CN117680100B - Cof衍生功能化多孔碳微球固相萃取剂及其制备方法与应用 - Google Patents

Cof衍生功能化多孔碳微球固相萃取剂及其制备方法与应用 Download PDF

Info

Publication number
CN117680100B
CN117680100B CN202410145900.9A CN202410145900A CN117680100B CN 117680100 B CN117680100 B CN 117680100B CN 202410145900 A CN202410145900 A CN 202410145900A CN 117680100 B CN117680100 B CN 117680100B
Authority
CN
China
Prior art keywords
cof
carbon microsphere
porous carbon
solid phase
phase extractant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202410145900.9A
Other languages
English (en)
Other versions
CN117680100A (zh
Inventor
廖家莉
马国权
李飞泽
彭海岳
李阳
马利建
杨远友
刘宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202410145900.9A priority Critical patent/CN117680100B/zh
Publication of CN117680100A publication Critical patent/CN117680100A/zh
Application granted granted Critical
Publication of CN117680100B publication Critical patent/CN117680100B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明属于材料化学技术领域,其公开了一种COF衍生功能化多孔碳微球固相萃取剂及其制备方法与应用,所述COF衍生功能化多孔碳微球固相萃取剂以结构可设计的共价有机框架材料(COFs)为前体,通过自模板法制备多孔碳微球材料;制备方法简单,产量高,适合规模化生产;制备的COF衍生功能化多孔碳微球具有高的比表面积,丰富的孔结构,且微观结构循迹性以及高耐辐照和耐酸碱等特性,能应用于无载体177Lu的分离纯化,通过柱分离的方式快速将无载体177Lu从宏量的176Yb分离,简单高效,放射性废物少,易于工业化生产,市场前景良好。

Description

COF衍生功能化多孔碳微球固相萃取剂及其制备方法与应用
技术领域
本发明属于材料化学技术领域,具体涉及一种COF衍生功能化多孔碳微球固相萃取剂及其制备方法与应用于无载体177Lu的分离纯化。
背景技术
医用放射性核素标记的靶向药用于疾病的诊断和治疗得到了显著发展,逐渐成为现代医学诊断和治疗中的重要方式。根据所需的功能不同采用具有不同衰变特性的放射性核素,并通过载体的靶向特性将放射性核素聚集到病灶,如诊断需要发射光子的放射性核素以提供病灶的相关功能状态信息,而治疗性的放射性核素在衰变过程中产生的α、β-俄歇电子射线直接对癌细胞进行杀伤从而达到治疗的效果。
在众多医用放射性核素中,177Lu具有独特的核物理和化学性质,适用于癌症诊断与治疗,已有177Lu-PSMA-617和177Lu-DOTATATE药物用于前列腺癌和神经内分泌癌的治疗,多种药物更是已经进入临床实验并展现出广阔的应用前景。177Lu的生产方法包括直接法176Lu(n,γ)177Lu和间接法176Yb(n,γ)177Lu,直接法由于长寿命伴生核素177mLu(T1/2=160d)和大量稳定176Lu靶材的存在而具有比活度较低的缺点,临床应用十分受限;间接法生产的177Lu不存在同位素载体,因此具有更高的比活度、放射化学纯度,已经成为了相关临床应用和试验药物的绝对主要来源。然后,由于176Yb的中子反应截面较低(2.85b),因此辐照后样品中177Lu的产额较低(含量在0.1%-0.0001%之间)。因此,无载体177Lu生产工艺的关键在于从宏量的176Yb对177Lu的分离纯化,Yb3+和Lu3+是相邻的三价镧系元素,它们具有相似的理化性质和相近的离子半径,同时由于核反应特点导致176Yb和177Lu存在巨大的含量差异,进一步增加了分离难度。
目前,已有萃取法、电化学法和固相吸附剂柱分离法等无载体177Lu的分离工艺,相较于具有繁琐工艺的萃取法和可能二次污染的电化学法,固相吸附剂柱分离法的产率高,酸浓度相对较低,操作简单等特点,更符合放化实验操作要求及无载体177Lu的分离。
用于无载体177Lu生产的固相吸附剂主要采用商用镧系树脂(LN、LN2和LN3树脂),根据固相吸附剂的性能特性,采用1~4M的酸性洗脱液进行单级柱分离和后续多级柱纯化,最终获得高纯度的无载体177Lu。但由于固相吸附剂的性能不理想以及分离机理的不明确,使整个分离纯化过程步骤冗长,淋洗液体积庞大,分离时间较长等因素,不利于177Lu的规模化和持续化生产。因此,急需开发出新型、高效、稳定的固相吸附剂用于无载体177Lu的高效分离。
发明内容
本发明的目的在于提供的目的在于提供一种COF衍生功能化多孔碳微球固相萃取剂及其制备方法与应用,以共价有机框架材料(COFs)为前体,通过自模板法制备COF衍生功能化多孔碳微球,不仅实现了对材料微观形貌的精准调控,还将功能化配体锚定在多孔碳微球孔道内部,应用于无载体177Lu分离纯化的功能化材料。
为实现上述目的,本发明采用如下技术方案:
一种COF衍生功能化多孔碳微球固相萃取剂的制备方法,包括如下步骤:
步骤1:按照合成量取具有醛基和硼酸基双功能单体、多胺基功能单体,加入混合溶剂,超声分散,充入氮气保护,在温度为120℃的环境下保温12h,反应生成定向的可逆共价键,冷却至室温,过滤收集固体,并依次采用二氧六环、丙酮、正己烷对固体进行洗涤,真空干燥12h,获得共价有机框架材料COF;
步骤2:对步骤1获得的共价有机框架材料COF在惰性气体的保护下高温碳化,冷却,并采用pH=1的硝酸溶液和甲醇分别清洗,真空干燥12h,获得COF衍生碳微球材料;
其中,所述高温碳化采用阶梯升温的方式进行,先由室温以5℃/min升温至500℃,并保温120min,然后以20℃/min快速升温至900℃,保温120min;
步骤3:将步骤2获得的COF衍生碳微球材料分散在含有功能化配体的有机溶剂中,经超声分散、减压蒸干、真空干燥后获得COF衍生功能化多孔碳微球固相萃取剂。
进一步地,步骤1中所述具有醛基和硼酸基双功能单体、多胺基功能单体的用量比为1:3或3:2或1:1;
所述具有醛基和硼酸基双功能单体为3,5-二甲酰基苯基硼酸、3-甲酰基苯硼酸、3-甲酰基-4-乙氧基苯基硼酸、4-甲酰基苯硼酸、4-醛基-2,6-二甲基苯硼酸中的一种或多种的组合;
所述多胺基功能单体采用胺单体为1,3,5-三(4-氨基苯基)苯、联苯二胺、对苯二胺、三(4-氨基苯基)胺、N,N,N',N'-四(对氨基苯基)对苯二胺、2,4,6-三(4-氨基苯基)-1,3,5-三嗪中的一种或多种的组合。
进一步地,步骤3所述功能化配体为P507、P204、INET-3、Cyanex272、P227、P350或TODGA。
进一步地,步骤3所述有机溶剂为甲醇、乙醇、石油醚、二氯甲烷或丙酮。
本发明还提供了由上述制备方法制备的COF衍生功能化多孔碳微球固相萃取剂。
将上述制备的COF衍生功能化多孔碳微球固相萃取剂在无载体177Lu的分离纯化中的应用。
本发明的具有如下有益效果:
(1)以结构可设计的共价有机框架材料COF为前体,通过自模板法制备多孔碳微球材料;制备方法简单,产量高,适合规模化生产;解决了现有多孔材料制备条件严苛的问题。
(2)制备的COF衍生功能化多孔碳微球具有高的比表面积,丰富的孔结构,且微观结构循迹性以及高耐辐照和耐酸碱等特性。
(3)在制备功能化多孔碳微球材料时,采取将功能化配体锚定在多孔碳微球的孔道内,避免了功能化配体流失的问题,同时,对于其它多种功能化配体具有普适性。
(4)所制备的COF衍生功能化多孔碳微球能够通过柱分离的方式快速将无载体177Lu从宏量的176Yb分离,简单高效,放射性废物少,易于工业化生产,市场前景良好。
附图说明
图1为本发明实施例1制备的COF-FbTb材料的扫描电镜图。
图2为本发明实施例1制备的COF-FbTb材料的X射线衍射图。
图3为本发明实施例1制备的COF-FbTb材料的氮气吸附脱附曲线。
图4为本发明实施例1制备的COF-FbTb-CMS材料的扫描电镜图。
图5为本发明实施例1制备的COF-FbTb-CMS材料的X射线衍射图。
图6为本发明实施例1制备的COF-FbTb-CMS材料的氮气吸附脱附曲线。
