CN1230225A - 使用转基因麦芽种生产酒精性饮料的改进工艺 - Google Patents

使用转基因麦芽种生产酒精性饮料的改进工艺 Download PDF

Info

Publication number
CN1230225A
CN1230225A CN97197918A CN97197918A CN1230225A CN 1230225 A CN1230225 A CN 1230225A CN 97197918 A CN97197918 A CN 97197918A CN 97197918 A CN97197918 A CN 97197918A CN 1230225 A CN1230225 A CN 1230225A
Authority
CN
China
Prior art keywords
enzyme
fructus hordei
hordei germinatus
seed
ser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN97197918A
Other languages
English (en)
Inventor
J·索普
R·F·比德克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mogen International NV
Gist Brocades NV
Original Assignee
Mogen International NV
Gist Brocades NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mogen International NV, Gist Brocades NV filed Critical Mogen International NV
Publication of CN1230225A publication Critical patent/CN1230225A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01073Licheninase (3.2.1.73)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C5/00Other raw materials for the preparation of beer
    • C12C5/004Enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C5/00Other raw materials for the preparation of beer
    • C12C5/004Enzymes
    • C12C5/006Beta-glucanase or functionally equivalent enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C7/00Preparation of wort
    • C12C7/04Preparation or treatment of the mash
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C7/00Preparation of wort
    • C12C7/04Preparation or treatment of the mash
    • C12C7/047Preparation or treatment of the mash part of the mash being unmalted cereal mash
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2414Alpha-amylase (3.2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/248Xylanases
    • C12N9/2482Endo-1,4-beta-xylanase (3.2.1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01001Alpha-amylase (3.2.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01008Endo-1,4-beta-xylanase (3.2.1.8)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Alcoholic Beverages (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及一种用包含内切-β(1,4)木聚糖酶、阿拉伯呋喃糖苷酶、α-淀粉酶、内切蛋白酶和β-(1,3;1,4)-葡聚糖酶并且任选地,包括糖化淀粉酶与/或外肽酶的酶的混合物生产酒精性饮料比如啤酒或威斯忌的工艺。优选的是由转基因种子提供的酿造过程所必需的酶的混合物。只需少量麦芽以产生风味与色泽。

Description

说明书 使用转基因麦芽种生产酒精性饮料的改进工艺
                        发明领域
本发明涉及一种生产酒精性饮料特别是啤酒和威斯忌的工艺。
                        发明背景
酒精性饮料例如啤酒可由发芽的和/或未发芽的大麦谷粒生产。麦芽和酵母一起提供啤酒的风味和色泽,而且麦芽是作为可发酵的糖和酶的来源。麦芽是否用于酿造工艺取决于啤酒的类型和生产啤酒的国家。例如,在非洲国家没有使用麦芽的传统。
最近RC.Hoseney(谷类食物世界(Cereal Foods World),39(9),675-679,1994)描述了制备麦芽(malting)及酿造的一般工艺。制备麦芽是指大麦谷粒受控干燥之后的受控发芽的过程。谷粒转化为麦芽要通过连续的步骤:浸润,萌发,生长和干燥焙烤。在这方面,萌发步骤的重要性在于获得一系列能够改变胚乳的酶的表达。这种改变产生了可发酵的碳水化合物。
制备麦芽过程之后的干燥/加热步骤产生风味与色泽,这归因于非酶促的褐色化(美拉德)发应。
制备麦芽过程是啤酒生产工艺中一个非常复杂和花费大的步骤。可列举几个制备麦芽过程的不利方面:-   麦芽中酶的水平可变而导致不可预测的结果,-   萌发过程中并不是每个所需的酶活性都产生或产生足够量,这就需要添加酶,-   产生优质风味与色泽所需的条件可能对麦芽中的酶活性有害,-   其过程花费昂贵,-   萌发过程中有10-20%的重量损失,这是由于呼吸作用和小根的生长(小根在清洗麦芽时被除去),-   由于不利的气候条件并不是在任何所需的地方都可以生产麦芽,-   因为麦芽中存在的蛋白酶使蛋白质溶解,使用麦芽可导致胶体不稳定,-   产生生物胺类(食品科学杂志(J.Food Science)59(5),1104-1107,1994),从而导致例如组胺中毒。
传统上,麦芽是可发酵碳水化合物与酶的唯一来源,在很多国家至今仍然如此。但是,现在越来越多的啤酒生产使用其它来源的碳水化合物而非麦芽和/或大麦,即实际上任何淀粉原料或液化的/降解的淀粉,也即所谓的辅剂。由于麦芽不但作为可发酵碳水化合物的一个来源,而且是酶的一个来源,所以当用未发芽的大麦和/或辅剂代替超过大约50%的麦芽时应加入另外来源的酶。
制备麦芽时在风味和色泽与酶活性之间存在折衷。只有在相对高温下充分长的时间的烘烤才能生产出来提供高品质风味与深颜色的麦芽。这些都是对酶活性有害的条件。这样从好几个方面来看有必要添加外源的酶。在此问题上,有时使用微生物酶已成为一个普通的措施。例如,为了酿制啤酒,谷粒与/或发芽的谷粒被液化和糖化以产生可发酵的糖。通过使用由例如US4,285,975或US5,180,669所描述的热稳定的α-淀粉酶可改进液化步骤。同时使用蛋白酶来增加麦芽汁中自由可得的氮量而改进发酵。
除了淀粉以外,谷物谷粒中还存在其它多糖如β-葡聚糖(Henry,R.J.等.J.Sci.Food Agric.36 1243-1253,1985)。存在于麦芽中的β-葡聚糖酶在酿造过程中不够热稳定而无法保持活性。这些β-葡聚糖非常粘稠而使麦芽汁与啤酒产生过滤问题。这就是之所以在酿造过程中微生物的β-葡聚糖酶被广泛使用的原因。
非淀粉多糖也包括戊聚糖,最近它的结构已被广泛的研究(Gruppen,H.等,碳水化合物研究(Carbohydr,Res.)233,45-64,1992),尤其是那些在大麦与麦芽中的(Vietor,R.J.等,碳水化合物研究254,245-255,1994)。据称一种来自Penicillium emersonii的戊聚糖酶能在酿造过程中改进可发酵糖的生产与提取(GB2,150,933)。
也在WO94/14965中提到使用木聚糖酶B提高麦芽汁质量。
尽管在这一领域中已取得一些进展,仍需要用酶制剂酿造啤酒的方法。
                        发明概述
本发明公开了一种用于酒精性饮料如啤酒生产的工艺,其中加入了酶的混合物,该混合物至少包括一种内切-β(1,4)-木聚糖酶,一种阿拉伯呋喃糖苷酶,一种α-淀粉酶,一种内切蛋白酶和一种β-(1,3;1,4)-葡聚糖酶,任选地,也包括了一种糖化淀粉酶和/或一种外肽酶。优选地,以转基因种子的形式提供啤酒生产工艺中所需的酶。
本发明进一步公开了表达啤酒生产工艺中所需酶的转基因种子。
                         发明描述
我们现在已惊异地发现酿造工艺可在如权利要求的酶混合物存在下进行,而只用少量的麦芽。该过程已被用来生产一种经典的麦芽啤酒,但它同样可被用于任何以麦芽提供酶活性的工艺中。
所用的酶选自一些酿造工艺所必需的酶。它们选自淀粉裂解酶类、纤维素分解酶类、半纤维素分解酶类和蛋白质裂解酶类中。
淀粉裂解酶类包括一些酶如α-淀粉酶、糖化淀粉酶、淀粉葡萄糖苷糖、外切淀粉酶、支链淀粉酶。
纤维素分解酶类包括这样一些酶如β-1,4-内切葡聚糖酶、纤维二糖水解酶、β-葡葡糖苷酶。
半纤维素分解酶类包括这样一些酶如β-1,3-1,4-葡聚糖酶、木聚糖酶、内切阿拉伯糖胶酶(endo-arabinanase)、阿拉伯呋喃糖苷酶、阿拉伯木聚糖酶、阿拉伯半乳聚糖酶、阿魏酸酯酶。
蛋白质裂解酶类包括这样一些酶如外肽酶和内肽酶(也称蛋白酶)
在这个方面,选择一种特定的淀粉裂解酶、纤维素分解酶、半纤维素分解酶或蛋白裂解酶对于本发明并不关键。除此之外,酶的选择应使酶的特性(如pH和温度范围)与酿造工艺中特定的环境相符合。
大量编码淀粉裂解酶、纤维素分解酶、半纤维素分解酶和蛋白质裂解酶的基因对于熟练技术人员来说都是可获得的。编码目的酶的基因可以从任何来源,如植物、动物和微生物中获得。优选地,基因从微生物来源中获得。
内切β-(1,4)-木聚糖酶可从黑曲霉(Aspergillus niger)的培养物中获得(EP 0 463 706)。阿拉伯呋喃糖苷酶可以同工酶A或同工酶B(EP 0506190)或者阿拉伯木聚糖水解酶(EP 0 730 653)的形式从黑曲霉培养物中获得。热稳定的淀粉酶可从地衣芽孢杆菌(Bacillus licheniformis)(WO91/14772,WO92/05259)中得到,并且,例如,可依商品名Brewers AmyliqThermostable(B.A.T.S.)在市场上买到。热稳定淀粉酶的活性以TAU单位来表示。内切蛋白酶可从解淀粉芽孢杆菌(Bacillus amyloliquefaciens)中得到,并且也可依商品名Brewers protease(+)从市场上买到,它的活性以PC单位表示。从相同细菌中也可得到内切β-(1,3;1,4)-葡聚糖酶(Hofemeister等,基因(Gene)49,177,1996),它也可依商品名FiltraseL3000(+)从市场上买到。葡聚糖酶的活性以BGLU单位表示。任选的糖化淀粉酶同样可从市场上买到(商品名为Brewer Fermex来自米曲霉(Aspergillus oryzae)的淀粉酶,其活性以FAU单位表示),但它也可从Penicillium emersonii的纯培养物中得到(可获自ATCC(美国典型培养物保藏中心)保藏号为ATCC 16479)。任选的外肽酶可来自于酱油曲霉(Aspergillu sojae)的纯培养物,该菌株已于1996年2月12日保藏于真菌菌种保藏中心)(CBS),Oosterstraat 1,Baarn,荷兰,保藏号CBS209.96(A.Sojae(DS 8351)。
现在已知对啤酒生产必需的酶活性有,能将胚乳中淀粉转化为可发酵糖的α和β-淀粉酶,能将蛋白质降解为作为酵母营养的可溶性氮化合物的蛋白酶,和能将大麦β-1,3-1,4葡聚糖和木聚糖分别水解为寡糖从而减少粘度并提高可过滤性的β-葡聚糖酶和木聚糖酶。这样,若要从外源即微生物来源提供所有必需的酶,至少需加5种不同的酶。虽然可用一种微生物生产所有的酶,但需要采用不同的发酵条件以获得所有酶的最佳生产。
通过使用微生物来源的酶,可以克服前面提到的制备麦芽过程中的一些缺点。但是,使用微生物作为酶的来源也有它的缺点:-   要求至少一种微生物的一系列不同发酵反应以得到足够量的每种酶。-   酶制剂可能包含不需要的附带活性,-   消费者不喜欢除植物原料、水、酵母外的其它添加物,-   在室温下保存时,酶制剂的有限的稳定性。
在工业上的酶促工艺中酶含量提高的转基因种子的普遍使用在国际专利申请WO91/14772中已有描述。在工业生产过程中直接使用含有酶的种子避免了必须先提取和/或分离酶。种子可作为酶的一种稳定的易于贮存的形式。
对于一个特定的酶,β-1,3-1,4葡聚糖酶,其在大麦种子中的表达已被描述为外源性添加的另一种替代方法。
东德专利申请DD275704公开了一种表达载体的构建方法,其使芽孢杆菌的β-葡聚糖酶在大麦中进行种子特异性表达。但是,那时还不知道有效转化大麦的方法。使用表达芽孢杆菌β-葡聚糖酶的种子,可以更大量的谷粒取代麦芽而不产生严重的过滤问题,但是,在啤酒酿造工艺中必需的其它酶活性仍需从麦芽中获得或从外源添加。
Mannonen等(1993)建议在大麦种子中整合入真菌β-1,3-1,4-葡聚糖酶。用这种方法,通过在种子中表达β-1,3-1,4-葡聚糖酶改进酿造工艺,因为该酶有比内源性的大麦酶更高的热稳定性。但在这种情况中,目的是使种子经过正常的制备麦芽过程。而且在这种情况中,啤酒酿造工艺中必需的其它酶活性也仍需从麦芽中获得或从外源性添加。
在本发明的优选工艺中,酿造工艺中必需的酶在转基因种子中表达。如此制备的表达该必需酶的转基因种子反过来用于啤酒酿造工艺。这样,减少了麦芽的用量,而且避免了添加外源的微生物的酶。
表达啤酒酿制工艺中必需酶的转基因种子通用名为转基因麦芽种(MaltSeed)。
能够在其种子中产生目的酶的植物的种类包括,其谷粒或来自谷粒的产物有在啤酒酿制过程中被使用历史的种类。但是在啤酒酿造工艺中不常用到的植物种类也可被用作表达目的酶的转基因种子的来源,特别是在仅需加入少量该转基因种子到酿造工艺中的情况下。符合这些标准的植物种类有例如,大麦、玉米、水稻、小麦、高粱、小米、燕麦、木薯等。
编码目的酶的基因是通过使用在植物或植物种子中有功能的调控序列在植物中表达的。这些调控序列包括启动子序列、终止子序列和任选地,转录增强子序列。
使用启动子序列可导致在整个植物中基因的组成性表达。另外,可使用有指导基因在植物种子中表达的活性的启动子序列。
此外,目的酶的表达可被直接定向于特定细胞区间,如胞质溶胶、内质网、囊泡、蛋白体或者使用特异性靶向序列直接定向到细胞外空间。
特定的细胞区间或细胞外空间的选择取决于目的酶的性质并应选为产生该酶的最适环境。例如,目的酶应该表达在种子成熟过程中使该蛋白质最稳定的环境中。另外,目的酶应表达在这样一个环境中,其中酶的表达不会抑制必需的植物代谢过程或对植物或种子活力产生有害影响。
为了能够在植物细胞中得以表达,编码所选酶的DNA序列通常与调控序列一起提供以使其可被宿主的生化机制所识别并使开放阅读框在宿主中被转录和翻译。它通常包含一个转录起始区域,该区域可适当地来自任何能在植物细胞中表达的基因,它还应包含一个用于核糖体识别并附着的翻译起始区。在真核植物细胞中,这样一个表达盒通常还包括位于该阅读框下游的转录终止区域,以使转录终止并使初级转录产物多聚腺苷酸化。另外,还可调整密码子的使用使其成为所选宿主植物可接受的密码子。DNA构建体在植物细胞中表达的原则已普遍地被本领域熟练技术人员所理解并且可表达的嵌合DNA构建体的构建已成为常规实验。
一种特定类型的复制子能将它自身、或其自身的一部分转移到另一种宿主细胞中,例如植物细胞,籍此将根据本发明编码的酶的阅读框共转移到该植物细胞中。具有这种能力的复制子此处称为载体,这种载体的一个例子是Ti质粒载体,当其存在于一个适当宿主如根瘤土壤杆菌(Agrobacterium tumefaciens)中时,它可将自身的一部分即所谓的T-区域转移至植物细胞。不同类型的Ti质粒载体(参看:EP 0 116 718 B1)现在被常规地用于将嵌合DNA序列转移至植物细胞或原生质体中,以此可产生新的在其基因组中稳定整合入该嵌合DNA的植物。一种特定的优选的Ti质粒载体的形式是在(EP 0120516131和US 4,940,838)中要求的所谓的二元载体。
另一些可用来将根据本发明的DNA导入到植物宿主中的合适载体可从病毒载体中选择,例如非整合型植物载体,诸如来自双链植物病毒(如CaMV)和单链病毒、双生病毒群等。使用这种载体可能是有益的,特别是当难以稳定地转化植物宿主时(例如针对木本种类,特别是树)与藤本植物时。
“在其基因组中整合入根据本发明的嵌合DNA序列的宿主细胞”的意思应该包括细胞以及包含这种细胞或基本上由这种细胞组成的多细胞生物体,这些细胞在其基因组中稳定地整合有该嵌合DNA并籍此维持嵌合DNA,而且优选地通过有丝分裂与减数分裂将这种嵌合DNA的一个拷贝传给子代细胞。根据本发明的优选实施方案所提供的植物基本上由在其基因组中整合有一种或多种该嵌合DNA分子的细胞组成,并且能够优选地以孟德尔方式将一个或数个拷贝传给其子代。通过根据本发明的嵌合DNA分子的转录和翻译,这些细胞将产生所需的酶。虽然在植物细胞中控制DNA转录的原理并非总是完全清楚,创建能表达的嵌合DNA现在已是一个常规方法。常规地用于以组成性方式表达被转化的多聚核苷酸的转录起始区是这样一些启动子,它们可获自花椰菜花叶病毒、著名的35 SRNA和19S RNA的转录启动子和所谓的根瘤土壤杆菌的T-DAN启动子。特别要提到的是胭脂氨酸合成酶启动子、章鱼氨酸合成酶启动子(公开于EP 0 122 791 B1)和甘露氨酸合成酶启动子。另外可使用的基本上是组成性的植物启动子,诸如水稻肌动蛋白基因启动子。对于种子特异性表达,可将目的cDNA基因插于来自在植物种子中特异性表达基因的启动子之后。这些启动子包括编码种子贮存蛋白基因的启动子,如芸苔(Brassicanapus)十字花素(Cruciferin)启动子,菜豆(Phaseolus vulgaris)的菜豆蛋白启动子,水稻(Oryzae Sativa)的谷蛋白启动子,玉蜀黍(Zea mays)的玉米醇溶蛋白启动子和大麦(Hordeum vulgare)的大麦醇溶蛋白启动子。
人们还知道某些元件(所谓的增强子)的重复可显著地增强在它控制下的DNA的表达水平(参见例如:Kay R.等(1987),科学(Science)236,1299-1302:CaMV 35S启动子-343到-90之间序列的重复增强该启动子的活性)。除了组成性的35S启动子单独地或双重地增强外,高强度的启动子的例子还有光诱导的核酮糖二磷酸羧化酶小亚基(rbcSSU)启动子和叶绿素a/b结合蛋白(Cab)启动子。本发明同时设想的还有杂合启动子,它包含了物理上相连的不同启动子区域的元件。其中众所周知的例子是所谓CaMV增强的甘露氨酸合成酶启动子(美国专利5,106,739),它包含了连接于CaMV增强子的甘露氨酸合成酶启动子的元件。特别地,对于单子叶植物转化,启动子与选择性标志基因之间的内含子的使用可以增强表达。这样,名词“启动子”指结构基因上游的一个DNA区域,它参与识别和结合RNA聚合酶及其它蛋白质而起始转录。“植物启动子”是一种能在植物细胞中起始转录的启动子。“组成性启动子”是在发育或细胞分化过程中的多数环境条件与状态下有活性的启动子。
至于转录终止区域的必要性,一般认为在植物细胞中这样一个区域提高转录的可靠性和效率。因此在本发明的上下文中特别优选其应用。
虽然本发明的一些实施方案现在可能不可实行,例如因为某些植物种类仍然抗拒基因转化,但在这些植物种类中本发明的实施仅仅是一个时间问题而不是原则问题,因为对这种基因转化的顺从性与本发明的实施方案无关。
植物种类的转化对于很多植物而言已成常规方法,既包括双子叶植物也包括单子叶植物。原则上,任何转化方法都可以用来将根据本发明的嵌合DNA导入一种合适的祖细胞。可从下列方法中适当选择:用于原生质体的钙/聚乙二醇法(Krens,F.A.等,1982,自然296,72-74;NegrutiuI.等,1987年6月,植物分子生物学(Plant Mol.Biol.)8,363-373),原生质体的电穿孔方法(Shillito R.D.等,1985生物技术(Bio/Technol),3,1099-1102),显微注射到植物材料中(Crossway A.等,1986,Mol.Gen.Genet.202,179-185),(DNA或RNA包被的)颗粒轰击各种植物材料(Klein T.M.等1987,自然327,70),用(非整合型)病毒感染,在植物中通过成体植物浸润或成熟花粉或小孢子的转化等方法的根瘤土壤杆菌介导的基因转移(EP 0 301 316)。根据本发明的一个优选方法包含根瘤土壤杆菌介导的DNA转移。特别优选的是使用如在EPA 120 516和美国专利4,940,838中所公开的所谓的二元载体技术。
虽然认为单子叶植物有些更为抗拒基因转化,可顺应转化且有繁殖力的转基因单子叶植物能够从转化的细胞或胚或其它植物材料中再生。现在,单子叶植物转化的优选方法有胚、外植体或悬浮细胞的微粒轰击,和直接DNA摄取或(组织)电穿孔(Shimamoto,等,1989,自然338,274-276)。通过微粒轰击将吸水链霉菌(Streptomyces hygroscopicus)bar基因导入玉米悬浮培养物的胚胎发生细胞获得了转基因玉米植株。该基因编码膦丝菌素乙酰转移酶(一种灭活除草剂膦丝菌素的酶)(Gordon-Kamm,1990,植物细胞(Plant Cell),2,603-618)。将遗传材料导入其它单子叶作物如小麦和大麦的糊粉原生质体已有报导(Lee,1989,植物分子生物学,13,21-30)。通过选择胚胎发生的愈伤组织以建立胚胎发生悬浮培养物,从胚胎发生悬浮培养物中再生小麦株(Vasil,1990生物技术8,429-434)。对于这些作物的转化系统的组合使本发明用于单子叶植物成为可能。
单子叶植物,包括商业上重要的作物如水稻与玉米均易于通过土壤杆菌菌株介导进行DNA转移(参见WO 94/00977;EP 0 159 418 B1;Gould J.,Michael D,Hasegawa O,Ulian EC,Peterson G,Smith RH,(1991)植物生理(Plant Physiol.)95 426-434)。对于大麦,一个优选的转化方法已由Tingay,S.等所描述(植物杂志(The Plant J.)11(6),1369-1376,1997)。
为获得能组成性地表达多于一个嵌合基因的植物,有很多备选方法,包括下列方法:A.DNA的使用,如在一个二元质粒上的T-DNA,其带有物理上偶联于另一个选择标记基因的一些修饰过的基因。这种方法的优点在于嵌合基因是物理性地偶联的因而可作为一个孟德尔基因座转移。B.用来自一种包含一种或多种偶联在另一种选择标记基因上的嵌合基因的转基因植物的花粉对另一些转基因植物进行交叉授粉,其中该转基因植物都已能够表达一种或多种嵌合基因,并且该基因优选地与一种选择性标记基因偶联。通过这种杂交获得的种子,可依据两种选择标记的存在或依据嵌合基因本身的存在进行筛选。由所选的种子得到的植物以后可用于进一步杂交。原则上,这嵌合基因不在单一基因座上,因而这些基因可以独立的基因座分离。C.使用一些复数(plurality)嵌合DNA分子,例如质粒,每个都含一种或多种嵌合基因和一种选择标记。如果共转化的频率高,仅依据一种标记筛选就足够了。在另外一些情况下,优选的根据多种标记进行筛选。D.用新的嵌合DNA对已含有第一、第二(等)嵌合基因的转基因植物连续转化,任选地,包括了一种选择标记基因。与方法B中一样,嵌合基因原则上不在单一的基因座上,因而嵌合基因可以独立的基因座相互分离。E.上述策略的组合。
实际策略可能依赖于几种考虑,诸如亲代株的用途(直接生长、用于繁殖计划、用于生产杂合体),但相对于所描述的发明并不是关键的。
人们已经知道,实际上所有植物都可由培养的细胞或组织再生。再生的方法因植物种类不同而不同,但一般首先提供的是转化的原生质体的悬浮物或含有转化的外植体的培养平板。芽可直接诱导,或间接地从愈伤组织通过器官发生或胚胎发生进行诱导且随后生根。除选择标记外,培养其一般包含各种氨基酸和激素,比如生长素、细胞分裂素。培养基中加入谷氨酸与脯氨酸也有益处。有效的再生依赖于培养基、基因型和培养物的历史。如果控制这三个参数,通常可再现并重复再生。
将转化的基因序列稳定地整合入转基因植物后,由它们所赋予的特性可通过有性交配转移到其它植物中。可以使用许多标准的繁育技术中的任何一种,这依赖于所交配的种类。
在本发明的一个实施方案中,所用的转基因种子以这样一种方式制成,即它们产生单一的酶,以便灵活地产生具有所需的每种酶活性比例的酶混合物。在另一个实施方案中,在单独的转基因植物株系的种子中包含一种以上的酶活性。
含有目的酶的转基因种子可在酿造工艺的一个期望的阶段一起加入。另外,含有一种目的酶的转基因种子可一种一种地加,每种都在酿造工艺的所期望的时刻加入。
用本发明的工艺可产生一种高品质风味与色泽的麦芽,而无需处理麦芽中的酶活性。在本发明的工艺中可基本上绕过使用麦芽这一步。仅需少量麦芽以提供啤酒的风味与色泽。
含有所需酶的转基因种子,可以与谷粒的最适比例而使用,任选地,加入足够量的麦芽以提供风味与色泽。可事先将转基因种子与谷物和麦芽混合。或者,每种混合物、谷粒、转基因种子和麦芽可在啤酒酿制工艺的不同阶段被加入。
优选地,每种混合物、转基因种子、谷粒和麦芽、或转基因种子、谷粒和麦芽的混合物在加入酿造工艺之前先研磨。
转基因种子含平均水平的所需酶,其范围为种子重量的0.001-2.5%,优选地从0.01-1.0%,更优选地从0.05-0.25%。依赖于种子中的表达水平,仅仅部分或全部常规用于酿造工艺的种子被转基因种子取代。当达到高水平表达时,也可以加入不常用于酿造工艺的其它植物种类的转基因种子而对酿造混合物改变不多。
对于麦芽,与传统的麦芽相比优选地对部分麦芽进行特殊处理,其中在烘烤过程中麦芽被加热至产生最大量的色泽与风味化合物。经此处理剩余的酶活性可忽略不计。
在本发明中公开的种子中酶的表达提供了在酿造工艺中避免加入外源微生物酶的可能性。含有酶的转基因种子的制备成本大大低于用发酵方法生产酶的成本。此外,转基因种子更方便于使用,因为其提供了稳定的易于操作的酶的贮存形式并且易于处理。转基因种子的使用带来的成本下降和使用的方便性尤其与本发明的方法相关,因为克服了在啤酒酿制工艺中使用几种来自于数种微生物发酵的不同酶的要求。
本发明的工艺过程比使用麦芽作为酶来源的工艺过程更具可预见性,因为除了通过所导入的基因产生的酶外,转基因种子不含高水平的其它酶活性。而且,本发明的工艺过程比使用微生物酶的工艺过程更具可预见性,因为微生物酶制剂带有不确定的且水平变化的附带活性。
特别可应用本发明的领域之一是在禁止麦芽进口的非洲国家。在这种情况下酶可在高粱中表达,然后加到酿酒工艺中去。
除了在酒精性饮料酿造中的应用外,也可预见其它应用,其过程中转基因麦芽种可取代发芽的谷粒,磨场主使用发芽的大麦和/或小麦以标准化面粉的淀粉酶活性。也要在面粉中加入半纤维素酶(例如木聚糖酶)以提高用面粉做成的面团之气体保留能力。在面粉中加入或使用的酶也可用转基因麦芽种取代,它十分合适,因为酶可以无论如何都要用的谷粒的形式加入。同样在焙烤工艺中也可加入酶以取代很多在面团中用到的麦芽。改善焙烤工艺的酶有木聚糖酶、淀粉酶、阿拉伯呋喃糖苷酶、外肽酶。同样为了焙烤目的,来自黑曲霉的葡萄糖氧化酶也可在种子中表达。
                        实施例1
            内切β-1,4-木聚糖酶的活性测定
内切木聚糖酶从在无菌罐和培养基中的黑曲霉的纯培养物中获得。培养基含适当的碳源和氮源也含无机盐。发酵在30-40℃之间的恒温进行,并且pH维持在3-5的范围内。
测定酶活性是通过水解悬浮在1M pH2.75的甘氨酸缓冲液中的来自燕麦斯佩耳特小麦的木聚糖(35g/L)。在47℃用毛细管粘度计(Ubbelhode型)确定此溶液的粘度。在时间T内测定液体的上弯月面流经两个参照点的所需时间dt。以T对1/dt作图的斜率求出表观动力学常数。1 Lyx单位是该动力学常数每分钟达到1的值时所需的酶量。
                        实施例2
                  外肽酶的活性测定
培养生产菌株酱油曲霉(DS8351)。外肽酶活性以亮氨酸氨肽酶单位(Leu-A)表示:1Leu-A是在pH7.2和20℃时从L-亮氨酸-对硝基苯胺每分钟产生1μmol对硝基苯胺所需的酶量。测定如下进行:亮氨酸对硝基苯胺(SIGMA)以9mM浓度溶于水中。1ml该溶液与1.SmlpH7.2的0.1M磷酸盐缓冲液混合。在t=0时,加入0.Sml酶使其在20℃反应。15分钟后,加入1ml 1N HCl终止反应。空白的测定是在t=0时加入1N HCl根据400nm时空白值(OD空白)和测定值(OD测定)确定光密度。活性计算如下:
         (OD空白-OD测定)     4
  A=-------------------x----------      Leu-A/ml
             9.8×15         0.5
                         实施例3
              阿拉伯呋喃糖苷酶的活性测定
已从菌株黑曲霉或构巢曲霉(Aspergillus nidulans)培养物中获得了同工酶A或同工酶B或阿拉伯木聚糖水解酶。通过对-硝基苯代-α-L-阿拉伯呋喃糖苷的水解测定同工酶A和B的活性。1 ARF单位是在Gunata Z.等所描述的测定条件下(农业食物化学杂志(J.Agric Food.Chem.)38,772,1989),每分钟解离出1μmol对硝基苯酚所需的酶量。
                         实施例4
                  糖化淀粉酶的活性测定
糖化淀粉酶获自在无菌发酵罐和培养基中的Penicillium emersonii的纯培养物,该培养基包含适当的碳源和氮源以及无机盐。开始发酵后10-30小时(优选地24小时)向发酵罐中加入麦芽糖糊精。温度保持在40-50℃范围内(优选地45℃)并且pH保持在4.5-5.5的范围内(优选地5.0)。开始后40-55小时(优选地48小时)停止发酵。
根据BETAMYL实验测定糖化淀粉酶的活性,所需试剂等可购自MEGAZYME,爱尔兰。1 BTU是在pH6.2和40℃时从Megazyme的商品化底物产生1μmol对硝基苯酚所需的酶量。
                      实施例5
               用微生物酶制备麦芽汁
麦芽汁由粗制的大麦谷粒制备,大麦品种为PLAISANT。用EBCMIAG研磨机研磨大麦达到压滤器型颗粒测量仪的要求。57g所得研磨后的大麦悬浮于300ml温水(50℃)并且包含:650Lyx单位的内切-β-(1,4)-木聚糖酶850 ARF单位的阿拉伯呋喃糖苷酶18mg B.A.T.S.(热稳定的淀粉酶)6mg Brewers Protease(+)(内切蛋白酶)1mg Filtrase L3000(+)(β-(1,3;1,4)-葡聚糖酶
在50℃保温30分钟然后升到63℃(速率1℃/分钟);进一步在63℃保温30分钟然后升到72℃(速率1℃/分钟)并在此温度下保温30分钟。最终加热到76℃(速率1℃/分钟)并在此温度下保温5分钟。加水以补偿水的蒸发。然后将醪液倒入带有Schleicher和Schull滤纸的漏斗中。和任何酿酒厂一样,从过滤后的麦芽汁的密度确定产率;同时根据标准的EBC方法确定粘度与游离氨基酸(FAA)水平。
测定的产率是71.5%,粘度是2.52mPa.s,游离氨基酸是66mg/l。
                          实施例6
                     糖化淀粉酶的比较
