CN106083045A - 一种抗co2腐蚀的双相混合导体透氧膜材料及其制备方法 - Google Patents

一种抗co2腐蚀的双相混合导体透氧膜材料及其制备方法 Download PDF

Info

Publication number
CN106083045A
CN106083045A CN201610406564.4A CN201610406564A CN106083045A CN 106083045 A CN106083045 A CN 106083045A CN 201610406564 A CN201610406564 A CN 201610406564A CN 106083045 A CN106083045 A CN 106083045A
Authority
CN
China
Prior art keywords
hours
oxygen
stirred
permeable membrane
roasting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610406564.4A
Other languages
English (en)
Inventor
程红伟
鲁雄刚
王鹏飞
王远枝
顾紫琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201610406564.4A priority Critical patent/CN106083045A/zh
Publication of CN106083045A publication Critical patent/CN106083045A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种抗CO2腐蚀的双相混合导体透氧膜材料及其制备方法,该材料由以下的组成及重量百分比:Ce1‑x Ln x O2‑δ 氧化物60%;Pr1‑ y Sr y Co1‑z‑w Fe z M w O3‑δ 氧化物40%;其中,Ln=La、Pr、Nd、Sm、Gd,0≤x≤0.2;M=Ti、V、Nb、Zr、Mo、Ta,0<y<1,0.2≤z≤0.5,0≤w≤0.2,其制备方法为:分别将一定量各金属元素的硝酸盐或氧化物溶于硝酸水溶液或去离子水中并与溶有乙二胺四乙酸和一水合柠檬酸的溶液混合,待水分挥发后,经两次焙烧得到Ce1‑x Ln x O2‑δ 粉体和Pr1‑ y Sr y Co1‑z‑w Fe z M w O3‑δ 粉体,将两种粉体混合、研磨,在一定压力下成型获得坯体,再在1150~1250 oC焙烧5~10小时,得到双相混合导体透氧膜片,该方法制备的双相混合导体透氧膜在纯CO2气氛下不仅能够稳定运行,而且能保持较高的透氧量,透氧量达到0.29mL·min‑1·cm‑2

Description

一种抗CO2腐蚀的双相混合导体透氧膜材料及其制备方法
技术领域
本发明涉及一种抗CO2腐蚀的双相混合导体透氧膜材料及其制备方法,属于冶金资源综合利用和功能陶瓷制造技术领域。
背景技术
现有的混合导体透氧膜由于对氧气具有100%的选择性,且可以和燃烧过程耦合,省去了单独的氧分离装置,大大降低CO2捕获的成本,引起了全世界对混合导体透氧膜制备纯氧技术的广泛关注。
在基于透氧膜分离氧的富氧燃烧流程中,为避免尾气中引入其他气体,一部分含高浓度CO2(约80vol%)的尾气循环作为透氧膜的吹扫气,能够在高浓度CO2气氛下长时间稳定工作并保持足够高透氧量的混合导体透氧膜材料的开发尤为重要。
含钴单相混合导体透氧膜普遍具有较高的透氧量但稳定性较差,而不含钴的单相混合导体透氧膜稳定性较好但透氧量较低。如文献[Journal of Membrane Science,2007,293:44-52]中开发的Ba0.5Sr0.5Co0.8Fe0.2O3−δ钙钛矿型混合导体透氧膜,在875oC、膜厚1mm、纯He气氛下,透氧量高达1.9 ml/min∙cm2,但是当切换至纯CO2气氛下时,透氧量急剧衰减接近于0。文献[Journal of Membrane Science,2015,485:79-86]中提到的SrFe0.8Nb0.2O3-δ钙钛矿型透氧膜,尽管在纯二氧化碳气氛运行相对稳定,但是透氧量仍较低。含钴双相混合导体透氧膜可以兼具较高的透氧量和良好的稳定性,具有重要意义和良好前景。
发明内容
针对现有技术存在的缺陷,本发明的目的是提供一种抗CO2腐蚀的双相混合导体透氧膜材料及其制备方法,该方法制备的双相混合导体透氧膜在纯二氧化碳气氛下不仅能够稳定运行,而且能保持较高的透氧量。
为达到上述目的,本发明采用如下技术方案:
一种抗CO2腐蚀的双相混合导体透氧膜材料,其特征在于具有以下的组成及重量百分比:
Ce1-x Ln x O2-δ 氧化物 60%
Pr1-y Sr y Co1-z-w Fe z M w O3-δ 氧化物40%
其中,Ln=La、Pr、Nd、Sm、Gd,0≤x≤0.2;M=Ti、V、Nb、Zr、Mo、Ta,0<y<1,0.2≤z≤0.5,0≤w≤0.2。
本发明的一种抗CO2腐蚀的双相混合导体透氧膜材料的制备方法,具有以下步骤:
(a). 根据Ce1-x Ln x O2-δ 的化学计量比称量一定量的硝酸铈和Ln的氧化物或硝酸盐加入去离子水中,加热搅拌直至完全溶解;按金属离子:乙二胺四乙酸:一水合柠檬酸物质的量比为1:1:1.5的比例,精确称取一定量的乙二胺四乙酸和一水合柠檬酸,加入另一装有一定量去离子水的烧杯中,加热搅拌直至完全溶解;
(b). 将上述两种溶液混合,并在90~100 oC下利用磁力搅拌器进行搅拌,搅拌混合30分钟,再用滴定管缓慢滴加氨水,使混合溶液的pH值处于7~8之间,继续进行加热搅拌,直至溶液变成黑色胶状;将所得黑色胶状物在150 ~ 170 oC进行干燥20小时后取出,在350~ 400 oC焙烧10 ~ 15小时,得到疏松固体粉末,将疏松固体粉末放入研钵中碾磨均匀,然后在600~700oC焙烧5 ~ 10小时,得到Ce1-x Ln x O2-δ 粉体;
(c). 根据Pr1-y Sr y Co1-z-w Fe z M w O3-δ 的化学计量比称取一定量的硝酸镨、硝酸锶、硝酸钴、硝酸铁和M盐加入去离子水中,加热搅拌直至完全溶解;按金属离子:乙二胺四乙酸:一水合柠檬酸物质的量为1:1:1.5的比例,精确称取一定量的乙二胺四乙酸、一水合柠檬酸,加入到另一装有一定量去离子水的烧杯中,加热搅拌直至完全溶解;将上述两种溶液混合,并在90 ~ 100 oC下利用磁力搅拌器进行搅拌,搅拌混合30分钟,再用滴定管缓慢滴加氨水,使混合溶液的pH值处于7 ~ 8之间,继续进行加热搅拌,直至溶液变成黑色胶状物;
(d). 将所得黑色胶状物在150 ~ 170 oC进行干燥20小时后取出,在350 ~ 400 oC焙烧10 ~ 15小时,得到疏松固体粉末,将疏松固体粉放入研钵中碾磨均匀,然后在800 ~950 oC焙烧5 ~ 10小时,得到Pr1-y Sr y Co1-z-w Fe z M w O3-δ 粉体;
(e). 按质量比为6:4分别精确称量上述步骤(b)得到的Ce1-x Ln x O2-δ 粉体和上述步骤(d)得到的Pr1-y Sr y Co1-z-w Fe z M w O3-δ 粉体,放入到在研钵中充分研磨4 ~ 5小时,使其混合均匀,然后加入适量的油酸和粘结剂,再次研磨1 ~ 2小时,使其混合均匀,并在45 ~ 50千牛的压力下成型,所得片状胚体在1150 ~ 1250 oC焙烧5 ~ 10小时,即得到双相混合导体透氧膜。
与现有技术相比,本发明具有如下突出的实质性特点和显著优点:
本发明制得双相混合导体透氧膜的结构致密,无杂相生成,具有很好的化学相容性。在900oC、空气流量为300ml∙min-1和氦气流量为100 ml∙min-1条件下,透氧量达到0.29mL∙min-1∙cm-2,同时在纯二氧化碳气氛下也可稳定运行并保持较高的透氧量。
附图说明
图1为本发明所述方法制备的Ce0.8Gd0.2O2-δ -Pr0.6Sr0.4Co0.5Fe0.5O3-δ (GDC-PSCF)各单相混合导体透氧膜以及双相混合导体透氧膜的X射线衍射(XRD)图。
图2为本发明所述方法制备的Ce0.8Gd0.2O2-δ -Pr0.6Sr0.4Co0.5Fe0.5O3-δ (GDC-PSCF)双相混合导体透氧膜表面的背散射扫描电子(BSEM)照片。
图3为本发明所述方法制备的Ce0.8Gd0.2O2-δ -Pr0.6Sr0.4Co0.5Fe0.5O3-δ (GDC-PSCF)双相混合导体透氧膜在900oC、不同CO2浓度下的透氧量随时间变化图。.
图4为本发明所述方法制备的Ce0.8Gd0.2O2-δ -Pr0.6Sr0.4Co0.5Fe0.5O3-δ (GDC-PSCF) 双相混合导体透氧膜在900oC、纯CO2气氛下的透氧量随时间变化图。
具体实施方式,
下面的实施例将对本发明予以进一步的说明,但并不因此而限制本发明。
实施例1
本发明的一种抗CO2腐蚀的双相混合导体透氧膜材料的制备方法,具有以下工艺过程:
先将4.133 gGd2O3加入到硝酸的水溶液中溶解,再向溶液中加入39.601 gCe(NO3)3·6H2O,加热并搅拌直至完全溶解;按金属离子:乙二胺四乙酸:一水合柠檬酸物质的量比为1:1:1.5的比例,称量33.315 g 乙二胺四乙酸和35.934 g 一水合柠檬酸加入另一装有一定量去离子水的烧杯中,加热搅拌直至完全溶解;将上述两种溶液混合,并在90 ~ 100 oC搅拌,搅拌混合30分钟,再用滴定管缓慢滴加氨水,使混合溶液的pH值为7 ~ 8之间,继续加热搅拌,直至溶液变成黑色胶状;将所得黑色胶状物在170 oC进行干燥20小时后取出,在350 oC焙烧10小时,得到疏松固体粉末,将疏松固体粉末放入研钵中碾磨均匀,然后在650oC焙烧5小时,即得到Ce0.8Gd0.2O2-δ (GDC) 粉体;将 23.199 gPr(NO3)3·6H2O、7.526 gSr(NO3)2、12.936 gCo(NO3)2·6H2O、17.958 gFe(NO3)3·9H2O加入一定量的去离子水中,加热并搅拌直至完全溶解;按金属离子:乙二胺四乙酸:一水合柠檬酸物质的量比为1:1:1.5的比例,称量51.960 g 乙二胺四乙酸和56.044 g 一水合柠檬酸,加入到另一装有一定量去离子水的烧杯中,加热搅拌直至完全溶解;将上述两种溶液混合,并在90 ~ 100 oC利用磁力搅拌器进行搅拌,搅拌混合30分钟,再用滴定管缓慢滴加氨水,使混合溶液的pH值为7 ~8之间,继续加热搅拌,直至溶液变成黑色胶状;将所得黑色胶状物在150 oC进行干燥20小时后取出,在350 oC焙烧10小时,得到疏松固体粉末,将疏松固体粉放入研钵中碾磨均匀,然后在900 oC焙烧8小时,即得到Pr0.6Sr0.4Co0.5Fe0.5O3-δ (PSCF) 粉体;按质量比为6:4分别精确称量上述步骤得到的GDC粉体和PSCF粉体,放入到研钵中充分研磨3小时,使其混合均匀,然后加入适量的油酸和粘结剂,再次充分研磨2小时,使其混合均匀,并在50千牛的压力下成型,所得片状胚体在1200 oC焙烧8小时,即得到Ce0.8Gd0.2O2-δ -Pr0.6Sr0.4Co0.5Fe0.5O3-δ (GDC-PSCF) 双相混合导体透氧膜,如图1至图4所示。
实施例2
按上述实施例1中完全相同的方法制备Ce0.8Gd0.2O2-δ (GDC)粉体;
将23.094 gPr(NO3)3·6H2O、7.492gSr(NO3)2、12.878gCo(NO3)2·6H2O、16.983gFe(NO3)3·9H2O、1.001g草酸铌加入一定量的去离子水中,加热并搅拌直至完全溶解;按金属离子:乙二胺四乙酸:一水合柠檬酸物质的量比为1:1:1.5的比例,称量51.726 g 乙二胺四乙酸和55.792 g 一水合柠檬酸,加入另一装有一定量去离子水的烧杯中,加热搅拌直至完全溶解;将上述两种溶液混合,并在90 ~ 100 oC搅拌,搅拌混合30分钟,再用滴定管缓慢滴加氨水,使混合溶液的pH值为7 ~ 8之间,继续加热搅拌,直至溶液变成黑色胶状;将所得黑色胶状物在150 oC进行干燥20小时后取出,在350 oC焙烧10小时,得到疏松固体粉末,将疏松固体粉放入研钵中碾磨均匀,然后在900 oC焙烧5小时,即得到Pr0.6Sr0.4Co0.5Fe0.475Nb0.025O3-δ (PSCF0.475N0.025)粉体;按质量比为6:4分别精确称量上述步骤得到的GDC和PSCF0.475N0.025两种粉体,放入到研钵中充分研磨3小时,使其混合均匀,后加入适量的油酸和粘结剂,再次充分研磨2小时,使其混合均匀,并在50千牛的压力下成型,所得片状胚体在1150 oC焙烧8小时,即得到Ce0.8Gd0.2O2-δ -Pr0.6Sr0.4Co0.5Fe0.475Nb0.025O3-δ (GDC-PSCF0.475N0.025) 双相混合导体透氧膜。
实施例3
按上述实施例1中完全相同的方法制备Ce0.8Gd0.2O2-δ (GDC)粉体。
将 22.781 gPr(NO3)3·6H2O、7.390 gSr(NO3)2、17.785 gCo(NO3)2·6H2O、7.054gFe(NO3)3·9H2O、3.748 gZr(NO3)4·5H2O加入到一定量的去离子水中,加热并搅拌直至完全溶解;按金属离子:乙二胺四乙酸:一水合柠檬酸物质的量比为1:1:1.5的比例,称量51.025 g 乙二胺四;乙酸和55.036 g 一水合柠檬酸加入另一装有一定量去离子水的烧杯中,加热搅拌直至完全溶解;将上述两种溶液混合,并在90 ~ 100 oC搅拌,搅拌混合30分钟,再用滴定管缓慢滴加氨水,使混合溶液的pH值为7 ~ 8之间,继续加热搅拌直至溶液变成黑色胶状;将所得黑色胶状物在150 oC进行干燥20小时后取出,在350 oC焙烧10小时得到的疏松固体粉末,将疏松固体粉放入研钵中碾磨均匀,然后在900 oC焙烧10小时,即得到Pr0.6Sr0.4Co0.7Fe0.2Zr0.1O3-δ (PSCF0.2Z0.1) 粉体;按质量比为6:4分别精确称量上述步骤得到的GDC和PSCF0.2Z0.1两种粉体,放入到研钵中充分研磨3小时,使其混合均匀,后加入适量的油酸和粘结剂,再次充分研磨2小时,使其混合均匀,并在50千牛的压力下成型,所得片状胚体在1250 oC焙烧10小时,即得到Ce0.8Gd0.2O2-δ -Pr0.6Sr0.4Co0.7Fe0.2Zr0.1O3-δ (GDC-PSCF0.2Z0.1)双相混合导体透氧膜。
测试实验结果评价分析,如图3和图4所示,将本发明实施例1制备的Ce0.8Gd0.2O2-δ -Pr0.6Sr0.4Co0.5Fe0.5O3-δ 双相混合导体透氧膜在温度为900oC、空气流量为300ml∙min-1和氦气流量为100ml∙min-1条件下进行透氧量测试,其透氧量为0.29mL∙min-1∙cm-2,而相比于技术文献[Solid State Ionics,2011,190:46-52]中所述的透氧膜材料在同样的条件下,进行测试,其透氧量为0.04 mL∙min-1∙cm-2;由此可见,本发明制备的透氧膜材料在运行中能保持较高的透氧量,如图3所示。
本发明实施例1制备的Ce0.8Gd0.2O2-δ -Pr0.6Sr0.4Co0.5Fe0.45O3-δ 双相混合导体透氧膜在纯二氧化碳气氛下进行透氧量测试,其透氧量为0.21mL∙min-1∙cm-2且透氧稳定;相比于技术文献[Journal of Alloys and Compounds,2015, 646:204-210]中所述的透氧膜材料在纯二氧化碳气氛下进行测试,其透氧量为0.1 mL∙min-1∙cm-2;由此可见,本发明制备的双相混合导体透氧膜在运行中保持较高的透氧量和良好的抗CO2腐蚀性能,如图4所示。

