CN107198973A - 一种可提高co2气氛下透氧稳定性的铁基陶瓷透氧膜的制备方法 - Google Patents

一种可提高co2气氛下透氧稳定性的铁基陶瓷透氧膜的制备方法 Download PDF

Info

Publication number
CN107198973A
CN107198973A CN201710438698.9A CN201710438698A CN107198973A CN 107198973 A CN107198973 A CN 107198973A CN 201710438698 A CN201710438698 A CN 201710438698A CN 107198973 A CN107198973 A CN 107198973A
Authority
CN
China
Prior art keywords
oxygen
hours
iron
powder
permeable membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710438698.9A
Other languages
English (en)
Other versions
CN107198973B (zh
Inventor
程红伟
鲁雄刚
王远枝
周慧婕
陈沙
刘超云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201710438698.9A priority Critical patent/CN107198973B/zh
Publication of CN107198973A publication Critical patent/CN107198973A/zh
Application granted granted Critical
Publication of CN107198973B publication Critical patent/CN107198973B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0076Pretreatment of inorganic membrane material prior to membrane formation, e.g. coating of metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Iron (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种可提高CO2气氛下透氧稳定性的铁基陶瓷透氧膜的制备方法,其化学组成为Pr0.6Sr0.4Fe1‑x X x O3‑δ ,其中X为Nb,Al中任一种,化学计量比为0≤x≤0.15。本发明中Nb的掺入能有效提高材料的耐CO2性能;Al掺杂可以得到对称性好的立方钙钛矿结构材料。本发明的制备方法为:将各种金属硝酸盐溶解在去离子水中并与乙二胺四乙酸和一水柠檬酸混合,用氨水将其PH值调至7~8,待水分挥发,经两次焙烧,得到Pr0.6Sr0.4Fe1‑x X x O3‑δ 粉体,研磨后,在一定压力下成型,在1200~1400°C焙烧8小时得到致密的透氧膜片。Pr0.6Sr0.4Fe0.925Nb0.075O3‑δ 透氧膜在900°C纯CO2气氛下保持长时间稳定,其稳定的透氧量为0.11 ml·min‑1·cm‑2左右。