从粗制的大麦谷粒制备麦芽汁,大麦品种是PLAISANT。在EBCMIAG研磨机中研磨大麦以达到压滤器型颗粒测量仪的要求。57g所得的研磨后大麦悬浮于300ml温水(50℃)中并且包含:650Lyx单位的内切-β-(1,4)-木聚糖酶850 ARF单位的阿拉伯呋喃糖苷酶18mg B.A.T.S.(热稳定的淀粉酶)6mg Brewers Protease(+)(内切蛋白酶)100 Leu-单位外肽酶1mg Filtrase L3000(+)(β-(1,3;1,4)-葡聚糖酶)根据表1将糖化酶加到酿造混合物中。
                   表1糖化酶的量
  酿造号     糖化酶
    1     无 0
    2     Brewer Fermex 510 FAU
    3     来自P.emersonii的淀粉酶 10 BTU
    4     Brewer Fermex+来自P.emersonii的淀粉酶 510 FAU+10 BTU
在50℃保温30分钟然后升温至63℃(速率1℃/分钟);进一步在63℃保温30分钟然后升至72℃(速率1℃/分钟),并在此温度保温30分钟。最终加热到76℃(速率1℃/分钟)并在此温度下保温5分钟。加水以补偿水分蒸发。然后将醪液加到含Schleicher和Schull滤纸的漏斗中。和任何酿酒厂一样,从过滤后麦芽汁的密度确定产率;同时根据标准EBC方法确定粘度与游离氨基酸(FAA)水平。
表2中列出的所测定的产率、粘度和FAA的结果显示用Penicillumemersonii的糖化酶作为Brewers Fermex取代物后的效果,而不能从两种酶同时用预期到真正的协同作用。尤其令人惊奇的是在增加FAA和减少粘度方面,Penicillum emersonii的淀粉酶有很强的正效应。表2:结果
  酿造号   产率(名) 粘度(mPa.s)   FAA(12 Plato)(mg/l)
    1     71.2     3.12     116
    2     74.6     2.73     114
    3     78.2     1.99     153
    4     79.6     1.99     152
                          实施例7
        构建含有一个种子特异性表达盒的二元载体
使用Oryza Sativa谷蛋白贮存蛋白的序列以获得种子特异性表达,用这样的方法构建了一个表达构建体(Zheng等,植物生理(1995)109;77-786)。这些序列可被来自相似地种子特异性基因的那些序列取代以达到与本发明的目标相同的目的。
为构建种子特异性表达的表达构建体,来自Oryza Sativa的谷蛋白(Gtl)基因启动子和终止子序列用PCR技术合成,其中以基因组克隆Gtl(Okita等,生物化学杂志(J.Biol.Chem.)264,12573-12581,1989)作为模板。该基因表现种子特异性表达且它的编码及侧翼序列已被确定(EMBL,Gen Bank核苷酸序列资料库,保藏号D 00584))。合成了两组寡核苷酸。一组可扩增包含Gtl 5′侧翼区域编码一个XhoI/SphI片段的2.4kb片段。
     5′Gt1.1       5′  GCACAATTCTCGAGGAGACCG  3′
     5′Gt1.2       5′  ATGGATGGCATGCTGTTGTAG  3′另一组扩增3′侧翼序列作为一个BamHI/EcoRI片段(725bp)
     3′Gt1.3       5′  CCTCTTAAGGATCCAATGCGG  3′
     3′Gt1.4       5    CTTATCTGAATTCGGAAGCTC  3′设计寡核苷酸使其在末端包含适当的限制性酶切位点以便用限制酶消化该片段后直接组装表达构建体。根据发明混合物中的酶的基因可从下列文献中获得,内切木聚糖酶(分子微生物学(Mol.Mcrobol.)12,479-490,1994),阿拉伯呋喃糖苷酶同工酶A和同工酶B(EP 0 506 190),来源于地衣芽孢杆菌的淀粉酶(EP 0 449 376),来源于解淀粉芽孢杆菌的蛋白酶(细菌学杂志(J.Bact.)159,81l-819)和来源于解淀粉芽孢杆菌的葡聚糖酶(基因49,177-187,1986)。来源于青霉属的糖化淀粉酶和来源于酱油曲霉的外肽酶的基因很容易由本领域中熟练的技术人员根据本描述从所示培养物所得纯酶中阐明。优化编码表达于种子中的酶基因密码子的使用以适于在单子叶植物中表达。为此合成了整个基因,为了克隆目的在ATG起始密码子处引入BspHI位点,在TAA终止密码子的下游处引入BamHI位点。
包含Gtl 5′侧翼区域的2.4kb PCR产物用XhoI/SphI消化并克隆入用XhoI/SphI线性化的pSL1180载体。所得载体用SphI/BamHI线性化,并作为一个载体,与合成的酶编码基因和任选地一个编码靶向信号的寡核苷酸双螺旋进行三重连接(three-way ligation)。靶向可指向囊泡、质外体、造粉质体或(带有例如一个KDEL-保留信号)内质网。
从该载体分离了一个片段,包含Gtl谷蛋白启动子,任选的信号序列和合成基因的融合体。该片段与包含被BamHI/EcoRI消化的Gtl的3′终止子序列的725bp PCR产物以三重连接方式克隆于二元载体pMOG22(在大肠杆菌K-12菌株DH5α中,于1990年1月29日保藏于真菌菌种保藏中心,保藏号CBS101.90)
                           实施例8
  包含在种子特异性表达盒内切木聚糖酶基因二元载体的构建
取自黑曲霉的内切木聚糖酶基因按照大麦中密码子的使用被优化。所得DNA序列描述于SEQ ID NO:1。为了表达内切木聚糖酶基因,通过寡核苷酸双螺旋完成胞外定向:PRS.1    5′      AACTTCCTCAAGAGCTTCCCCTTTTATGCCTTCCTTTGTTTTGGCCAATACTTTGTAGCTGTTACGCATGC    3′PRS.2    3′GTACTTGAAGGAGTTCTCGAAGGGGAAAATACGGAAGGAAACAAAACCGGTTATGAAACATCGACAATGCGTACGGTACC 5′其编码烟草PR-S蛋白质的信号肽,而且为了进行三重连接,使用了被BspHI/BamHI消化的合成木聚糖酶基因。
从该载体中分离了一个3.1kb的XhoI/BamHI片段,包含Gtl谷蛋白启动子,PR-S信号序列和合成的木聚糖酶基因的融合体。该片段与包含用BamHI/EcoRI消化的Gtl 3′终止子序列的725bp PCR产物以三重连接方式克隆到二元载体pMOG22中。所得载体命名为pMOG1265。
                    实施例9
                    大麦转化
使用根瘤土壤杆菌转化未成熟的Hordeum vulgare cv.GoldenPromise的胚的方法通常如Tingay,S.等,植物杂志11(6),1369-1376,1997所描述。简要地,其方法如下:
提供起始材料的供体植物在人工气候室中生长,条件为10-20℃,光照时间16小时,10,000-30,000lux和50-95%RH。于传粉后的10-15天收获未成熟种子并且在漂白溶液中消毒20-40分钟。未成熟胚从初期的颖果中切下并用手术刀片去除胚轴。外植体盾片面朝上置于愈伤组织诱导培养基中,在暗处于24℃温育一段长为从16小时到7天的时间。
胚浸没在大约每毫升0.1-10×109个细菌的土壤杆菌悬浮液中5到20分钟,其中该土壤杆菌含有包含编码所选酶的DNA的构建体,然后转移到愈伤组织诱导培养基中。随即,胚在暗处于24℃温育2到3天。共培养后,胚转移至含抗生素的愈伤组织诱导培养基中以杀死土壤杆菌,并直接与选择剂一起开始转基因细胞的筛选过程。筛选过程进行长达8周。转移抗性胚胎发生愈伤组织种系到再生培养基,在24℃以不断增加的光密度(500到3000Lux)温育,光照时间为16小时。再生小植株被移至加或不加选择剂的无激素或含高浓度细胞激动素的愈伤组织诱导培养基中。当根系发育后,小植株被移至土壤中并以自花传粉长至成熟。
                       实施例10进行了三个完整的试点酿造试验。两个酿造试验组以大大减少的麦芽量(生原料的20%)进行,而对照组中的麦芽量正常(见表3)。两个酿造试验组中,研磨和过滤技术不同(见表3)。所有酿造的酿造图如图1所示。表3:生原料的组成、过滤与研磨
对照组 酿造试验组1 酿造试验组2
Pils麦芽 75% 20% 20%
玉米粗辗粉 25% 25% 25%
未发芽的大麦 - 55% 55%
过滤器 Lautertun Lautertun Meura 20001
研磨 圆筒 圆筒
对于对照组混合物,8%的麦芽和玉米粗辗粉一起加入糊化器,另67%的麦芽加入转化器。对于酿造试验组,8%的未发芽大麦与玉米粗辗粉一起加入糊化器。另47%未发芽大麦和麦芽一起加入转化器。表4:每100kg生原料中加入的酶的编号及量
  酶编号     酶 糊化器   转化器
    1     内切-β(1,4)-木聚糖酶 117,000Lyx
    2     阿拉伯呋喃糖苷酶 112,500ARF
    3     B.A.T.S. 16.5g
    4     Brewers Fermex 75g
    5     Brewers Protease(+) 75g
    6     外肽酶 -
    7     Filtrase L 3000(+) 23g
酶1、2、4、5和7加到转化器中,而酶3加到糊化器中(加入的酶编号及量见表4)
酿造试验组与对照组中麦芽汁加工结果(淀粉糖化和过滤)类似。在酿造厂中两个酿造试验组有类似表现。酿造试验组生产出非常相似的麦芽汁,表明过滤与研磨中的不同并不重要。从实验与对照组的啤酒的味道对比来看,认为所有三种啤酒有十分类似的味道。与对照组相比,发现酿造试验组有更强的口感。这可能是由于分析麦芽汁时发现的更高水平的糊精造成的。与对照组相比,酿造试验组的麦芽汁中的氨基酸水平较低,虽然可接受。氨基酸水平可通过加入外肽酶而增高(见实施例11)。酿造试验组的啤酒被品尝人员定级为与皮尔森型(pilsener)啤酒一样好,表明用酶混合物部分代替麦芽生产出的啤酒比得上用在酿造工业中常用的麦芽量生产出的啤酒。
                       实施例11
进行了两个完整的试点酿造试验。酿造试验组用减少的麦芽量进行而对照组用正常量的麦芽进行(见表5)。在Lautertun上进行过滤。酿造试验组和对照组的酿造图参见图2。表5:生原料组成
    对照组     酿造试验组1
  Pils麦芽     75%     20%
  玉米粗辗粉     25%     25%
  未发芽的大麦     -     55%
对于对照混合物,8%的麦芽与玉米粗辗粉一起加入到糊化器中,另67%麦芽加到转化器中。对于酿造试验组8%未发芽的大麦与玉米糊辗粉一起加到糊化器中,另47%未发芽大麦与麦芽一起加到转化器中。
在酿造试验组中,酶1-7加到转化器中,而酶3也加到糊化器的内容物中(所用酶的编号和量参见表6)
酿造试验组与对照组中麦芽汁加工结果(淀粉糖化和过滤)类似。酿造试验组与对照组的麦芽汁中游离氨基酸氮含量类似。酿造试验组生产出的啤酒通过品尝被认为有与对照组十分类似的味道。酿造试验组的啤酒被品尝人员定级为与皮尔森型啤酒一样好,表明用酶混合物部分代替麦芽生产出的啤酒比得上用在酿造工业中常用的麦芽量生产出的啤酒。表6:在酿造试验组中每100kg生原料中加入的酶的编号和量
  酶编号     酶  糊化器   转化器
    1 内切-β(1,4)-木聚糖酶 117,000Lyx
    2 阿拉伯呋喃糖苷酶 112,500ARF
    3 B.A.T.S. 16.5g 33.5g
    4 Brewers Fermex 75g
    5 Brewers Protease(+) 75g
    6 外肽酶 105,000LeuA
    7 Filtrase L 3000(+) 23g
                        实施例12
来自7个株系的转基因大麦谷粒,每种各表达表9所示的一种酶,将其以这样的量混合以制成转基因麦芽种,当它以粗大麦的10%混和时,提供如表9所示的酶活性。转基因麦芽种制剂与非转基因大麦一起混和且被研磨,共占酿造试验中生原料的55%。酿造试验组中糊化器与转化器中的生原料组分如表8所示。对于对照组混合物,8%的麦芽与玉米粗辗粉一起加到糊化器中。生原料的剩余部分用于转化器中。在转化器和糊化器中,转基因麦芽种的分布产生的酶活性如表10所示。
进行两个酿造试验。酿造试验组以减少的麦芽量进行而对照组以正常量的麦芽进行(见表7)。过于酿造试验组使用了较高的糖化温度(见表7)。在Lautertun上进行过滤。对照组和酿造试验组的酿造图见图2。表7:生原料的组分
  对照组   酿造试验组1
Pils麦芽     75%     20%
玉米粗辗粉     25%     25%
未发芽的大麦+转基因麦芽种     -     55%
表8:酿造试验组中每100kg总量中生原料的组成
    生原料     糊化器(kg)     转化器(kg)
麦芽     20
未发芽的大麦     7.2     42.3
转基因麦芽种     0.8     4.7
玉米粗辗粉     25
总量(kg)     33     67
酿造试验组与对照组的麦芽汁加工结果(淀粉糖化和过滤)相似。通过品尝,认为酿造试验组生产出来的啤酒有与对照组相似的味道。通过品尝,酿造试验组被定级为经典的麦芽啤酒,表明麦芽可(部分地)被由表达这些酶的转基因种子表达的酶代替。表9:在酿造实验1中通过加入转基因麦芽种而加入的酶活性的量(单位每100kg生原料)
  酶编号           酶   糊化器     转化器
    1  内切-β(1,4)-木聚糖酶 19,915Lyx  117,000Lyx
    2  阿拉伯呋喃糖苷酶 19,149ARF  112,500ARF
    3  B.A.T.S. 107,250TAU  630,097TAU
    4  Brewers Fermex 57,872FAU  340,000FAU
    5  Brewers Protease(+) 115,745PC  680,000PC
    6  外肽酶 17,872Leu-A  105,000Leu-A
    7  Filtrase L 3000(+) 11,701BGLU  68,075BGLU
                        序列表(1)一般信息(i)申请人:
(A)姓名:MOGEN International nv
(B)街道:Einstei1weg 97
(C)城市:Leiden
(E)国家:荷兰
(F)邮政编码(ZIP):2333 CB
(G)电话:31-(0)71-5258282
(H)传真:31-(0)71-5221471
(A)姓名:Gist-brocades N.V.
(B)街道:Postbus 1
(C)城市:Delft
(E)国家:荷兰
(F)邮政编码(ZIP):2600 MA
(G)电话:31-(0)15-2799111
(H)传真:31-(0)15-2793957(ii)发明名称:使用转基因麦芽种生产酒精性饮料的改进工艺(iii)序列数目:8(iv)计算机可读信息:
(A)介质类型:软盘
(B)计算机:IBM PC兼容机
(C)操作系统:PC-DOS/MS-DOS
(D)软件:PatentIn Release#1.0,Version#1.25(EPO)(vi)在先申请数据:
(A)申请号:EP 96202195.2
(B)递交日:1996年8月5日(2)SEQ ID NO:1的信息:(i)序列特征:
(A)长度:558个碱基对
(B)类型:核酸
(C)链型:双链
(D)拓扑类型:线性(ii)分子类型:cDNA(iii)假设:非(iii)反义:非(ix)特征:
(A)名称/关键词:CDS
(B)位置:1..558
(D)其它信息:/产物=“成熟蛋白质”(xi)SEQ ID NO:1的序列描述:ATG AGC GCG GGA ATC AAC TAC GTC CAG AAC TAC AAT GGC AAC CTC GGC           48Met Ser Ala Gly Ile Asn Tyr Val Gln Asn Tyr Asn Gly Asn Leu Gly1               5                  10                  15GAC TTT ACT TAC GAC GAG TCA GCG GGA ACT TTC AGC ATG TAT TGG GAG           96Asp Phe Thr Tyr Asp Glu Ser Ala Gly Thr Phe Ser Met Tyr Trp Glu
         20                  25                  30GAT GGC GTG TCC TCA GAC TTC GTC GTG GGA CTG GGC TGG ACC ACT GGA          144Asp Gly Val Ser Ser Asp Phe Val Val Gly Leu Gly Trp Thr Thr Gly
     35                  40                  45TCA TCC AAT GCG ATC ACC TAC AGC GCC GAG TAC TCC GCG TCA GGA TCA          192Ser Ser Asn Ala Ile Thr Tyr Ser Ala Glu Tyr Ser Ala Ser Gly Ser
 50                  55                  60GCC TCC TAT CTG GCC GTG TAC GGA TGG GTG AAC TAC CCG CAG GCC GAG          240Ala Ser Tyr Leu Ala Val Tyr Gly Trp Val Asn Tyr Pro Gln Ala Glu65                  70                  75                  80TAC TAC ATC GTG GAG GAT TAC GGA GAT TAC AAC CCA TGC AGC TCA GCG          288Tyr Tyr Ile Val Glu Asp Tyr Gly Asp Tyr Asn Pro Cys Ser Ser Ala
             85                  90                  95ACC TCC CTC GGA ACT GTG TAC AGC GAC GGC TCC ACC TAC CAG GTC TGC          336Thr Ser Leu Gly Thr Val Tyr Ser Asp Gly Ser Thr Tyr Gln Val Cys
        100                 105                 110ACC GAC ACC CGC ACT AAC GAG CCG TCA ATC ACC GGC ACT TCC ACC TTC          384Thr Asp Thr Arg Thr Asn Glu Pro Ser Ile Thr Gly Thr Ser Thr Phe
    115                 120                 125ACC CAG TAC TTC AGC GTG CGC GAG TCC ACT CGC ACC TCA GGA ACC GTG        432Thr Gln Tyr Phe Ser Val Arg Glu Ser Thr Arg Thr Ser Gly Thr Val
130                 135                 140ACC GTC GCG AAC CAC TTC AAC TTC TGG GCG CAG CAC GGA TTC GGC AAC        480Thr Val Ala Asn His Phe Asn Phe Trp Ala Gln His Gly Phe Gly Asn145                 150                 155                 160AGC GAC TTT AAC TAC CAG GTG GTC GCA GTG GAG GCA TGG TCA GGA GCG        528Ser Asp Phe Asn Tyr Gln Val Val Ala Val Glu Ala Trp Ser Gly Ala
            165                 170                 175GGC TCA GCG TCC GTC ACT ATC AGC TCC TG                                 558Gly Ser Ala Ser Val Thr Ile Ser Ser
        180                 185(2)SEQ ID NO:2的信息:(i)序列特征:
(A)长度:185个氨基酸
(B)类型:氨基酸
(D)拓扑类型:线性(ii)分子类型:蛋白质(xi)SEQ ID NO:2的序列描述:Met Ser Ala Gly Ile Asn Tyr Val Gln Asn Tyr Asn Gly Asn Leu Gly1               5                  10                  15Asp Phe Thr Tyr Asp Glu Ser Ala Gly Thr Phe Ser Met Tyr Trp Glu
         20                  25                  30Asp Gly Val Ser Ser Asp Phe Val Val Gly Leu Gly Trp Thr Thr Gly
     35                  40                  45Ser Ser Asn Ala Ile Thr Tyr Ser Ala Glu Tyr Ser Ala Ser Gly Ser
 50                  55                  60Ala Ser Tyr Leu Ala Val Tyr Gly Trp Val Asn Tyr Pro Gln Ala Glu65                  70                  75                  80Tyr Tyr Ile Val Glu Asp Tyr Gly Asp Tyr Asn Pro Cys Ser Ser Ala
             85                  90                  95Thr Ser Leu Gly Thr Val Tyr Ser Asp Gly Ser Thr Tyr Gln Val Cys
        100                 105                 110Thr Asp Thr Arg Thr Asn Glu Pro Ser Ile Thr Gly Thr Ser Thr Phe
    115                 120                 125Thr Gln Tyr Phe Ser Val Arg Glu Ser Thr Arg Thr Ser Gly Thr Val
130                 135                 140Thr Val Ala Asn His Phe Asn Phe Trp Ala Gln His Gly Phe Gly Asn145                 150                 155                 160Ser Asp Phe Asn Tyr Gln Val Val Ala Val Glu Ala Trp Ser Gly Ala
            165                 170                 175Gly Ser Ala Ser Val Thr Ile Ser Ser
        180                 185(2)SEQ ID NO:3的信息:(i)序列特征:
(A)长度:71个碱基对
(B)类型:核酸
(C)链型:单链
(D)拓扑类型:线性(ii)分子类型:cDNA(iii)假设:非(iii)反义:非(vi)初始来源:
(A)生物:Nicotiana tabacum(xi)SEQ ID NO:3的序列描述:AACTTCCTCA AGAGCTTCCC CTTTTATGCC TTCCTTTGTT TTGGCCAATA CTTTGTAGCT    60GTTACGCATG C                                                         71(2)SEQ ID NO:4的信息:(i)序列特征:
(A)长度:80个碱基对
(B)类型:核酸
(C)链型:单链
(D)拓扑类型:线性(ii)分子类型:cDNA(iii)假设:非(iii)反义:是(xi)SEQ ID NO:4的序列描述:CCATGGCATG CGTAACAGCT ACAAAGTATT GGCCAAAACA AAGGAAGGCA TAAAAGGGGA    60AGCTCTTGAG GAAGTTCATG                                                80(2)SEQ ID NO:5的信息:(i)序列特征:
(A)长度:21个碱基对
(B)类型:核酸
(C)链型:单链
(D)拓扑类型:线性(ii)分子类型:cDNA(iii)假设:非(iii)反义:非(xi)SEQ ID NO:5的序列描述:ATGGATGGCA TGCTGTTGTA G                                            21(2)SEQ ID NO:6的信息:(i)序列特征:
(A)长度:21个碱基对
(B)类型:核酸
(C)链型:单链
(D)拓扑类型:线性(ii)分子类型:cDNA(iii)假设:非(iii)反义:非(xi)SEQ ID NO:6的序列描述:GCACAATTCT CGAGGAGACC G                                            21(2)SEQ ID NO:7的信息:(i)序列特征:
(A)长度:21个碱基对
(B)类型:核酸
(C)链型:单链
(D)拓扑类型:线性(ii)分子类型:cDNA(iii)假设:非(iii)反义:非(xi)SEQ ID NO:7的序列描述:CCTCTTAAGG ATCCAATGCG G                                            21(2)SEQ ID NO:8的信息:(i)序列特征:
(A)长度:21个碱基对
(B)类型:核酸
(C)链型:单链
(D)拓扑类型:线性(ii)分子类型:cDNA(iii)假设:非(iii)反义:非(xi)SEQ ID NO:8的序列描述:CTTATCTGAA TTCGGAAGCT C                                              21

Claims (10)

1.一种用于酒精性饮料生产的工艺,其中加入了一种酶混合物,该混合物含有至少一种内切β(1,4)-木聚糖酶、一种阿拉伯呋喃糖苷酶、一种α-淀粉酶、一种内切蛋白酶和一种β-(1,3;1,4)-葡聚糖酶。
2.一种如权利要求1的工艺,其中的混合物也包含一种糖化淀粉酶。
3.一种如权利要求1或2的工艺,其中的混合物也包含一种外肽酶。
4.一种如权利要求1至3中任一项的工艺,其特征在于该酒精性饮料是啤酒。
5.一种如权利要求1至4中任一项的工艺,其特征在于每一种所述的酶由单独的转基因植物株系的种子提供。
6.一种如权利要求1至4中任一项的工艺,其特征在于超过一种的酶由单独的转基因植物株系的种子提供。
7.一种如权利要求1至6中任一项的工艺,其特征在于至少一种酶由单独的植物株系的种子提供。
8.一种如权利要求5至7中任一项的工艺,其特征在于该转基因植物株系是大麦植物株系。
9.用于酒精性饮料生产的转基因种子,其表达该饮料生产工艺中必需的酶。
10.如权利要求9的转基因种子,其表达选自如下的酶:α-淀粉酶、内切-β-1,4-木聚糖酶、β-1,3-1,4-葡聚糖酶、内切蛋白酶、阿拉伯呋喃糖苷酶、糖化淀粉酶和外肽酶。
CN97197918A 1996-08-05 1997-07-23 使用转基因麦芽种生产酒精性饮料的改进工艺 Pending CN1230225A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP96202195 1996-08-05
EP96202195.2 1996-08-05

Publications (1)

Publication Number Publication Date
CN1230225A true CN1230225A (zh) 1999-09-29

Family

ID=8224258

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97197918A Pending CN1230225A (zh) 1996-08-05 1997-07-23 使用转基因麦芽种生产酒精性饮料的改进工艺

Country Status (12)

Country Link
US (3) US6361808B1 (zh)
EP (1) EP0915985A1 (zh)
JP (1) JP2000515381A (zh)
CN (1) CN1230225A (zh)
AU (1) AU720139B2 (zh)
BG (1) BG64681B1 (zh)
BR (1) BR9711620A (zh)
CA (1) CA2262436A1 (zh)
CZ (1) CZ296732B6 (zh)
MX (1) MXPA99001239A (zh)
PL (1) PL191456B1 (zh)
WO (1) WO1998005788A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730735B (zh) * 2007-02-14 2012-12-19 福杰依阿股份有限公司 啤酒中的阿糖基木寡糖
CN102220192B (zh) * 2003-12-19 2013-04-17 诺维信公司 糖化工艺
CN109068692A (zh) * 2016-05-02 2018-12-21 嘉士伯酿酒有限公司 含有大麦β-葡聚糖的饮料
CN110603314A (zh) * 2017-05-09 2019-12-20 三得利控股株式会社 糖化液、糖化液的制造方法、饮食品、威士忌用蒸馏液及威士忌

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7033627B2 (en) * 1990-03-23 2006-04-25 Syngenta Mogen B.V. Production of enzymes in seeds and their use
ES2234119T3 (es) * 1997-04-30 2005-06-16 K.U. LEUVEN RESEARCH & DEVELOPMENT Inhibidores de enzimas celuloliticas, xilanoliticas y beta-glucanoliticas.
EP0979830A1 (en) * 1998-08-12 2000-02-16 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno A novel class of xylanase inhibitors
WO2001059141A2 (en) * 2000-02-10 2001-08-16 Washington State University Research Foundation Methods and compositions that utilize barley as a foodstuff for animals
US7417178B2 (en) 2000-05-02 2008-08-26 Ventria Bioscience Expression of human milk proteins in transgenic plants
US20030172403A1 (en) 2000-05-02 2003-09-11 Ning Huang Plant transcription factors and enhanced gene expression
US6991824B2 (en) 2000-05-02 2006-01-31 Ventria Bioscience Expression of human milk proteins in transgenic plants
AU7242200A (en) * 2000-06-12 2001-12-13 Academia Sinica Protein production in transgenic plant seeds
US20030091691A1 (en) * 2000-06-23 2003-05-15 Olsen Hans Sejr Stepping process
WO2002066673A1 (fr) * 2001-02-19 2002-08-29 Kirin Beer Kabushiki Kaisha Technique de preparation de levure destinee a un essai de fermentation
US20040115779A1 (en) * 2002-03-19 2004-06-17 Olsen Hans Sejr Fermentation process
US7008652B2 (en) * 2002-06-14 2006-03-07 Brown-Forman Corporation Method for production of a flavorless malt base
AU2005211178B2 (en) * 2004-01-30 2010-05-20 Dsm Ip Assets B.V. Carboxypeptidase for cheese ripening
EP1812547A1 (en) * 2004-06-03 2007-08-01 Novozymes A/S Mashing process and enzyme composition useful therein
US20080028486A1 (en) * 2004-07-07 2008-01-31 Commonwealth Scientific And Industrial Research Organisation Aluminium Tolerant Barley
GB2418431A (en) * 2004-09-27 2006-03-29 Multigerm Uk Entpr Ltd Metabolically active micro organisms and methods for their production
JP2006288379A (ja) * 2005-03-18 2006-10-26 Suntory Ltd 分画したコーンを用いた発酵飲料
US20090068309A1 (en) * 2006-03-06 2009-03-12 Lakefront Brewery, Inc. Gluten-free beer and method for making the same
JP4627296B2 (ja) * 2006-10-27 2011-02-09 キリンホールディングス株式会社 発酵麦芽飲料製造用麦汁の製造方法
EP2317966B1 (en) 2008-07-23 2019-10-23 Atreo Medical, Inc. Cpr assist device for measuring compression parameters during cardiopulmonary resuscitation
JP5658489B2 (ja) * 2010-06-16 2015-01-28 アサヒビール株式会社 発酵麦芽飲料の製造方法
CN103814129A (zh) * 2011-09-14 2014-05-21 杜邦营养生物科学有限公司 包含具有内切–1,4–β–木聚糖酶活性的酶和具有内切–1,3(4)–β葡聚糖酶活性的酶的组合物
EP2847316A1 (en) * 2012-05-11 2015-03-18 Novozymes A/S A brewing method
US20150366238A1 (en) * 2013-02-21 2015-12-24 Direvo Industrial Biotechnology Gmbh Prebiotic animal feed product
WO2015032850A1 (en) * 2013-09-05 2015-03-12 Novozymes A/S Method for production of brewers wort
CN111787788B (zh) * 2017-12-28 2024-03-19 嘉士伯有限公司 具有改善的细胞壁性质的谷类植物
JP2020061988A (ja) * 2018-10-18 2020-04-23 サッポロビール株式会社 ビールテイスト飲料の製造方法及びビールテイスト飲料の香味向上方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE275704C (zh)
CA961432A (en) * 1969-07-08 1975-01-21 Martin F. Walmsley Process for making a brewers' wort and beer derived therefrom
CH572519A5 (zh) * 1972-10-25 1976-02-13 Ciba Geigy Ag
US4285975A (en) * 1980-01-29 1981-08-25 Miles Laboratories, Inc. Production of brewer's wort
ZA821071B (en) 1981-03-03 1983-01-26 Flogates Ltd Improvements in the pouring of molten metals
JPS57152888A (en) * 1981-03-14 1982-09-21 Mitsui Eng & Shipbuild Co Ltd Alcoholic fermentation of raw potato by enzymatic process
BE901138A (fr) * 1983-11-28 1985-05-28 Glaxo Group Ltd Enzyme et composition d'enzymes degradant les pentosanes, leurs procedes d'obtention et d'application.
CA1280704C (en) * 1985-12-03 1991-02-26 Paul Ducroo Production of beer
US5487989A (en) 1988-08-31 1996-01-30 Bioenergy International, L.C. Ethanol production by recombinant hosts
DD275704A1 (de) * 1988-09-23 1990-01-31 Akad Wissenschaften Ddr Verfahren zur herstellung von gerstenpflanzen
EP0458846B1 (en) 1989-02-16 1996-10-02 Carlsberg A/S A thermostable (1,3-1,4)-beta-glucanase
IL97645A (en) * 1990-03-23 1997-03-18 Gist Brocades Nv Production of enzymes in seeds and their use
IE913215A1 (en) * 1990-09-13 1992-02-25 Gist Brocades Nv Transgenic plants having a modified carbohydrate content
US5180669A (en) * 1991-03-27 1993-01-19 Genencor International, Inc. Liquefaction of granular-starch slurries using alpha-amylase in the presence of carbonate ion
WO1994014965A1 (en) * 1992-12-24 1994-07-07 Gist-Brocades N.V. Cloning and expression of xylanase b
US5866526A (en) * 1993-10-04 1999-02-02 Novo Nordisk A/S Enzyme preparation comprising a modified enzyme
US5849559A (en) * 1994-08-26 1998-12-15 Gist-Brocades, B.V. Arabinoxylan degrading enzymes
US6265000B1 (en) * 1994-10-20 2001-07-24 Hokkaido Wine Co, Ltd Process for the production of carbonated alcoholic beverages using koji, malt, and various fermentation media
GB9505479D0 (en) * 1995-03-17 1995-05-03 Danisco Enzyme
ATE222950T1 (de) 1996-05-03 2002-09-15 Dsm Nv Verfahren zur herstellung von würze mit verbesserter filtrierbarkeit und/oder erhöhter ausbeute

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220192B (zh) * 2003-12-19 2013-04-17 诺维信公司 糖化工艺
CN102220191B (zh) * 2003-12-19 2014-05-21 诺维信公司 糖化工艺
CN101730735B (zh) * 2007-02-14 2012-12-19 福杰依阿股份有限公司 啤酒中的阿糖基木寡糖
CN109068692A (zh) * 2016-05-02 2018-12-21 嘉士伯酿酒有限公司 含有大麦β-葡聚糖的饮料
CN109068692B (zh) * 2016-05-02 2022-09-27 嘉士伯酿酒有限公司 含有大麦β-葡聚糖的饮料
CN110603314A (zh) * 2017-05-09 2019-12-20 三得利控股株式会社 糖化液、糖化液的制造方法、饮食品、威士忌用蒸馏液及威士忌

Also Published As

Publication number Publication date
BR9711620A (pt) 2001-11-20
US20050095315A1 (en) 2005-05-05
PL331493A1 (en) 1999-07-19
JP2000515381A (ja) 2000-11-21
BG103199A (en) 2000-05-31
PL191456B1 (pl) 2006-05-31
WO1998005788A1 (en) 1998-02-12
MXPA99001239A (es) 2003-09-12
CZ37899A3 (cs) 1999-10-13
US6361808B1 (en) 2002-03-26
CA2262436A1 (en) 1998-02-12
AU720139B2 (en) 2000-05-25
CZ296732B6 (cs) 2006-05-17
US20020164399A1 (en) 2002-11-07
BG64681B1 (bg) 2005-11-30
AU4116197A (en) 1998-02-25
EP0915985A1 (en) 1999-05-19
US6699515B2 (en) 2004-03-02

Similar Documents

Publication Publication Date Title
CN1230225A (zh) 使用转基因麦芽种生产酒精性饮料的改进工艺
James et al. Glucoamylases: microbial sources, industrial applications and molecular biology—a review
Linko et al. Recent advances in the malting and brewing industry
RU2312144C2 (ru) Аутопроцессирующиеся растения и части растений
EP2499227B1 (en) A brewing method
EP2794641B1 (en) Polypeptides having glucoamylase activity and method of producing the same
US7915020B2 (en) Process for starch liquefaction and fermentation
US7727726B2 (en) Process for starch liquefaction and fermentation
CN101918525A (zh) 糖化方法
MX2008012638A (es) Proceso de mezclado.
US7914993B2 (en) Process for starch liquefaction and fermentation
WO2014029808A1 (en) Variants having glucoamylase activity
CN110603322A (zh) 热稳定的葡糖淀粉酶及其使用方法
JP2000510336A (ja) 改善された濾過性及び/又は増加した収率を有する麦汁の製造方法
WO1986007091A1 (en) Yeast expressing glucoamylase
RU2524118C2 (ru) Способ пивоварения
CN112522238A (zh) 一种利用转基因玉米生产淀粉酶的方法
CN1330720A (zh) 硫氧还蛋白和谷物加工
CN1329665A (zh) 具有n末端延伸的葡糖淀粉酶
Oliver “Classical” yeast biotechnology
Lalor et al. Brewing with enzymes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Applicant after: Mogen International N.V.

Applicant before: Mogen International N. V.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: MORGEN INTERNATIONAL CO., LTD. TO: JACNIK MORGEN CORP.

C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication