CN1219694C - 部分氧化转化装置 - Google Patents

部分氧化转化装置 Download PDF

Info

Publication number
CN1219694C
CN1219694C CNB008043345A CN00804334A CN1219694C CN 1219694 C CN1219694 C CN 1219694C CN B008043345 A CNB008043345 A CN B008043345A CN 00804334 A CN00804334 A CN 00804334A CN 1219694 C CN1219694 C CN 1219694C
Authority
CN
China
Prior art keywords
raw material
material gas
gas
conversion
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB008043345A
Other languages
English (en)
Other versions
CN1341075A (zh
Inventor
冈本康令
松井伸树
池上周司
米本和生
大久保英作
大上功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of CN1341075A publication Critical patent/CN1341075A/zh
Application granted granted Critical
Publication of CN1219694C publication Critical patent/CN1219694C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/025Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/0257Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical annular shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • B01J2208/00221Plates; Jackets; Cylinders comprising baffles for guiding the flow of the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00398Controlling the temperature using electric heating or cooling elements inside the reactor bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00415Controlling the temperature using electric heating or cooling elements electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00477Controlling the temperature by thermal insulation means
    • B01J2208/00495Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/192Details relating to the geometry of the reactor polygonal
    • B01J2219/1923Details relating to the geometry of the reactor polygonal square or square-derived
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1943Details relating to the geometry of the reactor round circular or disk-shaped cylindrical
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0816Heating by flames
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/085Methods of heating the process for making hydrogen or synthesis gas by electric heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1023Catalysts in the form of a monolith or honeycomb
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1276Mixing of different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1604Starting up the process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

为了在通过包含部分氧化的反应由转化反应部(6)从原料气体生成富氢转化气体的场合减小转化反应部(6)内的温度不均,提高其热效率,同时,使转化装置为简单而紧凑的构造,本发明由外壳(1)和其内部的分隔壁(2、2)将转化装置(A)构成为双层壁构造,在该分隔壁(2、2)之间收容转化反应部(6),使外壳(1)与分隔壁(2)间的空间为原料气体通道(3),从而在转化反应部(6)的周围设置原料气体通道(3)。由原料气体通道(3)将转化反应部(6)绝热,降低转化反应部(6)内的温度不均,由转化反应部(6)中的反应热对原料气体通道(3)的原料气体进行预热,通过自身热回收提高转化装置(A)的热效率,在原料气体通道(3)与转化反应部(6)之间一体形成用于原料气体预热的预热器,使转化装置的构造紧凑化。

Description

部分氧化转化装置
技术领域
本发明涉及一种通过部分氧化反应将烃系原料转化以生成用于供给到燃料电池等的氢的部分氧化转化装置。
背景技术
一般情况下,可通过将烃或甲醇转化生成氢,这样通过转化生成氢的燃料转化装置可用于燃料电池和氢发动机等。
这样的转化装置已属于公知技术,例如日本特开平11-67256号公报所示那样装入到燃料电池系统。该燃料转化装置具有充填了相对部分氧化反应呈活性的触媒的燃料转化器,将原料气体导入该燃料转化器,由该部分氧化反应产生氢。
即,在部分氧化反应中,如下式所示那样,包含甲烷、氧、及水的原料气体被部分氧化,变成二氧化碳和氢,在进行该反应时产生反应热。
作为这种转化装置,在有的场合下,具有在管(外壳)的内部充填粒状的触媒或块料的构造的转化反应部,对于这样的转化装置,升温到例如800℃左右的转化反应部的反应热易于作为热损失流出到外部,存在转化反应部内温度不均、反应效率和热效率下降的问题。为了阻止该反应热逃逸到外部,需要在筒周设置厚度大的绝热材料。
另外,为了促进转化反应部的原料气体的部分氧化反应,需要将供给到该转化反应部的原料气体预热到规定温度(例如460℃),为了该预热需要设置由热交换器构成的预热器。
本发明的目的在于对转化装置的构造进行改进,降低其转化反应部内的温度不均,并提高其热效率,同时,使转化装置为简单而紧凑的构造。
发明内容
为了达到上述目的,在本发明中,使转化装置为双层壁类型,在其内壁内配置转化反应部,在内壁外侧配置原料气体通道。
具体地说,作为具有由包含部分氧化的反应从原料气体生成富氢转化气体的转化反应部6的部分氧化转化装置,在上述转化反应部6的周围设置向转化反应部6供给原料气体的原料气体通道3。
这样,由原料气体通道3覆盖转化反应部6的周围,由原料气体通道3使转化反应部6绝热,所以,可减小转化反应部6内的温度不均。
相反,上述转化反应部6周围的原料气体通道3的原料气体由转化反应部6的反应热加热,将转化反应部6的反应热回收以用于原料气体的预热,由该自身热回收可提高转化气体装置的热效率。
而且,由于这样由转化反应部6的反应热加热转化反应部6周围的原料气体通道3的原料气体,所以,用于预热该原料气体的预热器一体地形成于原料气体通道3与转化反应部6之间,可使转化装置的构造简单而紧凑。
在本发明中,作为具有由包含部分氧化的反应从原料气体生成富氢转化气体的转化反应部6的部分氧化转化装置,设置热交换器14,该热交换器14在连通到上述转化反应部6的出口部6b的转化气体通道11的转化气体与连通到转化反应部6的入口部6a的原料气体通道3的原料气体之间进行热交换。
这样,供给到上述转化反应部6的原料气体通道3的原料气体通过与因转化反应部6的反应热而成为高温的转化气体在热交换器14的热交换而被加热,回收转化反应部6的反应热以用于原料气体的预热,由该自身热回收可提高转化气体装置的热效率。
而且,由于这样由转化反应部6的反应热加热原料气体通道3的原料气体,所以,用于预热该原料气体的预热器一体地形成于原料气体通道3与转化气体通道11之间,可使转化装置的构造简单而紧凑。
上述转化反应部6和原料气体通道3也可一体地设置在外壳1内。这样,可使转化装置的构造更简单,从而降低成本。
也可设置控制上述转化反应部6与原料气体通道3之间的传热量的传热量控制体10。这样,可由传热量控制体10适当地控制转化反应部6与原料气体通道3的燃料气体之间的传热量,同时可由该传热量控制减小转化反应部6的温度不均。
在该场合,上述传热量控制体10为耐火性绝热材料。这样,可容易地获得传热量控制体10的具体构成。
也可在连通到上述转化反应部6的出口部6b的转化气体通道11的周围设置原料气体通道3,设置在该原料气体通道3的原料气体与转化气体通道11的转化气体之间进行热交换的热交换器14。在该场合,热交换器14也可作为用于上述原料气体预热的预热器一体地形成于原料气体通道3与转化气体通道11之间,使转化装置的构造简单而紧凑。
上述热交换器14可具有分别伸到原料气体通道3和转化气体通道11而且沿着各气流的传热翅片15、16。这样,可减小热交换器14的气体压力损失,同时使热交换器14紧凑化。
另外,上述热交换器14也可具有分别位于原料气体通道3和转化气体通道11的多孔性固体24、25(例如金属发泡材料和发泡陶瓷)。这样,可由多孔性固体24、25的辐射进行热交换,容易获得热交换器14的具体构成。
也可将上述转化反应部6、原料气体通道3、转化气体通道11、及传热量控制体10一体地设置到外壳1内。这样,可进一步简化转化装置的构造,降低成本。
上述转化反应部6由蜂窝构造的块料7构成。这样,可获得理想的构造的转化反应部6。
上述原料气体通道3具有使原料气体混合的混合器。这样,原料气体由混合器混合,有效地进行转化反应部6的部分氧化反应。
上述热交换器14可构成为原料气体通道3的原料气体和转化气体通道11的转化气体从入口侧朝出口侧以相同方向流动的顺流式(并流式)热交换器。
这样,即使负荷变动使转化反应部6的气体流量变化,也可不受到其影响地将转化反应部6的入口部和出口部的各气体温度分别大体保持为一定。即,由于热交换器14的传热量相同,所以,如为原料气体和转化气体从入口侧朝出口侧以相反方向流动的类型的热交换器,则当气体流量减少时,传热量过大,可能导致入口部的原料气体温度上升过多而出口部的转化气体温度下降过多,然而,在热交换器14中不会产生那样的问题。
上述传热翅片15、16弯折成波形。这样,可容易地制造传热翅片15、16,从而可容易地制造热交换器14。
也可将上述各传热翅片15、16钎焊固定于周围壁部。这样,传热翅片15、16与周围壁部的接触热阻变小,可稳定地确保大批量生产场合的热交换性能。
也可在上述传热翅片15、16形成狭缝17。这样,即使各原料气体通道3、11由热交换器14的传热翅片15、16分成传热面侧和其相反侧的2个通道,也可通过狭缝17混合两通道的气体,良好进行相反侧通道的气体的热交换,而且,还可由狭缝17的角部获得前缘效果,从而提高热交换器14的热交换特性。
也可在上述热交换器14上游侧的原料气体通道3设置由离开转化反应部6或热交换器14配置的大体环状空间构成的热回收部34,并且热回收部34在离开转化反应部6和热交换器14中的至少一方的状态下将其围住。
这样,可由热回收部34回收从转化反应部6或热交换器14逃逸到周围的热,用于加热原料气体,可减少部分氧化转化装置全体的热损失,将转化反应部6的入口部6a的原料气体温度保持在可良好地维持转化反应部6的触媒反应的温度。
也可在上述热回收部34与转化反应部6或热交换器14之间设置传热量控制体22。这样,可减小热回收部34与转化反应部6或热交换器14的隔开距离,在设置热回收部34的状态下使部分氧化转化装置紧凑化。
另外,上述热回收部34和热交换器14由1个或多个连通路32连通。这样,可使部分氧化转化装置的构造简单,同时,可容易地插入设于上述热回收部34与转化反应部6和热交换器14之间的绝热材料22,使得可容易地制造部分氧化转化装置。
也可在上述转化反应部6的周围设置连通转化反应部6的出口部6b与热交换器14的转化气体通道11。
这样,转化反应部6由转化气体通道11覆盖周围,由该转化气体通道11绝热,所以,可将转化反应部6内的温度保持在触媒反应温度。
另外,这样在转化反应部6周围一体地形成从转化反应部6的出口部6b到热交换器14的转化气体通道11,可使转化装置的构造简单而紧凑。
另外,上述转化反应部6分割成第1反应部43和设于该第1反应部43周围并且入口部与第1反应部43的出口部连通的第2反应部44,这些第1和第2反应部43、44的气流方向相反。
在该场合,由于转化反应部6的第1反应部43由第2反应部44覆盖周围而被绝热,所以,可保持转化反应部6内的温度,同时,可使转化反应部6自身为双重构造,从而可使转化装置的构造简单而紧凑。
在上述构成中,也可设置起动时用于加热原料气体的加热机构20。按照该构成,限定于转化装置起动时由加热机构20对原料气体进行预热,可缩短转化装置的起动时间。
附图的简单说明
图1为示出本发明实施例1的部分氧化转化装置的断面图。
图2为图1的II-II线断面图。
图3为图1的III-III线断面图。
图4为示出实施例2的与图2相当的图。
图5为示出实施例3的与图3相当的图。
图6为示出实施例4的与图2相当的图。
图7为示出实施例4的要部的断面图。
图8为示出实施例5的转化装置的断面图。
图9为图8的IX-IX线断面图。
图10为展开示出具有狭缝的传热翅片放大正面图。
图11为具有狭缝的传热翅片的放大断面图。
图12为示出实施例6的与图8相当的图。
图13为示出实施例7的与图8相当的图。
图14为图13的XIV-XIV线断面图。
图15为示出实施例8的与图8相当的图。
图16为示出实施例9的与图8相当的图。
图17为示出实施例10的与图8相当的图。
图18为示出实施例11的与图8相当的图。
实施本发明的最佳形式
下面以实施例说明实施本发明的最佳形式。
(实施例1)
图1示出本发明实施例1的部分氧化转化装置A,符号1为其有底方筒状的外壳,在该外壳1的内部将外壳1内划分成1个内侧空间和2个外侧空间地配置1对相向的分隔壁2、2,该分隔壁2、2与外壳1一体形成(参照图2和图3)。在各分隔壁2的外壳1底部侧(图1中的上侧)的端部形成切口,连通上述内侧和外侧空间,该内侧和外侧空间之间的连通部和两外侧空间自身构成为原料气体通道3。在该原料气体通道3,两外侧空间的外壳1开口侧(图1中的下侧)的端部形成原料气体入口4,该原料气体入口4连接到图外的原料气体管,从该原料气体管供给的原料气体(包含城市煤气和加湿空气在内)经由原料气体入口4供给到外壳1与分隔壁2之间的原料气体通道3。
在上述分隔壁2、2间的内侧空间,于外壳1底部侧设置将上述原料气体转化、由包含部分氧化的反应从原料气体生成富氢转化气体的转化反应部6,该转化反应部6的外壳1底部侧的入口部6a连通到与上述外壳1底部对应的原料气体通道3。即,供给原料气体的原料气体通道3相对转化反应部6部分地配置在转化反应部6的周围,这些转化反应部6和原料气体通道3一体地设置在外壳1内。
上述转化反应部6如图3所示那样由装填于分隔壁2、2间的具有蜂窝构造的块料7构成,在该块料7,沿外壳1的轴线方向(图1中的的上下方向)贯通的多个贯通孔构成气体通道8。上述块料7例如由陶瓷和铝等制成,将该块料7作为载体,承载由Pt、Rh、Ru中的至少任意1种构成的贵金属系触媒,在通过该块料7的气体通道8期间,原料气体由触媒的作用如下式那样进行部分氧化反应,转化成富氢的转化气体。
另外,在上述分隔壁2、2间的内侧空间,由耐火性绝热材料构成的1对传热量控制体10、10以气密充填的状态配置于转化反应部6周围的两侧,由该各传热量控制体10控制在转化反应部6与原料气体通道3之间的传热量。
另一方面,分隔壁2、2间的内侧空间中的外壳1开口侧(图1中的下侧)的空间形成为与上述转化反应部6的出口部6b连通的转化气体通道11,用于使在转化反应部6从原料气体生成的转化气体流到转化气体通道11。这样,在连通到转化反应部6的出口部6b的转化气体通道11的周围设置有上述原料气体通道3。另外,上述转化反应部6、原料气体通道3、转化气体通道11、及传热量控制体10、10一体地设于外壳1。上述转化气体通道11的外壳1开口侧的端部构成为转化气体出口12,该转化气体出口12通过图外的转化气体管连接到例如燃料电池等。
如图2所示,设置有在上述原料气体通道3的原料气体与转化气体通道11的转化气体之间进行热交换的热交换器14。该热交换器14具有从往各分隔壁2往原料气体通道3中相互平行地凸出的多个原料气体侧传热翅片15、15、…和往转化气体通道11中相互平行地凸出的多个转化气体侧传热翅片16、16、…。原料气体通道3具有由上述多个原料气体侧传热翅片15、15、…构成的混合器,由该混合器搅拌混合供给到转化反应部6的原料气体,即该城市煤气和加湿空气。
另外,在上述外壳1的底部以将加热部伸入到外壳1内的原料气体通道3的状态安装作为加热机构的电加热器20,当转化装置A起动时,使该电加热器20作动,将原料气体加热(预热)到规定温度。另外,作为电加热器20的替代,也可设置电热塞,或设置使原料气体自身着火燃烧的燃烧器等。另外,在图1-图3中,符号22为覆盖外壳1周围以进行绝热的绝热材料。
因此,在本实施例中,当转化装置A正常运行时,从原料气体管供给的原料气体(包含城市煤气和加湿空气)经过原料气体入口4导入至外壳1内,供给到该外壳1与各分隔壁2之间的原料气体通道3。热交换器14的原料气体侧传热翅片15、15、…伸到该原料气体通道3中,热交换器14的转化气体侧传热翅片16、16、…伸到分隔壁2、2间的转化气体通道11中,所以,由该热交换器14使原料气体和转化气体进行热交换,原料气体接受转化气体的热,被预热到规定温度(例如460℃)。另外,此时由上述热交换器14的原料气体侧传热翅片15、15、…构成的混合器对原料气体的城市煤气和加湿空气进行搅拌混合。
这样,由与转化气体的热交换进行了预热的原料气体经原料气体通道3流到外壳1底部侧,在此期间,转化反应部6的反应热经传热量控制体10(绝热材料)和分隔壁2传递到原料气体。由该传热进一步加热原料气体。
流过上述原料气体通道3的原料气体从外壳1底部侧的入口部6a流入到转化反应部6内,在该蜂窝构造的块料7的气体通道8中与触媒反应,由包含其部分氧化的反应转化成富氢的转化气体。
此时,由于上述混合器将原料气体的城市煤气和加湿空气混合,所以,可有效地进行转化反应部6的部分氧化反应。
另外,上述转化反应部6的反应热通过传热量控制体10和分隔壁2传递到随后流过原料气体通道3的原料气体。由上述传热量控制体10控制转化反应部6与处于其周围的原料气体通道3之间的传热量,这样,可适当地控制转化反应部6的用于由反应热对原料气体通道3的原料气体进行加热的热交换量。反过来,可由该传热量的控制降低转化反应部6的温度不均,更有效地进行转化反应部6的部分氧化反应。在上述转化反应部6从原料气体生成的高温转化气体从转化反应部6的出口部6b流入外壳1开口侧的分隔壁2、2间的转化气体通道11,从该转化气体通道11通过转化气体出口12送出到转化气体管,之后,供给到燃料电池等。由于上述热交换器14的转化气体侧传热翅片16、16、…伸到上述转化气体通道11内,所以,该转化气体的热由热交换器14回收,然后通过原料气体侧传热翅片15、15、…传递到在原料气体通道3中流动的原料气体。
在本实施例的场合,如上述那样,由于在转化反应部6的周围设置有原料气体通道3,所以,转化反应部6的周围由原料气体通道3覆盖,转化反应部6由原料气体通道3绝热,这样,可进一步减少转化反应部6内的温度不均。
相反,由于上述转化反应部6周围的原料气体通道3的原料气体由转化反应部6的反应热加热,所以,为了原料气体的预热回收转化反应部6的反应热,可由自身热回收提高转化装置A的热效率。
而且,由于这样由转化反应部6的反应热对转化反应部6周围的原料气体通道3的原料气体进行加热,所以,用于对该原料气体进行预热的预热器一体地形成于原料气体通道3与转化反应部6之间,可使转化装置A的构造简单而紧凑。
另外,由于上述转化反应部6和原料气体通道3一体地设置在外壳1内,所以,可使转化装置A的构造更简单,从而降低成本。
另外,由于在连通到上述转化反应部6的出口部6b的转化气体通道11的周围设置有原料气体通道3,由热交换器14使该原料气体通道3的原料气体与转化气体通道11的转化气体进行热交换,所以,该热交换器14一体地形成于原料气体通道3与转化气体通道11之间,可使转化装置A为简单而紧凑的构造。
另外,由于转化反应部6、原料气体通道3、转化气体通道11、及传热量控制体10、10一体地设置在外壳1内,所以,可使转化装置A的构造更简单,降低成本。
另外,当转化装置A起动时,电加热器20工作,由电加热器20加热原料气体通道3内的原料气体,使其升温到转化反应部6的触媒的活性温度。这样,可缩短转化装置A在进入正常运行之前的起动时间。
(实施例2)