Description

一种可提高CO2气氛下透氧稳定性的铁基陶瓷透氧膜的制备 方法
技术领域
本发明公开了一种可提高CO2气氛下透氧稳定性的铁基陶瓷透氧膜的制备方法。具体涉及一种B位元素掺杂得到新的透氧膜材料的方法。
背景技术
混合导体透氧膜由于同时具有电子和氧离子导电性可以用作透氧膜材料,在一定温度下,当膜的两侧存在氧浓度梯度时,氧会以氧离子的形式通过氧空位,理论上,致密陶瓷透氧膜具有100%的氧透过选择性。
混合导体透氧膜可用于高纯氧制备,富氧燃烧,天然气部分氧化制合成气或选择性氧化膜反应器等领域有着优良的应用前景。对于混合导体透氧膜材料而言,目前存在的最主要的问题就是膜材料在高温及膜反应气氛下,尤其是在CO2气氛下不够稳定,因此,提高膜材料在酸性气氛和还原性气氛下的稳定性是实现工业化的关键。
目前状况,提高透氧稳定性的方法主要有以下几种:1)A,B位元素掺杂,如Ta,Zr等。2)双相透氧膜材料。技术文献[Solid State Ionics. 2011, 196, 30-33]和[Chem.Mater. 2012, 24, 2148−2154]中分别利用以上方法有效的稳定了材料在CO2气氛下的稳定性。
在透氧膜材料中,无Co透氧膜相比于含Co透氧膜,其透氧量较低但稳定性好。技术文献[J. Mater. Chem. A, 2014, 2, 7780]中报道,与Co基透氧膜材料相比,铁基透氧膜材料稳定性较好。因此,我们选用Pr0.6Sr0.4FeO3-δ 为基体材料,用高价态的Nb少量取代B位Fe元素,得到耐二氧化碳性能良好的新材料。
通过检测发现Pr0.6Sr0.4Fe1-x Nb x O3-δ 均为正交结构并且其透氧量相对较低,技术文献[Journal of Membrane Science. 2011, 383, 235-240]中报道,可以通过元素掺杂来改变材料相结构,因此,我们用少量Al取代Pr0.6Sr0.4FeO3-δ 中部分Fe,最终得到透氧性能良好的立方钙钛矿透氧膜材料。
发明内容
本发明的目的是提供一种可提高CO2气氛下透氧稳定性的铁基陶瓷透氧膜的制备方法。其特征在于,该铁基陶瓷透氧膜具有如下的化学式:
Pr0.6Sr0.4Fe1-x X x O3-δ ,其中X为Nb,Al中一种,
所述的化学计量比x的取值范围为:0≤x≤0.15。
本发明一种可提高CO2气氛下透氧稳定性的铁基陶瓷透氧膜的制备方法,其特征在于具有以下的工艺过程和步骤:
a) 根据Pr0.6Sr0.4Fe1-x X x O3-δ 的化学计量比将一定量的硝酸镨,硝酸锶,硝酸铁,草酸铌或硝酸铝溶入去离子水中,加热并搅拌直至完全溶解;按总金属离子:乙二胺四乙酸:柠檬酸物质量比为1:1:1.5的比例,精确称量乙二胺四乙酸,一水柠檬酸的质量,将其加入至装有去离子水的烧杯中,加热搅拌至完全溶解;
b) 将此两种溶液混合,并在80℃~120℃搅拌,通过滴加去离子水,使溶液的PH值在7~8间,不断加热搅拌,直至溶液变为黑色溶胶状;将所得凝胶在140℃~180℃干燥20~24小时,直至其膨胀疏松得多孔固体;
c) 将上述b)步骤中所得黑色多孔固体在300℃~400℃加热10~12小时,得到黄色粉末,该粉末研磨后,在700℃~950℃保温5~8小时,得到黑色Pr0.6Sr0.4Fe1-x Nb x O3-δ 粉体,将所得粉体在研钵中研磨2~3小时,使得粉体颗粒大小相对均匀,向粉体中加入油酸和粘结剂,在200~300 MPa压力下成型,所得片状坯体在1200~1400℃焙烧5~8小时,得到铁基陶瓷导体透氧膜。
附图说明
图1为Pr0.6Sr0.4FeO3-δ ,Pr0.6Sr0.4Fe0.9Nb0.1O3-δ ,Pr0.6Sr0.4Fe0.9Al0.1O3-δ 透氧膜片的X射线衍射(XRD)谱图。
图2为Pr0.6Sr0.4FeO3-δ ,Pr0.6Sr0.4Fe0.9Nb0.1O3-δ ,Pr0.6Sr0.4Fe0.9Al0.1O3-δ 在纯He气氛下透氧量随温度的变化图。
图3为Pr0.6Sr0.4FeO3-δ ,Pr0.6Sr0.4Fe0.925Nb0.075O3-δ 在900 °C纯CO2气氛下长时间的透氧量。
图4为Pr0.6Sr0.4FeO3-δ ,Pr0.6Sr0.4Fe0.925Nb0.075O3-δ 透氧膜片100小时纯CO2气氛吹扫后吹扫侧表面的X射线衍射(XRD)谱图。
具体实施方式
下面的实施例将对本发明予以进一步的说明,但并不因此限制本发明。
实施例1
将23.36 g Pr(NO3)3·6H2O,7.58 g Sr(NO3)2,36.16 g Fe(NO3)3·9H2O溶解在去离子水中,取52.32 g乙二胺四乙酸和56.43 g柠檬酸溶解在另一装有一定量去离子水的烧杯中,将上述两溶液混合,并加热至95℃,通过滴加氨水使溶液的PH值为7,继续加热直至获得溶胶状物质。将所得溶胶状物在150℃干燥,直至其膨胀为海绵状多孔固体后取出,在380℃焙烧10小时,随后在950℃焙烧5小时,即得到Pr0.6Sr0.4FeO3-δ 粉体,在研钵中研磨3小时,使其颗粒大小均匀,向所得粉体中加入适量油酸,并在300 MPa压力下成型,所得片状坯体在1400℃焙烧8小时,即得到Pr0.6Sr0.4FeO3-δ 单相混合导体透氧膜,也即铁基陶瓷透氧膜。
实施例2
将23.08 g Pr(NO3)3·6H2O,7.48 g Sr(NO3)2,33.04 g Fe(NO3)3·9H2O,3 g 草酸铌溶解在去离子水中,取51.67 g乙二胺四乙酸和55.74 g 柠檬酸溶解在另一装有一定量去离子水的烧杯中,将上述两溶液混合,并加热至95℃,通过滴加氨水使溶液PH值为8,继续加热直至获得溶胶状物质,将所得溶胶状物在160℃干燥,直至10小时。随后在950℃焙烧8小时,即得到Pr0.6Sr0.4Fe0.925Nb0.075O3-δ 粉体,在研钵中研磨3小时,使其颗粒大小均匀向所得粉体中加入适量油酸,并在300 MPa压力下成型,所得片状坯体在1350℃焙烧8小时,即得到Pr0.6Sr0.4Fe0.925Nb0.075O3-δ 单相混合导体透氧膜,也即铁基陶瓷透氧膜。
实施例3
将22.98 g Pr(NO3)3·6H2O,7.45 g Sr(NO3)2,32.01 g Fe(NO3)3·9H2O,3.98 g 草酸铌溶解在去离子水中,取51.46 g乙二胺四乙酸和55.51 g 柠檬酸溶解在另一装有一定量去离子水的烧杯中,将上述两溶液混合,并加热至100℃,通过滴加氨水使溶液PH值为8,继续加热直至获得溶胶状物质,将所得溶胶状物在160℃干燥,直至10小时。随后在950℃焙烧8小时,即得到Pr0.6Sr0.4Fe0.9Nb0.1O3-δ 粉体,在研钵中研磨3小时,使其颗粒大小均匀向所得粉体中加入适量油酸,并在300 MPa压力下成型,所得片状坯体在1400℃焙烧8小时,即得到Pr0.6Sr0.4Fe0.9Nb0.1O3-δ 单相混合导体透氧膜,也即铁基陶瓷透氧膜。
实施例4
将23.67 g Pr(NO3)3·6H2O,7.68 g Sr(NO3)2,32.97 g Fe(NO3)3·9H2O,3.4 g Al(NO3)3·9H2O溶解在去离子水中,取53 g乙二胺四乙酸和57.17 g 柠檬酸溶解在另一装有一定量去离子水的烧杯中,将上述两溶液混合,并加热至80℃,通过滴加氨水使溶液PH值为8,继续加热直至获得溶胶状物质,将所得溶胶状物在160℃干燥,直至10小时。随后在950℃焙烧8小时,即得到Pr0.6Sr0.4Fe0.9Al0.1O3-δ 粉体,在研钵中研磨3小时,使其颗粒大小均匀向所得粉体中加入适量油酸,并在250 MPa压力下成型,所得片状坯体在1400℃焙烧8小时,即得到Pr0.6Sr0.4Fe0.9Al0.1O3-δ 单相混合导体透氧膜,也即铁基陶瓷透氧膜。
测试实验结果评价分析
如图1所示,将本发明实施例1,例3,例4制备的Pr0.6Sr0.4FeO3-δ ,Pr0.6Sr0.4Fe0.9Nb0.1O3-δ ,Pr0.6Sr0.4Fe0.9Al0.1O3-δ 进行X射线衍射实验,Nb掺杂不改变材料相结构,与Pr0.6Sr0.4FeO3-δ 均为正交结构,然而Pr0.6Sr0.4Fe0.9Al0.1O3-δ 为立方结构。说明稳定价态元素Al掺杂可以得到对称性好的立方钙钛矿结构。
如图2所示,Pr0.6Sr0.4Fe0.9Al0.1O3-δ 膜片在He气氛下透氧量高于Pr0.6Sr0.4FeO3-δ ,Pr0.6Sr0.4Fe0.9Nb0.1O3-δ 。立方钙钛矿结构对称性好,便于氧离子的传输,进一步说明Al掺杂改变了Pr0.6Sr0.4FeO3-δ 材料相结构。
如图3所示,将本发明实施例2制备的Pr0.6Sr0.4Fe0.925Nb0.075O3-δ 单相混合导体透氧膜在温度为900℃,空气流量为300 ml·min-1和CO2流量为100 ml·min-1条件下进行透氧量测试,其稳定的透氧量为0.11 ml·min-1·cm-2左右,而相比于技术文献[J.Chem.Mater.2010, 22, 6246]中所述的透氧膜材料在CO2气氛下进行测试,其透氧量几乎为0。PSF和PSFNb0.075对比发现一定量Nb掺杂在一定程度上提高了材料在纯CO2气氛下的稳定性以及透氧性能。由此可见,Nb掺杂能提高单相混合导体透氧膜在CO2气氛下的稳定性。
如图4所示,本发明实例1,例2制备的Pr0.6Sr0.4FeO3-δ ,Pr0.6Sr0.4Fe0.925Nb0.075O3-δ 膜片经长时间纯CO2气氛吹扫后,将其吹扫测进行XRD检查,发现Pr0.6Sr0.4FeO3-δ 吹扫侧表面有SrCO3和SrSO4生成,而Pr0.6Sr0.4Fe0.925Nb0.075O3-δ 吹扫侧表面表现出良好的相结构稳定性。S元素是由化学试剂不纯引入。说明Nb掺入不仅提高了材料的耐CO2性能,同时抑制了S元素的迁移以及在膜片吹扫侧表面富集。