Claims (2)

1.一种抗CO2腐蚀的双相混合导体透氧膜材料,其特征在于,该材料具有以下的组成及重量百分比:
Ce1-x Ln x O2-δ 氧化物 60%
Pr1-y Sr y Co1-z-w Fe z M w O3-δ 氧化物40%
其中,Ln=La、Pr、Nd、Sm、Gd,0≤x≤0.2;M=Ti、V、Nb、Zr、Mo、Ta,0<y<1,0.2≤z≤0.5,0≤w≤0.2。
2.一种抗CO2腐蚀的双相混合导体透氧膜材料的制备方法,其特征在于,具有以下步骤:
(a). 根据Ce1-x Ln x O2-δ 的化学计量比称量一定量的硝酸铈和Ln的氧化物或硝酸盐加入去离子水中,加热搅拌直至完全溶解;按金属离子:乙二胺四乙酸:一水合柠檬酸物质的量比为1:1:1.5的比例,精确称取一定量的乙二胺四乙酸和一水合柠檬酸,加入另一装有一定量去离子水的烧杯中,加热搅拌直至完全溶解;
(b). 将上述两种溶液混合,并在90~100 oC下利用磁力搅拌器进行搅拌,搅拌混合30分钟,再用滴定管缓慢滴加氨水,使混合溶液的pH值处于7~8之间,继续进行加热搅拌,直至溶液变成黑色胶状;将所得黑色胶状物在150 ~ 170 oC进行干燥20小时后取出,在350~ 400 oC焙烧10 ~ 15小时,得到疏松固体粉末,将疏松固体粉末放入研钵中碾磨均匀,然后在600~700oC焙烧5 ~ 10小时,得到Ce1-x Ln x O2-δ 粉体;
(c). 根据Pr1-y Sr y Co1-z-w Fe z M w O3-δ 的化学计量比称取一定量的硝酸镨、硝酸锶、硝酸钴、硝酸铁、M盐加入去离子水中,加热搅拌直至完全溶解;按金属离子:乙二胺四乙酸:一水合柠檬酸物质的量为1:1:1.5的比例,精确称取一定量的乙二胺四乙酸一水合柠檬酸,加入到另一装有一定量去离子水的烧杯中,加热搅拌直至完全溶解;将上述两种溶液混合,并在90~ 100 oC下利用磁力搅拌器进行搅拌,搅拌混合30分钟,再用滴定管缓慢滴加氨水,使混合溶液的pH值处于7 ~ 8之间,继续进行加热搅拌,直至溶液变成黑色胶状物;
(d). 将所得黑色胶状物在150 ~ 170 oC进行干燥20小时后取出,在350 ~ 400 oC焙烧10 ~ 15小时,得到疏松固体粉末,将疏松固体粉放入研钵中碾磨均匀,然后在800 ~950 oC焙烧5 ~ 10小时,得到Pr1-y Sr y Co1-z-w Fe z M w O3-δ 粉体;
(e). 按质量比为6:4分别精确称量上述步骤(b)得到的Ce1-xLnxO2-δ 粉体和上述步骤(d)得到的Pr1-y Sr y Co1-z-w Fe z M w O3-δ 粉体,放入到在研钵中充分研磨4 ~ 5小时,使其混合均匀,然后加入适量的油酸和粘结剂,再次研磨1 ~ 2小时,使其混合均匀,并在45 ~ 50千牛的压力下成型,所得片状胚体在1150 ~ 1250 oC焙烧5 ~ 10小时,即得到双相混合导体透氧膜。
CN201610406564.4A 2016-06-12 2016-06-12 一种抗co2腐蚀的双相混合导体透氧膜材料及其制备方法 Pending CN106083045A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610406564.4A CN106083045A (zh) 2016-06-12 2016-06-12 一种抗co2腐蚀的双相混合导体透氧膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610406564.4A CN106083045A (zh) 2016-06-12 2016-06-12 一种抗co2腐蚀的双相混合导体透氧膜材料及其制备方法

Publications (1)

Publication Number Publication Date
CN106083045A true CN106083045A (zh) 2016-11-09

Family

ID=57228645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610406564.4A Pending CN106083045A (zh) 2016-06-12 2016-06-12 一种抗co2腐蚀的双相混合导体透氧膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106083045A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107198973A (zh) * 2017-06-12 2017-09-26 上海大学 一种可提高co2气氛下透氧稳定性的铁基陶瓷透氧膜的制备方法
CN111389242A (zh) * 2020-03-19 2020-07-10 上海大学 无钴抗co2毒化的高透氧量双相透氧膜材料、其制备方法和应用
CN111646796A (zh) * 2020-05-19 2020-09-11 电子科技大学 低温烧结低介微波陶瓷材料Sr2VxO7及其制备方法
CN112827363A (zh) * 2019-11-22 2021-05-25 中国科学院青岛生物能源与过程研究所 一种用于管状陶瓷透氧膜的高温密封方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102775134A (zh) * 2012-07-25 2012-11-14 华南理工大学 一种抗二氧化碳的混合导体透氧膜及其制备方法和应用
CN103601496A (zh) * 2013-11-18 2014-02-26 上海大学 一种双相混合导体透氧膜材料及其制备方法
CN104548957A (zh) * 2014-12-12 2015-04-29 南京工业大学 一类在含二氧化碳气氛中具有稳定氧通量的透氧膜材料
CN104803683A (zh) * 2015-04-14 2015-07-29 上海大学 一种耐co2的高稳定性双相透氧膜材料及其制备方法
CN104829231A (zh) * 2015-04-14 2015-08-12 上海大学 一种萤石-钙钛矿型双相混合导体透氧膜材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102775134A (zh) * 2012-07-25 2012-11-14 华南理工大学 一种抗二氧化碳的混合导体透氧膜及其制备方法和应用
CN103601496A (zh) * 2013-11-18 2014-02-26 上海大学 一种双相混合导体透氧膜材料及其制备方法
CN104548957A (zh) * 2014-12-12 2015-04-29 南京工业大学 一类在含二氧化碳气氛中具有稳定氧通量的透氧膜材料
CN104803683A (zh) * 2015-04-14 2015-07-29 上海大学 一种耐co2的高稳定性双相透氧膜材料及其制备方法
CN104829231A (zh) * 2015-04-14 2015-08-12 上海大学 一种萤石-钙钛矿型双相混合导体透氧膜材料及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107198973A (zh) * 2017-06-12 2017-09-26 上海大学 一种可提高co2气氛下透氧稳定性的铁基陶瓷透氧膜的制备方法
CN107198973B (zh) * 2017-06-12 2020-04-03 上海大学 一种可提高co2气氛下透氧稳定性的铁基陶瓷透氧膜的制备方法
CN112827363A (zh) * 2019-11-22 2021-05-25 中国科学院青岛生物能源与过程研究所 一种用于管状陶瓷透氧膜的高温密封方法
CN111389242A (zh) * 2020-03-19 2020-07-10 上海大学 无钴抗co2毒化的高透氧量双相透氧膜材料、其制备方法和应用
CN111646796A (zh) * 2020-05-19 2020-09-11 电子科技大学 低温烧结低介微波陶瓷材料Sr2VxO7及其制备方法

Similar Documents

Publication Publication Date Title
CN106083045A (zh) 一种抗co2腐蚀的双相混合导体透氧膜材料及其制备方法
CN108832136B (zh) 一种固体氧化物电池用复合氧电极及其制备方法
CN105845945B (zh) 一种中低温质子导体固体氧化物电池用复合电极及制备
CN106925136B (zh) 一种阴离子掺杂的钙钛矿型混合导体透氢膜材料及其制备方法与应用
CN103601496B (zh) 一种双相混合导体透氧膜材料及其制备方法
JP2009087944A (ja) 複合体型混合導電体
US9412486B2 (en) Composite oxide powder for solid oxide fuel cell and its production method
CN107198973A (zh) 一种可提高co2气氛下透氧稳定性的铁基陶瓷透氧膜的制备方法
CN105642131B (zh) 一种纳米粒子稳定钙钛矿结构透氧膜的方法
CN105932299A (zh) 具有复合相结构的中低温固体氧化物燃料电池阴极材料
CN108658132B (zh) 硝酸盐辅助柠檬酸络合法低温合成钙钛矿型LaCoO3
Garcés et al. An insight into the electrochemical performance of La 0.5− x Pr x Ba 0.5 CoO 3− δ as cathodes for solid oxide fuel cells: study of the O 2-reduction reaction
CN106966728A (zh) 一种阴离子掺杂的K2NiF4型混合导体透氧膜材料及其制备方法与应用
CN106431400A (zh) 一种抗co2腐蚀的双相混合导体透氧膜材料及其制备方法
CN101596414A (zh) 一种含钽钙钛矿混合导体透氧膜及其制法和应用
CN104829231A (zh) 一种萤石-钙钛矿型双相混合导体透氧膜材料及其制备方法
JP5175154B2 (ja) ニッケル複合酸化物の製造方法、該方法により得られるニッケル複合酸化物、該ニッケル複合酸化物を用いてなる酸化ニッケル−安定化ジルコニア複合酸化物、該酸化ニッケル−安定化ジルコニア複合酸化物を含有する固体酸化物型燃料電池用燃料極
CN102603298B (zh) 一种高透氧率双相致密透氧材料的制备方法
CN108117044A (zh) 一种制备高纯度氢的方法
CN109742431B (zh) 一种氧化铈基体掺杂氧化镝复合电解质材料及其制备方法
Zhou et al. Limiting-current oxygen sensor with LaNi0. 6Fe0. 4O3− δ dense diffusion barrier and Ce0. 8Gd0. 15Ca0. 05O2− δ electrolyte
CN103052433A (zh) Co2-耐受性混合导电氧化物及其用于氢气分离的用途
US9570754B2 (en) Process for producing anode material for solid oxide fuel cell
CN104860667B (zh) 一种双金属掺杂的混合导体透氧膜及其制备方法和应用
CN112299835A (zh) 一种a位部分掺杂碱金属离子钙钛矿透氧膜材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161109

RJ01 Rejection of invention patent application after publication