图7为本发明实施例1制备的COF-FbTb-CMS@P507的扫描电镜图。
图8为COF-FbTb-CMS@P204在Yb:Lu=1:1时的淋洗曲线。
图9为COF-FbTb-CMS@P507在Yb:Lu=1:1时的淋洗曲线。
图10为COF-FbTb-CMS@P507在Yb:Lu=105:1时添加175Yb和177Lu为示踪剂的淋洗曲线。
图11为COF-FbTb-CMS@P507在实际工况下的淋洗曲线。
具体实施方式
实施例1
本实施例提供了一种COF衍生功能化多孔碳微球固相萃取剂的制备方法,以及根据该制备方法制备的COF-FbTb-CMS@P507材料。
所述制备方法包括如下步骤:
(1)COF-FbTb前驱体的制备:将0.14mol的1,3,5-三(4-氨基苯基)苯(Tb)和0.5mol的4-甲酰基苯硼酸(Fb)加入到350mL耐压管中,并向其中加入120mL的混合溶剂(二氧六环和均三甲苯体积比1:1),并对混合体系超声分散10min。通入连续氮气置换瓶中空气,然后转移至120℃烘箱中保温72h,自然冷却至室温后,过滤收集固体,并依次用二氧六环、丙酮、正己烷洗涤数次,最后将得到的淡黄色固体转移至真空干燥箱中60℃干燥12h,获得COF-FbTb材料。所述COF-FbTb材料的扫描电镜图如图1所示,COF-FbTb是由60nm厚度的随机取向纳米片组装而成的均匀分层级微球,平均尺寸为2.05±0.27μm。X射线衍射图如图2所示,图2表明COF-FbTb的衍射峰与模拟的AA堆叠相一致,表明COF-FbTb具有良好的晶体结构。COF-FbTb的氮气吸附脱附曲线如图3所示,呈现Ⅰ型等温吸附模型,比表面积为95.18m2/g。
(2)将COF-FbTb材料均匀平铺在刚玉反应舟内,转移至管式炉中,首先采用N2气或Ar气作为保护气,吹扫炉管30min,设置升温为梯度升温模式,具体为由室温以5℃/min升温至500℃,并保温120min,然后以20℃/min快速升温至900℃,保温120min,随后设置降温程序,冷却至室温后,收集反应舟中的黑色粉末,并分别使用pH=1的硝酸溶液和甲醇洗涤多次,最后经60℃真空干燥12h后,得到多孔碳微球材料COF-FbTb-CMS。所述COF-FbTb-CMS材料的扫描电镜图如图4所示,维持了原有COF-FbTb的形貌,且前后粒径几乎没有变化。微观形貌X射线衍射图如图5所示,原有的尖锐的衍射峰消失,说明碳化后原有晶态结构被破坏,为非晶态。氮气吸附脱附曲线如图6所示,COF-FbTb-CMS的氮气吸附等温模型呈Ⅰ型,比表面积显著增加至766m2/g,这是因为在高温下,原有骨架中轻质元素的损耗,留下空腔所致。上述表征说明碳化后材料具有表面积和丰富的孔隙率为体萃取剂分子提供广阔的结合位点。
(3)称取2.0g多孔碳微球材料COF-FbTb-CMS置于100mL圆底烧瓶中,加入30mL的甲醇,超声分散10min,然后加入0.7mL的P507,超声30min。随后通过旋转蒸发仪于30℃下去除溶剂。最后将所得固体转移至真空干燥箱60℃下干燥12h,获得功能化COF-FbTb-CMS@P507材料。COF-FbTb-CMS@P507材料的扫描电镜图如图7所示,复合萃取剂材料后,材料的微观形貌几乎维持不变,说明材料具有稳定的结构。
实施例2
本实施例与实施例1基本相同,仅仅改变实施例1中步骤(3)的功能化单体,将0.7mL的P507改成0.7mL的P204,获得功能化COF-FbTb-CMS@P204。
实施例3
本实施例与实施例1基本相同,仅仅改变实施例1中步骤(3)的功能化单体,将0.7mL的P507改成0.7mL的P227,获得功能化COF-FbTb-CMS@P227。
实施例4
本实施例提供了一种COF衍生功能化多孔碳微球固相萃取剂的制备方法,以及根据该制备方法制备的COF-FbTt-CMS@P507材料
所述制备方法包括如下步骤:
(1)COF-FbTt前驱体的制备:将0.14mol的2,4,6-三(4-氨基苯基)-1,3,5-三嗪(Tt)和0.5mol的4-甲酰基苯硼酸(Fb)加入到350mL的耐压管中,并加入120mL的混合溶剂(二氧六环/均三甲苯体积比为1:1)。通入氮气作为保护气,然后转移至120℃烘箱中保温72h,冷却至室温后,过滤收集固体,并依次用二氧六环、丙酮、正己烷进行洗涤,最后将得到的淡黄色固体转移至真空干燥箱中60℃干燥12h,获得COF-FbTt材料。
(2)将COF-FbTt材料均匀平铺在刚玉反应舟内,转移至管式炉中,并采用N2气或Ar气作为保护气,设置升温为梯度升温模式,具体为由室温以5℃/min升温至500℃,并保温120min,然后以20℃/min快速升温至900℃,保温120min。待反应停止,冷却至室温后,分别使用pH=1的硝酸溶液和甲醇对黑色固体洗涤,然后经60℃真空干燥12h后,得到多孔碳微球材料COF-FbTt-CMS。
(2)称取2.0g的多孔碳微球材料COF-FbTt-CMS置于100mL圆底烧瓶中,并加入30mL的甲醇,超声分散10min,然后向其中加入0.7mL的P507,超声30min。随后通过旋转蒸发仪于30℃下去除溶剂。最后将所得固体转移至真空干燥箱60℃下干燥12h,获得功能化COF-FbTt-CMS@P507材料。
将实施例1~4制备的COF衍生功能化多孔碳微球固相萃取剂采用固相吸附剂柱分离法实现无载体177Lu的分离纯化。
本实施例采用装柱方式为干法装柱,色谱柱采用R0.3×H15cm和R0.6×H30cm的玻璃柱,填柱高度分别为10cm和20cm。
固相萃取剂装填方法:将COF-FbTb-CMS@P204、COF-FbTb-CMS@P507、COF-FbTb-CMS@P227和COF-FbTt-CMS@P507分别装入R0.3×H15cm的色谱中,柱上部填充玻璃纤维,防止材料浸泡后松散,最后加入pH=1的硝酸溶液对柱子进行充分润湿和活化,上端接样品池,下端以蠕动泵控制流速在0.2mL/min,并连接自动收集器。
另取2.0g的COF-FbTb-CMS@P507装填至R0.6×H30cm的色谱柱中,填充高度为20cm,加入pH=1的硝酸溶液对柱子进行充分润湿和活化,上端接样品池,下端过蠕动泵控制流速在0.5mL/min,并连接自动收集器。
采用含有COF-FbTb-CMS@P204、COF-FbTb-CMS@P507、COF-FbTb-CMS@P227和COF-FbTt-CMS@P507的色谱柱验证分离稳定的Yb和Lu。
取以镱镥的硝酸盐配制的pH=1且镱和镥浓度均为100ppm的原液0.3mL,通过样品池分别加入到填充有COF-FbTb-CMS@P204、COF-FbTb-CMS@P507、COF-FbTb-CMS@P227和COF-FbTt-CMS@P507的色谱柱中,随后加入5mL的0.1mol/L的硝酸溶液。并通过蠕动泵控制流速为0.2mL/min。最后加入3.0mol/L的硝酸溶液进行洗脱,每1.0mL收集一次,通过ICP-OES分析溶液中镱和镥含量分布,得到相应的淋洗曲线;其中,图8为COF-FbTb-CMS@P204在Yb:Lu=1:1时的淋洗曲线;图9为COF-FbTb-CMS@P507在Yb:Lu=1:1时的淋洗曲线。
采用含有COF-FbTb-CMS@P507的色谱柱在模拟工况下175Yb/177Lu示踪分离。
向以镱镥的硝酸盐配制的pH=1且镱和镥浓度分别为100和10-3ppm的原液0.6mL中加入0~10μCi的175Yb和177Lu混合成上柱液,将上柱液通过样品池分别加入到填充有COF-FbTb-CMS@P507的色谱柱中,蠕动泵控制流速为0.2mL/min,然后加入5mL的0.1mol/L的硝酸溶液,随后加入1.5mol/L的硝酸溶液进行洗脱,每1.0mL收集一次。通过采用伽马能谱仪测量淋洗液中175Yb和177Lu,得到模拟工况下的淋洗曲线,图10为COF-FbTb-CMS@P507在Yb:Lu=105:1时添加175Yb和177Lu为示踪剂的淋洗曲线。
采用含有COF-FbTb-CMS@P507的色谱柱在实际工况下176Yb/177Lu分离纯化。
采用干法装柱,层析柱内径0.6cm,COF-FbTb-CMS@P507填充高度为20cm,填充高度为10cm,上柱前,采用0.1mol/L硝酸溶液对柱充分润湿。取溶靶后酸度为0.1mol/L的1mL活度为100mCi的母液。从样品池加入到层析柱中,以蠕动泵控制流速为0.5mL/min,待母液全部上柱后,加入10mL的0.1mol/L硝酸溶液。最后加入1.5mol/L的硝酸溶液进行洗脱,每4.0mL收集一次。通过伽马能谱测定175Yb和177Lu,来确定淋洗曲线。
采用含有COF-FbTb-CMS@P507的色谱柱在实际工况下176Yb/177Lu分离纯化。
采用干法装柱,层析柱内径0.3cm,COF-FbTb-CMS@P507的填充高度为10cm,上柱前,0.1M硝酸溶液充分润湿和活化。随后取溶靶后pH=1的2mL活度为200mCi的母液。从样品池加入到层析柱中,以蠕动泵控制流速为0.5mL/min,待母液全部上柱后,加入10mL的0.1mol/L硝酸溶液。最后加入3M的硝酸溶液进行洗脱,通过监测175Yb的淋洗曲线,待175Yb检测不到时,加入4M的硝酸溶液淋洗对177Lu进行淋洗。每4.0mL收集一管。通过伽马能谱测定175Yb和177Lu,来确定淋洗曲线,图11为COF-FbTb-CMS@P507在实际工况下的淋洗曲线。