Claims (2)

1.一种可提高CO2气氛下透氧稳定性的铁基陶瓷透氧膜的制备方法,其特征在于,该铁基陶瓷透氧膜具有如下的化学式:
Pr0.6Sr0.4Fe1-x X x O3-δ ,其中X为Nb,Al中的任一种,
所述的化学计量比x的取值范围为:0≤x≤0.15。
2.一种可提高CO2气氛下透氧稳定性的铁基陶瓷透氧膜的制备方法,其特征在于具有以下的工艺过程和步骤:
a) 根据Pr0.6Sr0.4Fe1-x X x O3-δ 的化学计量比将一定量的硝酸镨,硝酸锶,硝酸铁,草酸铌或硝酸铝溶入去离子水中,加热并搅拌直至完全溶解;按总金属离子:乙二胺四乙酸:柠檬酸物质量比为1:1:1.5的比例,精确称量乙二胺四乙酸,一水柠檬酸的质量,将其加入至装有去离子水的烧杯中,加热搅拌至完全溶解;
b) 将此两种溶液混合,并在80℃~120℃搅拌,通过滴加去离子水,使溶液的PH值在7~8间,不断加热搅拌,直至溶液变为黑色溶胶状;将所得凝胶在140℃~180℃干燥20~24小时,直至其膨胀疏松得多孔固体;
c) 将上述b)步骤中所得黑色多孔固体在300℃~400℃加热10~12小时,得到黄色粉末,该粉末研磨后,在700℃~950℃保温5~8小时,得到黑色Pr0.6Sr0.4Fe1-x Nb x O3-δ 粉体,将所得粉体在研钵中研磨2~3小时,使得粉体颗粒大小相对均匀,向粉体中加入油酸和粘结剂,在200~300 MPa压力下成型,所得片状坯体在1200~1400℃焙烧5~8小时,得到铁基陶瓷导体透氧膜。
CN201710438698.9A 2017-06-12 2017-06-12 一种可提高co2气氛下透氧稳定性的铁基陶瓷透氧膜的制备方法 Active CN107198973B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710438698.9A CN107198973B (zh) 2017-06-12 2017-06-12 一种可提高co2气氛下透氧稳定性的铁基陶瓷透氧膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710438698.9A CN107198973B (zh) 2017-06-12 2017-06-12 一种可提高co2气氛下透氧稳定性的铁基陶瓷透氧膜的制备方法

Publications (2)

Publication Number Publication Date
CN107198973A true CN107198973A (zh) 2017-09-26
CN107198973B CN107198973B (zh) 2020-04-03

Family

ID=59907819

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710438698.9A Active CN107198973B (zh) 2017-06-12 2017-06-12 一种可提高co2气氛下透氧稳定性的铁基陶瓷透氧膜的制备方法

Country Status (1)

Country Link
CN (1) CN107198973B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109351134A (zh) * 2018-09-07 2019-02-19 上海大学 单相混合导体非对称透氧膜及其制备方法
CN112457012A (zh) * 2020-11-30 2021-03-09 上海大学 热化学分解水制氢用萤石-钙钛矿型双相混合导体膜材料及其制备方法
CN112473678A (zh) * 2020-11-26 2021-03-12 上大新材料(泰州)研究院有限公司 用于湿法熄焦蒸气混合重整甲烷的催化剂及其制备方法
CN112624751A (zh) * 2020-11-30 2021-04-09 上海大学 热化学分解水制氢用铁基钙钛矿混合导体透氧膜材料及其制备方法
CN116514549A (zh) * 2023-05-05 2023-08-01 上海大学 一种三相混合导体透氧膜材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1203831A (zh) * 1998-05-06 1999-01-06 南京化工大学 一种混合导电型致密透氧膜材料
CN1698939A (zh) * 2005-04-06 2005-11-23 南京工业大学 氧化铝掺杂的混合导电型致密透氧膜材料
CN101596414A (zh) * 2009-06-26 2009-12-09 华南理工大学 一种含钽钙钛矿混合导体透氧膜及其制法和应用
JP2015171984A (ja) * 2013-08-27 2015-10-01 国立大学法人東京工業大学 結晶性無機化合物
CN106083045A (zh) * 2016-06-12 2016-11-09 上海大学 一种抗co2腐蚀的双相混合导体透氧膜材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1203831A (zh) * 1998-05-06 1999-01-06 南京化工大学 一种混合导电型致密透氧膜材料
CN1698939A (zh) * 2005-04-06 2005-11-23 南京工业大学 氧化铝掺杂的混合导电型致密透氧膜材料
CN101596414A (zh) * 2009-06-26 2009-12-09 华南理工大学 一种含钽钙钛矿混合导体透氧膜及其制法和应用
JP2015171984A (ja) * 2013-08-27 2015-10-01 国立大学法人東京工業大学 結晶性無機化合物
CN106083045A (zh) * 2016-06-12 2016-11-09 上海大学 一种抗co2腐蚀的双相混合导体透氧膜材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H.TAKAMURA ETC: "Oxygen Permeation Of Pr0.7Sr0.3Fe0.8Al0.2O3-δ", 《SOLID STATE IONICS》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109351134A (zh) * 2018-09-07 2019-02-19 上海大学 单相混合导体非对称透氧膜及其制备方法
CN112473678A (zh) * 2020-11-26 2021-03-12 上大新材料(泰州)研究院有限公司 用于湿法熄焦蒸气混合重整甲烷的催化剂及其制备方法
CN112473678B (zh) * 2020-11-26 2023-01-17 上大新材料(泰州)研究院有限公司 用于湿法熄焦蒸气混合重整甲烷的催化剂及其制备方法
CN112457012A (zh) * 2020-11-30 2021-03-09 上海大学 热化学分解水制氢用萤石-钙钛矿型双相混合导体膜材料及其制备方法
CN112624751A (zh) * 2020-11-30 2021-04-09 上海大学 热化学分解水制氢用铁基钙钛矿混合导体透氧膜材料及其制备方法
CN112624751B (zh) * 2020-11-30 2023-04-18 上海大学 热化学分解水制氢用铁基钙钛矿混合导体透氧膜材料及其制备方法
CN112457012B (zh) * 2020-11-30 2023-05-16 上海大学 热化学分解水制氢用萤石-钙钛矿型双相混合导体膜材料及其制备方法
CN116514549A (zh) * 2023-05-05 2023-08-01 上海大学 一种三相混合导体透氧膜材料及其制备方法

Also Published As

Publication number Publication date
CN107198973B (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
CN107198973A (zh) 一种可提高co2气氛下透氧稳定性的铁基陶瓷透氧膜的制备方法
Lu et al. Novel cobalt-free BaFe 1− x Gd x O 3− δ perovskite membranes for oxygen separation
Zhu et al. Structural stability and oxygen permeability of cerium lightly doped BaFeO3− δ ceramic membranes
Luo et al. A CO 2-stable reduction-tolerant Nd-containing dual phase membrane for oxyfuel CO 2 capture
Kharton et al. Processing, stability and oxygen permeability of Sr (Fe, Al) O3-based ceramic membranes
Zhu et al. Relationship between homogeneity and oxygen permeability of composite membranes
He et al. A novel dual phase membrane 40 wt% Nd 0.6 Sr 0.4 CoO 3− δ–60 wt% Ce 0.9 Nd 0.1 O 2− δ: design, synthesis and properties
CN106925136B (zh) 一种阴离子掺杂的钙钛矿型混合导体透氢膜材料及其制备方法与应用
Yang et al. New perovskite membrane with improved sintering and self-reconstructed surface for efficient hydrogen permeation
He et al. Tailoring of surface modified ultrathin membranes with CO 2 tolerance and high oxygen permeability
Liu et al. Effects of B-site Nb doping on the CO 2 resistance and rate-controlling step of Ce 0.8 Gd 0.2 O 2− δ–Pr 0.6 Sr 0.4 Co 0.5 Fe 0.5 O 3− δ dual-phase membranes
CN104258740B (zh) B位掺杂Ca元素的BaFeO3-δ基陶瓷透氧膜材料
Jiang et al. Oxygen Permeation and Stability of Ce0. 8Gd0. 2O2− δ–PrBaCo2− xFexO5+ δ Dual–phase Composite Membranes
CN105642131A (zh) 一种纳米粒子稳定钙钛矿结构透氧膜的方法
Pérez-Ramírez et al. Lanthanum ferrite membranes in ammonia oxidation: opportunities for ‘pocket-sized’nitric acid plants
CN106083045A (zh) 一种抗co2腐蚀的双相混合导体透氧膜材料及其制备方法
Deng et al. Combustion synthesis, annealing, and oxygen permeation properties of SrFeCo0. 5Oy membranes
CN102408226B (zh) 一种b位y元素掺杂的钙钛矿型陶瓷透氧膜材料制备方法
Jaiswal et al. Oxygen permeation characteristics of sol‐gel derived barium‐substituted strontium ferrite membranes
CN106966728A (zh) 一种阴离子掺杂的K2NiF4型混合导体透氧膜材料及其制备方法与应用
Choi et al. Preparation of asymmetric tubular oxygen separation membrane with oxygen permeable Pr2Ni0. 75Cu0. 25Ga0. 05O4+ δ
Zeng et al. High flux asymmetric oxygen permeation membrane based on BaFe0. 95Sm0. 05O3-δ-Ce0. 9Sm0. 1O2-δ dual-phase composite
Jaiswal et al. A novel series of Ba0. 5Sr0. 5Al0. 2− xMgxFe0. 8O3− ξ (x≤ 0.2) membranes for oxygen permeation application
Ikeguchi et al. Effects of preparation method on oxygen permeation properties of SrFeCo0. 5Ox membrane
JP2005507308A (ja) 固体多成分混合のプロトンおよび電子伝導膜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant