CN1183121A - 测定组织或细胞物理化学特性的方法、检测药品的方法及其装置 - Google Patents

测定组织或细胞物理化学特性的方法、检测药品的方法及其装置 Download PDF

Info

Publication number
CN1183121A
CN1183121A CN97190217A CN97190217A CN1183121A CN 1183121 A CN1183121 A CN 1183121A CN 97190217 A CN97190217 A CN 97190217A CN 97190217 A CN97190217 A CN 97190217A CN 1183121 A CN1183121 A CN 1183121A
Authority
CN
China
Prior art keywords
mentioned
cell
tissue
physics
environment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN97190217A
Other languages
English (en)
Inventor
杉原宏和
小林康
冈弘章
小川竜太
竹谷诚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/662,629 external-priority patent/US6297025B1/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1183121A publication Critical patent/CN1183121A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/08Bioreactors or fermenters specially adapted for specific uses for producing artificial tissue or for ex-vivo cultivation of tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/46Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Sustainable Development (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Clinical Laboratory Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

提供了测定生物组织或细胞物理化学特性的方法和装置,该方法能根据实验的目的任意改变组织或细胞周围的物理化学环境。该装置包括使生物组织或细胞周围环境维持恒定的手段(40);任意改变物理化学环境的手段(50);测定上述组织或细胞物理化学特性的手段(10及20);比较物理化学环境变化前后组织或细胞物理化学特性的手段(30)。监测手段(10)是测定组织或细胞电生理特性的电位测定装置,它包括一体化细胞设置器(1),该设置器在基板上备有两个或多个微小电极(11),细胞设置部(6)位于其上,用于放置上述的组织或细胞,其上还备有引线图案(pattern)(12),它能给微电极(11)提供电信号并从微电极导出电信号。

Description

测定组织或细胞物理化学特性的方法、 检测药品的方法及其装置
技术领域
本发明涉及根据生物的组织或细胞物理化学环境的变化,测定组织或细胞的物理化学特性的方法、以及对于初次施用给生物的各种中枢神经药,检测其药效的方法及其装置。本发明主要应用于环境科学、医疗科学、药学、食品科学以及神经生理学等领域。
技术背景
近年来伴随着送电线设备、手提电话、计算机控制器等电器的使用,身体附近存在着很强的电磁场。还有,伴随着药学、食品科学和有机化学等的进步,不断开发出新的药物、食品添加剂及以往天然所没有的化学物质。为了弄清这些人工的物理化学环境使生物受到的影响,我们以人为主要对象,应用统计的方法,进行了调查实验及动物实验。
然而在环境科学领域,以人为对象进行的统计调查实验,设定一定条件的人群非常困难,也相当需要调查时间。人们在遗传背景、生活习惯及过去饮食历史等方面都有微妙的差异。例如,为了探讨电磁波对人体产生癌症的影响,假定我们身旁的高压线为电磁波发生源。这种情况下,对于在高压线附近生活的人,设定其调查条件有困难,调查条件包括:遗传史、饮食生活史、产生癌症脏器的分类、年龄、体重、性别、爱好、病历及有无病毒感染等。为了进行统计调查实验,以很容易共同设定上述条件的实验动物为图案进行实验十分必要。重要的是可进行上述实验不可能做的组织水平、特别是有关细胞网络的实验。在药学领域,例如在开发中枢神经系统新药时,历来都是制备实验动物脑的分离神经细胞,分散培养,从细胞水平对新药效果分别进行药理学的、电生理学的、形态学及免疫学的检测。然而,大脑的机能是由神经细胞的集合体系—神经网络来执行的,因此,如前所述大脑的高级机能是基于神经网络的整体行为,那么,弄清药品对神经网络的确切影响是非常重要的,这是无须争论的。尽管如此,历来不能在组织水平检测药物对神经网络及细胞网络的影响,首先是因为没有神经网络脑切片的筛选技术。因此,存在着这样的现状:种种药品对神经网络的作用机理不明确,而经一般药理试验确认有效就应用于临床。例如,有名的治疗失眠药幻觉剂(ハルシォン),一般认为其作用机理是抑制了大脑边缘系统和大脑皮质的神经过度兴奋,它是由GABA受体机能亢进而引起的。然而这种效果是指对每个神经细胞有效,而对神经网络整体有怎样的影响还不清楚。还有正在给患者使用的抗精神分裂病药氟哌丁苯及氯氮平也没检测其对神经网络的影响。相反,用以往的筛选方法无法判断对神经网络有效且副作用小的药物,故而这样的药物可能不应用于临床。
人们现在认识到,在活体器官水平进行研究的必要性在于不仅要弄清神经网络的机能,对其它活体器官的研究也是必要的。在医药学等生物学领域,希望开发出高效高质量的装置,很好地进行这项研究。
如上所述,强烈希望开发出一种装置,其特点是:对从生物体取出的组织或细胞的物理化学特性,可进行动态观测;可将组织或细胞周围的物理化学环境维持一定;而且可根据实验的目的任意改变组织或细胞周围的物理化学环境;更进一步讲能同时检测大量的样品。
本发明的目的是提供检测所需合适药品的方法,测定组织或细胞物理化学特性的方法及其装置。
发明的公开
为达到以上目的,本发明测定生物组织或细胞物理化学特性的方法是:改变包围生物组织或细胞的物理化学环境,观测其对组织或细胞的物理化学特性所产生的影响。首先保持生物组织或细胞周围的物理化学环境一定,然后任意改变物理化学环境,观测组织或细胞的物理化学特性,比较组织或细胞在物理化学环境变化前后的物理化学特性。
如上所述,本发明测定生物组织等的物理化学特性方法是:在物理化学环境保持一定的状态下,测定从生物体取出的组织或细胞的物理化学特性,接着,改变物理化学环境的一部分或全部,再对组织或细胞的物理化学特性进行测定。通过比较在改变物理化学环境前后,组织或细胞的物理化学特性,可弄清物理化学环境的改变对组织或细胞的影响。例如,由于添加化学物质而改变物理化学环境时,就可用此测定方法检测该化学物质对活体所造成的影响。另外,由于电磁场的作用而改变物理化学环境时,也可用此测定方法检测电磁场对活体所造成的影响。
测定组织等物理化学特性的方法优选包括以下内容:为观测生物组织或细胞的物理化学特性而应用的装置,这个装置至少应有细胞培养手段、环境调整手段、观测手段及比较手段。测定方法包括以下(A)~(E)步骤:
(A)用细胞培养手段,培养组织或细胞,再用细胞培养手段,维持组织或细胞周围的第1物理化学环境的步骤。
(B)用上述观测手段,观测在第1物理化学环境中,组织或细胞的第1物理化学特性的步骤。
(C)用上述环境调整手段,改变第1物理化学环境至第2物理化学环境的步骤。
(D)用观测手段,观测在第2物理化学环境中,组织或细胞的第2物理化学特性的步骤。
(E)用比较手段,比较组织或细胞的第1、第2物理化学特性的步骤。
用这个优选方案的方法,可以很容易测定组织或细胞的物理化学特性。
另外,更优选的实施方案是包括将上述第1的物理化学环境变为第2的物理化学环境的步骤的方法,即将上述细胞培养手段中使用的第1培养基置换为上述培养手段中使用的第2培养基。这种情况下,第1及第2培养基优选含有一个或多个任意浓度的药品。
因此,本发明测定生物组织或细胞的物理化学特性的装置,其功能是:改变生物组织或细胞周围的物理化学环境,观测其对组织或细胞的物理化学特性所造成的影响。这个装置包括下面(A)~(E)手段:
(A)细胞培养手段:培养上述组织或细胞,维持组织或细胞周围的物理化学环境。
(B)观测手段:观测在第1物理化学环境中,上述组织或细胞的物理化学特性。
(C)环境调整手段:调整维持在组织或细胞周围的物理化学环境。
(D)观测手段:用环境调整手段,改变第1物理化学环境至第2物理化学环境时,观测上述组织或细胞的物理化学特性。
(E)比较手段:比较在第1及第2物理化学环境中,上述组织或细胞的物理化学特性。
在该装置中,上述的环境调节手段优选包括:向细胞培养手段所使用的培养基中加入化学物质、微生物及病毒;将第1培养基置换成第2培养基,第1培养基为细胞培养手段所使用的培养基,它含任意浓度的一个或多个药品,第2培养基为细胞培养手段所使用的培养基,它含任意浓度的一个或多个化学物质、微生物及病毒。
并且,上述化学物质的概念不仅指人工合成的化学物质,还包含蛋白质、核酸、糖类、脂肪等天然化学物质。以下化学物质与此相同。
对该装置来说,上述的环境调整手段优选包括:使用向细胞培养手段使用的培养基中添加物质的手段、把细胞培养手段使用的第1培养基置换为细胞培养手段使用的第2培养基。
另外,上述观测手段为电位测定装置,它能测定组织或细胞的电生理学特性。这个装置优选包括下述(A)及(B)。
(A)配备了一体化细胞设置器。它包括:在基板上配备多个微小电极;为了在微小电极上放置组织或细胞,配备细胞放置部;为了给予微小电极电信号并将电信号从微小电极导出,配备电连接手段。
(B)对输出信号进行处理的手段:按上述一体化细胞设置器的电连接手段进行连接,由组织及细胞的电生理活动,产生输出信号,对输出信号进行处理。
并且,除了(A)和(B),优选还包括下述的(C)。
(C)按上述一体化细胞设置器的电连接手段进行连接,给予组织及细胞电刺激的手段。
例如,用这样的优选方案的装置,可进行以下测定:
将组织或细胞放置在一体化细胞设置器的细胞设置部上,作为样本,使多个微小电极与组织或细胞接触。在多个由电路连接的微小电极中,向其中任意一对电极间施加刺激信号。其它各电极随时间而变化的诱发电位,经过必要的信号处理,在显示装置输出并储备在记忆装置。其次,改变物理化学环境进行同样的测定。从记忆装置调出物理化学环境变化前的测定结果,使之与物理化学环境变化后的测定结果相比较。不施加电信号的自发电位也可进行同样测定。
因此,本发明优选方案的装置是这样的:因为进行体系化系列工程测定,所以可以对组织等的物理化学特性进行高效测定,例如,可对药品筛选的大量处理工作,进行必要有效的测定。另外本发明优选方案的装置还应该是这样的:能很容易测定活体器官(例如:小鼠的大脑切片及心脏切片)的动作电位;以往进行的细胞水平或活体器官整体的收缩实验,由药理检测所进行的判断太多,而本发明装置,在作活体器官应用部位相互间作用实验时,进行多点位实验。其结果,可以从整体上了解有无相容效果,从而能得到大量的可信度高的资料。用这一方法,可进行高效、低成本的药品筛选试验。
并且,本发明装置的优选方案是:准备多个一体化细胞设置器,一边对多个组织或细胞进行培养,一边测定其物理化学的特性。为了能一次处理多个组织或细胞,配备多阵列的一体化细胞设置器,从而可以大幅提高测定效率,成为药品筛选的合适的装置,因为药品筛选需要进行大量的样品处理工作。
上述多阵列一体化细胞设置器优选包括能对多个组织或细胞的物理化学环境进行个别调整的环境调整手段。
其次,本发明检测药品的方法是:配备检测手段,对添加了化学物质、微生物或病毒的组织或细胞的电特性进行检测;配备图象检测手段,从外部对组织或细胞的视觉特性进行观测;在给组织或细胞添加化学物质、微生物或病毒时测定组织或细胞的电特性及其视觉特性,由这两个参数,判定化学物质、微生物或病毒是否对组织或细胞有影响。
本发明检测药品的装置包括:电测定部分,对添加了化学物质、微生物或病毒的组织或细胞的电特性进行测定;视觉特性检测部分,对组织或细胞的视觉特性进行测定;药品检测装置,测定经电特性及视觉特性检测后的化学物质、微生物或病毒对组织或细胞的影响。
附图简述
图1是本发明一实施例使用细胞电位测定装置的一体化细胞设置器的斜视图。图2是一体化细胞设置器的组装图。图3是在构成一体化细胞设置器的一体化复合电极的中央,设计的64个微小电极和引线图案的平面图。图4是一体化复合电极的断面模式图。图5是一体化复合电极被上部及下部夹具夹持固定下的平面图及侧断面图。图6是图5的一体化复合电极与上下夹具的斜视图。图7是在上部夹具上配备的接触零件的侧视图。图8是从图2逆向看,一体化细胞设置器的组装图。图9是本发明装置的构件构成图。图10是用本发明装置测定麻黄碱对培养细胞的诱发电位所产生的急性效果图。图11是用本发明装置测定麻黄碱对培养细胞的诱发电位所产生慢性效果图。图12是用本发明装置测定乙酰胆碱对培养细胞的自发动作电位的效果图。图13是用本发明装置测定肾上腺素对培养细胞的自发动作电位的效果图。图14是由多个一体化复合电极所形成的多阵列化例子的上表面图。图15是将多阵列一体化复合电极装配在多阵列用印刷电路板上,其装配状态的上表面图。图16是应用多阵列一体化细胞设置器的装置,关于其构成实施例的构件图。图17是向多阵列一体化细胞设置器送排液系统的斜视图。
实施发明的最佳方案
以下按附图来说明本发明的实施例。
首先说明本测定装置所使用的一体化细胞设置器。1是一体化细胞设置器,图1为它的斜视图,图2为它的组装图。如图所示,在玻璃板上设立多个微小电极和引线图案,成为一体化复合电极2,两部分夹具3和4将一体化复合电极上下夹持固定,由夹具固定的印刷电路板5。
一体化电极与特开平6-78889号公报等所公开的内容大致相同。在厚1.1mm,50mm见方的透明硼硅酸玻璃基板中央,64个微小电极11形成8×8的矩阵形状,各微小电极由引线图案12连接(参照图3)。各电极11为边长50μm的正方形(面积25×102μm2),相邻两电极中心间距离为150μm。在基板四边,形成每边16个,共64个电接点7(参照图2),这些电接点与基板中央64个微小电极由引线图案12一一对应进行连接。各边的16个电接点以间距1.27mm排列。以下根据图4的断面图,来说明一体化复合电极2的制造方法。为了容易看清,在图4中将各部分按比例放大进行描绘。
在玻璃板13的表面涂上一层150nm的ITO(氧化铟锡)膜,由光致抗蚀剂及铜板形成引线图案12,在它上面涂上一层厚1.4μm的聚酰亚胺膜,同样形成绝缘被膜14。在微小电极和电接点处,将ITO膜露出,在这个部分施加厚500nm的镀镍15及厚50nm的镀金16。用硅酮系的粘合剂,把内径22mm,外径25mm,高10mm的聚苯乙烯圆筒或玻璃圆筒6(参照图2)粘合到玻璃盘13上的绝缘被膜14表面。这个聚苯乙烯圆筒或玻璃圆筒6的中心与玻璃板13的中心重合,即其中心与64个微小电极11的中心重合,以这种状态固定。这个聚苯乙烯圆筒或玻璃圆筒6的内侧相当于细胞设置部。向这个聚苯乙烯圆筒或玻璃圆筒6内,注满重量1%的氯铂酸,重量0.01%的醋酸铅,重量0.0025%的盐酸水溶液,通入20mA/cm2的电流1分钟,在微小电极11的镀金表面上析出铂黑11a。
其次,说明从上下夹持固定一体化复合电极2的两部分夹具3和4。夹具3、4是由树脂形成的。如图2所示,为了定位一体化复合电极2的边缘部分,在夹具3、4的中间部分配备台阶和矩形开口。为上部夹具3配备一对固定器具8和16个×4对的接触零件9。夹持固定一体化复合电极2的夹具3、4用各图来表示:图5(A)为顶视图;图5(B)为侧面图(B-B断面);图6为从背面方向看斜视图。从这些图可知,固定器具8在上部夹具3相对的两边,用轴栓8a来进行轴定位。在下部夹具4的背面相对的两边形成沟槽4a,固定器具8的凸条8b嵌在沟槽4a中,由此,上下夹具3、4将一体化复合电极2在夹持状态下结实地固定。
与一体化复合电极2的电接点7相对应,在上部夹具3上设立64个接触零件9。将铜化铍镀上镍及金,将这样极富弹力的良导体金属板加工形成接触零件9,形成如图7所示的形状。即接触零件9是这样构成的:轴部9a及其基部9b,从基部9b开始通过弯曲部9c延长至可动接触部9d。由此构造,可动接触部9b对基部9b可能产生弹性变位。在上部夹具3上,形成64(16×4)个部分,它们是:接触零件9的轴部9a的插通孔与基部9b的嵌槽。
如图2及图5所示,将接触零件9插入上述孔及槽中,使其处于固定状态,轴部9a从上部夹具3突出来。基部9b的长度不同,由此形成2种接触零件9,将其交互配置,从上部夹具3突出来的16个轴部9a象很多小鸟一样排成2列。如后面所述,这些轴部9b用连接器连接,因为与外部连接用的印刷电路板5,实际装配了连接器。
一方面,将接触零件9向上部夹具3的孔及槽插入固定,在这种状态下,接触零件9的可动接触部9d从上部夹具3的下面突出来,这种情况,在图8中很好地表示出来。图8是图2组装图的反向组装图。用夹具3、4将一体化复合电极2夹持固定,在此状态下,各接触零件9的可动接触部9d与一体化复合电极2的电接点7相接触,由弯曲部9c的弹性变形将所定的接触压力给予接触部。这样,通过一体化复合电极2的微小电极11的引线图案12而连接的电接点7,在对接触零件9有小的接触电阻下(30毫欧以下),完成电路连接。
下面,对印刷电路板5进行说明。这个印刷电路板5不但起固定一体化复合电极2与夹具3、4的装配部件的作用,而且还承担以下任务:从一体化复合电极2的微小电极11的引线图案12、电接点7、至接触零件9,将它们的电路连接通过连接器向外部引出。并且也具有很容易使用测定装置的组件的功能。
印刷电路板5是由两面图案环氧玻璃基板构成的。图8表示其背面,在中央圆形开口的周围4个地方,设立连接器5a。两列小鸟形状的16个轴部9a从上部夹具3的背面4个地方突出来,将其一一对应插入连接器5a中,由此,将一体化复合电极2与夹具3、4的装配部件固定在印刷电路板5上,再由电路连接。
在印刷电路板5的两侧边缘部分5b上,形成相距2.54mm的电接点,用于两面边缘的连结。这些电接点与中央部分的连接器5a由引线图案5c连接。两侧连接器5a的内侧列由表面图案、外侧列由背面图案引出,在边缘部5b的正反两面形成32个,总计64个电接点。为了确实起到机械固定作用,也可以用螺丝钉在印刷电路板5上固定上部夹具3。
由此构成了一体化细胞设置器1,用它来构成细胞电位测定装置,其合适的实施例用图9来表示。本实施例的测定装置包括:上述一体化细胞设置器1;包含倒立显微镜21的图像检测手段20,倒立显微镜21可以对一体化细胞设置器1上所放置的细胞进行光学观察;检测细胞电特性的手段10;计算机30,它包括给予细胞电刺激的手段和对细胞的输出信号进行处理、比较的手段;维持细胞培养环境的细胞培养手段40,为了向培养基添加任意浓度的任意化学物质、或者除去添加的化学物质,配备环境调整手段50。
除了一体化细胞设置器1配置的倒立显微镜21(奥林巴斯制造IMT-2-F或I×70相当的产品),图像检测手段20还包括其它装置:显微镜用的SIT照像机22(浜松ホトニクス制造C2400-08相当的产品)、高精度显示器23以及图像文件装置24(松下电器公司制造TQ-2600或FTQ-3100F相当的产品)。但是,高精度显示器23也可兼用计算机30的显示器。再有,上述括弧内所示的具体装置只是一个例子,不局限在这些物品范围之内,以下也与此同样。
计算机30使用在WINDOWS相应的个人计算机中的A/D变换板及装载的测定用软件。A/D变换板包括图9的A/D变换器31及D/A变换器32。A/D变换器31是12比特64波道,D/A变换器32是12比特8波道。
测定用软件包括能设定刺激信号的给予条件及得到检测信号的记录条件的软件。用这个测定用软件,计算机30不仅包含以下手段,即:给予细胞刺激信号的手段以及对细胞输出信号进行处理和比较的手段,计算机30还管理着图像检测手段20(SIT照像机及图像文件装置)和细胞培养手段40。测定用软件的主要做法用以下个个图像进行说明。
由于可以用键盘或鼠标在图像上描绘刺激波形,因而参数设定图像可以设定复杂的刺激条件。以输入波道64,抽样率10kHz,可对应连续记录数小时来设定记录条件。用鼠标或笔指示图像上表示的显微镜像,由此可指定两个电极,即:给予刺激信号的电极和从细胞取出检测信号的电极。其它诸条件都可以用键盘来进行设定,如:细胞培养手段40的温度及pH等,环境调整手段50的阀门转换及泵的开通、关闭以及泵的流速等。
从细胞检测出来的自发动作电位及诱导电位,其记录图像用实时处理最大64波道来表示。
如上所述,从计算机30输出刺激信号时,经过D/A变换器323及绝缘体10b给予细胞,电特性检测手段10包括绝缘体10b(BAK电子公司制造BSI-2相当的产品)。即,在一体化细胞设置器1的64个微小电极11中,选择两点,向其施加刺激信号。然后,各微小电极11与GND能级(培养基的电位)间产生诱发电位,经64波道部分的高感度增幅器10a(日本光电AB-610J相当的产品)及A/D变换器31,向计算机30输入。
下一步,在细胞培养手段40中配备:温度调节器41、空气和二氧化碳混合气体的供给手段42。实际上,用Medical Systems公司制造的微型培养箱PDMI-2相当的产品与温度调节器TC-202相当的产品以及CO2等,就构成了细胞培养手段40。根据パルチヱ,这个微型培养箱的温度可控制在0~50℃的范围,对应送液速度3.0mL/min以下,给气速度1.0ML/min以下。或者也可以使用内藏温度调节器的微型培养箱(奥林巴斯公司制造IMT2-IBSV相当的产品)。
然后,配备环境调整手段50,它包括:溶液瓶51、溶液瓶52、阀门53、泵54及泵55。溶液瓶51中为普通培养时用的培养基,溶解瓶52中为在前培养基中溶解了任意浓度的任意化学物质的溶液,即样品溶液。由于阀门53的转换,可以用泵54向一体化细胞设置器1输送溶液,也可以设定培养基或样品溶液的某一个。泵55与泵54的设定流速相同,且同时工作,吸引一体化细胞设置器1内的溶液。这样,一体化细胞设置器1内的溶液量经常保持一定,而溶液的组成是可以变化的。
另外,以上装置是以一个装备好的一体化细胞设置器为例进行说明的,本发明不局限于此。即:也可以在玻璃板上形成多个一体化复合电极,而且也可以在各个电极上形成多个聚苯乙烯圆筒或玻璃圆筒。这样,配备了多阵列一体化细胞设置器的装置,因为能一次处理多个组织或细胞,而能进行大量高效的测定,并且成为药品筛选最合适的装置,对大量的样品进行必要的处理。
图14为多阵列化的例子,它由纵3×横4(共12个)一体化复合电极所形成。如图所示,在长84mm、宽127mm、厚1.1mm的透明硼酸盐玻璃基板上,纵3×横4地配列(共12个)微小电极11及其引线图案12(参照图3),构成多阵列一体化复合电极60(以下简称为多阵列)。各图案的中央部分与图3所示单个的一体化复合电极2的结构相同,64个微小电极11形成8×8矩阵形状,各微小电极由引线图案12连接。电极尺寸(50μm见方)及电极中心间距离(150μm)与一体化复合电极2相同。由于具有相同的情况,所以只对一部分的微小电极11、引线图案12及电接点61做具体记载,其它部分省略记载。
在各图案的4边,形成每边16个,共64个电接点61。这些电接点61与图案中央64个微小电极11由引线图案12一一对应进行连接。为了达到多阵列60整体尺寸(长84mm,宽127mm),从而很容易使用,各边的16个电接点61以间距0.635mm排列,与一体化复合电极2不同。
如图所示那样,本多阵列60由相同的长3×宽4的矩阵状图案配置,所有引线图案12的长度大致一定。因此,与引线图案12有关的电阻值也大致一定,这样可得到适于测定电生理的多阵列60。相反,以微小电极11为例,将它配置在与图14相同的位置上,将全体电接点61配置在硬质玻璃基板端部,配置引线图案12将两者一一对应进行连接,基板边缘部分的微小电极11的引线图案12与基板中央部分的微小电极11的引线图案12,这两者的长度有很大差别,因而引线图案12的电阻会有很大差别,不适合进行电生理测定。
将上述总计12个微小电极11及其引线图案12配置在硬质玻璃基板上,然后将12个内径10mm、外径12mm、高10mm的玻璃圆筒或聚苯乙烯圆筒62用硅硐系统粘合剂粘合在玻璃基板上。这个玻璃圆筒或聚苯乙烯圆筒62在各图案的中心,即:其中心与64个微小电极11的中心重合,以这种状态固定,圆筒里面相当于细胞设置部。
多阵列60的微小电极11及其引线图案12的形成方法与上述一体化复合电极2的情况相同,故省略其说明。
多阵列用夹具与一体化复合电极2用的夹具3、4相同(参照图1、图2、图5、图6、图7及图8),这两部分分开的夹具将一体化复合电极夹持固定。但多阵列用夹具会根据以下内容而变化:多阵列60的微小电极11、其引线图案12以及电接点61,与它们的位置及数量相对应的各部分尺寸是变化的;接触零件9(参照图7)的数量及配置等是变化的。多阵列60所具有的64×12(共768)个的电接点61与电路连接的机理与夹具3、4相同。
图15为多阵列用印刷电路板70的顶视图(图示为多阵列60装配好的状态),用它固定多阵列60及其多阵列用夹具。除了这个用途,多阵列用印刷电路板70还担当以下任务:将多阵列微小电极11的引线图案12、电接点61至接触零件9进行电路连接,并通过连结器向外引出。多阵列60及多阵列用连接器在多阵列用印刷电路板70上固定,其各电路的连接方法与前面所述电路连接方法相同,即一体化复合电极2和夹具3、4在印刷电路板5(参照图1、图2及图8)上固定时各电路的连接方法。
多阵列用印刷电路板70的四个边缘部分为70b,在70b上形成两面边缘连接器用的电接点70d,其间距为1.27mm。这些电接点70d与接触零件9的轴部9a(参照图7)用引线图案70c连接。轴部9a象两列许多小鸟一样配置,其内侧一列与表面电接点70d连接,外侧一列与背面电接点70d连接(图15是从上面看图,所以能看见表面电接点70d)。由于电接点70d的数目很多,若用多阵列印刷电路板70的正反两面配置引线图案70c,空间有限,因而,在多阵列用印刷电路板70上,可使用多层构造的电路板。图15所表示的是第一层的引线图案70c。如图所示第一层配置内侧一列轴部9a的一部分(每边三个轴部9a)引线图案70c,同样,第2层至第6层,若按顺序配置3个或2个轴部9a的引线图案70c。这样,就可以很容易地配置引线图案70c。
用以上多阵列一体化复合电极81构成细胞电位测定装置,其最适的实施例以图16表示。本实施例的测定装置配备了以下部件:上述多列一体化复合电极81、含倒立显微镜的细胞观察手段,对放置在多阵列一体化复合电极81上的细胞进行光学观察、资料记录辅助系统82,它包括给予细胞刺激信号的手段以及对细胞的输出信号进行处理的手段、控制资料记录辅助系统82的主控制器83、输送或排放任何药液的系统84、电信号增幅装置85,从各孔取出相似电信号并对其进行增幅,电信号总数与电路总数相同(本实施例有64条电路,故有64个相似电信号)、生成刺激电信号的绝缘体86,这个刺激电信号给予各孔的64条电路。
在此,资料记录辅助系统82对各孔专门配置的64个相似电信号进行数字变换,对这个数字变换后的资料,不记录也不读出,并且64个电刺激信号是通过以下装置来构成的。这些装置是:可以将数字资料象以前电信号一样输出的装置、64条电路的A/D变换装置、64条电路的D/A变换装置、磁盘或光盘或磁带等资料记录装置以及控制这些装置的控制器。这个资料记录辅助系统82不仅配备了显示器,还可确认个别的动作状况。主控制器83对各孔专用而设置的资料记录辅助系统82进行集中管理和控制。用管理和控制装置设定各资料记录辅助系统82的动作环境、由附属的显示器显示记录资料。
如图所示,用玻璃圆筒或聚苯乙烯圆筒使电极群独立存在,作为试验对象的组织或细胞在这样的多阵列一体化复合电极81的各孔中,可按下述培养实施例所示的方法进行培养。并且,通过图17所示的送排液系统,可改变物理化学环境。这个送排液系统配备了24个送液泵(PI)和12个排液泵(PO),各孔与2个送液泵1个排液泵连通。由于盖在图15的印刷电路板70上,这个送排液系统可以对各孔无菌输送2种任意药品浓度任意量的试验液,还可以对药品的功效进行电生理检测。而且也可进行无菌排液。因为送液泵配备了阀门,所以由各泵可输送任意2种液体,一共可检测4种试验液。各泵的送排液量及阀门的开关,由主控制器83控制。
下面说明的是有关从各孔取得的电信号的记录和生成给予各孔电刺激信号时的动作。
主控制器83与各个资料记录辅助系统82之间,由可以相互通信的母线连接。对于各个资料记录辅助系统82,主控制器83不设定个别的资料记录参数(采样速度、采样时间,采样间隔、采样途径)以及资料记录的开始、停止等;而可以将刺激波形的资料发送给各孔。这时各参数的设定方法是:与单一孔一样进行同样的设定,并且可同时设定全部的孔。通过构筑具有几份单一孔设定画面的多窗口,这个很容易实现。根据这个设定,资料记录辅助系统82独立地各自按照主控制器83的命令,进行A/D转换、资料记录以及D/A转换。对各孔输出信号的记录及向各孔输入刺激波形,与单一孔情况相同。这时,由于各资料记录辅助系统82置身于自己的控制器操纵之下,主控制器83没有负荷。而且同时控制多个孔时,主控制器83也不会遇到过量的负荷。主控制器83可以将任意指定的资料记录辅助系统82的资料按顺序发送,由主控制器83,可对单一孔的资料进行同样的处理。
用以上测定组织或细胞物理化学特性的装置,改变在一体化细胞设置器上培养的组织或细胞的物理化学环境,测定环境变化前后组织或细胞的物理化学特性的变化。关于测定的实施例进行以下说明。
(实施例1)
用大鼠大脑皮质切片作为神经组织,用后面实施例所示的培养法进行培养。在培养基中加入属于兴奋剂的一种麻黄碱来改变其物理化学环境。作为组织或细胞的物理化学特性是测定细胞的电生理学特性,即在给予刺激信号时,测定诱发电位。
首先进行细胞培养,为了提高一体化复合电极2的各微小电极11与细胞的接合性,在一体化复合电极2的表面覆盖一层厚50μm以下的胶原凝胶。然后在微小电极11上面的胶原凝胶上放置大鼠的大脑皮质切片(厚500μm以下)进行培养。图10表示:向培养6天的培养基中加入各种浓度的麻黄碱,30分钟后测定的诱发电位以及添加各麻黄碱之前的诱发电位。图11表示:向培养3天的培养基中加入各种浓度的麻黄碱,3天后测定的诱发电位以及添加各麻黄碱之前的诱发电位。即图10表示麻黄碱的急性效果,图11表示麻黄碱的慢性效果。
关于急性效果(参照图10),0.1mM的麻黄碱,没有使诱发电位受到影响。添加0.5mM的麻黄碱,诱发电位的振幅稍稍减小。1mM时,诱发电位大体上消失。其后,除去溶液中的麻黄碱,使培养基的组成恢复到通常的状态,诱发电位大体上回复到以前的状态。图10表示如下:图10(a)为添加麻黄碱之前,图10(b)为添加0.1mM麻黄碱,图10(c)为添加0.5mM麻黄碱,图10(d)为添加1mM麻黄碱,图10(e)为除去麻黄碱后,各自的状态。
关于慢性效果(参照图11),添加0.1mM的麻黄碱,则诱发电位完全消失,而这个浓度,是不能使急性诱发电位受到影响的。并且,以它的十分之一浓度,即0.01mM添加时,诱发电位依然消减。更进一步,除去麻黄碱,诱发电位也不恢复。图11表示如下:图11(a)为添加麻黄碱之前,图11(b)为添加0.01mM麻黄碱,图11(c)为添加0.1mM麻黄碱,各自的状态。
[培养大脑皮质的实施例]
(1)培养基
Dulbecco’s改良Eagle’s培养基与Ham F12培养基1∶1形成混合培养基(GIBCO公司制造430-2500EB),向混合培养基中添加以下物质:*葡萄糖(glucose,GIBCO 820-5023 IN)2.85mg/L
(与上述培养基中所含的葡萄糖合在一起,总共达到6mg/L)*丁二胺(putrescine,SIGMA公司P5780)100nM*黄体酮(progesterone,SIGMA P8783)20nM*氢化可的松(hydrocortisone,SIGMA HO888)20nM*亚硒酸钠(sodium selenite,WAKO公司198-0319)20nM*胰岛素(insulin,SIGMA 16634)5mg/L*转铁蛋白(transferrin,SIGMA T1147)100mg/L*重碳酸钠2.438 mg/L*添加适量盐酸及氢氧化钠,调整pH至7.4。
添加了以上物质后,将培养基过滤除菌,在4℃保存以备使用。以下,本培养基简称为“培养基”。
(2)一体化复合电极上的孔的构成
为了方便地在一体化复合电极2上培养神经细胞或神经组织,用以下所记载的方法接合圆筒6,其内径为22mm,外径为25mm,高为10mm,由聚苯乙烯或玻璃制造。
(a)在聚苯乙烯或玻璃制造的圆筒6(内径22mm,外径25mm,高10mm)的下面,涂满足量的液体硅系粘合剂(ダウコ-ニソグ891或信越化学KE-42RTV)。
(b)注意使一体化复合电极2的中心与圆筒6的中心一致,并将两者接合。
(c)在没有灰尘的环境中放置24小时,使粘合剂固定。
(d)在70%酒精中浸润5分钟后,在干燥机内风干从而进行灭菌,准备对一体化复合电极2的表面进行处理。
(3)一体化复合电极2的表面处理
为了提高一体化复合电极2表面的细胞粘合性,用以下方法在一体化复合电极2的表面构建胶原凝胶。以下操作,全部在无菌环境中进行。
(a)准备以下A、B、C溶液,冰浴中放置。A.0.3%体积稀盐酸胶原溶液(pH3.0,新明胶细胞质ix类型I-A)B.Dulbecco’s改良Eagle’s培养基与Ham F12培养基1∶1混合,形成培养基(GIBCO 430-2500 EB),不向其中加入重碳酸钠,制作浓度为通常所用的10倍的液体,过滤灭菌。C.在0.05N 100mL氢氧化钠溶液中,溶入重碳酸钠2.2g、HEPES(GIBCO 845-1344IM)4.77g,过滤灭菌。
(b)一边冷却,一边将A、B、C溶液以8∶1∶1的比例进行混合。这时,要将A与B充分地混合后,再加入C进行混合。
(c)在预先冷却至4℃放置的一体化复合电极2的孔内,将(b)的混合溶液1mL分散注入其中,将孔的内表面全部覆盖后,用玻璃吸管,尽可能除去混合溶液。这样可构成厚50μm以下的混合溶液膜。
(d)构成混合溶液膜的一体化复合电极2,在37℃温育30分钟,使混合溶液凝胶化,构成胶原基质。
(e)向一体化复合电极2的孔内加入1mL消毒水,放置约5分钟后除去消毒水,洗净。
(f)将(e)的操作,再反复进行2次(共3次)。
(g)在一体化复合电极2的孔内,Dulbecco’s改良Eagle’s培养基与Ham FH12培养基1∶1混合,形成混合培养基(GIBCO 430-2500EB),向其中加入上述添加物(胰岛素及转铁蛋白除外),然后将1mL此溶液分散注入一体化复合电极2的孔内,在温度37℃、相对湿度97%以上、CO2浓度5%、空气浓度95%的CO2培养箱内保存,以备使用。
(4)神经细胞或神经组织的培养
培养形态大致可分为2种。即,神经细胞的分散培养与神经组织的器官培养。以下,对每个培养形态进行描述。
(4-1)大鼠大脑皮质视觉中枢神经细胞的分散培养法
以下操作,全部在无菌环境中进行。
(a)妊娠后16~18日的SD大鼠胎儿,将其脑摘出,在冰冷的Hank’s平衡盐液(GIBCO 450-1250EB)中浸润。
(b)从存放于冰冷Hank’s平衡盐液中的脑,将其视觉皮质切出,转移至Engle基本培养基(GIBCO 450-1100 EB)中。
(c)在Engle基本培养基中,将视觉皮质尽量细小地分开,最大切为仅0.2mm见方。
(d)把切断后的细小视觉皮质,放入离心试管中,用不含钙及镁的Hank’s平衡盐液洗净三次后,分散在适量的相同溶液中。
(e)向上述(d)离心试管中,加入Hank’s平衡盐液,容量加倍。这种平衡盐液有0.25%的胰蛋白酶在其中溶解,而不含钙及镁。缓慢搅拌,保持37℃恒温状态15分钟,进行酶反应。
(f)向上述(1-1)表示的培养基(含添加物,以下简称“培养基”)中加入10%体积的胎牛血清,然后将此培养基加入经上述(e)步骤的离心试管中,容量加倍。用喷灯将玻璃吸管的前端口径烧小后,缓慢地反复吸移(最多20次),使每个细胞分离。
(g)以9806.65m/sec2(即1000g)进行5分钟离心。离心后,弃去上清,将沉淀物悬浊在含5%胎牛血清的培养基中。
(h)将(g)再反复2次(共3次)。
(i)将最终得到的沉淀物,悬浊在含5%体积胎牛血清的培养基中,用红血球计数板计算悬浊液中细胞的浓度。计算后,用同样的培养基,调整其细胞浓度至2~4×106个/m。
(j)将上述经(1-3)处理后在CO2培养箱内保存的一体化复合电极取出,除去孔内培养基(不含胰岛素及转铁蛋白),将新的含5%体积的胎牛血清的培养基分散注入孔内。然后,将(i)细胞浓度调整后的细胞悬浊液100μL慢慢地加入其中,再放入CO2培养箱内静置。
(k)自上述(j)操作三天后,将培养基的一半与新的培养基交换,交换培养基为不含胎牛血清的培养基。由于胎牛血清的浓度降低,神经细胞以外的细胞(例如神经胶质细胞)的增殖受到抑制。
(1)以后每1~2天,就进行上述同样的培养基交换。
(4-2)大鼠大脑皮质切片培养法
(a)出生后2天的大鼠,将其脑取出,在冰冷的含0.25%体积D-葡萄糖的Hank’s平衡盐液中浸润。
(b)在冰冷的含0.25%体积D-葡萄糖的Hank’s平衡盐液中,用尖端锐利的小镊子将附着在脑上的脑膜除去,注意不要刮伤大脑皮质。
(c)从除去脑膜后大脑皮质一侧的脑桥至500μm的地方,用眼科手术用的小剪刀,剪去脑桥,从头叶侧至前叶侧剪断。
(d)接着,用眼科手术用的小剪刀,将(c)的切断面垂直进行切断,从而制作出厚200~300μm的大脑皮质切片。
(e)再用眼科小剪刀将切片调整为1×1mm大小。
(f)在上述[(3)一体化复合电极2的表面处理]中准备好的一体化复合电极2,将它从CO2箱中取出。然后将调整大小后的大脑皮质切片用口径2mm以上的吸管慢慢地吸移至一体化复合电极2的孔中(注意不要有损伤)。
(g)在注意不要损伤大脑皮质切片的同时,用喷灯烧制的前端平滑的吸管将皮质层向微小电极11上面调整。
(h)将大脑皮质切片放到一体化复合电极2上后,调整培养基的容量,使切片的底面与培养基接触,上面与外面空气接触。
(i)调整培养基容量后,将一体化复合电极2放入陪替氏培养皿中灭菌,为了防止培养基干燥,将37℃的5mL消毒水分散注入陪替氏培养皿中。再放入CO2箱内静置。
(j)以后,注意培养基的容量,每日一次交换培养基。关于培养基的容量,与上述(i)相同。
由这个例子,从电、视觉方面捕捉到麻黄碱对细胞有什么样的效果。作为药品的筛选,得到了非常好的结果。
(实施例2)
下面是以神经组织以外的组织大鼠的心脏切片(组织)为测定对象来进行测定的实施例。将上述心脏切片用后述方法培养。另外还要记录在以下两个条件下自发动作电位的变化情况,这两个条件是:(i)向培养基添加乙酰胆碱前后,(ii)向培养基添加肾上腺素前后。培养基与实施例1所使用的培养基相同。一体化复合电极2的构造及表面处理也与实施例1相同。首先进行培养,为了提高组织(细胞)与一体化复合电极2中的各微小电极11的接合性,将一体化复合电极2的表面用胶原凝胶(厚50μm以下)覆盖。然后,在微小电极11的胶原凝胶上,放置并培养大鼠的心脏切片,这个心脏切片应含有窦房结或房室结的心脏切片。
图12(a)及图12(b)表示向培养5天的培养基添加乙酰胆碱前后,上述细胞的自发动作电位。乙酰胆碱是在受刺激时,动物体内副交感神经末端所分泌出的化学物质,通常具有降血压、降心率,收缩肠管、收缩骨骼肌的作用。如图12(b)所示,向培养基添加最终浓度为1mM的乙酰胆碱后,与添加前(参照图12(a))相比,自发动作电位的发生频率明显降低。
图13(a)及图13(b)表示向培养5天的培养基添加肾上腺素前后,上述细胞的自发动作电位。已知肾上腺素能增加心脏的收缩功能。如图13(b)所示,向培养基添加最终浓度为1mM的肾上腺素后,与添加前(参照图13(a))相比,自发动作电位的发生频率明显上升。
以下说明的是心脏切片的合适的培养方法
[培养心脏切片的实施例]
(1)培养基
用与上述实施例1相同的培养基。
(2)一体化复合电极2上孔的构成
用与上述实施例1相同的方法构成。
(3)一体化复合电极2的表面处理
与上述实施例1进行同样的处理。
(4)心脏切片的培养方法
用与上述实施例1中“大鼠大脑皮质切片培养法(4-2)”大致相同的方法,进行培养。以下,进行详细说明。
(a)从出生后2天的SD大鼠,将其心脏取出,浸润在冰冷的含0.25%体积的D-葡萄糖Hank’s平衡盐液中,这时,多次交换上述Hank’s平衡盐液,并很彻底地洗去血液。
(b)由于切片中要含有窦房结及房室结,注意要将心脏深深切开,制备心脏切片。
(c)用眼科手术用的小剪刀,将切片剪成约1×1mm大小。
(d)在上述[(3)一体化复合电极2的表面处理]中准备好的一体化复合电极2,将它从CO2箱中取出。然后将调整大小后的心脏切片用口径2mm以上的吸管慢慢地吸移至一体化复合电极2的孔中,注意不要有损伤。
(e)在注意不要损伤心脏切片的同时,用喷灯烧制的前端平滑的吸管将心脏切片向微小电极11上面调整。
(f)将,心脏切片放到一体化复合电极2上后,调整培养基的容量,使切片的底面与培养基接触,上面与外面空气接触。
(g)调整培养基容量后,将一体化复合电极2放入陪替氏培养皿中灭菌,为了防止培养基干燥,将37℃的5mL消毒水分散注入陪替氏培养皿中。再放入CO2箱内静置。
(h)以后,注意培养基的容量,每日一次交换培养基。关于培养基的容量,与上述(f)相同。
以上实施例,是将麻黄碱、乙酰胆碱及肾上腺素作为药品给予组织或细胞。也可对其它的所应用的化学物质进行同样的测定,如:解热剂、安眠药等以及别的认为有药效的药品等。从而可以知道,给予这些化学物质后,组织或细胞的物理化学特性的变化,由此结果,可以判断出这些化学物质作为药品的效力如何。
产业上利用的可能性
如上所述,本发明包括检测药品的方法、测定组织或细胞的物理化学特性的方法及装置。其方法是:从活的生物个体取出必要量的组织或细胞,适当调整组织或细胞周围的物理化学环境,由于环境的改变,组织或细胞的物理化学特性也发生变化,可对其进行不断的观察。因此,本发明可以弄清强电磁场、磁场及以往自然界不存在的化学物质等人工物理化学环境对生物组织所造成的影响,并可显著提高实验效率。特别是,还可以很好地利用本发明筛选药品来进行必要的大量处理样品的工作。而且,用以往的技术很难对切片进行筛选,本发明则可进行高效筛选,其结果解明了神经网络的机能,并可对脑神经系统的药物开发作出贡献。本发明的另一个贡献是,减少了实验中所使用的动物数量。

Claims (13)

1.变化包围生物组织或细胞的物理化学环境以观察对上述组织或细胞的物理化学特性的影响的方法,该方法包括将包围上述生物组织或细胞的物理化学环境保持一定,接着任意变化上述的物理化学环境,并观测上述组织或细胞的物理化学特性,比较上述的物理化学环境变化前后上述组织或细胞的物理化学特性,测定上述生物组织或细胞物理化学特性。
2.权利要求1所述的方法,该方法至少是用含有细胞培养手段,环境调整手段、观察手段以及比较手段的装置观察生物组织或细胞的物理化学特性,包括下述(A)~(E)步骤:
(A)用上述的细胞培养手段培养上述的组织或细胞,或者用上述的细胞培养手段保持上述组织或细胞周围的第1物理化学环境的步骤;
(B)用上述的观察手段观察上述第1物理化学环境中上述组织或细胞的第1物理化学特性的步骤;
(C)用上述环境调整手段,将上述第1物理化学环境变为第2物理化学环境的步骤;
(D)用上述的观察手段观察上述第2物理化学环境中上述组织或细胞的第2物理化学特性的步骤;
(E)用上述的比较手段,比较上述组织或细胞的上述第1物理化学特性与上述组织或细胞的上述第2物理化学特性的步骤。
3.权利要求2所述的方法,该方法包括将上述第1物理化学环境变为第2物理化学环境的步骤是将上述细胞培养手段中使用的第1培养基置换为上述培养手段中使用的第2培养基。
4.权利要求3所述的方法,其中上述第1培养基和第2培养基含有任意浓度的一种或多种药物。
5.包括下述(A)~(E)手段的组织或细胞的物理化学特性的测定装置,它是变化生物组织或细胞周围的物理化学环境以观察对上述组织或细胞的物理化学特性的影响的装置:
(A)培养上述组织或细胞,或者维持上述组织或细胞周围的物理化学环境的细胞培养手段;
(B)观察上述组织或细胞在第1物理化学环境中的物理化学特性的手段;
(C)为调整维持上述组织或细胞的物理化学环境的环境调整手段;
(D)观察用上述的环境调整手段,将第1物理化学环境变为第2物理化学环境时上述组织或细胞物理化学特性的观察手段;
(E)将第1物理化学环境中上述组织或细胞的物理化学特性与第2物理化学环境中上述组织或细胞的物理化学特性相比较的手段。
6.权利要求5所述的装置,其中上述环境调整手段包括向上述细胞培养手段中使用的培养基中加入化学物质,微生物或病毒的手段,和将上述细胞培养手段中使用的含任意浓度的一种或多种化学物质,微生物或病毒的第1培养基置换为在上述细胞培养手段中使用的含任意浓度的一种或多种化学物质,微生物或病毒的第2培养基的手段。
7.权利要求5所述的装置,其中上述的环境调整手段包括向上述的细胞培养手段中使用的培养基中加入物质的手段以及将上述细胞培养手段中使用的第1培养基置换为在上述培养手段中使用的第2培养基的手段。
8.权利要求5所述的装置,其中上述观察手段是测定组织或细胞电生理学特性的电位测定装置,该装置包括(A)和(B):
(A)在基板上备有多个微小电极,其上备有放置上述组织或细胞的细胞设置部,并备有给与上述微小电极电信号和从上述微小电极引出电信号的电连接手段的一体化细胞设置器;
(B)用上述一体化细胞设置器的电连接手段进行连接,对上述组织或细胞的电生理学活动发出的信号进行处理的手段。
9.权利要求8所述的装置,除了上述(A)和(B)之外,该装置还包括下述(C):
(C)用上述一体化细胞设置器的电连接手段进行连接,给予上述组织或细胞电刺激的手段。
10.权利要求8所述的装置,通过制备多个上述的一体化细胞设置器,可以边培养多个组织或细胞边测定它们的物理化学特性。
11.权利要求10所述的装置,包括对上述的多个一体化细胞设置器来说,对多个组织或细胞的物理化学环境可以进行个别调整的环境调整手段。
12.在上述组织或细胞中测定加入上述化学物质,微生物或病毒时,上述组织或细胞的电特性或视觉特性,从这两个参数来判断加入的上述化学物质,微生物或病毒对上述组织或细胞有无影响的药物检验方法,其中备有检测加入了化学物质,微生物或病毒的组织或细胞的电特性的手段,或者从外部来观察上述组织或细胞的视觉特性的图像检测手段。
13.一种药品检验装置,包括测定加入了化学物质,微生物或病毒的组织或细胞的电特性的电测定部和测定上述组织或细胞的视觉特性的视觉特性检测部,从电特性部及视觉特性检测部的输出结果测定上述药物对上述组织或细胞的影响。
CN97190217A 1996-01-24 1997-01-24 测定组织或细胞物理化学特性的方法、检测药品的方法及其装置 Withdrawn CN1183121A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9857/96 1996-01-24
JP985796 1996-01-24
US08/662,629 1996-06-13
US08/662,629 US6297025B1 (en) 1994-06-13 1996-06-13 Measurement of complete electrical waveforms of tissue or cells

Publications (1)

Publication Number Publication Date
CN1183121A true CN1183121A (zh) 1998-05-27

Family

ID=26344668

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97190217A Withdrawn CN1183121A (zh) 1996-01-24 1997-01-24 测定组织或细胞物理化学特性的方法、检测药品的方法及其装置

Country Status (5)

Country Link
EP (1) EP0823483A4 (zh)
KR (1) KR100291052B1 (zh)
CN (1) CN1183121A (zh)
CA (1) CA2215835A1 (zh)
WO (1) WO1997027318A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056321A1 (fr) * 2001-12-17 2003-07-10 Capital Biochip Company, Ltd. Dispositif pour stimuler une cellule animale et enregistrer son signal physiologique, procedes de production et d'utilisation correspondants
CN100372920C (zh) * 2003-06-27 2008-03-05 松下电器产业株式会社 药理测定装置及系统以及其中使用的井容器
CN100462717C (zh) * 2003-03-07 2009-02-18 松下电器产业株式会社 细胞外电位测定装置及其制造方法
CN114112865A (zh) * 2021-11-22 2022-03-01 中国人民解放军军事科学院军事医学研究院 一种微电极测量装置及其测量方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11187865A (ja) * 1997-12-25 1999-07-13 Matsushita Electric Ind Co Ltd 細胞電位測定電極及びこれを用いた測定装置
USRE37977E1 (en) * 1997-12-25 2003-02-04 Matsushita Electric Industrial Co., Ltd. Cell potential measuring electrode and measuring apparatus using the same
US6132683A (en) * 1998-12-23 2000-10-17 Matsushita Electric Industrial Co., Ltd. Cell potential measuring electrode and measuring apparatus using the same
WO2000071742A2 (en) * 1999-05-21 2000-11-30 Hickman James J An apparatus for the analysis of the electrophysiology of neuronal cells and its use in high-throughput functional genomics
US7266457B1 (en) 1999-05-21 2007-09-04 Hesperos, Llc High throughput functional genomics
WO2000079273A2 (en) * 1999-06-21 2000-12-28 Matsushita Electric Industrial Co., Ltd. Methods and device for in vitro detection and characterization of psychoactives using analysis of repetitive electrical activity in a neuronal sample
CN1458972A (zh) * 2001-01-09 2003-11-26 松下电器产业株式会社 测量细胞外电势的装置、利用该装置测量细胞外电势的方法以及配有该装置的快速筛选药物的仪器
FR2820144B1 (fr) * 2001-01-30 2004-01-16 Univ Paris Curie Postes de securite microbiologique utilisables en assistance medicale a la procreation
FR2820756B1 (fr) * 2001-02-09 2004-01-23 Daniel Attias Incubateur et procede d'incubation menageant l'organisme mis a incuber
CA2445458C (en) 2001-04-25 2016-12-13 Cornell Research Foundation, Inc. Devices and methods for pharmacokinetic-based cell culture system
CN1256443C (zh) * 2001-04-27 2006-05-17 松下电器产业株式会社 用于提取有效信号的方法
KR100450633B1 (ko) * 2002-03-02 2004-09-30 정필훈 전기적 자극에 의한 신경세포 배양방법 및 그의 장치
KR100753148B1 (ko) 2005-06-22 2007-08-30 아주대학교산학협력단 줄기세포 분화용 세포 자극 및 검출 바이오칩
EP3778858A1 (en) 2008-07-16 2021-02-17 Children's Medical Center Corporation Device with microchannels and method of use
JP5544474B2 (ja) * 2009-12-11 2014-07-09 国立大学法人東北大学 細胞検査用バイオアッセイ用キット
KR101181373B1 (ko) 2010-06-04 2012-09-19 한국과학기술원 힘촉각 정보 획득 방법 및 세포 기반의 바이오 센서
US9725687B2 (en) 2011-12-09 2017-08-08 President And Fellows Of Harvard College Integrated human organ-on-chip microphysiological systems
WO2014018770A1 (en) 2012-07-25 2014-01-30 The Charles Stark Draper Laboratory, Inc. Modular platform for multi-tissue integrated cell culture
EP2951282B1 (en) * 2013-01-29 2019-05-08 The Charles Stark Draper Laboratory, Inc. Modular platform for multi-tissue integrated cell culture
EP3254008B1 (en) 2015-02-04 2018-12-26 The Charles Stark Draper Laboratory, Inc. Actuated valve or pump for microfluidic devices
JP6344775B2 (ja) * 2016-05-20 2018-06-20 国立大学法人東北大学 電気化学イメージング方法、電気化学測定装置及びトランスデューサ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7609183A (nl) * 1975-09-04 1977-03-08 Merck & Co Inc Werkwijze voor het bepalen van de infectiviteit van viruspreparaten en werkwijze voor het be- palen van het antilichaamgehalte van serum.
US5278048A (en) * 1988-10-21 1994-01-11 Molecular Devices Corporation Methods for detecting the effect of cell affecting agents on living cells
JPH05506098A (ja) * 1990-04-03 1993-09-02 オンコセラピューティクス 癌患者を治療するための有効な薬品を確認する電子的方法
JP2950519B2 (ja) * 1991-02-28 1999-09-20 アンティキャンサー インコーポレイテッド 皮膚の未変性状態組織培養法
US5187096A (en) * 1991-08-08 1993-02-16 Rensselaer Polytechnic Institute Cell substrate electrical impedance sensor with multiple electrode array
US5563067A (en) * 1994-06-13 1996-10-08 Matsushita Electric Industrial Co., Ltd. Cell potential measurement apparatus having a plurality of microelectrodes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056321A1 (fr) * 2001-12-17 2003-07-10 Capital Biochip Company, Ltd. Dispositif pour stimuler une cellule animale et enregistrer son signal physiologique, procedes de production et d'utilisation correspondants
CN100344960C (zh) * 2001-12-17 2007-10-24 清华大学 刺激动物细胞并记录其生理信号的装置及其生产使用方法
US7632674B2 (en) 2001-12-17 2009-12-15 CapitalBiochip Corporation Apparatus for stimulating an animal cell and recording its physiological signal and production and use methods thereof
CN100462717C (zh) * 2003-03-07 2009-02-18 松下电器产业株式会社 细胞外电位测定装置及其制造方法
CN100372920C (zh) * 2003-06-27 2008-03-05 松下电器产业株式会社 药理测定装置及系统以及其中使用的井容器
CN114112865A (zh) * 2021-11-22 2022-03-01 中国人民解放军军事科学院军事医学研究院 一种微电极测量装置及其测量方法

Also Published As

Publication number Publication date
EP0823483A4 (en) 2001-04-18
EP0823483A1 (en) 1998-02-11
KR19980703274A (ko) 1998-10-15
KR100291052B1 (ko) 2004-11-26
WO1997027318A1 (fr) 1997-07-31
CA2215835A1 (en) 1997-07-31

Similar Documents

Publication Publication Date Title
CN1183121A (zh) 测定组织或细胞物理化学特性的方法、检测药品的方法及其装置
CN1131744A (zh) 细胞电位测定装置
Makale et al. Tissue window chamber system for validation of implanted oxygen sensors
Yu et al. Vertically aligned carbon nanofiber arrays record electrophysiological signals from hippocampal slices
Hascup et al. Second-by-second measures of L-glutamate and other neurotransmitters using enzyme-based microelectrode arrays
US6297025B1 (en) Measurement of complete electrical waveforms of tissue or cells
CN1458972A (zh) 测量细胞外电势的装置、利用该装置测量细胞外电势的方法以及配有该装置的快速筛选药物的仪器
US20190376014A1 (en) Apparatus and methods for in vitro preclinical human trials
CN1235543C (zh) 嗅觉粘膜刺激化合物筛选仪器及测量电极组
Tedjo et al. Electrochemical biosensor system using a CMOS microelectrode array provides high spatially and temporally resolved images
Panuccio et al. Recording and modulation of epileptiform activity in rodent brain slices coupled to microelectrode arrays
Stuart et al. Wireless, battery-free implants for electrochemical catecholamine sensing and optogenetic stimulation
CN113941378A (zh) 基于多腔式电生理微纳检测的神经类器官芯片及检测方法
US20170067015A1 (en) Electrophysiological recording system and methods of using same
Maher et al. Microstructures for studies of cultured neural networks
CN209508276U (zh) 一种用于培养细胞的电刺激装置
CN110036106A (zh) 用于体外调节细胞培养物的化学微环境的组合物、装置和方法
CN113005087B (zh) 小鼠耳蜗螺旋器贴壁培养方法
Lee et al. Large-scale smart bioreactor with fully integrated wireless multivariate sensors and electronics for long-term in situ monitoring of stem cell culture
US20140322701A1 (en) Miniaturized, automated in-vitro tissue bioreactor
Ye et al. Effect of exogenous electric stimulation on the cardiac tissue function in situ monitored by scanning electrochemical microscopy
TWM243483U (en) A test instrument for electric physiological properties of organism, cell, and the section from live organ
Burley et al. Multielectrode Arrays
Zhuang et al. A high-sensitive detection method for carvone odor by implanted electrodes in rat olfactory bulb
Racz et al. jULIEs: nanostructured polytrodes for low traumatic extracellular recordings and stimulation in the mammalian brain

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C04 Withdrawal of patent application after publication (patent law 2001)
WW01 Invention patent application withdrawn after publication