剂作用。活用该原理,在以往不能够使用的耐热性较差的材料表面以弱于以往的光线强度使有机物分解。另外,通过添加可使膜自身表面电阻减小的半导体或导体微粒,能够获得防止涂膜表面带电的效果,使因静电而吸附的污垢减少。
本发明中,照射在形成了光催化剂薄膜的部件表面的光有荧光灯、白炽灯泡、水银灯的光线和太阳光等,这些光不一定都要直射。即,只要照射的光线可透过由透明材料,如透明塑料或玻璃制成的部件就有效。举例来讲,图1~图3的空气净化器中的模板2、框架4、前盖16、模板18;图4的换气扇中的框架29;图6和图7的吸尘器中的上盖52、中盖53、格栅盖54、吸入口部分65、排气通风部分76;图8的衣物烘干机中的开关盖子86、布制过滤器装置99;图9~图11的餐具烘干机中的门121、排气口128、吸气口117;图12~图14的洗碗机中的门137、排气口152;图15和图16的厨房垃圾处理机中的内盖71、吸气口174、排气口175等部件上都有空气过滤材料,配置在其周围的部件为热塑性塑料成型体,由于这些部件是透明的,所以光线能够射到其内部,使内部的污垢分解、除臭及灭菌。
透明的塑料中最理想的是PMMA、AS、PC、ABS、PVC、聚4-甲基戊烯-1(TPX)等。
另外,也可用颜料和染料混合对上述透明塑料材料进行着色。但是在着色时,由于黄色、红色或绿色会吸收短波长光,降低了分解效果,所以不太好。着色时较好的是蓝色系或黑色系(烟灰色系)。
本发明者们经过认真探讨,明确了透明部件的颜色和光催化剂分解效率之间的关系。以下所讨论的透明部件的颜色按照JIS-Z-8730所示的Hunter,Lab法定义。即,用L值表示无色彩的黑白两色程度(明亮度);a值表示红色和绿色程度;b值表示蓝色和黄色程度。
L值越大越好。对于色彩来讲,黄色系透明部件与其他颜色相比,会大量吸收对光催化剂的分解反应有用的短波长光,使文科值效率降低。即,Lab法中b值越小越好,而a值最好在一定范围内。
对上述颜色和分解效率的关系进行评估的结果如图29所示。使用以PMMA树脂为底涂料,由各种染料着色的彩涂板,在与图24的试验同样的条件下,点燃5根香烟,对附着在过滤器上的香烟烟雾的脱色分解率进行测定。所用的光催化剂材料为表1中的试样No.2,PMMA树脂为三菱粘胶株式会社生产的アクリペットMD,彩涂板的厚度为2.0(mm)。这种树脂是添加了紫外线吸收剂的树脂,可吸收360(nm)附近的紫外线。图29中的分解率是根据在2(m)的距离下,用40瓦的荧光灯对受污染的过滤器照射20小时后的色差变化算出的脱色率。将作为试样的各色彩涂板放置在受污染的过滤器上,使荧光灯透过照射后,根据脱色程度算出分解率。在标准的实际的吸烟环境中,用本条件试验若可获得40(%)以上的分解率,则能够抑制烟雾等污染的蓄积而连续使用。
试验结果是,在L值为+50以上、a值在-20~+20的范围内、b值为+20以下的条件下,可获得40(%)以上的分解率。
本试验按照JIS-Z-8730(色差表示法)进行,所用的测定仪器是以JIS-Z-8722为基准的日本电色工业株式会社制造的Z1001DP。测定试样是2.0(mm)厚板的透过光。
将具有上述作用的部件设置在各种装置的空气流通部位,由于能够有效分解附着的有机物,所以,能够方便地应用于任何具有可使空气流通或可过滤空气流结构的装置。
例如,可用于取暖装置,如石油加热器、气体加热器或电加热器及暖炉等。同样也可用于空气调节器、除湿机或冷气扇。此外,还可用于加热式或超声波式加湿机。也适用于炉子或电磁灶等加热烹饪装置以及电吹风。还能用于具备冷却风扇的装置。即,个人电脑、文字处理机等各种计算机,布劳恩管等计算机的显示器或复印机、激光打印机等使用了电子照相术的装置。在液晶放映机或幻灯投影仪等装置附带的冷却风扇部分、使用了上述冷却风扇的冷却风通道的吸气口和排气口部分、安装在上述吸排气口部分的过滤器部分上都可设置与本发明同样的低温固化型高活性氧化物光催化剂薄膜,能获得同样的效果。
(实施例16)
附有表10所示组成的光催化剂的过滤器,即,附有添加了ATO或RuO2-ATO的TiO2光催化剂的过滤器的制作工序如下。
ATO溶液的制备方法如下。将SnCl4溶于丙醇中,调制成10wt%的SnO2溶液。另外,将异丙氧基锑溶于丙醇中,调制成4wt%Sb2O5溶液。接着将这两种溶液当量混合后,对应于SnO2,以1∶1的摩尔比添加2-氨基乙醇,再对应于SnO2添加4倍摩尔的水,调制成5wt%ATO溶液。然后,在上述ATO溶液中溶解乙酰乙酸钌,制得0.05wt%RuO2-5wt%ATO溶液。
接着,对添加了ATO及RuO2-ATO的TiO2粉末的制作方法进行说明。不论是添加了ATO还是添加了RuO2-ATO的情况,都是将TiO2粉末加入上述制得的溶液中,于60℃搅拌2小时后,于250℃在蒸发皿中进行干燥,制得粉末,然后,在550℃处理3小时,制得ATO及RuO2-ATO的添加量不同的TiO2粉末。
下面对添加了ATO及添加了RuO2-ATO的TiO2光催化剂涂液的制备工序,以及添加了ATO及添加了RuO2-ATO的TiO2光催化剂过滤器的制作工序进行说明。
不论是制备添加了ATO还是添加了RuO2-ATO的TiO2光催化剂涂液,都是在4wt%的SiO2溶胶中添加规定量的上述制得的粉末,然后用氧化锆小球研磨20小时,制得涂液。将聚丙烯腈纤维构成的过滤器浸在上述涂液中,对其吹气后,除去残留的涂液,于120℃处理5分钟,制得附有光催化剂的过滤器。各光催化剂组成如表10所示。
本发明的成膜方法可在120℃左右进行,可应用于硼硅酸玻璃基板之外的塑料材料。由于一般的溶胶-凝胶法需要400℃左右的温度,所以,很难用于塑料制品,而且,TiO2的结晶化也需要10分钟以上的时间。但本发明的制作方法可在低温下成膜,所以,能够使用的基材很多,在任何表面都可形成光催化剂薄膜。而且,处理时间很短,只需几分钟,这样就可大幅度降低生产成本。
光催化剂过滤器可用于空气净化器等,能够除去存在于空气中的恶臭成分、细菌或香烟烟雾等。特别是一般的过滤器在吸附剂的吸附除去达到饱和后会失去作用而必需更换,相对与此,附有光催化剂的过滤器所吸附的恶臭成分、细菌或香烟烟雾等则是通过光催化剂作用除去的,所以,过滤器的更换次数可以减少。
在充满香烟烟雾的房间里,使附有表10所示组成的光催化剂过滤器的空气净化器启动,过滤器因吸附了香烟烟雾而变色。取出变色的过滤器,用荧光灯照射,测定颜色的变化,对吸附的香烟烟雾的分解性进行检测。另外,利用色彩计,从测出的变色量算出分解率。
荧光灯照射5小时后的分解率如表10所示。添加了ATO的催化剂的分解率大于未添加ATO的催化剂。另外,添加RuO2-ATO后分解率进一步提高。这证明添加RuO2、ATO是有效的。
添加了ATO的光催化剂中,ATO与TiO2接触,TiO2光催化剂利用ATO的电子可使光催化剂的性能有所提高。
氧化物半导体的电子亲和力小于Ti时,在微粒的粒子表面形成了肖特基势垒,这样就不能够将添加了氧化物半导体的载体注入TiO2中,使效果不能够显现。针对这种情况,在氧化物半导体的电子亲和力小于Ti时,不使其在微粒的粒子界面形成肖特基势垒,而是形成电阻性接合,这样就能够容易地将氧化物半导体的载体注入TiO2中,从而有效地发挥作用。特别是ATO的电子亲和力虽略小于Ti,由于它们的差很不明显,所以能够显现性能的提高。这是因为作为导电性氧化物ATO的载体浓度较高,可将大量ATO载体注入TiO2中,从而提高了光催化剂的活性。另外,近年ATO作为导电性氧化物正倍受瞩目,其超微粒(粒径在200埃以下,特别好的在20~100埃的范围内)在市场上有售。在TiO2光催化剂中添加超微粒ATO,能够更简便地制备添加了ATO的TiO2光催化剂。但是,使用上述超微粒ATO,制作附有添加了5wt%ATO的TiO2光催化剂的过滤器,进行同样的试验时,5小时后的分解率为35%,比本发明的光催化剂的42%小。超微粒ATO的添加虽然也使ATO粒子与TiO2微粒接触,但SiO2中仍然存在粒子,这是无效的。另一方面,本发明的制备方法中,由于微粒中预先添加了ATO溶液进行烧成,所以,ATO和TiO2粒子的接触面积较大,利用烧成可使接合状态良好的异种半导体间的电子转移变得顺利。此外,由于p型半导体RuO2能够吸引n型半导体TiO2、ATO吸光而生成的电子和孔穴中的孔穴,所以抑制了电子和孔穴的再结合。因此,吸光而产生的电子和孔穴能够有效地用于催化剂反应,使分解率进一步提高。从上述效果可看出,本发明使光催化剂的分解性能有了进一步提高。
(实施例17)
除了添加ATO之外,还可添加其他添加剂来进一步地提高光催化剂的性能。
在实施例16制备的光催化剂中再添加Li、Na、Mg的催化剂的组成及其对香烟烟雾的分解试验结果如表11所示。其结果是,添加Li、Na、Mg中的任何一种都可使分解率有所提高,能够制得性能更好的过滤器。由于Li、Na、Mg的离子半径与Ti的离子半径相近,所以,容易进入TiO2表面的Ti缺陷,从而增加结晶的稳定性。此外,由于Li、Na、Mg的离子性较强,所以容易吸引电子,使吸光而产生的电子和孔穴分离,这样就能够提高反应效率。
(实施例18)
