CN1203831A - 一种混合导电型致密透氧膜材料 - Google Patents

一种混合导电型致密透氧膜材料 Download PDF

Info

Publication number
CN1203831A
CN1203831A CN 98111285 CN98111285A CN1203831A CN 1203831 A CN1203831 A CN 1203831A CN 98111285 CN98111285 CN 98111285 CN 98111285 A CN98111285 A CN 98111285A CN 1203831 A CN1203831 A CN 1203831A
Authority
CN
China
Prior art keywords
oxygen
film
membrane material
permeable membrane
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 98111285
Other languages
English (en)
Other versions
CN1077449C (zh
Inventor
徐南平
李世光
金万勤
时钧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANJING CHEMICAL UNIV
Original Assignee
NANJING CHEMICAL UNIV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANJING CHEMICAL UNIV filed Critical NANJING CHEMICAL UNIV
Priority to CN 98111285 priority Critical patent/CN1077449C/zh
Publication of CN1203831A publication Critical patent/CN1203831A/zh
Application granted granted Critical
Publication of CN1077449C publication Critical patent/CN1077449C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明涉及一种用于氧渗透的混合导电型致密透氧膜材料,由通式为C1-xC′xD1-yD′YO3-δ的钙钛矿晶型复合氧化物与氧化锆的组合物,其中δ是氧晶格缺陷数,C、C′为Ld、Sm、Nd、Pr、Ba、Ca、Sr、Na、La中任意一种元素,D,D′为Mn、Cr、Fe、Co、Ni、Cu中任意一种元素,0≤x≤1,0≤Y≤1,其中氧化锆的含量是1~40%(重量)。其在高温缺氧氛围下有良好的稳定性,其氧渗透性能与原钙钛矿晶型氧化物接近,可实现长时间操作。

Description

一种混合导电型致密透氧膜材料
本发明涉及一种用于氧渗透的混合导电型致密透氧膜材料。
近年来,膜反应技术在某些领域可望获得工业应用,例如,国外已研制成一种具有氧离子电子混合传导能力的钙钛矿型致密透氧膜,此种膜可用于氧气分离及甲烷转化成甲醇、甲醛、乙烯、合成气等工业化膜反应过程中(见美国专利U.S.Pat.No.5,160,713,Nov.3,1992)。这种膜材料(如La-Sr-Co-Fe氧化物)是与矿物CaTiO3晶型相同的一类复合氧化物,其通式为CDO3,在C位置和D位置可用其它金属替代形成C1-XC′XD1-YD′YO3-δ,其中C为Ld、Sm、Nd、Pr、Ba、Ca、Sr、Na、La,D为Mn、Cr、Fe、Co、Ni、Cu等,δ为氧晶格缺陷数。该膜材料因含有一定的氧晶格缺陷,具有氧离子传导能力,被欧洲、美国、日本等国的科学家认为是目前进行氧分离的最理想的材料之一。研究结果表明,钙钛矿型氧化物在低温时的渗透率极小,随着温度升高而迅速上升,600℃时的渗透量与4nm的多孔玻璃膜相当,当温度达1200℃以上时,氧的渗透率比多孔玻璃高两个数量级,达1-5m3(stp)/m2hr,可见钙钛矿晶型透氧膜在高温下更具实用价值。然而,钙钛矿晶型透氧膜的不足是:在高温缺氧气氛下稳定一定时间后,晶型结构会发生改变,直接导致膜的断裂,使应用效果受到限制。
本发明的目的是提供一种混合导电型致密透氧膜材料,它不仅具有高的氧离子和电子传导能力,而且在高温缺氧氛围下仍具有很好的化学及结构稳定性,适于长期操作。
本发明材料是通式为C1-XC′XD1-YD′YO3-δ的钙钛矿晶型复合氧化物与氧化锆的组合物,其中δ是晶格缺陷数,C、C′为Ld、Sm、Nd、Pr、Ba、Ca、Sr、Na、La中任意一种元素,D、D′为Mn、Cr、Fe、Co、Ni、Cu中任意一种元素,0≤X≤1,0≤y≤1;氧化锆的含量是上述钙钛矿晶型复合氧化物的1~40%(重量)。
本发明的膜材料可采用固相反应法、溶胶-凝胶法或有机酸络合法等常规方法制备。
固相反应法是将本材料所需各元素的氧化物或硝酸盐、碳酸盐按比例混合均匀后,在高温下反应一段时间后取出,研磨、筛分到一定粒度即得膜材料。
溶胶-凝胶法是将本材料所需各元素的可水解前驱物制备成稳定、透明的溶胶,经干燥,热处理后即得膜材料。
有机酸络合法又称“液体混合技术”,它是将本材料所需元素的阳离子的盐或氧化物溶于多功能团的有机酸中,配成一定浓度和pH值的溶液,经高温热分解,热处理,碾磨后得到一定粒度的粉料即得膜材料。
上述膜材料可通过等静压法、塑性挤压法等常规成形技术制成膜。根据膜成分的不同,以2℃/min的升温速率升至950-1300℃,保温5小时后以2℃/min的速率降温后取出,即得膜。
本发明中掺杂的氧化锆提高了原钙钛矿晶型材料的断裂强度,即使在高温条件下,热膨胀产生的局部应力也不会使它断裂,由于氧化锆本身也是一种混合传导型氧化物,具有较高的氧离子传导能力,少量的掺杂不仅改善了原有钙钛矿氧化物的微观结构,而且对其渗透性能影响不大。因而本发明材料不仅具有高透氧速率,而且在高温缺氧氛围下,仍具有很好的化学及结构稳定性,可连续操作不破裂,适用于从空气、氧气混合物中分离氧气,甲烷的氧化偶联和部分氧化以及燃料电池等膜反应领域的工业化应用。
下面结合附图对本发明材料的透氧率和在高温缺氧气氛下的化学及结构稳定性与透氧性能。
图1是现有的钙钛矿型材料SrFe0.6Co0.4O3-δ在空气中不同温度下的X射线衍射曲线图。
图2是现有的钙钛矿型材料SrFe0.6Co0.4O3-δ在氦气氛围中不同温度下的X射线衍射曲线图。
图3是本发明膜材料之一的10%氧化锆掺杂的SrFe0.6Co0.4O3-δ在空气中不同温度下的X射线衍射曲线图。
图4是本发明膜材料之一的10%氧化锆掺杂的SrFe0.6Co0.4O3-δ在氦气氛围中不同温度下的X射线衍射曲线图。
图5是掺杂10%氧化锆的SrFe0.6Co0.4O3-δ膜与现有的未掺氧化锆的La0.2Sr0.8Fe0.8Co0.6O3-δ膜在不同温度下透氧速率的比较。
图6表示SrFe0.6Co0.4O3-δ中,氧化锆掺杂量分别为1%、10%、40%的三种本发明膜在不同温度下透氧率的比较。
图7是膜反应器结构示意图。
图1表示在空气氛围中,现有的不含氧化锆的SrFe0.6Co0.4O3-δ膜从400℃升至950℃,再冷却至30℃过程中的各温度段X射线衍射(XRD)结果,由图1可见,基线和特征峰均很稳定,即现有的不含氧化锆的SrFe0.6Co0.4O3-δ膜在空气氛围中时,其结构是稳定的。图2表示,在氦气氛围中,不含氧化锆的SrFe0.6Co0.4O3-δ膜从30℃升至950℃,再冷却至30℃过程中的各温度段X射线衍射(XRD)结果,图2中显示衍射峰的基线都不稳定,从400℃时特征峰开始分裂,至650℃时对应于68℃、78℃的衍射特征峰已不明显,并出现其它的小峰,即使从高温冷却至30℃时,其基线及特征峰仍然不明显。说明不含氧化锆的SrFe0.6Co0.4O3-δ材料在缺氧氛围下,其结构是不稳定的。从图1、图2曲线可知,现有的不含氧化锆的钙钛矿晶型膜材料只能在含氧氛围下使用,不能应用于缺氧氛围下的膜反应过程中。
图3表示,本发明掺有10%氧化锆的SrFe0.6Co0.4O3-δ膜在空气氛围中,从30℃升至1350℃再降温至30℃过程中各温度段的X射线衍射(XRD)结果。图3中,1150℃以下时基线和特征峰均很稳定,说明在此温度范内,本发明膜材料在空气中的结构是稳定的。图4表示本发明掺有10%氧化锆的SrFe0.6Co0.4O3-δ膜在氩气氛围中各种温度下的X射线衍射(XRD)结果,由图4可见,在950℃以下时,基线和特征峰都很稳定,特征峰也不分裂,只在1050℃以上时,二倍衍射角在62度附近出现一小的新峰,而基线特征峰均无变化,表明此时膜结构发生轻微变化。根据图4可知,本发明膜材料在950℃以下的缺氧氛围下工作时,其结构稳定,不会断裂。由于膜反应温度一般在950℃以下,所以本发明膜材料已能满足工业应用。
图5表示,本发明掺有10%氧化锆的SrFe0.6Co0.4O3-δ膜与现有的未掺氧化锆的La0.2Sr0.8Fe0.8Co0.2O3-δ膜二者透氧速率均随温度的升高而增大,在850℃(1123K)时,掺氧化锆的SrFe0.6Co0.4O3-δ膜的氧渗透速率为0.355cm3(STP)/cm2.min,而La0.2Sr0.8Fe0.8Co0.2O3-δ膜的氧渗透速率为0.325cm3(STP)/cm2.min,可见本发明膜材料中加入氧化锆后对钙钛矿型材料的透氧性能影响不大。
图6表示本发明膜材料中的氧化锆掺入量不同时,其透氧速率的比较。由图6可知,各膜的透氧速率均随温度的升高而增大,在850℃时,含1%氧化锆的SrFe0.6Co0.4O3-δ膜的透氧速率为0.453cm3(STP)/cm2.min,含10%氧化锆的SrFe0.6Co0.4O3-δ膜的透氧速率为0.355cm3(STP)/cm2.min,含40%氧化锆的SrFe0.6Co0.4O3-δ膜的透氧速率为0.231cm3(STP)/cm2.min。可见,本发明膜材料的透氧速率随氧化锆含量的增加而下降,适合于工业应用的本发明膜材料的氧化锆含量在1-40%(重量)范围内为宜。
图7表示膜反应器结构,图中,8是石英外管,7是石英内管,石英内管7分为上下二段,上下段之间设有氧渗透膜3和密封圈4。弹簧9向上紧抵内管7,确保膜3与内管7之间的密封。空气由下端进口管6通入石英内管7的下段,空气中的氧透过膜3进入石英内管7的上段,与从上端进口管1通入的氦气混合,从上部出口2排出收集。分离掉氧后的空气从下部出口6排出。
下面通过实施例说明本发明膜材料的制备、成膜及膜强度。
实施例一:采用固相反应法制备本发明膜材料之一的含有10%ZrO2的SrFe0.6Co0.4O3-δ
称取ZrO2(5%Y2O3部分稳定)10克、SrCO3(分析纯)68.94克、Fe2O3(分析纯)22.37克、Co(NO3)2.6H2O(分析纯)54.09克,加入不溶解上述材料的液体异丙醇,放入球磨机中湿磨10小时后取出,在干燥箱中充分干燥(干燥温度低于100℃)后装入耐高温的坩埚内,以2℃/min的速率升温至850℃,并温5小时,使其充分反应后以2℃/min的速率降温至室温后取出,研磨,再加入异丙醇,球磨24小时后即得含10%ZrO2的SrFe0.6Co0.4O3-δ膜材料。
实施例二:采用有机酸络合法制备本发明膜材料之一的含有10%ZrO2的SrFe0.6Co0.4O3-δ
称取ZrOCl2.8H2O(5%Y2O3部分稳定1.3078克、Sr(NO3)2(分析纯)6.7966克溶解在10毫升65%~68%浓硝酸中,然后加入柠檬酸(分析纯)20.4802克(柠檬酸摩尔数∶金属阳离子摩尔数总和=2∶1),用浓度为30%的氨水调节pH值至3~3.5,搅拌12小时。将溶液倒入3L的烧杯中,放入烘箱中200℃蒸发,有大量的气泡溢出,溶液变少,后膨、自燃约10秒钟,物料呈蓬松状,取出碾磨后移入坩埚,以2℃/min的升温速率煅烧到1030℃,恒温5小时,降温至室温,取出研磨即制得本发明含10%ZrO2的SrFe0.6Co0.4O3-δ5克膜材料。
实施例三:采用等静法的成膜过程
将本发明含ZrO2的钙钛矿粉料碾细,筛分得小于360目的粉料,加入1~3%左右的蒸馏水搅拌均匀后放置一天,称取1.5g的粉料倒入模具,同时振动使之充满模具,用压片机加压至12MPa,静置5分钟卸压后取出模具脱模即得膜。
实施例四:不同材料的膜在缺氧氛围下反应中的强度比较
本实施例采用以下三种材料进行膜强度试验:
(1)不含氧化锆的SrFe0.6Co0.4O3-δ膜;
(2)不含氧化锆的La0.2Sr0.8Fe0.8Co0.2O3-δ膜;
(3)本发明之一含10%氧化锆的SrFe0.6Co0.4O3-δ膜;
将以上三种材料的制成厚度为2mm膜,分别装入图7所示的膜反应器中,从进口6通入空气,并使透氧膜3下侧的氧分压保持0.21atm,空气中的氧透过膜3进入石英内管辖7的上侧。从进口1通入氦气,并使膜上侧的氧分压保持2.1×10-3atm,氧与氦的混合气体由出口2排出。脱除了氧的空气由出口5排出。试验表明,膜(1)在通入氦气的瞬间即破裂,无法实现氧渗透过程。膜(2)在通入氦气的瞬间不会破裂,但透氧过程中,当温度升高后再下降至室温时,膜破裂,因此它能实现透氧过程,但在高温缺氧氛围下工作时间不能过长,不是一种好的膜材料。膜(3)在以上条件下均不会破裂,说明掺有氧化锆的钙钛矿型材料在高温缺氧氛围下的稳定性了极好。由于膜(1)无法测出其透氧速率,因此图5中仅能画出膜(2)和膜(3)的透氧速率曲线。

Claims (2)

1.一种混合导电型致密透氧膜材料,其特征是该材料是由通式为C1-XC′XD1-YD′YO3-δ的钙钛矿晶型复合氧化物与氧化锆的组合物,其中δ是氧晶格缺陷数,C、C′为Ld、Sm、Nd、Pr、Ba、Ca、Sr、Na、La中任意一种元素,D、D′为Mn、Cr、Fe、Co、Ni、Cu中任意一种元素,0≤X≤1,0≤y≤1,其中氧化锆的含量是1~40%(重量)。
2.根据权利要求1的混合导电型致密透氧膜材料,其特征是所说的氧化锆最佳含量是10~20%(重量)。
CN 98111285 1998-05-06 1998-05-06 一种混合导电型致密透氧膜材料 Expired - Lifetime CN1077449C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 98111285 CN1077449C (zh) 1998-05-06 1998-05-06 一种混合导电型致密透氧膜材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 98111285 CN1077449C (zh) 1998-05-06 1998-05-06 一种混合导电型致密透氧膜材料

Publications (2)

Publication Number Publication Date
CN1203831A true CN1203831A (zh) 1999-01-06
CN1077449C CN1077449C (zh) 2002-01-09

Family

ID=5221277

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 98111285 Expired - Lifetime CN1077449C (zh) 1998-05-06 1998-05-06 一种混合导电型致密透氧膜材料

Country Status (1)

Country Link
CN (1) CN1077449C (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325149C (zh) * 2005-04-06 2007-07-11 南京工业大学 氧化铝掺杂的混合导电型致密透氧膜材料
CN100354033C (zh) * 2005-09-12 2007-12-12 南京工业大学 一种担载型混合导体致密膜及其制备方法
WO2008074181A1 (en) * 2006-12-18 2008-06-26 Bp P.L.C. Oxygen separation membrane
CN101274224B (zh) * 2008-05-12 2010-12-01 南京工业大学 高度稳定的钼基混合导体致密透氧膜材料及其制备方法和应用
CN101047048B (zh) * 2006-03-30 2011-06-15 诺利塔克股份有限公司 导电性组合物和导电性膏
CN104857911A (zh) * 2014-02-21 2015-08-26 中国科学院大连化学物理研究所 一种高性能氧吸附剂及其制备方法
CN107198973A (zh) * 2017-06-12 2017-09-26 上海大学 一种可提高co2气氛下透氧稳定性的铁基陶瓷透氧膜的制备方法
CN111389242A (zh) * 2020-03-19 2020-07-10 上海大学 无钴抗co2毒化的高透氧量双相透氧膜材料、其制备方法和应用
CN112794374A (zh) * 2020-12-31 2021-05-14 大连海事大学 一种Co基钙钛矿型氧化物及其制备方法与在空气分离中的应用
CN113209842A (zh) * 2021-04-02 2021-08-06 浙江师范大学 一种过滤刚果红时具有电场敏感性的复合分离膜
CN114149068A (zh) * 2021-11-23 2022-03-08 武汉理工大学 一种含高价铁Fe(IV)钙钛矿型复合氧化物及其低温焙烧合成方法和应用
CN114988875A (zh) * 2022-06-16 2022-09-02 中山大学 高氧通量的含铜双相混合导体透氧膜材料及其制备方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325149C (zh) * 2005-04-06 2007-07-11 南京工业大学 氧化铝掺杂的混合导电型致密透氧膜材料
CN100354033C (zh) * 2005-09-12 2007-12-12 南京工业大学 一种担载型混合导体致密膜及其制备方法
CN101047048B (zh) * 2006-03-30 2011-06-15 诺利塔克股份有限公司 导电性组合物和导电性膏
WO2008074181A1 (en) * 2006-12-18 2008-06-26 Bp P.L.C. Oxygen separation membrane
CN101274224B (zh) * 2008-05-12 2010-12-01 南京工业大学 高度稳定的钼基混合导体致密透氧膜材料及其制备方法和应用
CN104857911A (zh) * 2014-02-21 2015-08-26 中国科学院大连化学物理研究所 一种高性能氧吸附剂及其制备方法
CN107198973A (zh) * 2017-06-12 2017-09-26 上海大学 一种可提高co2气氛下透氧稳定性的铁基陶瓷透氧膜的制备方法
CN107198973B (zh) * 2017-06-12 2020-04-03 上海大学 一种可提高co2气氛下透氧稳定性的铁基陶瓷透氧膜的制备方法
CN111389242A (zh) * 2020-03-19 2020-07-10 上海大学 无钴抗co2毒化的高透氧量双相透氧膜材料、其制备方法和应用
CN112794374A (zh) * 2020-12-31 2021-05-14 大连海事大学 一种Co基钙钛矿型氧化物及其制备方法与在空气分离中的应用
CN113209842A (zh) * 2021-04-02 2021-08-06 浙江师范大学 一种过滤刚果红时具有电场敏感性的复合分离膜
CN114149068A (zh) * 2021-11-23 2022-03-08 武汉理工大学 一种含高价铁Fe(IV)钙钛矿型复合氧化物及其低温焙烧合成方法和应用
CN114149068B (zh) * 2021-11-23 2023-08-29 武汉理工大学 一种含高价铁Fe(IV)钙钛矿型复合氧化物及其低温焙烧合成方法和应用
CN114988875A (zh) * 2022-06-16 2022-09-02 中山大学 高氧通量的含铜双相混合导体透氧膜材料及其制备方法

Also Published As

Publication number Publication date
CN1077449C (zh) 2002-01-09

Similar Documents

Publication Publication Date Title
US10396396B2 (en) Lithium-ion conductive garnet and method of making membranes thereof
CN1077449C (zh) 一种混合导电型致密透氧膜材料
Yi et al. Behavior of Ba (Co, Fe, Nb) O3-δ perovskite in CO2-containing atmospheres: degradation mechanism and materials design
Kruidhof et al. Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides
EP3244474B1 (en) Oriented apatite-type oxide ion conductor and method for manufacturing same
CA2385668C (en) Membrane and use thereof
WO2015163152A1 (ja) ガーネット型化合物の製造方法及びガーネット型化合物、並びにこのガーネット型化合物を含む全固体リチウム二次電池
EP0673675A2 (en) Solid multi-component membranes for reactions
WO1994012447A1 (en) Fluxed lanthanum chromite for low temperature air firing
Nayak et al. Recent advance on fundamental properties and synthesis of barium zirconate for proton conducting ceramic fuel cell
US6235187B1 (en) Oxygen separation method using a mixed conducting cubic perovskite ceramic ion transport membrane
CN1275428A (zh) 用于陶瓷薄膜的稳定钙钛矿
CN101948303A (zh) 一种A位Ba、Sr、Ca三离子共掺杂的SrCo0.8Fe0.2O3-δ基钙钛矿透氧膜材料及其应用
CN101595060B (zh) 固溶体微粒的制造方法
JP3997365B2 (ja) 酸化物イオン導電性単結晶及びその製造方法
Lewandowski et al. Nonstoichiometric K2NiF4‐Type Phases in the Lanthanum‐Cobalt‐Oxygen System
CN105642131A (zh) 一种纳米粒子稳定钙钛矿结构透氧膜的方法
Sato et al. Sintering of Ceria‐Doped Tetragonal Zirconia Crystallized in Organic Solvents, Water, and Air
RU2237038C2 (ru) Керамический материал флюоритового типа
Gorelov et al. Synthesis and properties of high-density protonic solid electrolyte BaZr 0.9 Y 0.1 O 3− α
CA2531592A1 (fr) Materiau perovskite, procede de preparation et utilisation dans un reacteur catalytique membranaire
CN111542650A (zh) 降低石榴石结构离子导体的热压温度的方法
CN1275682C (zh) 镍氟酸钾型无机致密透氧膜材料
CN113121227A (zh) 一种钆镍共掺杂镁基六铝酸镧陶瓷及制备方法
JP4708515B2 (ja) LaGaO3系焼結体を用いた酸素透過膜

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20020109

CX01 Expiry of patent term