图4示出本发明的实施例2(在以下的各实施例中,在与图1-图3相同的部分采用相同符号,省略其详细说明),在本实施例中,改变了外壳1和分隔壁2、2等的形状。
即,在该实施例2中,外壳1和分隔壁2成为相互以同心状配置的圆筒状,在原料气体通道3形成分隔壁2周围的环状外侧空间,在内侧的空间设置转化反应部6、传热量控制体10、及转化气体通道11。虽然图中未示出,但转化反应部6的块料7实际上呈圆柱状,传热量控制体10为环状。
热交换器14的原料气体侧传热翅片15、15、…凸出设置于分隔壁2的外周面,转化气体侧传热翅片16、16、…将转化气体通道11划分成多个部分地凸起设置于分隔壁2内面。
因此,在本实施例中也可获得与上述实施例1同样的作用效果。特别是由于在转化反应部6和转化气体通道11的各全体周围配置原料气体通道3,所以可获得降低转化反应部6的温度不均和提高热效率的效果。
(实施例3)
图5示出实施例3,在本实施例中,改变了转化反应部6周围的构造。即,在本实施例中,与上述实施例1(参照图1)同样,外壳1和分隔壁2形成为方筒状。另外,在与转化反应部6对应的分隔壁2的周围由处于包围其全体的位置的外侧空间构成原料气体通道3,在内侧的空间设置具有方柱状的块料7的转化反应部6和位于其周围的方筒状的传热量控制体10。其它构成与实施例1相同,因此,在本实施例中也可获得与实施例1同样的作用效果。
(实施例4)
图6和图7示出实施例4,在上述实施例2中,热交换器14具有传热翅片15、16,而在实施例4中,具有分别位于原料气体通道3和转化气体通道11的多孔性固体。
即,在本实施例中,省略了上述实施例2的构成(参照图4)中的原料气体侧传热翅片15、15、…和转化气体侧传热翅片16、16、…,作为其替代,在原料气体通道3设置例如金属发泡材料或发泡陶瓷构成的圆筒状的原料气体侧多孔性固体24,并分别在与外壳1内周面和分隔壁2外周面之间隔开空间(都为原料气体通道3),该原料气体侧多孔性固体24外侧的原料气体通道3的原料气体可穿过原料气体侧多孔性固体24流到其内侧的原料气体通道3。
另一方面,在转化气体通道11,与分隔壁2内周面之间隔开空间(转化气体通道11)地设置同样的转化气体侧多孔性固体25,该转化气体侧多孔性固体25内侧的转化气体通道11的转化气体可穿过多孔性固体25流到外侧的转化气体通道11。由这些多孔性固体24、25的辐射在原料气体通道3的原料气体与转化气体通道11的转化气体之间进行热交换。其它构成与实施例2相同。因此,在本实施例中也可获得与实施例2同样的效果。
(实施例5)
图8示出实施例5(在该实施例5以下的各实施例即实施例5-11中,“上”和“下”这样的用语分别指各图中的上侧和下侧,不限定转化装置A自身的上下方向)。在该实施例5中,外壳1大体呈密闭圆筒状,该外壳1内的上端部形成为转化气体出口12。在外壳1内的下部以同心状固定配置大体呈密闭圆筒状的分隔壁2,并在其下壁部与外壳1的下壁部之间形成间隙。分隔壁2内的空间由入口侧分隔壁27隔成上下2个空间,在下侧的空间收容转化反应部6。另外,在分隔壁2的下壁部和上述入口侧分隔壁27分别贯通形成多个气孔28、28、…。
外壳1的上部构成为处于与下部相同位置的内侧壁部1a和以隔开间隔的状态气密地接合到该内侧壁部1a外周面的外侧壁部1b的双层壁构造,在两壁部1a、1b之间形成圆环状的空间。该外壳1的两壁部1a、1b间的空间由连通管29内的连通路30连通到分隔壁2内的上侧空间,该连通管29架设于分隔壁2上端部与外壳1的内侧壁部1a之间并以气密状贯通两者。
另一方面,在外壳1的外侧壁部1b的下端部,将多个(图示例中为2个)连通管31、31、…的内端部以贯通的状态气密地接合于沿圆周方向隔开相等间隔的位置,该各连通管31内的连通路32连通到外壳1内侧和外侧的两壁部1a、1b间的空间的下端部。由上述各连通管31内的连通路32、外壳1的两壁部1a、1b间的空间、连通管29内的连通路30、及分隔壁2内的上侧空间形成与转化反应部6的入口部6a连通的原料气体通道3的下游半部,另外,由外壳1和分隔壁2的各下壁部间的空间和分隔壁2外周面与外壳1内周面之间的空间形成与转化反应部6的出口部6b连通的转化气体通道11,将来自后述的热回收部34的原料气体经各连通路32供给到外壳1的两壁部1a、1b间的空间,从该空间的上端部通过连通路30导入分隔壁2内的上侧空间,由入口侧分隔壁27的气孔28、28、…供给到转化反应部6上端的入口部6a。另一方面,将在该转化反应部6中经转化而生成并从出口部6b送出的转化气体经分隔壁2下壁部的气孔28、28、…通过分隔壁2和外壳1的各下壁部间的空间和分隔壁2外周面与外壳1内周面之间的空间供给到外壳1上端的转化气体出口12。
在连通到上述转化反应部6的出口部6b的转化气体通道11与连通到转化反应部6的入口部6a的原料气体通道3之间,设置在该转化气体通道11的的转化气体与原料气体通道3的原料气体之间进行热交换的热交换器14。该热交换器14由具有伸到原料气体通道3和转化气体通道11中而且分别沿着内部的气流延伸的传热翅片15、16的带翅片热交换器构成。即,在外壳1的内侧壁部1a外周面与外侧壁1b内周面之间将伸到原料气体通道3的原料气体侧传热翅片15接合固定到上述连通路30的连接位置的下侧位置,另外,在分隔壁2外周面与外壳1的内侧壁部1a内周面之间接合固定伸到转化气体通道11的转化气体侧传热翅片16。如图9放大示出的那样,该各传热翅片15、16弯折成波形,原料气体侧传热翅片15的各弯折角部钎焊固定在外壳1的外侧壁1b内周面和内侧壁部1a外周面,另外,转化气体侧传热翅片16的各弯折角部钎焊固定到分隔壁2的外周面和外壳1的内侧壁部1a内周面。
按照上述构造,热交换器14构成原料气体通道3的原料气体和转化气体通道11的转化气体都从传热翅片15、16的入口侧(图8的下侧)朝出口侧(图8的上侧)以相同方向流动的顺流式热交换器。另外,连通该热交换器14和转化反应部6的出口部6b的部分的转化气体通道11设置在转化反应部6的周围。
另外,在上述外壳1的周围,以离开转化反应部6和热交换器14规定尺寸的状态包围该转化反应部6和热交换器14双方地配置由圆环状空间构成的热回收部34。即,在外壳1的周围以同心状配置具有大体从外壳1下端到分隔壁2上端的长度的圆筒体35。该圆筒体35由相互以同心状配置的直径不同的圆筒状的内外侧壁35a、35b和分别以气密状闭塞两侧壁35a、35b间的圆环状空间的上下开口的圆环状的上下壁35c、35d构成,由这些内外侧壁35a、35b和上下壁35c、35d围住的空间构成热回收部34。在上述内侧壁35a的大体上下中央位置,以贯通状态接合固定各连通管31的外端部,该各连通管31将内端部接合固定在上述外壳1的外侧壁1b下端部,另一方面,在外侧壁35b的下端部连通原料气体入口管37内的原料气体入口4,由从该原料气体入口4到热回收部34的部分构成原料气体通道3的上游半部。因此,热回收部34在离开转化反应部6和热交换器14的状态下包围该转化反应部6和热交换器14地设置在热交换器14上游侧的原料气体通道3。另外,热回收部34和热交换器14由多个并列的连通路32、32、…连通。而且,设定上述转化反应部6与热回收部34的间隔,使得例如当外壳1下部的外径d1为60.5mm时圆筒体35的内侧壁35a的内径d2为134.2mm。
另外,上述外壳1、连通管31、圆筒体35、及原料气体入口管37都埋设在陶瓷棉等作为传热量控制体的绝热材料22内。这样,在热回收部34与转化反应部6和热交换器14之间,具体地说,在圆筒体35的内侧壁35a内周面与外壳1外周面之间设置作为传热量控制体起作用的绝热材料22。
因此,在本实施例的场合,导入至原料气体入口4的原料在供给到圆筒体35内的热回收部34后,从该热回收部34经过连通路32导入外壳1的内侧和外侧的壁部1a、1b间的空间的下端部。导入至该空间的原料气体经过热交换器14的原料气体侧传热翅片15之间,一边由与转化气体的热交换被加热,一边朝上端部流动,从该上端部经由连通路30供给到分隔壁2内的上侧空间,从该上侧空间经过入口侧分隔壁27的气孔28、28、…,从入口部6a导入转化反应部6,由包含与其触媒的部分氧化的反应转化成富氢的转化气体。从该转化反应部6的出口部6b出来的的转化气体经过分隔壁2的下壁部的气孔28、28、…移动到外壳1和分隔壁2的各下壁部间的空间,之后,经过与转化反应部6对应的分隔壁2周围的空间(转化气体通道11)到达上述热交换器14,经过该转化气体侧传热翅片16间供给到转化气体出口12,在该热交换器14散热,用于加热流过原料气体侧传热翅片15间的原料气体。
在该场合,与上述实施例1一样,供给到转化反应部6的原料气体通道3的原料气体在热交换器14与由转化反应部6的反应热加热成为高温的转化气体通道11的转化气体进行热交换,受到加热,所以,回收转化反应部6的的反应热用于原料气体的预热,由该自身热回收提高转化装置A的热效率。
而且,由于这样由转化反应部6的反应热对原料气体通道3的原料气体进行加热,所以,在原料气体通道3与转化气体通道11之间一体地形成用于预热该原料气体的预热器,可使转化装置A的构造简单而紧凑。
另外,在该实施例中,由于在上述热交换器14上游侧的原料气体通道3设置由成为原料气体通道3一部分的的圆环状空间构成的热回收部34,该热回收部34在离开转化反应部6和热交换器14周围的状态下将其围住地配置,所以,可有效地由热回收部34回收要从转化反应部6和热交换器14逃逸到转化装置A周围的热,加热原料气体。结果,可减少转化装置A全体的热损失,将转化反应部6的入口部6a的原料气体温度保持在可良好地维持转化反应部6的触媒反应的温度。
而且,由于在上述热回收部34与转化反应部6和热交换器14之间设置成为传热量控制体的绝热材料22,所以,可减小热回收部34与转化反应部6和热交换器14的隔开距离,进行上述热回收部34的热回收,即使为具有热回收部34的构造,也可使转化装置A紧凑化。
另外,由于上述热回收部34和热交换器14由多个并列的连通路32、32、…连通,所以,可使转化装置A的构造简单,同时,可容易地插入设于热回收部34与转化反应部6和热交换器14之间即外壳1与圆筒体35之间的上述绝热材料22,可容易地制造转化装置A。
另外,由于在上述转化反应部6的周围围住转化反应部6地配置从该出口部6b出来到热交换器14的一部分的转化气体通道11,所以,转化反应部6由转化气体通道11覆盖周围,由该转化气体绝热,可将转化反应部6内的温度良好地保持在触媒反应温度。而且,由于这样在转化反应部6周围一体地形成从转化反应部6的出口部6b到热交换器14的转化气体通道11,所以,可使转化装置A的构造简单而紧凑。
另外,由于上述热交换器14为原料气体通道3的原料气体和转化气体通道11的转化气体从各传热翅片15、16的入口侧朝出口侧以相同方向流动的顺流式热交换器,所以,即使转化装置A的负荷变动使转化反应部6的气体流量变化,也可不受到其影响地将转化反应部6的入口部6a和出口部6b的各气体温度分别大体保持为一定。即,由于热交换器14的传热量相同,所以,如为原料气体和转化气体从入口侧朝出口侧的以相反方向流动的逆流式热交换器(参照实施例1),则当气体流量减少时,传热量过大,转化反应部6的入口部6a的原料气体温度上升过多。而且,出口部6b的转化气体温度下降过多。然而,在本实施例中,由于热交换器14为顺流式热交换器,所以,不会产生上述那样的问题。
此外,由于上述热交换器14为具有沿着原料气体通道3的原料气体和转化气体通道11的转化气体的各气体流延伸的传热翅片15、16的带翅片热交换器,所以,可减少热交换器14的气体压力损失,同时可使热交换器14紧凑化。
而且,由于上述各传热翅片15、16弯折成波形,所以,可容易地制造传热翅片15、16,从而可容易地制造热交换器14。
另外,由于上述各传热翅片15、16以弯折角部钎焊固定于外壳1的壁部1a、1b和分隔壁2,所以,传热翅片15、16与外壳1和分隔壁2的接触热阻变小,可稳定地确保在大批量生产热交换器14(转化装置A)的场合的传热性能。
另外,连通上述热回收部34与外壳1的壁部1a、1b间的空间的连通路32(连通管31)也可不为多个,而是为1个。
另外,在上述实施例中,热回收部34覆盖转化反应部6和热交换器14双方地配置,但也可覆盖转化反应部6和热交换器14中的任一方地配置热回收部34。
另外,也可如图10和图11所示(图10以展开传热翅片15、16的状态示出)那样,在传热翅片15、16的弯折角部以外的部分形成多个狭缝17、17、…(开口部)。这样,即使热交换器14的各气体通道3、11由传热翅片15、16分成传热面侧和其相反侧两个通道,也可通过狭缝17混合两通道的气体,良好进行相反侧通道的气体的热交换。而且,还可由狭缝17的角部获得气流的前缘效果,从而提高热交换器14的热交换特性。
(实施例6)
图12示出实施例6,实施例6改变了热交换器14的类型。即,在本实施例中,外壳1的上部构成为处于与下部相同位置的外侧壁部1b和以隔开间隔的状态气密地接合到该外侧壁部1b内周面的内侧壁部1a的双层壁构造,在两壁部1a、1b之间形成圆环状的空间,该空间的上端部由贯通外侧壁部1b的1个连通管31内的连通路32连通到圆筒体35内的热回收部34。另外,分隔壁2的上部形成比下部直径小的小直径部2a,该小直径部2a的上端位于外壳1的两壁部1a、1b间的空间的下端部附近,这些小直径部2a与两壁部1a、1b间的空间的下端部由多个连通路30、30、…连通,形成将来自热回收部34的原料气体通过连通路32、外壳1的两壁部1a、1b间的空间、连通路30、分隔壁2的小直径部2a供给到转化反应部6的入口部6a的原料气体通道3。
另外,热交换器14由圆环状的转化气体侧多孔性固体25和圆环状的原料气体侧多孔性固体24构成,该转化气体侧多孔性固体25具有与上述实施例4同样的构造,在上述外壳1的内侧壁部1a内的空间即转化气体通道11以闭塞上端部的状态配置于分隔壁2的小直径部2a的上侧,该原料气体侧多孔性固体24以将外周部固定于外侧壁部1b内周面的状态配置于外壳1的两壁部1a、1b间的空间即原料气体通道3,由两多孔性固体24、25的辐射在原料气体通道3的原料气体与转化气体通道11的转化气体之间进行热交换。该热交换器14与上述实施例5不同,为原料气体通道3的原料气体和转化气体通道11的转化气体从入口侧朝出口侧以相反方向流动的逆流式热交换器。其它构成与实施例5相同。因此,本实施例也可获得与实施例5同样的效果。
(实施例7)
图13示出实施例7,在本实施中,沿分隔壁2内的全体配置热交换器14的转化气体侧传热翅片16。
即,在本实施例中,在外壳1内以同心状配置分隔壁2,在该分隔壁2内的下端部配置具有气孔28、28、…的入口侧分隔壁27并在与分隔壁2的下壁部之间形成空间,在该入口侧分隔壁27上侧收容转化反应部6,分隔壁2内的上端部构成为转化气体出口12。
外壳1的上端接合在分隔壁2的外周面而被闭塞,外壳1内的与分隔壁2之间的空间的下端部连通到原料气体入口管37内的原料气体入口4,而该空间的上端部连通到贯通外壳1的侧壁上端部的连通管29内的连通路30,连通管29的下端部以气密状贯通外壳1和分隔壁2,连通路30的下端部连通到分隔壁2内的入口侧分隔壁27下侧的空间,形成将原料气体入口4的气体从外壳1内的下端部经与分隔壁2之间的空间和连通管29内的连通路30供给到转化反应部6的入口部6a的原料气体通道3,另外,由分隔壁2内的空间中的转化反应部6上侧的空间形成转化气体通道11。
在上述转化反应部6上侧的空间即转化气体通道11和外壳1内的与分隔壁2之间的空间即原料气体通道3配置与上述实施例5同样的顺流式的热交换器14。如图14所示,该热交换器14的原料气体侧传热翅片15与实施例5同样,将内周侧和外周侧双方的弯折角部由钎焊接合在外壳1内周面和分隔壁2外周面。另一方面,转化气体侧传热翅片16与原料气体侧传热翅片15同样,整体上呈圆环状,但仅外周侧的弯折角部由钎焊接合在分隔壁2内周面,内周侧弯折角部未固定。
另外,在转化气体侧传热翅片16的下侧配置出口侧分隔壁39,在该出口侧分隔壁39对应于转化气体侧传热翅片16的位置开设由贯通孔构成的多个气孔28、28、…,从转化反应部6的出口部6b出来的转化气体被经过出口侧分隔壁39周缘部的气孔28、28、…强制地引导至转化气体侧传热翅片16。
在本实施例中,没有设置上述实施例5那样的热回收部34。
因此,在本实施例中,可获得利用热交换器14所带来的效果。即,即使转化装置A的负荷变动使转化反应部6的气体流量变化,也可不受到其影响地将转化反应部6的入口部6a和出口部6b的各气体温度分别大体保持为一定。
另外,由于上述热交换器14为将传热翅片15、16弯折成波形的带翅片热交换器,所以,可减少热交换器14的气体压力损失,同时可使热交换器14紧凑化,可容易地制造传热翅片15、16和热交换器14。而且,由于热交换器14的原料气体侧传热翅片15以弯折角部钎焊固定于外壳1的壁部和分隔壁2,转化气体侧传热翅片16以外周侧的弯折角部钎焊固定于分隔壁2内周面,所以,传热翅片15、16与外壳1和分隔壁2的接触热阻变小,可稳定地确保热交换器14的传热性能。
(实施例8)
图15示出实施例8。本实施例基本上是在上述实施例7的构造的基础上追加热回收部34。
即,在本实施例中,不在外壳1内部设置分隔壁2,而是在外壳1内下部与外壳1下壁部隔开空间地配置具有气孔28、28、…的入口侧分隔壁27,在该入口侧分隔壁27的上侧配置转化反应部6。
另外,与上述实施例5(参照图8)一样,外壳1的上部构成为处于与下部相同位置的内侧壁部1a和接合到该内侧壁部1a外周面的外侧壁部1b的双层壁构造,两壁部1a、1b之间的圆环状空间的上端部由连通管29内的连通路30连通到上述外壳1内下端部的空间,另外,两壁部1a、1b间的空间的下端部由圆筒体35内的热回收部34和1个(也可为多个)连通管31内的连通路32连通。
另外,与上述实施例7一样,在外壳1的两壁部1a、1b间的空间配置顺流式的带翅片热交换器14的原料气体侧传热翅片15,在内侧壁部1a内的上部配置该热交换器14的与上述实施例7(参照图13)同样的转化气体侧传热翅片16。另外,形成热回收部34的圆筒体35与上述实施例5的构造不同,没有上下壁35c、35d,直接气密地接合圆环状的内外侧壁35a、35b的上下端部使其一体化(在图示例中外侧壁35b的上下端部朝径向内侧弯折,接合到内侧壁35a的上下端部)。
因此,在本实施例的场合,可获得与上述实施例5同样的作用效果。
(实施例9)
图16示出实施例9。在本实施例中,外壳1内的分隔壁2形成为隔开间隔相互以同心状配置的内侧和外侧分隔壁2b、2c的双层构造,两分隔壁2b、2c间的下端部由下壁2d气密地闭塞,但上端部开放。在内侧分隔壁2b内的下部配置具有气孔28、28、…的入口侧分隔壁27,在其上收容转化反应部6。另一方面,在内侧分隔壁2b内的上端与上述实施例7同样地配置顺流式的带翅片热交换器14的转化气体侧传热翅片16。另外,两分隔壁2b、2c间的圆环状空间在上下大体中央部由圆环状的分隔壁41分隔,在其上侧的空间收容上述热交换器14的原料气体侧传热翅片15并加以钎焊固定。在内侧和外侧分隔壁2b、2c间的空间,将外端部与热回收部34连通的连通路32的内端部连接到原料气体侧传热翅片15与分隔壁41之间,从热回收部34通过连通路32供给到内侧和外侧分隔壁2b、2c间的空间的分隔壁41上侧的原料气体在经过原料气体侧传热翅片15后,从两分隔壁2b、2c间的空间的上端导出到外壳1与外侧分隔壁2c之间的空间,沿外侧分隔壁2c周围流到下侧后,供给到转化反应部6的入口部6a。而且,形成热回收部34的圆筒体35为与上述实施例5同样的构造。
其它构成与上述实施例5相同,所以,在本实施例中也可获得与上述实施例6同样的作用效果。
(实施例10)
图17示出实施例10。在本实施例中,对转化反应部6进行了分割。
即,在本实施例中,与上述实施例6同样,外壳1的上部构成为处于与下部相同位置的外侧壁部1b和接合到该外侧壁1b内周面的内侧壁部1a的双层壁构造,在两壁部1a、1b之间形成圆环状的空间,该空间的下端部由连通路32连通到圆筒体35内的热回收部34。另外,圆筒体35通过与上述实施例8(参照图15)同样直接接合内外侧壁35a、35b的上下端部而构成。
另外,分隔壁2上部的小直径部2a上端位于外壳1的两壁部1a、1b间的空间的下端部附近,该小直径部2a上与外壳1的两壁部1a、1b间的空间的上端部由多个连通路30、30、…连通,形成将来自热回收部34的原料气体通过连通路32、外壳1的两壁部1a、1b间的空间、连通路30、30、…、分隔壁2的小直径部2a内供给到转化反应部6的入口部6a的原料气体通道3。
另外,在外壳1的两壁部1a、1b间的空间即原料气体通道3配置顺流式的带翅片热交换器14的原料气体侧传热翅片15,并将外周部和内周部分别钎焊固定在外侧壁部1b的内周面和内侧壁部1a的外周面,另外,在外壳1的内侧壁部1a与分隔壁2的小直径部2a之间的空间即转化气体通道11配置转化气体侧传热翅片16,并将外周部和内周部分别钎焊固定到内侧壁部1a内周面和小直径部2a外周面。
转化反应部6分割成位于上述分隔壁2下部的圆柱状的第1反应部43和设于该第1反应部43周围即外壳1内下部和分隔壁2下部间的空间的圆环状的第2反应部44,第2反应部44下端的入口部通过外壳1下壁部与分隔壁2下壁部之间的空间连通到第1反应部43下端的出口部。另外,第1反应部43的气流朝下,第2反应部44的气流朝上,两反应部的气流的方向相反。
因此,在本实施例中,来自热回收部34的原料气体经过连通路32供给到外壳1的内外侧的壁部1a、1b间的空间后,由热交换器14的原料气体侧传热翅片15加热,经过连通路30、30、…和分隔壁2的小直径部2a导入转化反应部6的入口部6a。另一方面,由该转化反应部6生成的转化气体经过外壳1的内侧壁部1a和分隔壁2的小直径部2a之间的空间(转化气体通道11)由热交换器14的转化气体侧传热翅片16吸热后,到达转化气体出口12。
此时,上述转化反应部6直列地分割成分隔壁2内的第1反应部43和设于该第1反应部43周围的第2反应部44,这些第1和第2反应部43、44的气流方向相反,所以,转化反应部6的第1反应部43周围由第2反应部44覆盖,被绝热,可将转化反应部6内的温度保持在高温,并且,转化反应部6自身为双重构造,从而可使转化装置A的构造简单而紧凑。
(实施例11)
图18示出实施例11。本实施例在上述实施例10(参照图17)的构成的基础上改变了热交换器14的原料气体侧传热翅片15和转化气体侧传热翅片16的配置。
即,在本实施例中,分隔壁2的上部为将分隔壁2的上部部分相互配置成同心状的内侧和外侧分隔壁2b、2c的双层构造,两侧分隔壁2b、2c间形成朝上方开放的有底圆环状的空间。另外,外侧分隔壁2c的外壁部由圆顶状的上壁2e在与内侧分隔壁2b的上端隔开间隙的状态下气密地闭塞。另外,在分隔壁2的两侧分隔壁2b、2c间的空间的上部配置顺流式的带翅片热交换器14的原料气体侧传热翅片15,在外侧分隔壁2c与外壳1之间的空间配置转化气体侧传热翅片16。在分隔壁2的两侧分隔壁2b、2c间的空间的下端部连通来自热回收部34的连通路32,从热回收部34经过连通路32供给到分隔壁2的两侧分隔壁2b、2c间的空间的下端部的原料气体由热交换器14的原料气体侧传热翅片15加热后,从上端导入内侧分隔壁2b,供给到转化反应部6的第1反应部43。
因此,本实施例也可获得与实施例10同样的作用效果。
在上述各实施例中,由块料构成块料7,但也可采用充填粒状的触媒的方式。另外,本发明当然也可在上述实施例那样的燃料电池系统以外的场合所用的转化气体中加以应用。
产业上利用的可能性
本发明在由转化反应部的部分氧化反应对包含烃和甲醇的原料气体进行转化生成燃料电池和氢发动机等所使用的氢的场合,可减小转化反应部内的温度不均,由转化反应部的反应热对原料气体进行预热,通过自身热回收提高热效率,将用于原料气体预热的预热器一体形成,实现装置构造的紧凑化,提高燃料电池和氢发动机等的实用性,在这些方面用于产业上的可能性很高。

Claims (12)

1.一种部分氧化转化装置,具有由包含部分氧化的反应从原料气体生成富氢转化气体的转化反应部(6);其特征在于:
具有圆筒状的外壳(1)和隔开间隔地配置于该外壳(1)内并在内部设置上述转化反应部(6)的圆筒状的分隔壁(2),
在上述分隔壁(2)内设置与上述转化反应部(6)的出口部(6b)连通的转化气体通道(11),另外,在外壳(1)与分隔壁(2)之间设置与上述上述转化反应部(6)的入口部(6a)连通的原料气体通道(3),并设置在上述转化气体通道(11)的转化气体与原料气体通道(3)的原料气体之间进行热交换的热交换器(14)。
2.如权利要求1所述的部分氧化转化装置,其特征在于:设置控制转化反应部(6)与原料气体通道(3)之间的传热量的传热量控制体(10)。
3.如权利要求2所述的部分氧化转化装置,其特征在于:传热量控制体(10)为耐火性绝热材料。
4.如权利要求1所述的部分氧化转化装置,其特征在于:将转化反应部(6)、原料气体通道(3)、转化气体通道(11)、及传热量控制体(10)一体地设置到外壳(1)内。
5.如权利要求1所述的部分氧化转化装置,其特征在于:转化反应部(6)由蜂窝构造的块料(7)构成。
6.如权利要求1所述的部分氧化转化装置,其特征在于:热交换器(14)具有分别伸到原料气体通道(3)和转化气体通道11而且沿着各气流取后的传热翅片(15、16),
上述传热翅片15、16弯折成波形。
7.如权利要求6所述的部分氧化转化装置,其特征在于:传热翅片(15、16)钎焊固定于周围壁部。
8.如权利要求6或7所述的部分氧化转化装置,其特征在于:在传热翅片(15、16)形成狭缝(17)。
9.如权利要求1所述的部分氧化转化装置,其特征在于:在热交换器(14)上游侧的原料气体通道(3)设置由基本呈环状空间构成的热回收部(34),该热回收部(34)在离开转化反应部(6)或热交换器(14)的状态下围住转化反应部(6)和热交换器(14)中的至少一方地配置。
10.如权利要求9所述的部分氧化转化装置,其特征在于:在热回收部(34)与转化反应部(6)或热交换器(14)之间设置传热量控制体(22)。
11.如权利要求1所述的部分氧化转化装置,其特征在于:在转化反应部(6)的周围设置连通转化反应部(6)的出口部(6b)与热交换器(14)的转化气体通道(11)。
12.如权利要求1所述的部分氧化转化装置,其特征在于:转化反应部(6)分割成第1反应部(43)和设于该第1反应部(43)周围并且入口部与第1反应部(43)的出口部连通的第2反应部(44),
上述第1和第2反应部(43、44)的气流方向相反。
CNB008043345A 1999-12-28 2000-11-08 部分氧化转化装置 Expired - Fee Related CN1219694C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP37361899 1999-12-28
JP373618/1999 1999-12-28
JP373618/99 1999-12-28

Publications (2)

Publication Number Publication Date
CN1341075A CN1341075A (zh) 2002-03-20
CN1219694C true CN1219694C (zh) 2005-09-21

Family

ID=18502473

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008043345A Expired - Fee Related CN1219694C (zh) 1999-12-28 2000-11-08 部分氧化转化装置

Country Status (7)

Country Link
US (1) US6770106B1 (zh)
EP (1) EP1193217A4 (zh)
JP (1) JP4736298B2 (zh)
KR (1) KR100758942B1 (zh)
CN (1) CN1219694C (zh)
HK (1) HK1042463A1 (zh)
WO (1) WO2001047800A1 (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7128769B2 (en) * 2002-06-27 2006-10-31 Idatech, Llc Methanol steam reforming catalysts, steam reformers, and fuel cell systems incorporating the same
US7235217B2 (en) 2003-04-04 2007-06-26 Texaco Inc. Method and apparatus for rapid heating of fuel reforming reactants
US20060156627A1 (en) * 2003-06-27 2006-07-20 Ultracell Corporation Fuel processor for use with portable fuel cells
US8821832B2 (en) 2003-06-27 2014-09-02 UltraCell, L.L.C. Fuel processor for use with portable fuel cells
EP1644111A4 (en) * 2003-06-27 2011-02-09 Ultracell Corp ANNULAR FUEL TRANSFORMATION DEVICE AND ASSOCIATED METHODS
GB2429274B (en) * 2004-02-17 2009-02-18 Modine Mfg Co Integrated Fuel Processor For Distributed Hydrogen Production
KR100599685B1 (ko) 2004-06-30 2006-07-13 삼성에스디아이 주식회사 연료 전지 시스템의 개질기 및 이를 채용한 연료 전지시스템
FR2883774A1 (fr) * 2005-03-31 2006-10-06 N Ghy Sa Dispositif a chambre de reaction dans laquelle sont introduits des fluides reactifs prechauffes pour realiser une reaction a temperature elevee
FR2883861B1 (fr) * 2005-04-05 2007-06-29 N Ghy Sa Enceinte de reaction et d'echanges thermiques pour la production d'hydrogene a partir d'hydrocarbure, d'eau et d'oxygene et dispositif generateur d'hydrogene
JP4299868B2 (ja) * 2006-07-28 2009-07-22 クロリンエンジニアズ株式会社 水素燃焼装置
KR100859939B1 (ko) * 2006-11-02 2008-09-23 삼성에스디아이 주식회사 예열부를 갖는 개질기용 개질반응부 및 이의 제조방법
JP5095264B2 (ja) * 2007-05-16 2012-12-12 Jx日鉱日石エネルギー株式会社 改質器および間接内部改質型高温型燃料電池
CN101754927B (zh) * 2007-07-13 2013-08-21 瑞典电池公司 用于将烃燃料转化为富氢气体的重整反应器及方法
EP2695854A1 (en) * 2008-01-08 2014-02-12 Tokyo Gas Co., Ltd. Cylindrical steam reformer
CN101307245B (zh) * 2008-05-19 2012-08-22 中国科学院山西煤炭化学研究所 一种利用固定床装置进行费托合成反应的工艺及设备
US9162887B2 (en) 2008-07-02 2015-10-20 Powercell Sweden Ab Reformer reactor and method for converting hydrocarbon fuels into hydrogen rich gas
JP5244488B2 (ja) * 2008-07-25 2013-07-24 東芝燃料電池システム株式会社 燃料電池用改質器
US9017436B2 (en) 2008-08-26 2015-04-28 Dcns Fuel processing systems with thermally integrated componentry
US20100055518A1 (en) * 2008-08-26 2010-03-04 Idatech, Llc Hydrogen-producing assemblies, fuel cell systems including the same, methods of producing hydrogen gas, and methods of powering an energy-consuming device
US20100327231A1 (en) * 2009-06-26 2010-12-30 Noah Whitmore Method of producing synthesis gas
US9114986B2 (en) 2009-07-23 2015-08-25 Powercell Sweden Ab Mixing device for a fuel reformer, fuel reformer and method for converting hydrocarbon fuels into hydrogen rich gas
TWI465393B (zh) * 2009-09-14 2014-12-21 Green Hydrotec Inc 氫氣產生器及其應用
JP2011136865A (ja) * 2009-12-28 2011-07-14 Idemitsu Kosan Co Ltd 改質装置、改質ユニットおよび燃料電池システム
JP5675490B2 (ja) 2011-05-13 2015-02-25 本田技研工業株式会社 燃料電池モジュール
JP5653834B2 (ja) 2011-05-13 2015-01-14 本田技研工業株式会社 燃料電池システム
JP5697575B2 (ja) 2011-10-19 2015-04-08 本田技研工業株式会社 燃料電池モジュール
JP5697577B2 (ja) 2011-10-19 2015-04-08 本田技研工業株式会社 燃料電池モジュール
US9249019B2 (en) * 2012-12-09 2016-02-02 Zakritoe akzionernoe obshestvo Nauchno-proektnoe prozvodstvenno-stroitelnoe obedinenie “GRANDSTROY” Multistage method for producing hydrogen-containing gaseous fuel and thermal gas-generator setup of its implementation
KR101865032B1 (ko) 2013-11-06 2018-06-07 와트 퓨얼 셀 코퍼레이션 액체 연료 cpox 개질장치-연료 전지 시스템, 및 전기 생산 방법
KR101925826B1 (ko) 2013-11-06 2018-12-06 와트 퓨얼 셀 코퍼레이션 구조적 구성요소로서 페로브스카이트를 가지는 개질장치
US9624104B2 (en) 2013-11-06 2017-04-18 Watt Fuel Cell Corp. Liquid fuel CPOX reformers and methods of CPOX reforming
CN105706283B (zh) 2013-11-06 2018-11-06 瓦特燃料电池公司 集成的气态燃料催化部分氧化重整器和燃料电池系统、以及产生电力的方法
CA2929546C (en) 2013-11-06 2019-03-05 Watt Fuel Cell Corp. Gaseous fuel cpox reformers and methods of cpox reforming
CN105706281B (zh) 2013-11-06 2019-07-26 瓦特燃料电池公司 化学反应器系统
SG11201702330XA (en) 2014-10-07 2017-04-27 Protonex Technology Corp Sofc-conduction
US10479680B2 (en) * 2015-01-14 2019-11-19 Raven Sr, Llc Electrically heated steam reforming reactor
US10790523B2 (en) * 2015-10-20 2020-09-29 Upstart Power, Inc. CPOX reactor control system and method
ITUA20161630A1 (it) * 2016-03-14 2017-09-14 Andrea Capriccioli Reattore di metanazione
WO2018031742A1 (en) 2016-08-11 2018-02-15 Protonex Technology Corporation Planar solid oxide fuel unit cell and stack

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3366461A (en) * 1964-05-11 1968-01-30 Chemical Construction Corp Apparatus for exothermic catalytic reactions
JPS5211058U (zh) * 1975-07-11 1977-01-26
JPS5211058A (en) 1975-07-16 1977-01-27 Mitsubishi Heavy Ind Ltd Ship position determining system trough direction measurement
US4455763A (en) * 1981-03-05 1984-06-26 Elevitch Franklin R Coffee roaster
JPS5973403A (ja) * 1982-10-19 1984-04-25 Matsushita Electric Ind Co Ltd 炭化水素ガス改質装置
JPS60181588A (ja) * 1984-02-28 1985-09-17 Nissan Motor Co Ltd 熱交換器
JPH01261201A (ja) * 1988-04-12 1989-10-18 Mitsubishi Gas Chem Co Inc 炭化水素改質反応器
EP0361648B1 (en) * 1988-07-22 1993-04-07 Imperial Chemical Industries Plc Hydrogen production including a shift reaction process
TW216453B (en) * 1992-07-08 1993-11-21 Air Prod & Chem Integrated plate-fin heat exchange reformation
GB9225188D0 (en) * 1992-12-02 1993-01-20 Rolls Royce & Ass Combined reformer and shift reactor
US6245303B1 (en) * 1998-01-14 2001-06-12 Arthur D. Little, Inc. Reactor for producing hydrogen from hydrocarbon fuels
JPH10106606A (ja) * 1996-09-30 1998-04-24 Sanyo Electric Co Ltd 水素製造装置及び水素製造方法
CN1310829C (zh) * 1999-12-28 2007-04-18 大金工业株式会社 转化装置

Also Published As

Publication number Publication date
EP1193217A1 (en) 2002-04-03
KR20010102290A (ko) 2001-11-15
WO2001047800A1 (fr) 2001-07-05
US6770106B1 (en) 2004-08-03
EP1193217A4 (en) 2005-04-13
KR100758942B1 (ko) 2007-09-14
CN1341075A (zh) 2002-03-20
HK1042463A1 (zh) 2002-08-16
JP4736298B2 (ja) 2011-07-27

Similar Documents

Publication Publication Date Title
CN1219694C (zh) 部分氧化转化装置
CN1310829C (zh) 转化装置
US8038960B2 (en) Reformer
CN1240472C (zh) 化学反应装置以及动力供给系统
CN1742187A (zh) 燃料转换反应器
CN1094465C (zh) 改性装置
CN1304275C (zh) 重整装置
CN1432118A (zh) 集成反应器
CN1246384A (zh) 用于吸热反应的陶瓷膜
CN1783563A (zh) 燃料电池系统的重整器
CN1716675A (zh) 重整器和具有该重整器的燃料电池系统
CN1716674A (zh) 燃料电池重整器和系统
CN1714042A (zh) 自氧化内部加热型蒸汽重整系统
CN1747892A (zh) 氢生成装置及燃料电池发电系统
JP2000203802A (ja) 改質器
JPH10106606A (ja) 水素製造装置及び水素製造方法
CN1941483A (zh) 燃料重整器
CN1927697A (zh) 反应装置、燃料电池系统和电子设备
JP5814108B2 (ja) 燃料電池
JP4852295B2 (ja) 改質器及び燃料電池システム
US6383469B1 (en) Device for utilizing heat which is formed during a catalytic reaction
JP4043383B2 (ja) 膜反応装置及びこれを用いた合成ガス製造方法
JP2009184889A (ja) 円筒式水蒸気改質器
JP4671632B2 (ja) 自己酸化内部加熱型改質装置及び方法
JP2004171892A (ja) 燃料電池用水素発生装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050921

Termination date: 20131108