用荧光灯、太阳光、白炽灯、水银灯对实施例16制得的添加了Li的光催化剂和未添加Li的光催化剂进行照射,比较其对乙醛、尿素、氨、大肠菌的分解效果。其结果是,不论使用上述哪种光线,添加了Li-RuO2-ATO的光催化剂对乙醛、尿素、氨、大肠菌的分解效果都是未添加催化剂的3~5倍。这就证明添加了Li-RuO2-ATO的光催化剂利用日常生活环境中的光线就可获得充分效果。另外,除了Li之外,添加Na、Mg的光催化剂也能够获得同样的效果。
如上所述,利用简便的方法,就可在较低温度下成膜,并在任何材料表面形成光催化剂,提供了在日常生活环境中有效的高活性光催化剂,由于它是一种抗菌、防污效果良好的材料,所以能够减少使用了该光催化剂的各种产品部件的更换和清洁次数。
                                       表10
 SiO2(wt%)  TiO2(wt%)  ATO(wt%)   RuO2(wt%) 5小时后的分解率(%)
    10     90     0     30
    10     88     2     36
    10     85     5     42
    10     80     10     38
    10     70     20     31
    10     87.98     2     0.02     48
    10     84.95     5     0.05     49
    10     79.9     10     0.1     43
    10     69.8     20     0.2     38
    10     37.5     50     0.5     28
                                     表11
  SiO2(wt%)   TiO2(wt%)   ATO(wt%)  RuO2(wt%)   Li(NO3)2(wt%)  Na(NO3)2(wt%)  Mg(NO3)2(wt%)   5小时后的分解率(%)
    10     85     0     5     35
    10     83     2     5     42
    10     80     5     5     53
    10     75     10     5     52
    10     65     20     5     36
    10     84     0     1     5     42
    10     82     2     1     5     56
    10     79     5     1     5     59
    10     74     10     1     5     58
    10     64     20     1     5     46
    10     34     50     1     5     34
    10     85     0     5     33
    10     83     2     5     40
    10     80     5     5     51
    10     75     10     5     49
    10     65     20     5     34
    10     84     0     1     5     40
    10     82     2     1     5     52
    10     79     5     1     5     56
    10     74     10     1     5     57
    10     64     20     1     5     48
    10     34     50     1     5     38
    10     85     0     5     32
    10     83     2     5     40
    10     80     5     5     50
    10     75     10     5     50
    10     65     20     5     33
    10     84     0     1     5     39
    10     82     2     1     5     48
    10     79     5     1     5     47
    10     74     10     1     5     47
    10     64     20     1     5     42
    10     34     50     1     5     39
(实施例19)
表12所示的附有添加了RSO的TiO2光催化剂的过滤器的制作工序如下。
RSO溶液的制备方法如下。将乙酰乙酸钌溶于丙醇中,调制成2mol%的RuO2溶液。另外,将Sr(NO3)2溶于丙醇中,调制成2mol%SrO溶液。然后,将这两种溶液当量混合,对应于RuO2,以1∶1的摩尔比添加2-氨基乙醇,再对应于RuO2添加4倍摩尔的水,调制成1mol%RSO溶液。
以下是制备添加了RSO的TiO2粉末的方法。将上述制得的溶液在60℃搅拌2小时后,于250℃,用蒸发皿干燥,获得粉末,然后于850℃处理5小时,制得RSO粉末。
以下是制备添加RSO的TiO2光催化剂涂液和添加了RSO的TiO2光催化剂过滤器的制作方法。
制备添加了RSO的TiO2光催化剂涂液的方法是在4wt%的SiO2溶胶中添加规定量的上述制得的RSO粉末或TiO2粉末(锐钛矿型),然后用氧化锆小球研磨20小时,制得涂液,将聚丙烯腈纤维构成的过滤器浸在上述涂液中,对其吹气后,除去残留的涂液,于120℃处理5分钟,制得附有光催化剂的过滤器。各光催化剂组成如表12所示。
本发明的成膜方法可在120℃左右进行,可应用于硼硅酸玻璃基板之外的塑料材料。由于一般的溶胶-凝胶法需要400℃左右的温度,所以,很难用于塑料制品,而且,TiO2的结晶化也需要10分钟以上的时间。但本发明的制作方法可在低温下成膜,所以,能够使用的基材很多,在任何表面都可形成光催化剂薄膜。而且,处理时间很短,只需几分钟,这样就可大幅度降低生产成本。
光催化剂过滤器可用于空气净化器等,能够除去存在于空气中的恶臭成分、细菌或香烟烟雾等。特别是一般的过滤器在吸附剂的吸附除去达到饱和时会失去作用而需要更换,但附有光催化剂的过滤器所吸附的恶臭成分、细菌或香烟烟雾等是通过光催化剂作用除去的,所以,可以减少过滤器的更换次数。
在充满香烟烟雾的房间里,使附有表12所示组成的光催化剂过滤器的空气净化器启动,过滤器因吸附了香烟烟雾而变色。取出变色的过滤器,用荧光灯照射,测定颜色的变化,对吸附的香烟烟雾的分解性进行检测。另外,利用色彩计,从测出的变色量算出分解率。
荧光灯照射5小时后的分解率如表12所示。添加了RSO的催化剂的分解率大于未添加RSO的催化剂。这证明添加RSO是有效的。
添加了RSO的光催化剂中,RSO与TiO2接触,TiO2光催化剂利用RSO的孔穴,使光催化剂的性能有所提高。光催化剂的氧化活性引起了因吸光而产生的电子和孔穴的氧化还原反应。特别是生成的孔穴产生了OH自由基,具有强氧化作用。RSO为p型半导体,带有大量孔穴。通过RSO与TiO2接触,将孔穴注入TiO2中,使TiO2表面的有机物等氧化,从而提高了光催化剂的活性。
除了添加RSO之外,其他添加剂也能够提高光催化剂的性能。
在实施例19制备的光催化剂中再添加Li、Na、Mg的催化剂的组成及其对香烟烟雾的分解试验结果如表13所示。其结果是,添加Li、Na、Mg中的任何一种都可使分解率有所提高,能够制得性能更好的过滤器。由于Li、Na、Mg的离子半径与Ti相近,所以,容易进入TiO2表面的Ti缺陷,从而增加结晶的稳定性。此外,由于Li、Na、Mg的离子性较强,所以容易吸引电子,使吸光而产生的电子和孔穴分离,这样就能够提高反应效率。
                              表12
SiO2(wt%) TiO2(wt%) RSO(wt%) 5小时后的分解率(%)
    10     90     0     30
    10     88     2     38
    10     85     5     48
    10     80     10     46
    10     70     20     35
    10     40     50     27
                                表13
   SiO2(wt%)     TiO2(wt%)     RSO(wt%)     Li(NO3)2(wt%)  Na(NO3)2(wt%)  Mg(NO3)2(wt%) 5小时后的分解率(%)
    10     85     0     5     40
    10     83     2     5     46
    10     80     5     5     58
    10     75     10     5     57
    10     65     20     5     41
    10     85     0     5     38
    10     83     2     5     44
    10     80     5     5     56
    10     75     10     5     55
    10     65     20     5     42
    10     85     0     5     38
    10     83     2     5     43
    10     80     5     5     56
    10     75     10     5     54
    10     65     20     5     5     39
(实施例20)
用荧光灯、太阳光、白炽灯、水银灯对实施例19制得的添加了Li的光催化剂和未添加Li的光催化剂进行照射,比较其对乙醛、尿素、氨、大肠菌的分解效果。其结果是,不论使用上述哪种光线,添加了Li-RuO2-RSO的光催化剂对乙醛、尿素、氨、大肠菌的分解效果都是未添加催化剂的3~5倍。这就证明添加了Li-RuO2-RSO的光催化剂利用日常生活环境中的光线就可获得充分效果。另外,除了Li之外,添加Na、Mg的光催化剂也能够获得同样的效果。
(实施例21)
实施例19的在TiO2粉末中混合入RSO粉末的方法中,虽然TiO2微粒与RSO粒子接触,但也有粒子存在于作为粘合剂使用的SiO2中,这是无效的。此外,如果预先在TiO2微粒中添加RSO溶液而进行烧成,则RSO和TiO2粒子的接触面积就有所增加,通过烧成可使接合状态良好的异种半导体间的电子转移变得顺利。但是,制备RSO需要700~850℃这样的温度,如果低于上述温度,RSO就不能够结晶化,这样就不具备p型半导体的作用。温度为600℃以上时,TiO2的结晶为金红石型,而充分显现光催化剂作用时则为锐钛矿型,为金红石型时的光催化剂作用很差。所以,如果在添加RSO后对TiO2进行高温处理,虽然使RSO转变为p型半导体,但TiO2却进行相转移变为金红石型,这样就失去了光催化剂的作用。因此,一般使用与TiO2光催化剂具备同样作用的STO(SrTiO3),这样添加了RSO的STO光催化剂才有效。STO和TiO2具有几乎相同的频带(波段)。另外,该制备方法需要进行700~850℃的高温处理,使其结晶化,RSO和STO的结晶都为钙钛矿型,其晶格常数与Sr-O通用,几乎相同。因此,制备条件也与RSO非常接近,接合状态也良好。以下是添加了RSO的STO粉末的制备方法。
首先制备STO粉末。将钛酸异丙氧基酯溶于丙醇中,调制成2mol%的TiO2溶液。然后,对应于TiO2,以1∶1的摩尔比先后添加Sr(NO3)2和2-氨基乙醇,再添加4倍摩尔的水,调制成1mol%STO溶液。
将上述制得的溶液在60℃搅拌2小时后,于250℃,用蒸发皿干燥,获得粉末,然后于850℃处理5小时,制得STO粉末。
以下是制备添加了RSO的STO粉末的方法。
在实施例19制得的RSO溶液中添加规定量的STO粉末,在60℃搅拌2小时后,于250℃,用蒸发皿干燥,获得粉末,然后于850℃处理5小时,制得添加了RSO的STO粉末。
以下是制备添加RSO的STO光催化剂涂液和添加了RSO的STO光催化剂过滤器的制作方法。
制备添加了RSO的STO光催化剂涂液的方法是在4wt%的SiO2溶胶中添加规定量的上述制得的添加了RSO的STO粉末,然后用氧化锆小球研磨20小时,制得涂液。将聚丙烯腈纤维构成的过滤器浸在上述涂液中,对其吹气后,除去残留的涂液,于120℃处理5分钟,制得附有光催化剂的过滤器。由于上述添加了RSO的STO光催化剂由高温下烧结成粒的STO粉末构成,所以,与一些TiO2系光催化剂相比,虽然与聚丙烯腈纤维的粘合性较差,但外观较好。各光催化剂组成如表14所示。
在充满香烟烟雾的房间里,使附有表14所示组成的光催化剂过滤器的空气净化器启动,过滤器因吸附了香烟烟雾而变色。取出变色的过滤器,用荧光灯照射,测定颜色的变化,对吸附的香烟烟雾的分解性进行检测。另外,利用色彩计,从测出的变色量算出分解率。
荧光灯照射5小时后的分解率如表14所示。添加了RSO的STO催化剂的分解率大于添加了RSO的TiO2催化剂。这证明添加了RSO的STO是有效的。
除了添加RSO之外,其他添加剂也能够提高光催化剂的性能。
在添加了RSO的STO光催化剂中再添加Li、Na、Mg的催化剂的组成及其对香烟烟雾的分解试验结果如表14所示。其结果是,添加Li、Na、Mg中的任何一种都可使分解率有所提高,能够制得性能更好的过滤器。由于Li、Na、Mg的离子半径与Ti相近,所以,容易进入STO表面的Ti缺陷,从而增加结晶的稳定性。此外,由于Li、Na、Mg的离子性较强,所以容易吸引电子,使吸光而产生的电子和孔穴分离,这样就能够提高反应效率。
如前所述,添加了RSO的STO光催化剂过滤器的粘合性较差,将其与粘合性良好的TiO2光催化剂混合,然后涂布在聚丙烯腈纤维上,制得光催化剂过滤器。其组成和对烟雾的分解性如表15所示。其结果是,能够获得良好的粘合性,对烟雾的分解性也较好,能够制得高性能光催化剂。
如上所述,由于作为p型半导体的RSO能够在STO中注入孔穴,或吸引STO吸光而生成的电子和孔穴中的孔穴,所以,抑制了电子和孔穴的再结合。因此,吸光而产生的电子和孔穴能够有效地用于催化剂反应,使分解率进一步提高。从上述效果可看出,本发明使光催化剂的分解性能有了进一步提高。
如上所述,利用简便的方法,就可在较低温度下成膜,在任何材料表面形成光催化剂,提供了在日常生活环境中有效的高活性光催化剂,由于它是一种抗菌、防污效果良好的材料,所以,能够减少使用了该光催化剂的各种产品部件的更换和清洁次数。
                                    表14
   SiO2(wt%)    TiO2(wt%)     RSO(wt%)   Li(NO3)2(wt%)  Na(NO3)2(wt%)  Mg(NO3)2(wt%)   5小时后的分解率(%)
    10     85     0     5     43
    10     80     5     5     58
    10     75     10     5     68
    10     65     20     5     66
    10     35     50     5     45
    10     85     0     5     40
    10     80     5     5     56
    10     75     10     5     65
    10     65     20     5     63
    10     35     50     5     42
    10     85     0     5     40
    10     80     5     5     56
    10     75     10     5     64
10 65 20 5 62
    10     35     50     5     41
                                   表15
   SiO2(wt%)     TiO2(wt%)     RSO/STO(wt%)   Li(NO3)2(wt%)  Na(NO3)2(wt%)  Mg(NO3)2(wt%)   5小时后的分解率(%)
    10     85     0     5     40
    10     80     5     5     52
    10     75     10     5     65
    10     65     20     5     63
    10     35     50     5     45
    10     85     0     5     38
    10     80     5     5     50
    10     75     10     5     61
    10     65     20     5     58
    10     35     50     5     44
    10     85     0     5     38
    10     80     5     5     49
10 75 10 5 61
    10     65     20     5     60
    10     35     50     5     43
(实施例22)
制备在SiO2溶胶中分散了TiO2微粒和泡沸石(铝硅酸盐)的溶液。使用该溶液,在聚丙烯腈纤维上形成TiO2膜,制得附有光催化剂的过滤器。制作顺序如下。
首先,对SiO2溶胶的制备方法进行说明。将5g四乙氧基硅烷溶于100ml水-乙醇-丙醇(3∶27∶70)的混合溶液中,于40℃搅拌5小时左右,再将所得溶液在室温下放置2周,使其成为SiO2溶胶。
下面对在SiO2溶胶中分散了TiO2微粒和泡沸石的溶液的制备方法进行说明。首先,以TiO2/SiO2=9的重量比,在所得的SiO2溶胶中加入TiO2微粒,然后,添加规定量的ZSM-5(合成泡沸石,以下相同),加水使固形成分的浓度为4wt%。接着,为使TiO2散粒和ZSM-5分散在SiO2溶胶中,用5mm的氧化锆小球通过球磨机处理24小时,这样就制得了在SiO2溶胶中分散了TiO2微粒和ZSM-5的溶液。
在聚丙烯腈纤维上涂布添加了ZSM-5的分散有TiO2微粒的SiO2溶胶,于120℃处理5分钟,形成涂布了在SiO2膜中分散了TiO2微粒和ZSM-5的分散有TiO2微粒的SiO2膜的过滤器。制得的光催化剂的组成是SiO2=8wt%、TiO2=72wt%、ZSM-5=20wt%。
光催化剂过滤器可用于空气净化器等,能够除去存在于空气中的恶臭成分、细菌或香烟烟雾等。特别是一般的过滤器在吸附剂的吸附除去达到饱和时会失去作用而需要更换,但附有光催化剂的过滤器所吸附的恶臭成分、细菌或香烟烟雾等是通过光催化剂作用除去的,所以,可以减少过滤器的更换次数。
将上述制得的光催化剂过滤器封入玻璃容器中,导入400ppm作为气体成分的乙醛,用风扇使其在容器内循环,再用荧光灯进行照射,测定其光催化剂性能。另外,用红外线检测器经常对连续循环的气体进行分析,测定结果如图30所示。没有添加泡沸石时,乙醛在初期急剧减少,然后慢慢减少,再导入气体后回到初始值,这样反复操作以达到吸附和分解反应的平衡。这说明乙醛在初期被TiO2吸附而急剧减少,然后在光催化剂的作用下慢慢分解。接着如果再导入气体,乙醛则吸附在因光催化剂分解而空出的吸附点上,先是急剧减少,而后是慢慢地分解。相对于此,添加泡沸石时,由于泡沸石的吸附剂作用,使导入的气体基本上从雾围气中消失。接着吸附的气体慢慢地通过光催化剂作用而分解。所以,添加泡沸石可增加吸附效果,将空气中的气体快速吸附除去,然后通过光催化剂作用分解,这样就可经常保持空气的新鲜。
(实施例23)
为了研究泡沸石中Si∶Al比的影响,按照Si∶Al=80∶20、50∶20、30∶20这三种比例添加泡沸石,测定其差异,其结果如图31所示,即Si含量越大性能越好。Si含量较多的泡沸石由于表面积较大,所以,不仅吸附量较大,而且,吸水量也较大,能够为光催化剂提供必要的表面吸附水。
(实施例24)
下面研究在泡沸石中离子交换导入Cu、Ag、Li、Na、Mg离子的性能,其结果如图32所示,即用Cu、Ag进行离子交换,在离子交换前后(与图30比较)几乎没有变化,而用Li、Na、Mg进行离子交换则可使性能有所提高。这是因为Na、Li、Mg是离子性较强的元素,在泡沸石中产生带正电的空间,可吸引TiO2吸光而产生的电子,使电子和孔穴分离,抑制它们的再结合,从而大幅度提高反应效率的缘故。
用添加了Cu、Ag的离子交换泡沸石进行使用了大肠菌的抗菌性试验。其结果如图33所示,即无泡沸石且无光照时,大肠菌繁殖,添加泡沸石、且有光照时,大肠菌灭菌率不变,但无光照时大肠菌数有所减少,添加了Cu、Ag的离子交换泡沸石,且进行光照时的大肠菌灭菌率有所提高,而无光照时的灭菌率比上述其他情况都好。
如上所述,添加了泡沸石,可使暗反应的抗菌性有所提高,如果添加的是Cu、Ag的离子交换泡沸石,则在光照时和暗反应时都可使性能有所提高,制得良好的抗菌剂。
这样,就提供了在任何材料表面都可形成、在日常生活环境中有效的高活性光催化剂,通过吸附效果和分解反应可有效地除去空气中的气体成分。
(实施例25)
制备在SiO2溶胶中分散了TiO2微粒和蓝色颜料的溶液。使用该溶液在聚丙烯腈纤维上形成TiO2膜,制得附有光催化剂的过滤器,其操作工序如下。
首先,对SiO2溶胶的制备方法进行说明。将5g四乙氧基硅烷溶于100ml水-乙醇-丙醇(3∶27∶70)的混合溶液中,于40℃搅拌5小时左右,再将所得溶液在室温下放置2周,使其成为SiO2溶胶。
下面对在SiO2溶胶中分散了TiO2微粒和蓝色颜料的溶液的制备方法进行说明。首先,以TiO2/SiO2=9的重量比,在所得的SiO2溶胶中加入TiO2微粒,然后,加入规定量的Cu-酞菁染料(蓝色颜料)。加入必要量水使固形成分的浓度调整为4wt%。为使TiO2微粒分散在SiO2溶胶中,用5mm的氧化锆小球通过球磨机处理24小时,这样就制得了在SiO2溶胶中分散了TiO2微粒的溶液。
然后,在聚丙烯腈纤维上涂布上述制得的分散了TiO2微粒的SiO2溶胶,在120℃处理5分钟,形成涂布了在SiO2膜中分散有TiO2微粒的分散了TiO2微粒的SiO2膜的过滤器。制得的光催化剂的组成如表16所示。
光催化剂过滤器可应用于空气净化器等,能够除去存在于空气中的恶臭成分、细菌或香烟烟雾等。特别是一般的过滤器在吸附剂的吸附除去达到饱和时会失去作用而需要更换,但附有光催化剂的过滤器所吸附的恶臭成分、细菌或香烟烟雾等是通过光催化剂作用除去的,所以,可以减少过滤器的更换次数。
在充满香烟烟雾的房间里,使附有表16所示组成的光催化剂过滤器的空气净化器启动,过滤器因吸附了香烟烟雾而变色。取出变色的过滤器,用荧光灯照射,测定颜色的变化,对吸附的香烟烟雾的分解性进行检测。另外,利用色彩计,从测出的变色量算出分解率。
分解试验结果如图34所示。其结果是,添加蓝色颜料可使分解性能有所提高。
表16中除了分解性能之外,还显示了对膜强度和耐光性的评估结果。各评估步骤如下所示。
强度试验就是反复进行弯曲和拉伸,评估粉末是否从过滤器上落下来。如果弯曲和拉伸后无粉末落下,则反复进行上述操作后,以2m/秒的速度鼓吹空气,观察剥落情况。将因为弯曲和拉伸而剥落的情况记为×,上述情况下无剥落、但因为鼓吹空气而剥落的情况记为△,任何情况下都无剥落的情况记为○。
用低压水银灯(254nm、3mW/cm2)照射上述制得的过滤器,测定颜色变化量在20%以上时的时间,由此来检测耐光性。
评估结果是,关于膜强度,如果添加颜料,则膜强度降低,颜料含量在20wt%以上,则容易造成膜剥离。容易剥离是指如果不进行弯曲、拉伸操作则不会剥离,可以在安装后不发生移动的条件下使用。
关于耐光性,颜料的添加量越多,耐光性越差。颜料虽然有利于耐光性,但由于其中含有有机基团,所以,光催化剂可使其慢慢分解。本试验的评估条件有所加强,一般使用的是荧光灯的光线,但表16中的35小时相当于荧光灯下的3年~5年。
上述试验结果说明添加了颜料的催化剂的膜强度和耐光性都变差,但对过滤器催化剂本身着色,能够很快目测到过滤器性能的变化,从而容易地判断出过滤器需要更换的时间。
为增加过滤器的粘合强度,最有效的方法是添加有机树脂。在上述制得的溶液中添加丙烯酸树脂时的组成和各种评估结果如表17所示。通过添加树脂,可使膜强度有飞跃性的提高。此外,耐光性无变化,在荧光灯下可充分发挥其作用,香烟烟雾的分解性能也良好。
如上所述,可见添加颜料,并根据需要添加树脂,能够制备性能良好的过滤器。
                              表16
颜料(wt%)   TiO2(wt%)   SiO2(wt%)   膜强度     耐光性
    0     90     10     ○     无变化
    10     81     9     △     50
    20     72     8     ×     40
    50     45     5     ×     35
                                                表17
    树脂(wt%)     颜料(wt%)    TiO2(wt%)   SiO2(wt%) 膜强度 耐光性  水洗试验     5小时后的分解率(%)
    0     30     63   7   ×   35     1     43
    10     27     56.7   6.3   △   35     5     45
    20     24     50.4   5.6   ○   35     10以上     42
    50     15     31.5   3.5   ○   35     10以上     39
(实施例26)
用荧光灯、太阳光、白炽灯、水银灯进行照射,比较实施例25制备的添加了颜料的光催化剂和未添加颜料的光催化剂对乙醛、尿素、氨和大肠菌的分解效果。其结果是,不论使用哪一种灯,添加了Li的光催化剂对乙醛、尿素、氨和大肠菌的分解率都是未添加染料的光催化剂的3~5倍。不仅是紫外灯,就是日常生活环境中使用的灯,对上述添加了颜料的催化剂进行照射也能够获得充分的效果。除了蓝色染料之外,添加红色、黄色和绿色染料等也能够获得同样的效果。
这样,就提供了在任何材料表面都可形成、在日常生活环境中有效的高活性光催化剂,能够容易地判断出光催化剂需要更换的时间。
(实施例27)
制备在SiO2溶胶中添加了TiO2微粒和丙烯酸树脂的溶液。使用该溶液在聚丙烯腈纤维上形成TiO2膜,制得附有光催化剂的过滤器,其操作工序如下。
首先,对SiO2溶胶的制备方法进行说明。将5g四乙氧基硅烷溶于100ml水-乙醇-丙醇(3∶27∶70)的混合溶液中,于40℃搅拌5小时,再将所得溶液在室温下放置2周,使其成为SiO2溶胶。
下面对在SiO2溶胶中添加了TiO2微粒和丙烯酸树脂的溶液的制备方法进行说明。首先,以TiO2/SiO2=9的重量比,在所得的SiO2溶胶中加入TiO2微粒,然后,加入规定量的丙烯酸树脂。加入必要量的水使固形成分的浓度调整为4wt%后,为使TiO2微粒分散在SiO2溶胶中,用5mm的氧化锆小球通过球磨机处理24小时,这样就制得了在SiO2溶胶中分散了TiO2微粒的溶液。
然后,在聚丙烯腈纤维上涂布上述制得的分散了TiO2微粒的SiO2溶胶,在120℃处理5分钟,形成涂布了在SiO2膜中分散有TiO2微粒的分散了TiO2微粒的SiO2膜的过滤器。制得的光催化剂的组成如表18所示。
光催化剂过滤器可应用于空气净化器等,能够除去存在于空气中的恶臭成分、细菌或香烟烟雾等。特别是一般的过滤器在吸附剂的吸附除去达到饱和时会失去作用而需要更换,但附有光催化剂的过滤器所吸附的恶臭成分、细菌或香烟烟雾等是通过光催化剂作用除去的,所以,可以减少过滤器的更换次数。
在充满香烟烟雾的房间里,使附有表18所示组成的光催化剂过滤器的空气净化器启动,过滤器因吸附了香烟烟雾而变色。取出变色的过滤器,用荧光灯照射,测定颜色的变化,对吸附的香烟烟雾的分解性进行检测。另外,利用色彩计,从测出的变色量算出分解率。
分解试验结果如图35所示。将SiO2(二氧化硅)作为粘合剂使用时,如果粘合剂量较多,则光催化剂性能将降低。如果将丙烯酸树脂作为粘合剂使用,则粘合剂量即使过多,光催化剂性能也几乎没有变化。
表18除了分解性能之外,还显示了对膜强度、耐光性和水洗试验进行评估的结果。各评估步骤如下。
强度试验就是对制得的过滤器反复进行弯曲和拉伸,评估粉末是否落下来。如果弯曲和拉伸后无粉末落下,则反复进行弯曲拉伸后,以2m/秒的速度鼓吹空气,观察剥落情况。将因为弯曲和拉伸而剥落的情况记为×,上述情况下无剥落、但因为鼓吹空气而剥落的情况记为△,任何情况下都无剥落的情况记为○。
耐光性的检测是用低压水银灯(254nm、3mW/cm2)照射已制得的过滤器,测定颜色变化量在20%以上时的时间。
水洗式验是对过滤器反复进行水洗,直到催化剂剥落,测定这种现象出现时的洗涤次数。
评估结果是,添加丙烯酸树脂可使膜强度有所增强,含量在5wt%以上,就可防止膜的剥落。
丙烯酸树脂的添加量越大耐光性就越差,这是因为丙烯酸树脂中含有有机基团。光催化剂作用可使其慢慢分解。本试验的评估条件有所加强,一般使用的是荧光灯的光线,表16中的35小时相当于荧光灯下的3年~5年。
如果树脂添加量在10wt%以上,则能够充分进行水洗,这样就可反复使用。
如上所述,添加有机树脂,能够获得充分的强度。不论是否添加树脂,催化剂的性能都没有变化,能够制得可进行清洗的光催化剂过滤器。
上述添加了丙烯酸树脂的催化剂的耐光性较差,但膜强度良好,过滤器催化剂可清洗。到目前为止,光催化剂只能够对有机污染物进行清洁,但对尘埃等无机污染物却无效,清洗可除去无机物,这样就能够延长过滤器的使用寿命。
(实施例28)
用荧光灯、太阳光、白炽灯、水银灯进行照射,比较实施例27制备的添加了丙烯酸树脂的光催化剂和未添加丙烯酸树脂的光催化剂对乙醛、尿素、氨和大肠菌的分解效果。其结果是,不论使用哪一种灯,添加了Li的光催化剂对乙醛、尿素、氨和大肠菌的分解率都与未添加丙烯酸树脂的光催化剂相同。不仅是紫外灯,就是日常生活环境中使用的灯,对上述添加了丙烯酸树脂的催化剂进行照射也能够获得充分的效果。
(实施例29)
近年,为了提高丙烯酸树脂的化学特性,开发了在丙烯酸树脂侧链导入了硅烷醇基的硅烷醇变性丙烯酸树脂。在实施例27制得的溶液中添加硅烷醇导入量不同的丙烯酸树脂,制得过滤器。图36表示上述制得的过滤器对香烟烟雾的分解特性和耐光性的评估结果。对香烟烟雾的分解特性没有因为硅烷醇基的导入量(图中硅烷醇导入量)的不同而发生很大变化,且性能也没有变差。如果硅烷醇的导入量较多,则耐光性有所提高。
如上所述,使用硅烷醇变性丙烯酸树脂,可提高耐光性,制得性能良好的光催化剂过滤器。
(实施例30)
与二氧化硅等陶瓷材料不同,使用有机树脂时,即使不加热,也能够发生固化。例如,使用室温固化树脂就可达到目的。但是,室温固化类树脂除了瞬间粘合剂之外,其他都需要24小时左右的时间。瞬间粘合剂可在短时间内固化,但由于光催化剂的作用会慢慢分解。短时间内可固化、且耐光性良好的树脂有UV固化类树脂。UV固化类树脂是利用紫外线而固化的树脂,利用荧光灯发出的紫外线可慢慢聚合固化。但是,实际上由于光催化剂作用会慢慢分解。所以,适当地组合光固化和光分解,能够提高耐光性。
制备添加了UV固化树脂的分散有TiO2微粒的溶液。使用该溶液,在聚丙烯腈纤维上形成TiO2膜,制得附有光催化剂的过滤器。操作步骤如下。
在甲苯中添加规定量的TiO2微粒和Si、Al、Ti系偶合剂中的任何一种,于40℃搅拌2小时,然后,将其加入到规定量的UV固化树脂中。再加必要量的甲苯使固形成分的浓度调整为4wt%。接着为使TiO2微粒分散,用5mm的氧化锆小球通过球磨机处理24小时,这样就制得了在UV固化树脂中分散了TiO2微粒的溶液。
将上述制得的溶液涂布在聚丙烯腈纤维上,室温下用低压水银灯的紫外线照射15秒钟,形成涂布了光催化剂的过滤器。制得的光催化剂的组成如表19所示。
                                                  表18
树脂(wt%)   TiO2(wt%)  SiO2(wt%)   膜强度  耐光性 水洗试验 5小时后的分解率(%)
    0     90     10     △  无变化     1     30
    2     88.2     9.8     △  无变化     1     32
    5     85.5     9.5     ○  5小时     5     31
    10     81     9     ○  3小时     10     33
    20     72     8     ○  2小时     10以上     31
    50     45     5     ○  2小时     10以上     28
                                   表19
 TiO2(wt%) UV固化树脂(wt%)  偶合剂(wt%)   水洗试验 耐光性
    90     0     10     1 无变化
    85     5     10     5 无变化
    80     10     10     10以上 无变化
    70     20     10     10以上 无变化
图37表示对应于偶合剂添加量的香烟烟雾的分解特性(5小时后的分解率)。添加偶合剂可使光催化剂特性有所提高。如果只含UV固化树脂,则树脂完全覆盖TiO2粒子表面会使催化剂特性消失。添加偶合剂后,可增加TiO2表面的露出部分。而且,光催化剂会分解表面吸附的水分而产生自由基,添加偶合剂后,能够较好地保存表面吸附水分,使催化剂显现功能。
表19表示催化剂性能之外的试验结果。水洗试验的结果是UV固化树脂含量在10wt%以上时可水洗。耐光性没有任何问题,即使照射10小时后,也不会出现劣化。
如上所述,使用UV固化树脂能够在短时间内进行室温涂布,获得耐光性良好的光催化剂过滤器。
这样,在任何材料表面都能够在低温短时间内形成在日常生活环境中有效的高活性光催化剂,通过水洗能够除去无机污染物,可减少各种应用制品的部件更换和清扫次数。
(实施例31)
制备在SiO2溶胶中分散了TiO2微粒的溶液。使用该溶液在PET膜上形成TiO2膜,制得PET薄膜,其操作工序如下。
首先,对SiO2溶胶的制备方法进行说明。将5g四乙氧基硅烷溶于100ml水-乙醇-丙醇(3∶27∶70)的混合溶液中,于40℃搅拌5小时,再将所得溶液在室温下放置2周,使其成为SiO2溶胶。
下面对在SiO2溶胶中分散了TiO2微粒的溶液的制备方法进行说明。首先,以TiO2/SiO2=9的重量比,在所得的SiO2溶胶中加入TiO2微粒,然后,分别加入规定量的磷酸、硼酸及Li、Mg、K、Ca的硝酸盐。加入必要量的水使固形成分的浓度调整为4wt%。接着为使TiO2微粒分散在SiO2溶胶中,用5mm的氧化锆小球通过球磨机处理24小时,这样就制得了在SiO2溶胶中分散了TiO2微粒的溶液。
在PET膜上涂布上述制得的分散了TiO2微粒的SiO2溶胶,于120℃用低压水银灯(强度:15mW/cm2)照射处理5分钟,形成涂布了在SiO2中分散有TiO2微粒的分散了TiO2微粒的SiO2膜的塑料薄膜。PET膜上得到的薄膜的膜质和强度都较好,膜厚为300nm。
对上述制得的薄膜负重1kg,用橡皮擦拭膜表面,进行强度试验。其结果是,没有添加B、P的膜在擦拭50次后出现了褶皱,而添加了B、P的膜在擦拭100后仍然完好。这就证明添加B、P可提高膜强度。
然后,对有机物的分解活性进行评估。在薄膜上涂布红紫系有机色素,用波长为254nm、强度为0.2mW/cm2的光线照射进行活性试验。从初期色素透过率的变化量可求出分解速度。其结果如表20所示。表中的空栏表示没有添加该元素。
                                           表20
    TiO2/SiO2     B(wt%)     P(wt%)     Li(wt%)     Ca(wt%)     K(wt%)    Mg(wt%)     10分钟后的分解率
    9     5     10     70
    9     5     10     68
    9     3     3     10     70
    9     5     10     75
    9     5     10     73
    9     3     3     10     75
    9     5     10     80
    9     5     10     78
    9     3     3     10     81
    9     5     10     73
    9     5     10     71
    9     3     3     10     72
    9     10     65
没有添加B、P而添加了Li的光催化剂的10分钟后的分解率为65%,而添加了B、P的光催化剂的分解率有所提高。这就说明添加B、P可进一步提高光催化剂的性能。此外,添加剂的效果依次为K>Ca>Mg>Li。
光催化剂在吸光而产生电子和孔穴使水分解生成自由基后,使有机物分解。所以,如果光催化剂表面没有水分就不能够使有机物分解。未添加B、P的光催化剂会分解TiO2、SiO2表面所吸附的水分。B、P的吸水性较大,添加B、P可使更多的水分存在于催化剂表面,因此,增加表面吸附的水分,能够提高有机物的分解性能。
然后,在上述制得的涂液中添加作为导电性粒子的ATO,同样在PET膜上成膜,评估其对色素的分解性,结果如表21所示。
                                 表21
 TiO2/SiO2  Bwt%  Pwt%   Kwt%  ATOwt% 10分钟后的分解率
    9     3     3     10     0     81
    9     3     3     10     5     85
    9     3     3     10     10     90
    9     3     3     10     20     88
未添加ATO的光催化剂在10分钟后的分解率为81%,而添加了ATO的光催化剂的分解率有所提高。特别是含量为10wt%时,分解率最高可达到90%,这就说明添加ATO能够进一步提高性能。此外,制得的添加了ATO的薄膜的表面电阻低于109Ω/□,这就说明还有防带电效果,不仅能防止有机物,还能够防止无机物的吸附。
除了K(钾)之外,添加Li(锂)、Ca(钙)、Mg(镁)也能够获得同样的ATO添加效果。
产业上利用的可能性
在空气净化器、换气扇、电风扇、吸尘器、衣物烘干机、餐具烘干机、洗碗机、厨房垃圾处理机等内藏利用电动机产生空气流的装置、且主要用于室内环境的电器制品的空气通道、过滤部分、外装部分、被内藏的照明装置照射的部分设置了本发明的低温固化型高活性氧化物光催化剂薄膜,所以,能够获得以下效果。
利用本发明获得的效果可大致分为以下3类。
第1,本发明在以往公知的TiO2等氧化物光催化剂薄膜中添加了Na、Li等电负性小于1.6、离子半径小于0.2nm的元素的化合价在2以下的离子,使有机物的分解效果有所提高。另外,还并用、添加包括添加了锑的氧化锡在内的电子亲和力在1.2以上的金属氧化物半导体或Ag、Cu、Ni、Pd、Rh、Pt等金属粒子,使分解效率有进一步提高。这样,不需要以往氧化物光催化剂所必须的紫外灯等短波长光发生装置,就能够获得良好的结果。即,利用一般室内可获得的光线,如荧光灯、白炽灯泡、水银灯、可透过玻璃窗的太阳光等非常弱的光线就可使有机物分解,还能够分解香烟烟雾和手等的皮脂等附着物产生的污垢而取得防污效果。同样利用微弱的光线,可分解分散在空气中的有机胺或硫醇等会产生恶臭的物质,使其分解为低臭或无臭的物质,所以,能够获得减少室内臭气的除臭效果。此外,同样利用微弱的光线,能够对空气中飘浮着的细菌、霉菌、花粉等各种微生物进行分解,使这些微生物死亡或抑制其繁殖,因此,在保证形成了氧化物催化剂薄膜的部件表面清洁的同时,还能够有效地减少使用了上述电器的室内空气中飘浮着的微生物量。以往过滤器或网眼等过滤空气的部件都需要经常更换,如果上面蓄积了污垢或孔眼堵塞,就需要取下清洗,或换上新的部件,但本发明能够分解附着的污垢,所以可延长达到孔眼堵塞程度的使用寿命,这样就减少了更换频率。
各用途的具体效果的例子如下。由于空气净化器、换气扇、电风扇、吸尘器、衣物烘干机、餐具烘干机、洗碗机、厨房垃圾处理机的外壳、框架、箱体等外部部件都受到室内照明装置或太阳光的照射,所以,污垢难以形成,微生物难以繁殖,能够保持清洁的状态。此外,如果上述电器上附设的空气流通部件或空气通道中的过滤器、网眼等部件也受到室内照明装置或太阳光的照射,则不仅能够获得防污、抗菌效果,还能够获得室内除臭效果。
空气净化器、换气扇、电风扇、吸尘器主体上设置了红外线接收部分,在遥控部分设置了红外线发射部分进行远距离控制,如果上述红外线接收和发射部分受到污染,则信号的接收和发射将受到影响,本发明具备防止这种污染的效果。
一般利用室内的光强度难以分解彻底的污染负荷较大时,或用于室内光照射不够充分的部件时,如果附设荧光灯或电灯泡等照明装置也可以获得同样的效果。如果这样仍不行,则可并用水银灯或金属卤化物等紫外线发生装置,这样就可获得较好的分解效果。这种情况下,由于本发明的分解率高于以往,所以,可缩短灯的照射时间,或减小灯的输出功率,因此,在节约耗电量的同时,还可延长灯具的使用寿命,并减少更换次数,这样就比较经济。
例如,需要使厨房垃圾处理机产生的大量恶臭物质分解,或使厨房用换气扇上附着的大量食用油分解,或净化洗碗机、餐具烘干机、衣物烘干机等的密闭槽或滚筒内部时,如果并用前述各种波长的光发生装置就很有效。
第2,由于上述本发明的光催化剂薄膜中加入了包括添加了锑的氧化锡在内的电子亲和力在1.2以上的金属氧化物半导体或Ag、Cu、Ni、Pd、Rh、Pt等金属微粒,所以,膜本身的表面电阻值有所降低,这样,就可抑制分解时间较长的较大尘埃和纤维类及不能够分解的土等矿物类因静电而吸附的现象,从而防止难分解的污垢在表面蓄积,使光不能够照射到光催化剂薄膜的现象。
防带电效果不仅能够防止尘埃吸附,还能够将因静电而造成的电路短路等现象防患于未然。这对吸尘器之类使用时容易摩擦带电的物品尤其有效。
各用途的具体效果的实例如下。空气净化器、换气扇、电风扇、吸尘器、衣物烘干机、餐具烘干机、洗碗机、厨房垃圾处理机的外壳、框架、箱体等外部部件特别容易吸附尘土,所以很有效。
第3,本发明中,在形成具备上述效果的光催化剂薄膜时,制备了含有低分子量有机金属化合物和水的溶液,为了破坏金属原子和有机基团的结合,用紫外线等特定波长的电磁波进行了照射,促进了膜化反应,所以,能够在低于以往温度的低温条件下形成薄膜。因此,能够在用于前述电器制品的包括ABS、PS、PP、聚酯等在内的常用塑料、钢板上涂布的有机涂料表面形成上述氧化物光催化剂薄膜,而薄膜的底涂料不会因为受热而发生软化、变形、产生气泡、裂缝、脆化、强度降低、韧性降低等不良情况。
各用途的具体效果的实例如下。常用于空气净化器、换气扇、电风扇、吸尘器、衣物烘干机、餐具烘干机、洗碗机、厨房垃圾处理机的外壳、框架、箱体等外部部件的合成树脂成型体或油漆钢板不能够忍耐以往的以TiO2为主体的氧化物光催化剂薄膜的形成温度,即300℃以上的高温,但本发明不会对上述部件的表面材料造成热损伤,这样就能够很容易地成膜。
另外,附设于上述物品的空气流通部件或空气通道中的风扇、叶轮、过滤器、网眼等部件的构成材料也同样难以忍耐300℃以上的高温,但利用本发明就能够容易地形成上述氧化物光催化剂薄膜。
此外,由于本发明的氧化物光催化剂薄膜能够在低温下形成硬质膜,所以,可代替以往的塑料成型品表面涂布的丙烯酸树脂等硬质涂层。这样,能够与以往的硬质涂层同样可增加成型品的光泽,防止表面损伤,同时还可抑制微生物繁殖,获得防污和防带电效果。
应用于非织造布、织物、海绵等形成的过滤器时,由于形成于纤维表面的氧化物光催化剂薄膜是玻璃质的,所以,表面吸附性和润湿性都较好。因此,能够提高臭气捕集率和烟雾捕集率。即使形成只含SiO2的薄膜,也能够以同样的原理改善捕集效果,如果附着的臭气和烟雾覆盖纤维表面,则会减弱捕集效果,但在本发明中,因为此玻璃质薄膜自身具有光催化剂特性,所以能使纤维表面经常保持清洁,由于具有高吸附性的底层继续露出,所以能较好维持效果。
另外,应用于洗碗机时,利用光催化剂的防污效果,可以减小附着于内部的水滴的接触角,这样就可降低残水总量,从而提高餐具的干燥效率。利用该效果还可应用于各种因结露而发生为难的用途。

Claims (33)

1.一种光催化剂薄膜,所述薄膜系在涂膜中分散了具有光催化剂作用的粒子,其特征在于,前述涂膜中含有侧链上结合了无机官能团的有机树脂。
2.一种光催化剂薄膜,所述薄膜系在涂膜中分散了具有光催化剂作用的粒子,其特征在于,前述涂膜中含有电负性小于1.6、离子半径小于0.2nm、化合价在2以下的金属元素。
3.一种光催化剂薄膜,所述薄膜系在涂膜中分散了具有光催化剂作用的粒子,其特征在于,前述涂膜中还含有P、B、K、Ca中的至少一种。
4.一种光催化剂薄膜,所述薄膜系在涂膜中分散了具有光催化剂作用的粒子,其特征在于,前述涂膜中还分散了由电子亲和力在1.2以上的金属元素构成的氧化物半导体粒子。
5.一种光催化剂薄膜,其特征在于,权利要求4所述的光催化剂薄膜中,分别设置了前述分散了氧化物半导体粒子的层和前述分散了氧化钛粒子的层。
6.一种光催化剂薄膜,其特征在于,权利要求1~5的任一项所述的光催化剂薄膜中分散了导电性粒子,该涂膜的表面电阻值在109Ω/□以下。
7.一种光催化剂薄膜,其特征在于,权利要求1~4的任一项所述的光催化剂薄膜中含有氧化硅。
8.一种物品,其特征在于,基材表面具备权利要求1~7的任一项所述的光催化剂薄膜。
9.一种物品,其特征在于,在权利要求8所述的氧化物光催化剂薄膜和前述物品基材表面之间具有隔层。
10.一种物品,其特征在于,权利要求9所述的隔层是包含化合价大于3的金属元素,或至少1种选自Al、Zr、Fe及过渡金属元素的金属氧化物膜。
11.一种物品,其特征在于,权利要求8~10的任一项所述的基材由分解起始温度在300℃以下的有机高分子化合物构成。
12.一种物品,其特征在于,由以有机高分子化合物为主体的基材,设置在该基材表面的由无机物形成的隔层,以及设置在该隔层表面的可促进有机物分解反应的氧化物催化剂层构成。
13.一种空气净化器,利用电动送风机的作用产生气流,通过吸气口吸入室内空气,经过设置在通风道中的过滤器,捕集浮游在空气中的尘埃、油烟微粒、烟雾、花粉和各种微生物或恶臭物质等,净化后通过排气口排出,其特征在于,构成部件中,在与室内照明光或来自室外的太阳光接触的部件表面形成了权利要求1~4的任一项所述的光催化剂薄膜。
14.一种具备低温固化型高活性氧化物光催化剂薄膜的换气扇,利用电动送风机的作用产生气流,将吸入室内侧吸气口的空气与浮游在空气中的尘埃、油烟微粒、烟雾、花粉和各种微生物或恶臭物质等一起从室外侧排气口排到室外,其特征在于,构成部件中,在与室内照明光或来自室外的太阳光接触的部件表面形成了权利要求1~4的任一项所述的光催化剂薄膜。
15.一种电风扇,利用电动机使叶轮运转,产生气流,其特征在于,构成部件中,在与室内照明光或来自室外的太阳光接触的部件表面形成了权利要求1~4的任一项所述的光催化剂薄膜。
16.一种吸尘器,吸入口和集尘室连通,利用电动送风机使集尘室内的气压减小,将从吸入口吸入的垃圾或尘埃捕集到集尘室中,过滤上述垃圾或尘埃后,将空气从排气口排出,其特征在于,构成部件中,在与室内照明光或来自室外的太阳光接触的部件表面形成了权利要求1-4的任一项所述的光催化剂薄膜。
17.一种衣物烘干机,利用电动送风机从外界吸入空气,用加热器加热后送入收集了含有湿气的衣物的干燥滚筒内,再加热使衣物中的水分蒸发,将含有水分的空气从排气口排出或利用热交换器使水分结露,除去水分后从排气口排出,其特征在于,构成部件中,在与室内照明光或来自室外的太阳光接触的部件表面形成了权利要求1~4的任一项所述的光催化剂薄膜。
18.一种餐具烘干机,利用电动送风机从外界吸入空气,用加热器加热后送入收集了润湿餐具的干燥室内,再加热使附着在餐具上的水分蒸发,使其与含有水分的空气一起从排气口排出,其特征在于,构成部件中,在与室内照明光或来自室外的太阳光接触的部件表面形成了权利要求1~4的任一项所述的光催化剂薄膜。
19.一种洗碗机,在收集了脏餐具的洗涤槽中,一边加热水一边用洗涤泵加压,使水从设置在洗涤槽内的可自由旋转的喷管中喷出,洗净餐具后进行冲洗,然后,利用电动送风机吸入外界空气,使冷风或经过加热器加热的温热风与冲洗后的高湿度内部空气置换,使残留在餐具或洗涤槽内部的水分蒸发干燥,其特征在于,构成部件中,在与室内照明光或来自室外的太阳光接触的部件表面形成了权利要求1~4的任一项所述的光催化剂薄膜。
20.一种厨房垃圾处理机,在设置了含有微生物类培养基材的处理槽中投入垃圾,用搅拌装置搅拌培养基材和垃圾,通过微生物代谢作用使垃圾分解的同时,利用电动送风机将分解时产生的水分和空气一起排出,其特征在于,构成部件中,在与室内照明光或来自室外的太阳光接触的部件表面形成了权利要求1~4的任一项所述的光催化剂薄膜。
21.一种物品,其特征在于,权利要求13~20的任一项中,前述光催化剂薄膜表面的光照射部位设置了光源。
22.一种物品,其特征在于,权利要求21中,前述光源为紫外灯。
23.一种物品,其特征在于,权利要求13~20的任一项中,为使光照射到前述光催化剂薄膜表面,覆盖该光催化剂薄膜表面的框体的至少一部分使用了透明材料。
24.一种物品,其特征在于,权利要求23中,使光透过2mm厚的透明材料,利用色差表示法测得的L值在50以下、a值在-20以上20以下、b值在20以下。
25.一种物品,其特征在于,光催化剂薄膜和权利要求13~20的任一项中,为使照射到前述光催化剂薄膜表面,覆盖该光催化剂薄膜表面的框体的至少一部分使用了透明材料。
26.一种物品,其特征在于,权利要求23中,使光透过2mm厚的透明材料,利用色差表示法测得的L值在50以下、a值在-20以上20以下、b值在20以下。
27.一种光催化剂,其特征在于,由氧化钛组成的光催化剂中至少包含1种选自ATO、RuO2、STO(SrTiO3)、RSO和粘合剂的物质。
28.如权利要求27所述的光催化剂,其特征还在于,其中添加了至少1种选自Li、Na、Mg的元素。
29.一种光催化剂,其特征在于,由氧化钛组成的光催化剂中添加了吸附剂。
30.一种光催化剂,其特征在于,由氧化钛组成的光催化剂中含有Cu、Ag、Li、Na、Mg中任何一种的离子交换泡沸石。
31.一种光催化剂,其特征在于,由氧化钛组成的光催化剂中添加了能吸收可见光的颜料。
32.一种光催化剂,其特征在于,由氧化钛组成的光催化剂中含有有机树脂。
33.一种光催化剂,其特征在于,权利要求32所述的光催化剂中还含有Al、Ti、Si系偶合剂。
CN97198095.0A 1996-09-20 1997-09-19 光催化剂薄膜及具备该薄膜的物品 Expired - Fee Related CN1254365C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP249735/96 1996-09-20
JP24973596 1996-09-20
JP24973496 1996-09-20
JP249734/96 1996-09-20

Publications (2)

Publication Number Publication Date
CN1230917A true CN1230917A (zh) 1999-10-06
CN1254365C CN1254365C (zh) 2006-05-03

Family

ID=26539450

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97198095.0A Expired - Fee Related CN1254365C (zh) 1996-09-20 1997-09-19 光催化剂薄膜及具备该薄膜的物品

Country Status (3)

Country Link
KR (1) KR100314938B1 (zh)
CN (1) CN1254365C (zh)
WO (1) WO1998012048A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101909750A (zh) * 2008-02-01 2010-12-08 岛津系统计装股务公司 银-氧化钛-沸石吸附分解材料及其制造方法
CN103079703A (zh) * 2010-08-20 2013-05-01 株式会社富士工 光催化剂被膜的制造方法及光催化剂被膜
CN106189166A (zh) * 2016-07-20 2016-12-07 王玲 一种led灯及其制备方法
CN106796155A (zh) * 2015-04-03 2017-05-31 亚洲大学校产学协力团 变色感测器及其制造方法
CN108097276A (zh) * 2017-11-14 2018-06-01 昆明理工大学 一种可见光光催化剂的制备方法
CN109490377A (zh) * 2018-12-03 2019-03-19 安徽工业大学 一种对乙酸气体高气敏选择性的锡酸钡纳米管气敏材料
CN109556651A (zh) * 2017-09-25 2019-04-02 上海宝钢工业技术服务有限公司 彩涂板色差光泽和涂层膜厚检测仪及检测方法
JP2019520203A (ja) * 2016-06-13 2019-07-18 エルジー・ハウシス・リミテッドLg Hausys,Ltd. 光触媒機能性フィルター
CN110565360A (zh) * 2019-08-30 2019-12-13 界首万昌新材料技术有限公司 一种抗菌舒适的高弹性纺织材料
CN113677935A (zh) * 2019-04-23 2021-11-19 三菱电机株式会社 热交换器固定板以及空调机的室内单元

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002022797A2 (en) * 2000-09-11 2002-03-21 Berkshire Laboratories, Inc. Spectral chemistry
KR100313891B1 (ko) * 1999-05-27 2001-11-15 구자홍 광촉매필터, 그 제조방법 및 그를 이용한 공기정화장치
JP2001025437A (ja) * 1999-07-13 2001-01-30 Tiger Vacuum Bottle Co Ltd 保温容器
JP4075482B2 (ja) * 2001-08-08 2008-04-16 住友金属鉱山株式会社 可視光域でも触媒活性を有する光触媒
JP4736267B2 (ja) * 2001-08-08 2011-07-27 住友金属鉱山株式会社 可視光域でも触媒活性を有する光触媒
JP2004206202A (ja) * 2002-12-24 2004-07-22 Kawashima Textile Manuf Ltd 汚染感知器
FR2850270B1 (fr) * 2003-01-27 2007-05-18 Oreal Utilisation d'un photocatalyseur pour le traitement des cheveux gras
JP2006022876A (ja) * 2004-07-07 2006-01-26 Tsubaki Emerson Co 抗菌減速機
DE102005058662A1 (de) 2005-12-08 2007-06-14 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zum Beseitigen von Gerüchen in einer Geschirrspülmaschine
UA100571C2 (uk) * 2008-06-24 2013-01-10 Энэрджи Корея Инк. Композиція для нанесення покриття, яка містить фотокаталізатор, покритий апатитом, і система радіаційного нагрівання, яка містить зазначену композицію
JP6044993B2 (ja) * 2013-06-28 2016-12-14 国立研究開発法人産業技術総合研究所 可視光応答性組成物とこれを用いた光電極、光触媒、光センサー
US10725215B2 (en) 2015-03-17 2020-07-28 Lms Co., Ltd Optical filter and imaging device comprising same
JP6799401B2 (ja) * 2016-07-05 2020-12-16 日本ペイント株式会社 塗料組成物
KR102488773B1 (ko) * 2016-07-06 2023-01-13 엘지전자 주식회사 욕실관리기
KR102304135B1 (ko) * 2020-08-21 2021-09-24 주식회사 유텍솔루션 공기 청정 시스템 및 청정 방법
KR102648026B1 (ko) * 2023-06-30 2024-03-15 에스에스씨라이팅 주식회사 탈취용 환기장치

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3245717B2 (ja) * 1991-08-21 2002-01-15 三井造船株式会社 シート状環境浄化装置
JPH07168001A (ja) * 1993-12-15 1995-07-04 Nikon Corp 黴の発生が抑制された光学機器
JPH07316342A (ja) * 1994-05-26 1995-12-05 Goyo Paper Working Co Ltd 光触媒含有合成樹脂組成物及び該組成物層を含む積層体
JP3729880B2 (ja) * 1994-10-27 2005-12-21 松下エコシステムズ株式会社 二酸化チタン粒子の担持方法
JP3250394B2 (ja) * 1994-11-10 2002-01-28 東陶機器株式会社 光触媒作用を有する部材、光触媒薄膜形成用組成物、及び光触媒作用を有する部材の製造方法
JP2775399B2 (ja) * 1995-01-24 1998-07-16 工業技術院長 多孔質光触媒及びその製造方法
JPH08266902A (ja) * 1995-03-29 1996-10-15 Mitsubishi Paper Mills Ltd 光触媒を用いた環境浄化材料およびその組成物
JPH0959041A (ja) * 1995-06-14 1997-03-04 Toto Ltd 光触媒を含有する防曇性コーティング組成物
JPH0960443A (ja) * 1995-06-14 1997-03-04 Toto Ltd 窓サッシ
JPH09231821A (ja) * 1995-12-22 1997-09-05 Toto Ltd 照明器具及び照度維持方法
JP3690864B2 (ja) * 1996-03-29 2005-08-31 株式会社ティオテクノ 光触媒体の製造法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101909750A (zh) * 2008-02-01 2010-12-08 岛津系统计装股务公司 银-氧化钛-沸石吸附分解材料及其制造方法
CN103079703A (zh) * 2010-08-20 2013-05-01 株式会社富士工 光催化剂被膜的制造方法及光催化剂被膜
CN103079703B (zh) * 2010-08-20 2015-12-16 株式会社富士工 光催化剂被膜的制造方法及光催化剂被膜
CN106796155A (zh) * 2015-04-03 2017-05-31 亚洲大学校产学协力团 变色感测器及其制造方法
JP2019520203A (ja) * 2016-06-13 2019-07-18 エルジー・ハウシス・リミテッドLg Hausys,Ltd. 光触媒機能性フィルター
CN106189166A (zh) * 2016-07-20 2016-12-07 王玲 一种led灯及其制备方法
CN106189166B (zh) * 2016-07-20 2018-03-27 王玲 一种led灯及其制备方法
CN109556651A (zh) * 2017-09-25 2019-04-02 上海宝钢工业技术服务有限公司 彩涂板色差光泽和涂层膜厚检测仪及检测方法
CN108097276A (zh) * 2017-11-14 2018-06-01 昆明理工大学 一种可见光光催化剂的制备方法
CN108097276B (zh) * 2017-11-14 2019-11-08 昆明理工大学 一种可见光光催化剂的制备方法
CN109490377A (zh) * 2018-12-03 2019-03-19 安徽工业大学 一种对乙酸气体高气敏选择性的锡酸钡纳米管气敏材料
CN113677935A (zh) * 2019-04-23 2021-11-19 三菱电机株式会社 热交换器固定板以及空调机的室内单元
CN110565360A (zh) * 2019-08-30 2019-12-13 界首万昌新材料技术有限公司 一种抗菌舒适的高弹性纺织材料

Also Published As

Publication number Publication date
KR100314938B1 (ko) 2001-11-26
WO1998012048A1 (en) 1998-03-26
KR20000048490A (ko) 2000-07-25
CN1254365C (zh) 2006-05-03

Similar Documents

Publication Publication Date Title
CN1254365C (zh) 光催化剂薄膜及具备该薄膜的物品
CN1134279C (zh) 具备低温硬化型高活性氧化物光催化剂薄膜的物品
JP4305001B2 (ja) 光触媒薄膜を備えた物品
CN1152927C (zh) 光催化剂涂层剂组合物及载有光催化剂的构造体
CN1198886C (zh) 防污性材料、其制造方法及用于该方法的涂料组合物和装置
CN1188428A (zh) 载有光催化剂的结构和光催化剂涂敷材料
CN1301795C (zh) 光催化剂组合物
CN1129659C (zh) 使基体表面亲水的光催化法、具有该表面的基体及其制法
Mills et al. A web-based overview of semiconductor photochemistry-based current commercial applications
CN1178736C (zh) 光催化剂过滤器
CN1946814A (zh) 涂料及其用途
CN1541118A (zh) 空气改质机器及使用于此的离子产生装置
CN1847737A (zh) 空气改质机器及使用于此的离子产生装置
CN1942545A (zh) 防污涂料组合物
CN1259162A (zh) 光催化亲水性膜形成前表面的预处理方法及该方法所用的清洗剂和底漆涂料组合物
WO2013000254A1 (zh) 油烟净化方法
CN1209153A (zh) 使表面亲水性的光催化方法以及具有光催化亲水性表面的复合材料
CN105987445B (zh) 包括uv发光二极管和光催化过滤器的紧凑型空气净化器
CN1278759C (zh) 调湿功能材料及其制造方法
CN1120819A (zh) 具有光催化功能的多功能材料及其制造方法
CN1443605A (zh) 具有光催化功能的多功能材料及其制造方法
CN1805776A (zh) 空气清洁机、功能性过滤片及其制造方法、空气清洁过滤片及装置
CN206531218U (zh) 智能茶几式多功能空气净化器
CN205686961U (zh) 一种定时净化内部空气垃圾桶
CN206556150U (zh) 一种柜式空气过滤器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060503

Termination date: 20160919