以上所述仅是本发明优选的实施方式,但本发明的保护范围并不局限于此,任何基于本发明所提供的技术方案和发明构思进行的改造和替换都应涵盖在本发明的保护范围内。

Claims (6)

1.一种COF衍生功能化多孔碳微球固相萃取剂的制备方法,其特征在于:包括如下步骤:
步骤1:按照合成量取具有醛基和硼酸基双功能单体、多胺基功能单体,加入混合溶剂,超声分散,充入氮气保护,在温度为120℃的环境下保温12h,反应生成定向的可逆共价键,冷却至室温,过滤收集固体,并依次采用二氧六环、丙酮、正己烷对固体进行洗涤,真空干燥12h,获得共价有机框架材料COF;
步骤2:对步骤1获得的共价有机框架材料COF在惰性气体的保护下高温碳化,冷却,并采用pH=1的硝酸溶液和甲醇分别清洗,真空干燥12h,获得COF衍生碳微球材料;
其中,所述高温碳化采用阶梯升温的方式进行,先由室温以5℃/min升温至500℃,并保温120min,然后以20℃/min快速升温至900℃,保温120min;
步骤3:将步骤2获得的COF衍生碳微球材料分散在含有功能化配体的有机溶剂中,经超声分散、减压蒸干、真空干燥后获得COF衍生功能化多孔碳微球固相萃取剂。
2.根据权利要求1所述的一种COF衍生功能化多孔碳微球固相萃取剂的制备方法,其特征在于:步骤1中所述具有醛基和硼酸基双功能单体、多胺基功能单体的用量比为1:3或3:2或1:1;
所述具有醛基和硼酸基双功能单体为3,5-二甲酰基苯基硼酸、3-甲酰基苯硼酸、3-甲酰基-4-乙氧基苯基硼酸、4-甲酰基苯硼酸、4-醛基-2,6-二甲基苯硼酸中的一种或多种的组合;
所述多胺基功能单体采用胺单体为1,3,5-三(4-氨基苯基)苯、联苯二胺、对苯二胺、三(4-氨基苯基)胺、N,N,N',N'-四(对氨基苯基)对苯二胺、2,4,6-三(4-氨基苯基)-1,3,5-三嗪中的一种或多种的组合。
3.根据权利要求1所述的一种COF衍生功能化多孔碳微球固相萃取剂的制备方法,其特征在于:步骤3所述功能化配体为P507、P204、INET-3、Cyanex272、P227、P350或TODGA。
4.根据权利要求3所述的一种COF衍生功能化多孔碳微球固相萃取剂的制备方法,其特征在于:步骤3所述有机溶剂为甲醇、乙醇、石油醚、二氯甲烷或丙酮。
5.一种根据权利要求1~4任一权利要求所述的制备方法制备的COF衍生功能化多孔碳微球固相萃取剂。
6.一种根据权利要求5所述的COF衍生功能化多孔碳微球固相萃取剂在无载体177Lu的分离纯化中的应用。
CN202410145900.9A 2024-02-02 2024-02-02 Cof衍生功能化多孔碳微球固相萃取剂及其制备方法与应用 Active CN117680100B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410145900.9A CN117680100B (zh) 2024-02-02 2024-02-02 Cof衍生功能化多孔碳微球固相萃取剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410145900.9A CN117680100B (zh) 2024-02-02 2024-02-02 Cof衍生功能化多孔碳微球固相萃取剂及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN117680100A CN117680100A (zh) 2024-03-12
CN117680100B true CN117680100B (zh) 2024-04-02

Family

ID=90132353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410145900.9A Active CN117680100B (zh) 2024-02-02 2024-02-02 Cof衍生功能化多孔碳微球固相萃取剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN117680100B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101012500A (zh) * 2007-02-05 2007-08-08 常州华南化工有限公司 从低钇中重型稀土矿中全分离高纯稀土氧化物的方法
CN111939276A (zh) * 2020-08-26 2020-11-17 成都纽瑞特医疗科技股份有限公司 负载金属核素的炭微球及制备方法和应用
CN116618005A (zh) * 2023-06-25 2023-08-22 东华理工大学 一种用于铀吸附的聚磷腈衍生碳微球/MoS2复合材料及其制备方法
CN116712753A (zh) * 2023-07-10 2023-09-08 吉林化工学院 一种以衍生多孔碳材料为涂层的固相微萃取装置的制备方法及其应用
CN117343256A (zh) * 2023-12-06 2024-01-05 四川大学 一种功能化共价有机框架材料及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11628419B2 (en) * 2018-01-12 2023-04-18 University Of South Florida Functionalized porous organic polymers as uranium nano-traps for efficient uranium extraction
JP2021518253A (ja) * 2018-03-14 2021-08-02 デシカント・ローターズ・インターナショナル・プライヴェート・リミテッド 有機金属構造体(mof)、共有結合性有機構造体(cof)、及びゼオライトイミダゾレート構造体(zif)をインサイチュ合成するための方法、並びにそれらの用途
WO2022140234A1 (en) * 2020-12-21 2022-06-30 Board Of Regents, The University Of Texas System Production of lu-177 and other radionuclides via hot atom capture on nanostructured carbon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101012500A (zh) * 2007-02-05 2007-08-08 常州华南化工有限公司 从低钇中重型稀土矿中全分离高纯稀土氧化物的方法
CN111939276A (zh) * 2020-08-26 2020-11-17 成都纽瑞特医疗科技股份有限公司 负载金属核素的炭微球及制备方法和应用
CN116618005A (zh) * 2023-06-25 2023-08-22 东华理工大学 一种用于铀吸附的聚磷腈衍生碳微球/MoS2复合材料及其制备方法
CN116712753A (zh) * 2023-07-10 2023-09-08 吉林化工学院 一种以衍生多孔碳材料为涂层的固相微萃取装置的制备方法及其应用
CN117343256A (zh) * 2023-12-06 2024-01-05 四川大学 一种功能化共价有机框架材料及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Boric-Acid-Functionalized Covalent Organic Framework for Specific Enrichment and Direct Detection of cis-Diol-Containing Compounds by Matrix-Assisted Laser Desorption/lonization Time-of-Flight Mass Spectrometry";Hu, K et al.;《ANALYTICAL CHEMISTRY》;20190527;第91卷(第9期);6353-6362 *
"Branched-Chain-Induced Host-Guest Assembly in Covalent-Organic Frameworks for Efficient Separation of No-Carrier-Added 177Lu";Peng, Haiyue et al.;《ACS APPLIED MATERIALS & INTERFACES》;20240212;全文 *
KH-570改性碳微球;赵雪霞;郭兴梅;李莎;韩艳星;杨永珍;刘旭光;;中国材料进展;20121015(第10期);全文 *

Also Published As

Publication number Publication date
CN117680100A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
CN117343256B (zh) 一种功能化共价有机框架材料及其制备方法和应用
US4664869A (en) Method for the simultaneous preparation of Radon-211, Xenon-125, Xenon-123, Astatine-211, Iodine-125 and Iodine-123
Leloire et al. Stability and radioactive gaseous iodine-131 retention capacity of binderless UiO-66-NH2 granules under severe nuclear accidental conditions
CN109575326B (zh) 一种用于碘吸附富集的超交联多孔聚合物的制备方法
JP2014529738A (ja) 多孔性核燃料の製造方法
CN108579702A (zh) 一种碳基超分子吸附剂的制备方法及其应用
CN113070034A (zh) 一种碘吸附材料及其制备方法
CN117680100B (zh) Cof衍生功能化多孔碳微球固相萃取剂及其制备方法与应用
Viglašová et al. Column studies for the separation of 99m Tc using activated carbon
WO2011004382A1 (en) A polymer composite for extracting cesium from nuclear waste and/ or other inorganic wastes/ solutions
CN112940270B (zh) 一种吸附分离铼或锝的MOFs材料及其制备方法和应用
CN112023891A (zh) 一种气态碘提取Ni-MOF/碳气凝胶吸附剂及其制备方法
CN105478097A (zh) 一种锶钇分离树脂及其制备和应用
CN115193489B (zh) 一种颗粒增强离子交换树脂及其制备方法和应用
US20100248955A1 (en) Adsorbents for Radioisotopes, Preparation Method Thereof, and Radioisotope Generators Using the Same
Jin et al. Remarkable iodine uptake by aniline-based macrocyclic arenes through a reverse dissolution mechanism
Zeligman Ion Exchange Separation of Fission Product Rare Earths with α-Hydroxyisobutyric Acid.
CN115267878A (zh) 一种用于分离和检测铀的树脂及制备方法
CN113926421A (zh) 一种铋负载无机多孔碘吸附材料及其宏量制备方法
Faghihian et al. Adsorption of 103 Ru from aqueous solutions by clinoptilolite
CN118079863A (zh) 生物质衍生功能化多孔碳球固相吸附剂及其制备方法与应用
CN117095848B (zh) 99Mo-99mTc色层发生器及99mTc同位素的制备方法
CN213202877U (zh) 一种d6-[18f]fp-(+)-dtbz的自动化制备装置
Tranter et al. Porous crystalline silica (Gubka) as a inorganic support matrix for novel sorbents
WO1999041755A1 (en) Method for making iodine-125 loaded substrates for use in radioactive sources

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant