CN117597795A - 正极活性物质 - Google Patents

正极活性物质 Download PDF

Info

Publication number
CN117597795A
CN117597795A CN202280046632.4A CN202280046632A CN117597795A CN 117597795 A CN117597795 A CN 117597795A CN 202280046632 A CN202280046632 A CN 202280046632A CN 117597795 A CN117597795 A CN 117597795A
Authority
CN
China
Prior art keywords
positive electrode
active material
electrode active
lithium
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280046632.4A
Other languages
English (en)
Inventor
齐藤丞
高桥辰义
铃木邦彦
细海俊介
三上真弓
种村和幸
岩城裕司
山崎舜平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN117597795A publication Critical patent/CN117597795A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

提供一种即使以高电压及/或高温进行充电和放电也不容易产生缺陷的正极活性物质。另外,提供一种即使反复充放电也不容易导致晶体结构崩塌的正极活性物质。正极活性物质包含锂、钴、氧及添加元素,正极活性物质具有表层部及内部,正极活性物质在表层部包含添加元素,表层部是从正极活性物质的表面向内部10nm以下的区域,表层部及内部处于拓扑衍生,添加元素的扩散程度根据表层部的结晶面而不同,添加元素是选自镍、铝和镁中的至少一个或两个以上。

Description

正极活性物质
技术领域
本发明的一个方式涉及一种物品、方法或者制造方法。此外,本发明涉及一种工序(process)、机器(machine)、产品(manufacture)或者组合物(composition of matter)。本发明的一个方式涉及一种半导体装置、显示装置、发光装置、蓄电装置、照明装置、电子设备或其制造方法。
注意,在本说明书中,电子设备是指具有蓄电装置的所有装置,具有蓄电装置的电光装置、具有蓄电装置的信息终端装置等都是电子设备。
背景技术
近年来,对锂离子二次电池、锂离子电容器、空气电池及全固态电池等各种蓄电装置的研究开发日益火热。尤其是,随着半导体产业的发展,高输出、大容量的锂离子二次电池的需求量剧增,作为能够充电的能量供应源,成为现代信息化社会的必需品。
尤其是,便携式电子设备用二次电池等被要求单位重量的放电容量较大且循环特性较高。为了满足这些需求,正在积极地进行二次电池的正极所包含的正极活性物质的改良(例如,专利文献1至专利文献3)。此外,已经进行了有关正极活性物质的晶体结构的研究(非专利文献1至非专利文献3)。
另外,X射线衍射(XRD)是用于分析正极活性物质的晶体结构的方法之一。通过使用非专利文献4中介绍的无机晶体结构数据库(ICSD:Inorganic Crystal StructureDatabase),可以分析XRD数据。另外,利用里特沃尔德法的分析例如可以使用分析程序RIETAN-FP(非专利文献5)。
[先行技术文献]
[专利文献]
[专利文献1]日本专利申请公开第2019-179758号公报
[专利文献2]WO2020/026078号小册子
[专利文献3]日本专利申请公开第2020-140954号公报
[非专利文献]
[非专利文献1]Toyoki Okumura et al,”Correlation of lithium iondistribution and X-ray absorption near-edge structure in O3-and O2-lithiumcobalt oxides from first-principle calculation”,Journal of MaterialsChemistry,2012,22,p.17340-17348
[非专利文献2]Motohashi,T.et al,”Electronic phase diagram of thelayered cobalt oxide system LixCoO2(0.0≤x≤1.0)”,Physical Review B,80(16);165114
[非专利文献3]Zhaohui Chen et al,“Staging Phase Transitions inLixCoO2”,Journal of The Electrochemical Society,2002,149(12)A1604-A1609
[非专利文献4]Belsky,A.et al.,“New developments in the InorganicCrystal Structure Database(ICSD):accessibility in support of materialsresearch and design”,Acta Cryst.,(2002)B58 364-369.
[非专利文献5]F.Izumi and K.Momma,Solid State Phenom.,130,15-20(2007)
[非专利文献6]A.van de Walle,“Multicomponent multisublattice alloys,nonconfigurational entropy and other additions to the Alloy TheoreticAutomated Toolkit”,Calphad Journal 33,266,(2009).
[非专利文献7]Rasband,W.S.,ImageJ,U.S.National Institutes of Health,Bethesda,Maryland,USA,http://rsb.info.nih.gov/ij/,1997-2012.
[非专利文献8]Schneider,C.A.,Rasband,W.S.,Eliceiri,K.W.“NIH Image toImageJ:25years of image analysis”.Nature Methods 9,671-675,2012.
[非专利文献9]Abramoff,M.D.,Magelhaes,P.J.,Ram,S.J.“Image Processingwith ImageJ”.Biophotonics International,volume 11,issue 7,pp.36-42,2004.
发明内容
发明所要解决的技术问题
锂离子二次电池以及用于锂离子二次电池的正极活性物质在充放电容量、循环特性、可靠性、安全性或成本等各种方面还有改善的余地。
本发明的一个方式的目的之一是提供一种正极活性物质或复合氧化物,该正极活性物质或复合氧化物在被用于锂离子二次电池时由充放电循环引起的充放电容量下降得到抑制。此外,本发明的一个方式的目的之一是提供一种即使反复充放电也不容易导致晶体结构崩塌的正极活性物质或复合氧化物。此外,本发明的一个方式的目的之一是提供一种充放电容量大的正极活性物质或复合氧化物。此外,本发明的一个方式的目的之一是提供一种安全性或可靠性高的二次电池。
此外,本发明的一个方式的目的之一是提供一种正极活性物质、复合氧化物、蓄电装置或它们的制造方法。
注意,这些目的的记载不妨碍其他目的的存在。本发明的一个方式并不需要实现所有上述目的。此外,可以从说明书、附图、权利要求书的记载中抽取上述目的以外的目的。
解决技术问题的手段
另外,已知,在例如以4.5V以上等高电压进行充电的条件下或者例如在45℃以上等高温环境下进行充放电时,在现有的正极活性物质中产生从表面向内部加深而发展的发展性缺陷。在正极活性物质中缺陷发展而形成孔的现象也可以被称为点蚀(PittingCorrosion),在本说明书中,在该现象中产生的孔也被称为凹坑。凹坑被认为是以在正极活性物质的表层部产生的晶体结构的畸变及/或原子排列的错开为起点发生的。
于是,在本发明的一个方式中,制造内部和包含添加元素的表层部处于拓扑衍生的正极活性物质。另外,制造内部和包含添加元素的表层部的结晶的取向大致一致的正极活性物质。当表层部和内部处于拓扑衍生时,可以减少充放电时的Li的插入和脱离所导致的晶体结构的畸变及/或原子排列的错开。由此,可以抑制凹坑的原因。此外,当表层部包含添加元素时,可以抑制由过渡金属M和氧的八面体构成的层状结构的偏离且/或可以抑制氧从正极活性物质脱离。因此,可以提供一种即使以高电压进行充电且在高温环境下进行充放电劣化也少的正极活性物质。
本发明的一个方式是一种包含锂、钴、氧及添加元素的正极活性物质,正极活性物质具有表层部及内部,正极活性物质在表层部包含添加元素,表层部是从正极活性物质的表面向内部10nm以下的区域,表层部及内部处于拓扑衍生,添加元素的扩散程度根据表层部的结晶面而不同,添加元素是选自镍、铝和镁中的至少一个或两个以上。
另外,在上述中,优选的是,正极活性物质具有被识别为空间群R-3m的晶体结构,在表层部,与平行于阳离子排列的区域相比,在不平行于阳离子排列的区域中添加元素存在于更深的位置。
另外,在上述中,优选的是,正极活性物质中的镍的原子数为钴的原子数的0.1%以上且2%以下,正极活性物质中的铝的原子数为钴的原子数的0.1%以上且2%以下。
另外,在上述中,作为添加元素优选还包含氟。
发明效果
根据本发明的一个方式,可以提供一种正极活性物质或复合氧化物,该正极活性物质或复合氧化物在被用于锂离子二次电池时由充放电循环引起的充放电容量下降得到抑制。此外,根据本发明的一个方式,可以提供一种即使反复充放电也不容易导致晶体结构崩塌的正极活性物质或复合氧化物。此外,根据本发明的一个方式,可以提供一种充放电容量大的正极活性物质或复合氧化物。此外,根据本发明的一个方式,可以提供一种安全性或可靠性高的二次电池。
此外,根据本发明的一个方式,可以提供一种正极活性物质、复合氧化物、蓄电装置或它们的制造方法。
注意,这些效果的记载不妨碍其他效果的存在。本发明的一个方式并不需要具有所有上述效果。另外,说明书、附图以及权利要求书等的记载中显然存在上述效果以外的效果,可以从说明书、附图以及权利要求书等的记载中获得上述效果以外的效果。
附图简要说明
图1A是正极活性物质的截面图,图1B1至图1C2是正极活性物质的截面图的一部分。
图2是结晶的取向大致一致的TEM图像的例子。
图3A是结晶的取向大致一致的STEM图像的例子,图3B是岩盐型结晶RS的区域的FFT图案,图3C是层状岩盐型结晶LRS的区域的FFT图案。
图4A1至图4B3是说明晶体结构和计算结果的图。
图5A1至图5A3是说明晶体结构的图。
图6A及图6B是说明晶体结构和计算结果的图。
图7A及图7B是说明晶体结构的图。
图8是说明正极活性物质的晶体结构的图。
图9是说明现有的正极活性物质的晶体结构的图。
图10A及图10B是正极活性物质的截面图,图10C1及图10C2是正极活性物质的截面图的一部分。
图11是示出从晶体结构算出的XRD图案的图。
图12是从晶体结构算出的XRD图案的图。
图13是正极活性物质的截面图。
图14A至图14C是说明正极活性物质的制造方法的图。
图15A及图15B是作为导电材料使用石墨烯或石墨烯化合物时的活性物质层的截面图。
图16A及图16B是说明硬币型二次电池的图,图16C是说明二次电池的充电及放电的图。
图17A至图17D是说明圆筒型二次电池的图。
图18A及图18B是说明二次电池的例子的图。
图19A至图19D是说明二次电池的例子的图。
图20A至图20H是说明电子设备的一个例子的图。
图21A至图21C是说明电子设备的一个例子的图。
图22是说明电子设备的一个例子的图。
图23A至图23D是说明电子设备的一个例子的图。
图24A至图24C是示出电子设备的一个例子的图。
图25A至图25C是说明车辆的一个例子的图。
实施发明的方式
以下,使用附图等说明本发明的实施方式的例子。注意,本发明不应该被解释为仅限定在以下实施方式的例子。可以在不脱离本发明的宗旨的范围内改变发明的实施方式。
在本说明书等中,空间群使用国际符号(或Hermann-Mauguin记号)的Shortnotation表示。另外,使用密勒指数表示结晶面及晶向。表示结晶面的各面都以“()”表示。在结晶学上,对数字附上上标横线来表示空间群、结晶面及晶向。但是,在本说明书等中,由于专利申请中的符号限定,有时对数字前附上-(负数符号)来表示空间群、结晶面及晶向,代替对数字附上上标横线。另外,以“[]”表示示出结晶内的取向的个别方位,以“<>”表示示出所有等价取向的集合方位,以“()”表示示出结晶面的个别面,以“{}”表示具有等价对称性的集合面。另外,一般来说,为了容易理解结构,以空间群R-3m表示的三方晶系以六方晶格的复合六方晶格表示,有时作为密勒指数除了(hkl)以外还使用(hkil)。在此i为-(h+k)。
另外,在本说明书等中,粒子不局限于球形(截面形状为圆形),各粒子的截面形状也可以为椭圆形、长方形、梯形、三角形、角部呈弧形的四角形、非对称的形状等,并且各粒子也可以为无定形。
此外,正极活性物质的理论容量是指正极活性物质中的能够插入和脱离的锂全部脱离时的电量。例如,LiCoO2的理论容量为274mAh/g,LiNiO2的理论容量为274mAh/g,LiMn2O4的理论容量为148mAh/g。
另外,以组成式中的x,例如LixCoO2中的x或LixMO2中的x表示与理论容量相比多少锂残留在正极活性物质中。在本说明书中,可以适当地将LixCoO2替换为LixMO2。在是二次电池中的正极活性物质的情况下,x=充电容量/理论容量。例如,在对将LiCoO2用于正极活性物质的二次电池进行充电至219.2mAh/g时,可以说正极活性物质是Li0.2CoO2或者可以说x=0.2。LixCoO2中的x较小例如意味着0.1<x≤0.24的情况。
在被用于正极之前的适当地合成的钴酸锂大致满足化学计量比的情况下,该钴酸锂为LiCoO2且锂位置的Li的占有率x=1。另外,放电结束的二次电池中的钴酸锂也可以说是LiCoO2且x=1。在此,“放电结束”例如是指电流为100mAh且电压为3.0V或2.5V以下的状态。
用于算出LixCoO2中的x的充电容量及/或放电容量优选以没有短路及/或电解液的分解影响或者短路及/或电解液的分解影响少的条件测量。例如,发生可能是短路的容量的急剧变化的二次电池的数据不能被用于x的算出。
另外,晶体结构的空间群通过XRD、电子衍射、中子衍射等识别。因此,在本说明书等中,属于某种空间群或者是空间群意味着被识别为某种空间群。
另外,将阴离子如ABCABC那样三个层彼此偏离而层叠的结构称为立方最紧密堆积结构。因此,阴离子也可以不严格地为立方晶格。同时,实际上结晶都具有缺陷,所以分析结果也可以不基于理论。例如,也可以在电子衍射图案或TEM图像等的FFT(快速傅里叶变换)图案中与理论上的位置稍微不同的位置上出现斑点。例如,在与理论上的位置之间的方位之差为5度以下或2.5度以下时可以说具有立方最紧密堆积结构。
另外,“均质”是指在包含多个元素(例如A、B、C)的固体中某个元素(例如,A)在特定区域中具有相同特征而分布的现象。特定区域的元素浓度在实质上同一即可。例如,特定区域的元素浓度之差在10%以内即可。作为特定区域,例如可以举出表层部、表面、凸部、凹部、内部等。
另外,有时将添加有添加元素的正极活性物质记作复合氧化物、正极材料、二次电池用正极材料等。另外,在本说明书等中,本发明的一个方式的正极活性物质优选包含化合物。另外,在本说明书等中,本发明的一个方式的正极活性物质优选包括组成物。另外,在本说明书等中,本发明的一个方式的正极活性物质优选包括复合体。
另外,在以下实施方式等说明正极活性物质的每个粒子的特征时,并不需要所有粒子都具有该特征。例如,只要无规律地选择的三个以上的正极活性物质粒子中的50%以上,优选为70%以上,更优选为90%以上具有该特征,就可以说具有充分提高正极活性物质及包括正极活性物质的二次电池的特性的效果。
一般来说,随着二次电池的充电电压上升,正极的电压也上升。本发明的一个方式的正极活性物质在高电压下也具有稳定的晶体结构。充电状态下的正极活性物质的晶体结构稳定,所以可以抑制由于反复充放电而充放电容量降低。
另外,二次电池的短路除了引起二次电池的充电工作及/或放电工作中的不良以外还会引起发热及起火。为了实现安全的二次电池,优选在高充电电压下也抑制短路电流。本发明的一个方式的正极活性物质在高充电电压下也可以抑制短路电流。因此,可以制造同时实现大放电容量和高安全性的二次电池。
注意,在没有特别的说明的情况下,说明处于劣化之前的状态的二次电池所包括的材料(正极活性物质、负极活性物质、电解质、隔离体等)。另外,如下情况不被称为劣化:因制造二次电池的阶段中的老化处理及预烧(burn-in)处理而放电容量减少的情况。例如,如下情况可以被称为劣化之前的状态:在具有锂离子二次单电池及锂离子二次组电池(以下,也被称为锂离子二次电池)的额定容量的97%以上的放电容量的情况。在是用于便携式设备的锂离子二次电池的情况下,额定容量依据日本工业规格JIS C 8711:2019。在是上述以外的锂离子二次电池的情况下,不局限于上述JIS规格,依据电动车辆推进用、工业用等各JIS、IEC规格等。
另外,在本说明书等中,有时将二次电池所包括的材料的劣化之前的状态称为初始物品或初始状态且将劣化之后的状态(放电容量小于二次电池的额定容量的97%的状态)称为在使用的物品或在使用的状态或者使用过的物品或使用过的状态。
(实施方式1)
在本实施方式中,使用图1A至图14说明可用于本发明的一个方式的二次电池的正极活性物质及其制造方法。
[正极活性物质]
图1A是可用于本发明的一个方式的二次电池的正极活性物质100的截面图。图1B1及图1B2是图1A中的A-B附近的放大图。图1C1及图1C2是图1A中的C-D附近的放大图。
在图1A中,用虚线表示平行于阳离子排列的结晶面。此外,箭头表示充放电时的锂的插入和脱离方向。注意,这里指的“阳离子排列”是指在STEM图像等中易于观察的以过渡金属M为代表的锂以外的阳离子排列。此外,“平行于阳离子排列的结晶面”是指平行于锂离子能够扩散的方向的结晶面。如图1B1至图1C2所示,正极活性物质100具有表层部100a及内部100b。在上述图中以划线表示表层部100a与内部100b的边界。此外,虽然未图示,但是正极活性物质100也可以具有晶界。
在本说明书等中,正极活性物质100的表层部100a例如是指从表面向内部50nm以内,优选为从表面向内部35nm以内,更优选为从表面向内部20nm以内,最优选为从表面向内部10nm以内的区域。因裂纹及/或裂缝(也称为裂口)而产生的面也可以被称为表面。表层部100a与表面附近、表面附近区域或壳同义。
另外,正极活性物质中的比表层部100a更深的区域被称为内部100b。内部100b与内部区域或核同义。
另外,正极活性物质100的表面是指具有上述表层部100a、内部100b及凸部等的复合氧化物的表面。因此,正极活性物质100不包含制造后化学吸附的碳酸盐、羟基等。另外,也不包括附着于正极活性物质100的电解质、粘合剂、导电剂或来源于它们的化合物。另外,截面STEM(扫描型透射电子显微镜)图像等中的正极活性物质100的表面是指观察到电子束的耦合图像的区域和观察不到耦合图像的区域的边界,并且是指确认到来源于原子序数大于锂的金属元素的原子核的亮点的区域的最外一侧。截面STEM图像等中的表面也可以还根据空间分辨率更高的分析,例如电子能量损失谱(Electron Energy Loss Spectroscopy,EELS)等的分析结果判断。
另外,晶界例如是指:正极活性物质100的粒子粘合在一起的部分;在正极活性物质100内部的晶体取向变化的部分,即STEM图像等中的明线和暗线的反复不连续的部分、包含多个结晶缺陷的部分、晶体结构杂乱的部分等。另外,结晶缺陷是指通过截面TEM(透射电子显微镜)、截面STEM图像等可观察的缺陷,即其他原子进入晶格间的结构、空洞等。晶界可以说是面缺陷之一种。另外,晶界附近是指从晶界到10nm以内的区域。
<拓扑衍生>
优选的是,在正极活性物质100中晶体结构从内部100b向表面连续地变化。或者,优选的是,表层部100a和内部100b的结晶的取向一致或大致一致。注意,以下,有时将结晶的取向一致或大致一致的结构简单地记载为“结晶的取向大致一致”。或者,优选的是,表层部100a和内部100b处于拓扑衍生(topotaxy)。
拓扑衍生是指结晶的取向大致一致的具有三维的结构上的相似性或者在结晶学上具有相同的取向的状态。此外,面衍生(epitaxy)是指二维界面的结构上的相似性。
当表层部100a和内部100b处于拓扑衍生时,可以减少晶体结构的畸变及/或原子排列的错开。由此,可以抑制凹坑的原因。此外,当表层部100a包含添加元素时,可以抑制后述的由过渡金属M和氧的八面体构成的层状结构的偏离且/或可以抑制氧从正极活性物质100脱离。因此,可以实现一种即使以高电压进行充电且在高温环境下进行充放电劣化也少的正极活性物质。
例如,优选的是,晶体结构从呈层状岩盐型的内部100b向呈岩盐型或者具有岩盐型和层状岩盐型的双方特征的表面及表层部100a连续地变化。或者,优选的是,呈岩盐型或者具有岩盐型和层状岩盐型的双方的特征的表层部100a与呈层状岩盐型的内部100b的结晶的取向大致一致。
另外,在本说明书等中,包含锂及钴等过渡金属M的复合氧化物所具有的属于空间群R-3m的层状岩盐型晶体结构是指如下晶体结构:具有阳离子和阴离子交替排列的岩盐型离子排列,过渡金属M和锂有规律地排列而形成二维平面,因此其中锂可以二维扩散。另外,也可以包括阳离子或阴离子的空位等缺陷。严格而言,层状岩盐型晶体结构有时为岩盐型结晶的晶格变形而成的结构。
另外,岩盐型晶体结构具有空间群Fm-3m等立方晶系晶体结构,其中阳离子及阴离子交替排列。另外,也可以包括阳离子或阴离子的空位。
另外,可以利用电子衍射图案、TEM图像、截面STEM图像等判断是否具有层状岩盐型晶体结构和岩盐型晶体结构的双方的特征。
岩盐型晶体结构的阳离子的位置没有区別,但是在层状岩盐型晶体结构中,有两种阳离子的位置,一种为锂占据大部分的位置而另一种为过渡金属M占据的位置。岩盐型和层状岩盐型都具有阳离子的二维平面和阴离子的二维平面交替地排列的叠层结构。在对应于形成上述二维平面的结晶面的电子衍射图案的亮点中,在以中心的斑点(透过斑点)为原点000时,离中心斑点最近的亮点例如为表示理想状态的岩盐型晶体结构的(111)面的亮点或者表示层状岩盐型晶体结构的(003)面的亮点。例如,在比较岩盐型MgO和层状岩盐型LiCoO2的电子衍射图案时,LiCoO2的(003)面的亮点间的距离被观察作为MgO的(111)面的亮点间的距离的一半左右的距离。因此,例如在分析区域中包括岩盐型MgO和层状岩盐型LiCoO2的两个相的情况下,在电子衍射图案中存在有亮度较高的亮点、亮度较低的亮点交替地排列的面方位。岩盐型与层状岩盐型共通的亮点的亮度高,只在层状岩盐型中发生的亮点的亮度低。
另外,在截面STEM图像等中,在从垂直于c轴的方向观察层状岩盐型晶体结构时,交替地观察到以较高亮度被观察的层和以较低亮度被观察的层。在岩盐型晶体结构中阳离子的位置没有区別,所以观察不到上述特征。在采用呈岩盐型和层状岩盐型的双方的特征的晶体结构时,在从特定晶体取向观察时,在截面STEM图像等中交替地观察到以较高亮度被观察的层和以较低亮度被观察的层,并且在亮度更低的层,即锂层的一部分存在有其原子序数大于锂的金属。
层状岩盐型结晶及岩盐型结晶的阴离子分别形成立方最紧密堆积结构(面心立方格子结构)。可认为后述的O3’型结晶及单斜晶O1(15)结晶的阴离子也形成立方最紧密堆积结构。由此,当层状岩盐型结晶与岩盐型结晶接触时,存在阴离子所构成的立方最紧密堆积结构的取向一致的结晶面。
另外,可以如下那样地说明。立方晶的晶体结构的{111}面上的阴离子具有三角晶格。层状岩盐型属于空间群R-3m并具有菱形结构,但是为了易于理解结构,通常以复合六方晶格表现,层状岩盐型的(0001)面具有六方晶格。立方晶的{111}面的三角晶格具有与层状岩盐型的(0001)面的六方晶格同样的原子排列。两者的晶格具有整合性的状态可以说是立方最紧密堆积结构的取向一致的状态。
注意,层状岩盐型结晶及O3’型结晶的空间群为R-3m,与岩盐型结晶的空间群Fm-3m(一般的岩盐型结晶的空间群)不同,所以满足上述条件的结晶面的密勒指数在层状岩盐型结晶及O3’型结晶与岩盐型结晶之间不同。在本说明书中,有时在层状岩盐型结晶、O3’型以及岩盐型结晶中阴离子所形成的立方最紧密堆积结构的取向一致的状态是指结晶的取向大致一致的状态、处于拓扑衍生或处于面衍生。注意,结晶的取向大致一致的组合不局限于上述层状岩盐型和岩盐型的组合。在是具有尖晶石型、钙钛矿型等其他晶体结构的组合的情况下,阴离子所形成的立方最紧密堆积结构的取向一致的状态可以是指结晶的取向大致一致的状态。
可以利用TEM(Transmission Electron Microscope:透射电子显微镜)图像、STEM(Scanning Transmission Electron Microscope:扫描透射电子显微镜)图像、HAADF-STEM(High-angle Annular Dark Field Scanning TEM:高角度环形暗场)图像、ABF-STEM(Annular Bright-Field Scanning Transmission Electron Microscope:环形明场扫描透射电子显微镜)图像、电子衍射图案、TEM图像及STEM图像等的FFT图案等判断两个区域的结晶的取向是否大致一致。另外,可以将X射线衍射(XRD:X-ray Diffraction)、电子衍射、中子衍射等用作判断依据。
图2示出层状岩盐型结晶LRS与岩盐型结晶RS的取向大致一致的TEM图像的例子。在TEM图像、STEM图像、HAADF-STEM图像、ABF-STEM图像等中可以得到反映了晶体结构的图像。
例如,可以从TEM的高分辨率图像等获得来源于结晶面的对比度。由于电子束的衍射及干涉,例如在电子束入射到垂直于层状岩盐型复合六方晶格的c轴时,可以获得来源于(0003)面的对比度高的带(明亮带状线)及昏暗带(昏暗带状线)的反复。因此,在TEM图像中观察到明线和暗线的反复,在明线间(例如,图2中的LRS和LLRS间)的角度为0度以下且5度以下或0度以上且2.5度以下时,可以判断为结晶面大致一致,即结晶的取向大致一致。同样地,在暗线间的角度为0度以下且5度以下或0度以下且2.5度以下时,也可以判断为结晶的取向大致一致。注意,一般而言,很难明确区别“一致”和“大致一致”。因此,在本说明书中,“一致”包括完全一致的情况(例如,明线间的角度为0度的情况)以及大致一致的情况的双方。
另外,在HAADF-STEM图像中,获得与原子序数成比的对比度,元素的原子序数越大,观察为越亮。例如,在使用属于空间群R-3m的层状岩盐型的钴酸锂时,钴(原子序数为27)的原子序数最大,所以电子束在钴原子的位置更强地散射,从而钴原子的排列观察为明线或亮度较高的点的排列。因此,当在垂直于c轴的方向观察层状岩盐型晶体结构的钴酸锂时,在垂直于c轴的方向上以明线或亮度较高的点的排列观察钴原子的排列,以暗线或亮度较低的区域观察锂原子、氧原子的排列。在作为钴酸锂的添加元素包含氟(原子序数为9)及镁(原子序数为12)时也是同样的。
因此,在HAADF-STEM图像中,在晶体结构不同的两个区域观察到明线和暗线的反复,在明线间的角度为5度以下或2.5度以下时可以判断为原子排列大致一致,即结晶的取向大致一致。同样地,在暗线间的角度为5度以下或2.5度以下时,也可以判断为结晶的取向大致一致。
另外,在ABF-STEM中,原子序数越小元素观察为越亮,但是与HAADF-STEM同样可以获得对应于原子序数的对比度,所以可以与HAADF-STEM图像同样地判断结晶的取向。
图3A示出层状岩盐型结晶LRS与岩盐型结晶RS的取向大致一致的STEM图像的例子。图3B示出岩盐型结晶RS的区域的FFT图案,图3C示出层状岩盐型结晶LRS的区域的FFT图案。图3B及图3C的左侧示出组成、JCPDS的卡片号码及之后要计算的d值及角度。右侧示出实测值。附上O的斑点是指零级衍射。
在图3B中附上A的斑点来源于立方晶的11-1反射。在图3C中附上A的斑点来源于层状岩盐型的0003反射。从图3B及图3C可知立方晶的11-1反射的方位与层状岩盐型的0003反射的方位大致一致。就是说,可知经过图3B的AO的直线与经过图3C的AO的直线大致平行。在此说明的“大致一致”及“大致平行”是指角度为0度以上且5度以下或0度以上且2.5度以下的情况。
如上所述,有时在FFT图案及电子衍射图案中,在层状岩盐型结晶与岩盐型结晶的取向大致一致时,有时层状岩盐型的<0003>方位与岩盐型的<11-1>方位大致一致。此时,它们的倒格点优选为斑点状,即不与其他倒格点连续。倒格点为斑点状且不与其他倒格点连续意味着结晶性高。
另外,如上所述,在立方晶的11-1反射的方位与层状岩盐型的0003反射的方位大致一致时,根据电子束的入射方位有时在与层状岩盐型的0003反射的方位不同的倒易空间上观察到不是来源于层状岩盐型的0003反射的斑点。例如,在图3C中附上B的斑点来源于层状岩盐型的1014反射。该斑点有时在与来源于层状岩盐型的0003反射的倒格点(图3C的A)之间方位之差为52°以上且56°以下(即,∠AOB为52°以上且56°以下)且d为0.19nm以上且0.21nm以下的地点观察。注意,上述指数只是一个例子而已,并不需要与该指数一致。例如,也可以采用0003或1014中的等价的倒格点。
同样地,有时在与观察到立方晶的11-1反射的斑点不同的倒易空间上观察到不是来源于立方晶的11-1反射的斑点。例如,在图3B中附上B的斑点来源于立方晶的200反射。有时在与来源于立方晶的11-1的反射(图3B的A)之间方位之差为54°以上且56°以下(即,∠AOB为54°以上且56°以下)的地点观察衍射斑点。注意,上述指数只是一个例子而已,并不需要与该指数一致。例如,也可以采用11-1或200中的等价的倒格点。
注意,已知钴酸锂等层状岩盐型的正极活性物质在(0003)面及与其等价的面以及(10-14)面及与其等价的面容易呈现为结晶面。因此,在利用SEM(Scanning ElectronMicroscope:扫描型电子显微镜)等仔细地观察正极活性物质的形状时,例如在TEM等中电子束以[12-10]入射的方式利用FIB(Focused Ion Beam:聚焦离子束)等对观察样品进行薄片化加工,以便易于观察(0003)面。在要判断结晶的取向的一致时,优选进行薄片化以便易于观察层状岩盐型的(0003)面。
<正极活性物质所包含的元素>
正极活性物质100包含锂、过渡金属M、氧以及添加元素A。或者,正极活性物质100可以包含将添加元素A加入到含有锂和过渡金属M的复合氧化物(LiMO2)而成的材料。注意,复合氧化物的组成不严格地限定于Li:M:O=1:1:2。此外,有时将添加有添加元素A的正极活性物质也称为复合氧化物。
为了即使锂离子插入和脱离也保持电荷中性,锂离子二次电池的正极活性物质需要包含可以被氧化还原的过渡金属。优选的是,本发明的一个方式的正极活性物质100作为进行氧化还原反应的过渡金属M主要使用钴。除了钴以外还可以使用选自镍及锰中的至少一个或两个以上。优选的是,在正极活性物质100所包含的过渡金属M中钴占75atomic%以上,优选占90atomic%以上,更优选占95atomic%以上,因为此时有很多优点诸如:可以较容易地进行合成;容易处理;具有良好的循环特性;等。
另外,与镍酸锂(LiNiO2)等镍占过渡金属M的过半的复合氧化物相比,在正极活性物质100的过渡金属M中钴占75atomic%以上,优选占90atomic%以上,更优选占95atomic%以上时,LixCoO2中的x较小时的稳定性更加良好。这是因为钴受到的因姜-泰勒效应而产生的歪斜的影响比镍更小。过渡金属化合物中的姜-泰勒效应强度根据过渡金属的d轨道的电子的数量而不同。镍酸锂等八面体配位的低自旋镍(III)占过半的层状岩盐型复合氧化物受到的姜-泰勒效应的影响很大,由镍和氧的八面体构成的层容易发生歪斜。因此,在充放电循环中晶体结构崩塌的担忧增大。另外,镍离子比钴离子较大且近于锂离子的大小。因此,在镍酸锂等镍占过半的层状岩盐型复合氧化物中,有容易发生镍和锂的阳离子混排(cation mixing)的问题。
另一方面,在作为正极活性物质100所包含的过渡金属M使用33atomic%以上,优选为60atomic%以上,更优选为80atomic%以上的镍时,有时与钴的含量较多的情况相比原料更廉价,并且有时单位重量的充放电容量提高,所以是优选的。
作为正极活性物质100所包含的添加元素A,优选使用选自镁、氟、镍、铝、钛、锆、钒、铁、锰、铬、铌、砷、锌、硅、硫、磷、硼、溴和铍中的一个或两个以上。另外,添加元素A中的过渡金属的总和优选小于过渡金属整体中的25atomic%,更优选小于10atomic%,进一步优选小于5atomic%。就是说,(过渡金属的添加元素A)/(过渡金属M+过渡金属的添加元素A)优选小于25atomic%,更优选小于10atomic%,进一步优选小于5atomic%。
就是说,正极活性物质100可以包含添加有镁及氟的钴酸锂、添加有镁、氟及钛的钴酸锂、添加有镁、氟及铝的钴酸锂、添加有镁、氟及镍的钴酸锂、添加有镁、氟、镍及铝的钴酸锂等。
如下所述,由于上述添加元素A而正极活性物质100的晶体结构进一步稳定。注意,在本说明书等中,添加元素A与混合物、原料的一部分同义。
作为添加元素A,并不需要包含镁、氟、镍、铝、钛、锆、钒、铁、锰、铬、铌、砷、锌、硅、硫、磷、硼、溴或铍。
例如,通过制造实质上不包含锰的正极活性物质100,可以提高优点诸如:可以较容易地进行合成;容易处理;具有良好的循环特性;等。含在正极活性物质100中的锰的重量例如优选为600ppm以下,更优选为100ppm以下。锰的重量例如可以利用GD-MS分析。
接着,使用图4至图7说明包含添加元素的表层部和不包含添加元素的表层部的晶体结构的计算结果。
尤其是,有时在不包含添加元素的钴酸锂的表层部存在氧化钴。氧化钴很可能包含金属空位。图4A1示出钴酸锂(LCO)的晶体结构,图4A2示出氧化钴(CoO)的晶体结构。如图4A1及图4A2所示,LCO的{110}与CoO的{110}的结晶的取向大致一致,但是在垂直于LCO的{110}的面{001}的面间隔与垂直于CoO的{110}的面{1-11}的6倍的面间隔之间有5.1%的差异。
图4B1是在表层部包含氧化钴的钴酸锂的示意图。图4B2示出表层部的放大图。图4B3示出包含LCO和CoO的表层部的一部分的经典分子动力学计算结果。因为垂直于LCO的{110}的面{001}的面间隔与垂直于CoO的{110}的面{1-11}的6倍的面间隔之间有超过5%的差异,所以如图4B3中的加上有虚线圆圈的部分所示,发生多个原子排列的错开。被认为在这种不稳定的部分容易发生钴及/或氧的脱离。因此,这个部分有可能会成为凹坑的起点。
另外,在包含添加元素的钴酸锂中,也有时在表层部存在氧化钴。图5A1示出钴酸锂(LCO)的晶体结构,图5A2示出氧化钴(CoO)的晶体结构,图5A3示出假设作为添加元素使用镁时的氧化镁(MgO)的晶体结构。如图5A1至图5A3所示,LCO的{110}与CoO及MgO的{110}的氧的排列一致,即处于拓扑衍生。另外,垂直于MgO的{110}的面{1-11}的6倍的面间隔比LCO长且比CoO短。由此可认为,与LCO和CoO接触的情况相比,在LCO和MgO接触的情况下,晶格失配更少且畸变更小。
接着,使用非专利文献6所记载的ATAT(Alloy Theoretic Automated Toolkit)软件对固溶体的Co(1-x)MgxO的形成能量进行分析,以确认CoO和MgO是否固溶。ATAT是一种组合第一性原理计算和集团展开法以高效地进行结构检索的软件。作为第一性原理计算的软件使用VASP(Vienna Ab initio Simulation Package)。表1示出详细的计算条件。图6A示出使用ATAT且将Co(1-x)MgxO中的x设定为0.125、0.143、0.250、0500及0.833而进行配置检索的结果。在图6A中,灰色的平行四角形是在中心包含Mg的Mg-O八面体(MgO6)的示意图,黑色的平行四角形是在中心包含Co的Co-O八面体(CoO6)的示意图。
[表1]
如图6A所示,Co(1-x)MgxO的形成能量的图表为下凸的,在固溶的情况下更稳定,由此可知CoO和MgO有可能固溶。另外,可知固溶状态下的Co和Mg分散而分布。
固溶状态的Co(1-x)MgxO的面间隔具有各向异性,因此难以识别在哪个晶体取向会与LCO处于拓扑衍生。因此,图6B示出根据体积计算出面间隔的变化倾向的结果。由图6B可知有如下倾向,即Mg的固溶比例越多,Co(1-x)MgxO的体积越小,接近MgO。由此,可认为在LCO和Co(1-x)MgxO接触的面与LCO的{001}的面间隔的偏离变少。
因此,可认为:CoO和MgO容易固溶,由于加入添加元素之后的加热,如从图7A至图7B那样,在正极活性物质100的表层部100a有可能形成固溶体Co(1-x)MgxO。Co(1-x)MgxO与LCO的晶格失配比CoO与LCO小。因此,包含Co(1-x)MgxO的表层部100a与内部100b的LCO更容易处于拓扑衍生。此外,如在图7A及图7B中用白色箭头的长度所示,应力变小。
如此,即使在钴酸锂的表层部存在氧化钴的情况下,通过加入添加元素进行加热,也可以使表层部100a为氧化钴和包含添加元素的氧化物的固溶体。因此,正极活性物质100的表层部100a和内部100b容易处于拓扑衍生。因此,可以实现不容易形成凹坑的正极活性物质100。
<晶体结构>
<<LixCoO2中的x为1的情况>>
优选的是,具有上述特征的本发明的一个方式的正极活性物质100在处于放电状态,即在LixCoO2中的x=1的情况下具有属于空间群R-3m的层状岩盐型晶体结构。层状岩盐型复合氧化物的放电容量大且具有二维性的锂离子的扩散路径,适于锂离子的插入/脱离反应,作为二次电池的正极活性物质很优良。因此,尤其是占正极活性物质100的体积的大部分的内部100b优选具有层状岩盐型晶体结构。在图8中,R-3m O3表示层状岩盐型晶体结构。
另一方面,本发明的一个方式的正极活性物质100的表层部100a优选加强内部100b的由过渡金属M和氧的八面体构成的层状结构以便即使因充电而从正极活性物质100脱离锂也避免该层状结构崩塌。或者,表层部100a优选被用作正极活性物质100的阻挡膜。或者,正极活性物质100的外周部的表层部100a优选加强正极活性物质100。在此,加强是指抑制氧的脱离等正极活性物质100的表层部100a及内部100b的结构变化及/或者抑制电解质在正极活性物质100表面被氧化分解。
因此,表层部100a优选具有与内部100b不同的晶体结构。另外,表层部100a的室温(25℃)下的组成及晶体结构优选比内部100b稳定。例如,本发明的一个方式的正极活性物质100的表层部100a的至少一部分优选具有岩盐型晶体结构。或者,表层部100a优选具有层状岩盐型晶体结构和岩盐型晶体结构的双方。或者,表层部100a优选呈层状岩盐型和岩盐型晶体结构的双方的特征。
表层部100a是在充电时锂离子最初脱离的区域,也是其锂浓度比内部100b容易降低的区域。另外,也可以说在表层部100a所包含的正极活性物质100的粒子表面的原子中一部分键合被切断。因此,表层部100a容易成为不稳定且晶体结构劣化容易开始的区域。另一方面,只要可以使表层部100a充分稳定,在LixCoO2中的x较小比如x为0.24以下的情况下也可以使内部100b的由过渡金属M和氧的八面体构成的层状结构不容易崩塌。并且,可以抑制内部100b的由过渡金属M和氧的八面体构成的层的偏离。
为了使表层部100a具有稳定组成及晶体结构,表层部100a优选包含添加元素A,更优选包含多个添加元素A。另外,表层部100a的选自添加元素A中的一个或两个以上的浓度优选高于内部100b。另外,选自正极活性物质100所包含的添加元素A中的一个或两个以上优选具有浓度梯度。另外,更优选的是,在正极活性物质100中按添加元素A其分布不同。例如,更优选的是,按添加元素A浓度峰的距离表面的深度不同。在此,浓度峰是指表层部100a或距离表面50nm以下的范围的浓度的极大值。
例如,如图1B1中以阴影浓度表示,添加元素A的一部分诸如镁、氟、镍、钛、硅、磷、硼、钙等优选具有从内部100b向表面提高的浓度梯度。将具有这样浓度梯度的元素称为添加元素X。
如图1B2中以阴影浓度表示,优选的是,其他添加元素A诸如铝、锰等具有浓度梯度且在比图1B1更深的区域具有浓度峰。浓度峰既可以存在于表层部100a中,又可以存在于比表层部100a更深的区域。例如,优选从表面向内部5nm以上且30nm以下的区域具有峰。将具有这样浓度梯度的元素称为添加元素Y。
作为添加元素X之一的镁为二价的,在层状岩盐型晶体结构中,镁离子与层状岩盐型晶体结构中的过渡金属M位置相比存在于锂位置是更稳定的,由此容易进入锂位置。在镁以适当的浓度存在于表层部100a的锂位置时,可以容易保持层状岩盐型晶体结构。这是因为存在于锂位置的镁被用作CoO2层之间的支撑物。另外,在存在有镁时,例如在LixCoO2中的x为0.24以下的状态下可以抑制镁周围的氧的脱离。另外,可以期待在存在有镁时正极活性物质100密度得到提高。此外,表层部100a的镁浓度高时,可期待提高对因电解液分解而产生的氢氟酸的抗腐蚀性。
若镁的浓度适当,则对伴随充放电的锂的插入及脱离没有负面影响,所以可以受到上述优点。然而,过剩镁有可能对锂的插入及脱离有负面影响。并且,有时贡献于晶体结构稳定化的效果变小。这有可能是因为镁不但进入锂位置而且还进入过渡金属M位置的缘故。并且,也有如下担忧:不取代于锂位置或过渡金属M位置的不需要的镁化合物(例如,氧化物及氟化物等)偏析在正极活性物质表面上等而成为二次电池的电阻成分。另外,正极活性物质的镁浓度的增高有时使得正极活性物质的放电容量变小。这是因为过剩镁进入锂位置而贡献于充放电的锂量减少。
因此,优选在正极活性物质100整体中包含适量的镁。例如,在本发明的一个方式的正极活性物质100中,相对于过渡金属M之总和的镁比(Mg/Co)优选为0.25%以上且5%以下,更优选为0.5%以上且2%以下,进一步优选为1%左右。在此,正极活性物质100整体中的镁量例如既可以为利用GD-MS、ICP-MS等对正极活性物质100整体进行元素分析而得的值,又可以为根据正极活性物质100的制造过程中的原料的配合值的值。
另外,添加元素X之一的镍有可能存在于过渡金属M位置或锂位置。在镍存在于过渡金属M位置时,与钴相比氧化还原电位降低而放电容量增加,所以是优选的。
另外,在镍存在于锂位置时,由过渡金属M和氧的八面体构成的层状结构的偏离得到抑制。另外,通过充放电而发生的体积变化也得到抑制。另外,弹性模量提高,即变硬。这有可能是因为存在于锂位置的镍也被用作CoO2层之间的支撑物。因此,可以期待尤其在45℃以上的高温下进行充电的状态下晶体结构更稳定,所以是优选的。
另一方面,在镍量过多时姜-泰勒效应带来的歪斜的影响有可能增大。另外,在镍量过多时有时对锂的插入及脱离带来负面影响。
因此,优选在正极活性物质100整体中包含适量的镍。例如,正极活性物质100所包含的镍的原子数优选超过钴的原子数的0%且为7.5%以下,更优选为0.05%以上且4%以下,进一步优选为0.1%以上且2%以下,更进一步优选为0.2%以上且1%以下。或者,优选超过0%且为4%以下。或者,优选超过0%且为2%以下。或者,优选为0.05%以上且7.5%以下。或者,优选为0.05%以上且2%以下。或者,优选为0.1%以上且7.5%以下。或者,优选为0.1%以上且4%以下。这里所示的镍量例如既可为使用GD-MS、ICP-MS等对正极活性物质整体进行元素分析而得的值又可为根据正极活性物质的制造过程中的原料混合的值而得到的。
另外,添加元素Y之一的铝有可能存在于层状岩盐型晶体结构中的过渡金属M位置。铝为三价典型元素且价数不变化,所以在充放电中铝周围的锂不容易移动。因此,铝及其周围的锂被用作支撑物而抑制晶体结构的变化。另外,铝具有抑制周围过渡金属M的溶出而提高连续充电耐性的效果。另外,Al-O键比Co-O键强,所以可以抑制铝周围的氧脱离。通过上述效果,热稳定性得到提高。因此,在作为添加元素Y包含铝时可以提高将正极活性物质100用于二次电池时的安全性。另外,可以实现反复进行充放电也不容易导致晶体结构崩塌的正极活性物质100。
另一方面,在铝量过多时有可能对锂的插入及脱离带来负面影响。
因此,优选在正极活性物质100整体中包含适量的铝。例如,正极活性物质100整体中的铝的原子数优选为钴的原子数的0.05%以上且4%以下,更优选为0.1%以上且2%以下,进一步优选为0.3%以上且1.5%以下。或者,优选为0.05%以上且2%以下。或者,优选为0.1%以上且4%以下。这里所示的正极活性物质100整体中的量例如既可为使用GD-MS、ICP-MS等对正极活性物质100整体进行元素分析而得的值又可为根据正极活性物质100的制造过程中的原料混合的值而得到的。
另外,添加元素X之一的氟是一价的阴离子,在表层部100a中氧的一部分被取代为氟时,锂脱离能量减少。这是因为伴随着锂脱离的钴离子的化合价变化根据氟的有无不同,例如在不包含氟的情况下从三价变化为四价,在包含氟的情况下从二价变化为三价,并且氧化还原电位不同。因此,在正极活性物质100的表层部100a中氧的一部分被取代为氟时,可以说顺利地发生氟附近的锂离子的脱离及插入。所以,可以在将正极活性物质100用于二次电池时充放电特性、电流特性等提高。另外,通过在包括与电解液接触的部分的表面的表层部100a中存在有氟,可以有效地提高对氢氟酸的抗腐蚀性。另外,如下面实施方式所示,在氟化锂等氟化物的熔点低于其他添加元素A源的熔点时,可被用作降低其他添加元素A源的熔点的熔剂(也被称为助溶剂)。
另外,已知添加元素X之一的钛的氧化物具有超亲水性。因此,通过制造在表层部100a中包含钛氧化物的正极活性物质100,有时对极性高的溶剂具有良好的润湿性。在制造二次电池时正极活性物质100与极性较高的电解液的界面的接触良好,而有时可以抑制内部电阻的上升。
另外,通过将添加元素X之一的磷包括在表层部100a中,可以在维持LixCoO2中的x较小的状态的情况下有时可以抑制短路,所以是优选的。例如,优选作为包含磷及氧的化合物存在于表层部100a。
在正极活性物质100包含磷的情况下,通过电解液或电解质的分解而产生的氟化氢与磷起反应而有可能可以降低电解质中的氟化氢浓度,所以是优选的。
在电解质含有LiPF6的情况下,有时因加水分解而产生氟化氢。此外,有时因用作正极的构成要素的聚偏氟乙烯(PVDF)和碱起反应而产生氟化氢。通过降低电解质中的氟化氢浓度,可以抑制集流体的腐蚀及/或覆膜的剥离。此外,有时还可以抑制由PVDF的凝胶化及/或不溶解性导致的粘合性的降低。
另外,在正极活性物质100具有裂缝时,当在裂缝为表面的正极活性物质的内部诸如埋入部中存在有磷,更具体而言例如存在有包含磷和氧的化合物时,有可能裂缝的扩展被抑制。
另外,在表层部100a同时包含镁和镍时,有可能二价镍更稳定地存在于二价镁附近。因此,在LixCoO2中的x较小的状态下也镁的溶出得到抑制。由此,镁和镍贡献于表层部100a的稳定化。
另外,在同时使用添加元素X和添加元素Y等分布不同的添加元素A时,可以使更宽区域的晶体结构稳定化,所以是优选的。例如,正极活性物质100在同时包含添加元素X的一部分的镁及镍和添加元素Y之一的铝时,与只包括添加元素X和添加元素Y中的一方的情况相比,可以使更宽区域的晶体结构稳定化。如此,在正极活性物质100同时包含添加元素X和添加元素Y的情况下,镁、镍等添加元素X可以使表面充分稳定化,所以在表面中并不需要铝等添加元素Y。反而,铝优选广泛地分布于更深区域,例如距离表面5nm以上且50nm以内的深度的区域,此时可以使更宽区域的晶体结构稳定化。
在如上所述那样地包含多个添加元素A时,各添加元素A起到增效作用而贡献于表层部100a进一步稳定化。尤其是,在包含镁、镍及铝时实现稳定组成及晶体结构的效果高,所以是优选的。
注意,在表层部100a只有添加元素A和氧的化合物时锂不容易插入和脱离,所以不是优选的。例如,表层部100a只有MgO、固溶有MgO和NiO(II)的结构及/或固溶有MgO及CoO(II)的结构不是优选的。因此,表层部100a需要至少包含钴,在放电状态下也包含锂,并且具有锂的插入和脱离的路径。
为了充分确保锂的插入和脱离的路径,表层部100a的钴浓度优选高于镁浓度。例如,镁的原子数Mg与钴的原子数Co之比Mg/Co优选为0.62以下。另外,表层部100a的钴浓度优选高于镍浓度。另外,表层部100a的钴浓度优选高于铝浓度。另外,表层部100a的钴浓度优选高于氟浓度。
另外,在镍过多时有可能锂的扩散被阻挡,所以表层部100a的镁浓度优选高于镍浓度。例如,镍的原子数优选为镁的原子数的1/6以下。
另外,添加元素A的一部分,尤其是镁、镍及铝的表层部100a中的浓度优选高于内部100b中的浓度,但是它们优选还在内部100b无规律且少量地存在。在镁及铝以适当的浓度存在于内部100b的锂位置时,与上述同样地具有容易保持层状岩盐型晶体结构等效果。另外,在镍以适当的浓度存在于内部100b时,与上述同样,由过渡金属M和氧的八面体构成的层状结构的偏离会得到抑制。另外,在同时使用镁和镍的情况下,二价镁也有可能更稳定地存在于二价镍附近,所以可以期待抑制镁的溶出的增效作用。
<<LixCoO2中的x较小的状态>>
本发明的一个方式的正极活性物质100因为在放电状态下具有上述添加元素A的分布及/或晶体结构而LixCoO2中的x较小的状态下的晶体结构与现有的正极活性物质不同。注意,在此x较小是指0.1<x≤0.24的情况。
使用图8至图12对现有的正极活性物质和本发明的一个方式的正极活性物质100进行比较来说明伴随着LixCoO2中的x的变化的晶体结构的变化。
图9示出现有的正极活性物质的晶体结构的变化。图9所示的现有的正极活性物质是并不包含添加元素A的钴酸锂(LiCoO2)。非专利文献1至非专利文献3等说明并不包含添加元素A的钴酸锂的晶体结构的变化。
在图9中,附上R-3m O3表示LixCoO2中的x=1的钴酸锂所具有的晶体结构。在该晶体结构中,锂占据八面体(Octahedral)位置且在晶胞中包括三个CoO2层。因此,有时该晶体结构被称为O3型结构。注意,CoO2层是指钴配位于六个氧的八面体结构在一个平面上以棱线共享的状态连续的结构。有时该结构被称为由钴和氧的八面体构成的层。
另外,已知:现有的钴酸锂在x=0.5左右时的锂的对称性提高而具有单斜晶系的属于空间群P2/m的晶体结构。在该结构中,晶胞包括一个CoO2层。因此,有时被称为O1型结构或单斜晶O1型结构。
x=0时的正极活性物质具有三方晶系的属于空间群P-3m1的晶体结构,并且晶胞也包括一个CoO2层。由此有时该晶体结构被称为O1型结构或三方晶O1型结构。另外,有时将三方晶变换为复合六方晶格而称为六方晶O1型。
另外,x=0.24左右时的现有的钴酸锂具有属于空间群R-3m的晶体结构。也可以说该结构是如三方晶O1型结构那样的CoO2结构与如属于R-3m O3那样的LiCoO2结构交替地层叠的结构。由此,有时该晶体结构被称为H1-3型结构。另外,实际上,H1-3型结构的每个晶胞中的钴原子的数量为其他结构的2倍。但是,在如图9等本说明书中,为了容易与其他晶体结构进行比较,H1-3型结构的c轴为晶胞的1/2。
作为H1-3型结构的一个例子,如非专利文献3所示那样,晶胞中的钴和氧的坐标可以由Co(0,0,0.42150±0.00016)、O1(0,0,0.27671±0.00045)、O2(0,0,0.11535±0.00045)表示。O1和O2都是氧原子。例如通过进行XRD图案的里特沃尔德分析可以判断使用哪个晶胞表示正极活性物质所具有的晶体结构。此时,采用GOF(goodness of fit:拟合优度)值小的晶胞即可。
当反复进行LixCoO2中的x为0.24以下的充电和放电时,现有的钴酸锂的晶体结构在H1-3型结构和放电状态下的R-3m O3的结构之间反复变化(即,非平衡相变)。
但是,上述两种晶体结构的CoO2层的偏离较大。如图9中以虚线及箭头所示,在H1-3型结构中,CoO2层大幅度地偏离于放电状态下的属于R-3m O3的结构。这样动态的结构变化会对晶体结构的稳定性带来不良影响。
并且,上述两种晶体结构的体积差也较大。在按相同数量下的钴原子进行比较时,H1-3型结构和放电状态下的R-3m O3型结构的体积差超过3.5%,典型地是3.9%以上。
除了上述以外,H1-3型结构所具有的如属于三方晶O1型那样的CoO2层连续的结构不稳定的可能性较高。
因此,在反复进行x成为0.24以下的充电和放电时现有的钴酸锂的晶体结构崩塌。晶体结构的崩塌会引起循环特性的恶化。这是由于晶体结构崩塌造成锂可稳定存在的位置减少,且锂的嵌入及脱离变得困难的缘故。
另一方面,在图8所示的本发明的一个方式的正极活性物质100中,LixCoO2中的x为1的放电状态和x为0.24以下的状态之间的晶体结构的变化比现有的正极活性物质更少。更具体而言,可以减少x为1的状态和x为0.24以下的状态之间的CoO2层的偏离。另外,可以减少按每个钴原子进行比较时的体积变化。因此,本发明的一个方式的正极活性物质100即使反复进行x成为0.24以下的充电和放电也不容易导致晶体结构崩塌而可以实现良好的循环特性。另外,本发明的一个方式的正极活性物质100在LixCoO2中的x为0.24以下的状态下可具有比现有的正极活性物质更稳定的晶体结构。因此,本发明的一个方式的正极活性物质100在保持LixCoO2中的x为0.24以下的状态的情况下不容易发生短路。在此情况下,二次电池的安全性进一步提高,所以是优选的。
图8示出在LixCoO2中的x为1、0.2及0.15左右的各情况下正极活性物质100的内部100b所具有的晶体结构。内部100b占正极活性物质100的体积的大部分且是对充放电带来很大影响的部分,所以可以说是CoO2层的偏离及体积的变化带来的影响最大的部分。
正极活性物质100在x=1时具有与现有的钴酸锂相同的R-3m O3型结构。
然而,在现有的钴酸锂具有H1-3型结构的x为0.24以下,例如为0.2左右及0.15左右的情况下,正极活性物质100具有与上述结构不同的结构的结晶。
x=0.2左右时的本发明的一个方式的正极活性物质100具有属于三方晶系的属于空间群R-3m的晶体结构。该结构的CoO2层的对称性与O3相同。因此,将该晶体结构称为O3’型结构。在图8中附上R-3mO3’表示该晶体结构。
O3’型结构的晶胞中的钴及氧的坐标分别可以以Co(0,0,0.5)、O(0,0,x)且在0.20≤x≤0.25的范围内表示。另外,晶胞的晶格常数为如下:a轴优选为更优选为/>典型的是/>c轴优选为更优选为/>典型的是/>
在O3’型结构及单斜晶O1(15)型结构的双方中,钴、镍、镁等的离子占配位于六个氧的位置。另外,有时锂及镁等轻元素占配位于四个氧的位置。
如图8中以虚线表示,放电状态下的R-3m O3型结构、O3’型结构和单斜晶O1(15)型结构之间的CoO2层几乎没有偏离。
另外,放电状态下的R-3m O3型结构和O3’型结构的按相同数量下的钴原子的体积之差为2.5%以下,更详细地为2.2%以下,典型的是1.8%。
如此,在本发明的一个方式的正极活性物质100中,在LixCoO2中的x较小时,即较多锂被脱离时的晶体结构的变化与现有的正极活性物质相比得到抑制。另外,按相同数量下的钴原子进行比较时的体积的变化也得到抑制。因此,正极活性物质100的晶体结构即使反复进行x成为0.24以下的充电和放电也不容易崩塌。因此,正极活性物质100的由充放电循环引起的充放电容量的下降得到抑制。另外,可以稳定地使用与现有的正极活性物质相比更多量的锂,所以正极活性物质100的单位重量及单位体积的放电容量较大。因此,通过使用正极活性物质100,可以制造单位重量及单位体积的放电容量较大的二次电池。
另外,确认到正极活性物质100在LixCoO2中的x为0.15以上且0.24以下时有时具有O3’型结构,并且可认为在x超过0.24且为0.27以下的情况下也具有O3’型结构。另外,确认到:当LixCoO2中的x超过0.1且为0.2以下,典型的是x为0.15以上且0.17以下时,有时具有单斜晶O1(15)型结构。但是,晶体结构除了LixCoO2中的x以外还受到充放电循环次数、充放电电流、温度、电解质等的影响,所以并不局限于上述的x的范围。
因此,正极活性物质100在LixCoO2中的x超过0.1且为0.24以下时,可以只具有O3’型结构,可以只具有单斜晶O1(15)型结构,也可以具有双方的晶体结构。另外,正极活性物质100的内部100b整体也可以不具有O3’型结构及/或单斜晶O1(15)型结构。既可以具有其他晶体结构,又可以一部分为非晶。
另外,为了实现LixCoO2中的x较小的状态,一般来说需要以高充电电压进行充电。因此,可以将LixCoO2中的x较小的状态换称为以高充电电压进行充电的状态。例如,在以锂金属的电位为基准4.6V以上的电压在25℃的环境下进行CC/CV充电时,在现有的正极活性物质中呈现H1-3型结构。因此,可以说以锂金属的电位为基准4.6V以上的充电电压是高充电电压。另外,在本说明书等中,在没有特别的说明的情况下,充电电压以锂金属的电位为基准表示。
因此,也可以说:本发明的一个方式的正极活性物质100例如在以25℃且4.6V以上的高充电电压进行充电时也可以保持具有R-3m O3的对称性的晶体结构,所以是优选的。另外,也可以说:例如在以25℃、4.65V以上且4.7V以下的电压进行充电时可具有O3’型结构,所以是优选的。另外,也可以说:例如在以25℃、超过4.7V且为4.8V以下的更高的充电电压进行充电时可具有单斜晶O1(15)型结构,所以是优选的。
在正极活性物质100中有时在进一步提高充电电压才观察到H1-3型结构。另外,如上所述,晶体结构受到充放电循环次数、充放电电流、温度、电解质等的影响,所以在充电电压更低的情况下,例如即使在以25℃且充电电压为4.5V以上且低于4.6V的条件下,本发明的一个方式的正极活性物质100有时也具有O3’型结构。同样地,以25℃、4.65V以上且4.7V以下的电压进行充电时有时可具有单斜晶O1(15)型结构。
另外,例如在作为二次电池的负极活性物质使用石墨时,该二次电池的电压比上述电压低出石墨的电位。石墨的电位为以锂金属的电位为基准0.05V至0.2V左右。因此,作为负极活物质使用石墨的二次电池具有与从上述电压减去石墨的电位而得的电压的情况同样的晶体结构。
另外,在图8的O3’型结构及单斜晶O1(15)结构中,锂以相等的概率存在于所有锂位置,但是本发明不局限于此。也可以集中地存在于一部分的锂位置。例如,也可以具有像图9所示的单斜晶O1型结构(Li0.5CoO2)那样的对称性。锂的分布例如可以通过中子衍射分析。
另外,虽然O3’型结构及单斜晶O1(15)型结构在层间无规律地含有锂,但是也可以具有与CdCl2型结构类似的晶体结构。该与CdCl2型结构类似的晶体结构近似于使镍酸锂充电至成为Li0.06NiO2的晶体结构,但是已知纯钴酸锂或含有大量钴的层状岩盐型的正极活性物质通常不具有CdCl2型结构。
此外,添加元素A的浓度梯度优选在正极活性物质100的表层部100a的多个区域具有相同梯度。换言之,来源于添加元素A的阻挡膜优选在表层部100a均质地存在。即便在表层部100a的一部分阻挡膜存在,若存在没有阻挡膜的部分,则应力有可能集中在该部分。当应力集中在正极活性物质100的一部分中时,有可能从该部分发生裂缝等缺陷,由此导致正极活性物质的破裂及放电容量的下降。
注意,并不需要在正极活性物质100的表层部100a中的添加元素A都具有相同的浓度梯度。图1C1及图1C2分别示出图1A的C-D附近的添加元素X及添加元素Y的分布的例子。
在此,C-D附近的表面平行于阳离子排列。平行于阳离子排列的表面的添加元素A的分布也可以与其他表面不同。例如,与其他排列的表面相比,平行于阳离子排列的表面及其表层部100a中的选自添加元素X和添加元素Y中的一个或两个以上的浓度峰的分布也可以限定于距离表面更近的部分中。或者,与其他排列的表面相比,平行于阳离子排列的表面及其表层部100a中的选自添加元素X和添加元素Y中的一个或两个以上浓度也可以更低。或者,在平行于阳离子排列的表面及其表层部100a中,选自添加元素X和添加元素Y中的一个或两个以上也可以为检测下限以下。
在属于R-3m的层状岩盐型晶体结构中,阳离子与(001)面平行地排列。可以说这是由CoO2层及锂层与(001)面平行且交替地层叠的结构。因此,锂离子的扩散路径也与(001)面平行而存在。
CoO2层较稳定,所以CoO2层存在于表面的面较稳定。锂离子的充放电中的主要扩散路径不露出在该面上。
另一方面,在不平行于阳离子排列的面,即不平行于CoO2层的面上锂离子的扩散路径被露出。因此,不平行于阳离子排列的表面及表层部100a是为了保持锂离子的扩散路径很重要的区域,并且是锂离子首先脱离的区域,所以趋于不稳定。因此,为了保持正极活性物质100整体的晶体结构,加强不平行于阳离子排列的表面及表层部100a是非常重要的。
因此,在本发明的其他一个方式的正极活性物质100中,很重要的是,不平行于阳离子排列的面及其表层部100a中的添加元素A如图1B1及图1B2所示那样存在于优选的深度上而不只在最表层中分布。另一方面,如上所述,平行于阳离子排列的面及其表层部100a中的添加元素A的浓度可以低,也可以不包含添加元素A。
在后面实施方式所示的在制造纯度较高的LiCoO2之后混合添加元素A而进行加热的制造方法中,添加元素A主要经过锂离子的扩散路径扩散。因此,容易使不平行于阳离子排列的面及其表层部100a中的添加元素A的分布设定为优选的范围内。
另外,正极活性物质100的表面优选为平滑且凹凸较少,但是并不需要正极活性物质100中的表面整体都为平滑且凹凸较少。在具有属于R-3m的层状岩盐型晶体结构的复合氧化物中,在平行于阳离子排列的面上,例如在锂排列的面上易于发生滑动。例如,如图10A所示,在存在有锂排列的面时,通过经过挤压等工序,有时如图10B中以箭头所示那样在与锂排列的面平行的方向上发生滑动而变形。
在此情况下,在因滑动而重新产生的表面及其表层部100a中,有时添加元素A不存在或者为检测下限以下。图10B中的E-F示出因滑动而重新产生的表面及其表层部100a的例子。图10C1及图10C2是放大E-F附近的图。与图1B1至图1C2不同,在图10C1及图10C2中没有添加元素X及添加元素Y的分布。
但是,滑动容易在与阳离子排列平行的方向上发生,所以重新产生的表面及其表层部100a趋向于平行于锂的扩散路径。此时,锂离子的扩散路径不被露出且较稳定,所以添加元素A不存在或为检测下限以下也几乎没有问题。
如上所述,在其组成为LiCoO2且其晶体结构为属于R-3m的层状岩盐型复合氧化物中,钴原子及锂原子与(001)面平行地排列。另外,在HAADF-STEM图像中,LiCoO2中的原子序数最大的钴的亮度最高。因此,在HAADF-STEM图像中,亮度较高的原子的排列可以看作钴原子的排列。另外,也可以将上述亮度较高的排列的反复与结晶条纹、晶格条纹同义。
<<晶界>>
更优选的是,本发明的一个方式的正极活性物质100的添加元素A除了具有上述那样的分布以外,其至少一部分不均匀地分布于晶界及其附近。
另外,在本说明书等中,不均匀地分布是指在任意区域中的元素浓度与其他区域不同。不均匀地分布与偏析、析出、不均一、偏差或浓度高的区域和浓度低的区域混在一起同义。
例如,正极活性物质100的晶界及其附近的镁浓度优选高于内部100b的其他区域。另外,优选晶界及其附近的氟浓度高于内部100b的其他区域。另外,晶界及其附近的镍浓度也优选高于内部100b的其他区域。另外,晶界及其附近的铝浓度也优选高于内部100b的其他区域。
晶界是面缺陷之一种。因此,与表面同样趋于不稳定且容易开始晶体结构的变化。因此,晶界及其附近的添加元素A浓度越高,可以越高效地抑制晶体结构的变化。
另外,在晶界及其附近的镁浓度及氟浓度高时,即使在沿着本发明的一个方式的正极活性物质100的晶界产生裂缝的情况下,也在因裂缝而产生的表面附近镁浓度及氟浓度变高。因此也可以提高裂缝产生之后的正极活性物质的对氢氟酸的抗腐蚀性。
<粒径>
在本发明的一个方式的正极活性物质100的粒径过大时有如下问题:锂的扩散变难;在集流体上涂敷时,活性物质层的表面过粗等。另一方面,在正极活性物质100的粒径过小时有如下问题:在集流体上涂敷时不容易担持活性物质层;与电解液的反应过度等。因此,中值粒径(D50)优选为1μm以上且100μm以下,更优选为2μm以上且40μm以下,进一步优选为5μm以上且30μm以下。或者,优选为1μm以上且40μm以下。或者,优选为1μm以上且30μm以下。或者,优选为2μm以上且100μm以下。或者,优选为2μm以上且30μm以下。或者,优选为5μm以上且100μm以下。或者,优选为5μm以上且40μm以下。
<分析方法>
为了判断某一正极活性物质是否是在LixCoO2中的x较小时呈O3’型晶体结构及/或单斜晶O1(15)型结构的本发明的一个方式的正极活性物质100,可以将包含LixCoO2中的x较小的正极活性物质的正极通过使用XRD、电子衍射、中子衍射、电子自旋共振法(ESR:Electron Spin Resonance)、核磁共振法(NMR)等分析进行判断。
尤其是,XRD具有如下优点,所以是优选的:对正极活性物质所具有的钴等过渡金属M的对称性可以以高分辨率进行分析;可以比较结晶性的高度与结晶的取向性;可以分析晶格的周期性畸变及晶粒尺寸;在直接测量通过将二次电池拆开而得到的正极时也可以获得足够的精度等。通过XRD,尤其是粉体XRD,可以获得反映了占正极活性物质100的体积的大部分的正极活性物质100的内部100b的晶体结构的衍射峰。
如上所述,本发明的一个方式的正极活性物质100的特征是:在LixCoO2中的x为1时和0.24以下之间的晶体结构的变化较少。在以高电压进行充电时,晶体结构的变化较大的晶体结构占50%以上的材料无法承受高电压的充电和放电,所以不是优选的。
要注意的是,有时只靠加入添加元素A不能具有O3’型结构及单斜晶O1(15)型结构。例如,即使在包含镁及氟的钴酸锂或包含镁及铝的钴酸锂等同一条件下,根据添加元素A的浓度及分布在LixCoO2中的x为0.24以下时也有时O3’型结构及/或单斜晶O1(15)型结构占60%以上或者有时H1-3型结构占50%以上。
另外,在x为0.1以下等过小的情况或在充电电压超过4.9V的条件下,在本发明的一个方式的正极活性物质100中也有时产生H1-3型或三方晶O1型的晶体结构。因此,为了判断是否是本发明的一个方式的正极活性物质100,需要XRD等晶体结构的分析以及充电容量或充电电压等的信息。
但是,有时x较小的状态下的正极活性物质在暴露于空气时晶体结构发生变化。例如,有时从O3’型结构及单斜晶O1(15)型结构变为H1-3型结构。因此,在分析晶体结构时使用的所有样品都优选在氩气氛等惰性气氛中处理。
另外,通过利用XPS、能量分散型X射线分析法(EDX:Energy Dispersive X-raySpectroscopy)、电子探针显微分析法(EPMA:Electron Probe Microanalysis)等进行分析而可以判断某个正极活性物质所包含的添加元素A的分布是否处于上述那样的状态。
另外,表层部100a、晶界等的晶体结构可以对正极活性物质100的截面进行电子衍射等来分析。
<<充电方法>>
可以通过进行高电压充电来判断某个复合氧化物是否是本发明的一个方式的正极活性物质100。例如,将该复合氧化物用于正极,将对电极锂用于负极来制造硬币电池(CR2032型,直径为20mm,高度为3.2mm),进行高电压充电即可。
更具体而言,作为正极可以使用将正极活性物质、导电材料及粘合剂混合而成的浆料涂敷在铝箔的正极集流体而成的正极。
作为对电极可以使用锂金属。注意,作为对电极使用锂金属以外的材料时的正极的电位与二次电池不同。在没有特别说明时,本说明书等中的电压及电位是正极的电位。
作为电解液所包含的电解质,使用1mol/L的六氟磷酸锂(LiPF6)。作为电解液,可以使用将体积比为3:7的碳酸乙烯酯(EC)和碳酸二乙酯(DEC)以及2wt%的碳酸亚乙烯酯(VC)混合而成的溶液。
作为隔离体可以使用厚度为25μm的聚丙烯多孔薄膜。
正极罐及负极罐可以由不锈钢(SUS)形成。
将以上述条件制造的硬币电池恒流充电至任意电压(例如,4.5V、4.55V、4.6V、4.65V、4.7V、4.75V或4.8V),然后直到到达充分小的电流值进行恒压充电。“充分小的电流值”例如可以是20mA/g或10mA/g。为了观测正极活性物质的相变,以上述较小电流值进行充电是优选的。温度设定为25℃或45℃。在以这种方式进行充电之后,在氩气氛的手套箱内将硬币电池拆开而取出正极,由此可以得到任意充电容量的正极活性物质。在之后进行各种分析时,为了防止与外部成分起反应,优选在氩气氛下进行密封。例如,XRD可以在封入于氩气氛的密封容器的条件下进行。另外,优选在充电完后立刻取出正极进行分析。具体而言,优选在充电完后1小时以内,更优选在充电完后30分以内进行分析。
另外,在分析进行多次充放电后的充电状态的晶体结构时,该多次充放电的条件也可以与上述充电条件不同。例如,充电可以以电流值100mA/g进行恒流充电至任意电压(例如,4.6V、4.65V、4.7V、4.75V或4.8V),然后直到该电流值变成10mA/g为止进行恒压充电,放电可以以以100mA/g进行恒流放电至2.5V。
另外,在分析进行多次充放电后的放电状态下的晶体结构时,例如也可以以电流值100mA/g恒流放电至2.5V。
<<XRD>>
XRD测量的装置及条件没有限制。例如,可以以如下装置及条件进行测量。
XRD装置:Bruker AXS公司制造的D8 ADVANCE
X射线源:CuKα1射线
输出:40kV、40mA
狭缝宽度:Div.Slit、0.5°
检测器:LynxEye
扫描方式:2θ/θ连续扫描
测量范围(2θ):15°以上且90°以下
步骤宽度(2θ):设定为0.01°
计数时间:1秒/步骤
样品载物台旋转:15rpm
在测量样品为粉末时,可以通过如下方法安装样品:放在玻璃的样品支架中;或者将样品撒在涂敷有润滑脂的硅非反射板上;等。在测量样品为正极时,可以通过将正极用双面胶带贴合在衬底上而将正极活性物质层根据装置所要求的测量面安装。
图11及图12示出从O3’型结构、单斜晶O1(15)型结构及H1-3型结构的模型算出的通过CuKα1射线得到的理想的粉末XRD图案。另外,为了进行比较,还示出从LixCoO2中的x为1的LiCoO2 O3及H1-3型以及x为0的三方晶O1的晶体结构算出的理想的XRD图案。LiCoO2(O3)及CoO2(O1)的图案通过从ICSD(Inorganic Crystal Structure Database:无机晶体结构数据库)(参照非专利文献4)获得的晶体结构信息使用Materials Studio(BIOVIA)的模块之一的Reflex Powder Diffraction而制成。2θ的范围设定为15°至75°,Step size=0.01,波长λ1=1.540562×10-10m,λ2没有设定,Monochromator设定为single。H1-3型结构的图案参照非专利文献3所记载的晶体结构信息同样地制成。O3’型结构及单斜晶O1(15)型结构的图案通过如下方法制出:从本发明的一个方式的正极活性物质的XRD图案推测出晶体结构并利用TOPAS ver.3(Bruker公司制造的晶体结构分析软件)进行拟合,与其他结构同样地制出XRD图案。
如图11所示,在O3’型结构中,在2θ为19.25±0.12°(19.13°以上且小于19.37°)处以及2θ为45.47±0.10°(45.37°以上且小于45.57°)处出现衍射峰。
但是,如图12所示,在H1-3型结构及三方晶O1型结构中,峰不出现在上述位置上。由此,可以说在LixCoO2中的x较小的状态下在2θ=19.25±0.12°(19.13°以上且小于19.37°)以及2θ=45.47±0.10°(45.37°以上且小于45.57°)处出现衍射峰是本发明的一个方式的正极活性物质100的特征。
这也可以表明:x=1时的晶体结构中出现XRD的衍射峰的位置和x≤0.24时的晶体结构中出现XRD的衍射峰的位置接近;更具体而言,关于x=1时的晶体结构和x≤0.24时的晶体结构各自的主要衍射峰中的2θ为42°以上且46°以下处出现的峰,2θ之差为0.7°以下,优选为0.5°以下。
另外,本发明的一个方式的正极活性物质100在LixCoO2中的x较小时具有O3’型结构及/或单斜晶O1(15)型结构,但是正极活性物质100的整体也可以不具有O3’型结构及/或单斜晶O1(15)型结构。既可以具有其他晶体结构,也可以部分为非晶。注意,在对XRD图案进行里特沃尔德分析时,O3’型结构优选占50%以上,更优选占60%以上,进一步优选占66%以上。在O3’型结构及/或单斜晶O1(15)型结构占50%以上,更优选占60%以上,进一步优选占66%以上时,可以实现循环特性充分优良的正极活性物质。
此外,即使从测量开始经过100次以上的充放电循环,里特沃尔德分析中的O3’型结构及/或单斜晶O1(15)型结构也优选占35%以上,更优选占40%以上,进一步优选占43%以上。
另外,XRD图案中的衍射峰的尖锐度表示结晶性的高度。因此,充电后的各衍射峰优选尖锐,即半宽优选窄。相同结晶相的峰的半宽也根据XRD的测量条件及2θ的值而不同。在采用上述测量条件时,例如,观察在2θ为43°以上且46°以下处的峰的半宽优选为0.2°以下,更优选为0.15°以下,进一步优选为0.12°以下。注意,并不需要所有峰都满足上述条件。只要一部分峰满足上述条件,就可以说其结晶相的结晶性较高。上述较高结晶性充分贡献于充电后的晶体结构的稳定化。
此外,正极活性物质100所具有的O3’型结构及单斜晶O1(15)型结构的晶粒尺寸只减小到放电状态下的LiCoO2(O3)的1/20左右。由此,即使在与充放电之前的正极相同的XRD测量的条件下也可以在LixCoO2中的x较小时确认到明显的O3’型结构及/或单斜晶O1(15)型结构的峰。另一方面,即使现有的LiCoO2中的一部分可具有与O3’型结构及/或单斜晶O1(15)型结构相似的结构,晶粒尺寸也会变小,其峰也会变宽且小。晶粒尺寸可以从XRD峰的半宽求出。
<<XPS>>
X射线光电子能谱(XPS)在分析无机氧化物且作为X射线源使用单色化铝Kα射线时可以进行距离表面2nm至8nm左右(典型的是5nm以下)的深度范围的分析,所以可以定量地分析表层部100a的深度方向的约一半区域中的各元素的浓度。另外,通过进行窄扫描分析,可以分析元素的键合状态。XPS的定量精度在很多情况下是±1atomic%左右,虽然取决于元素,但是检测下限为1atomic%左右。
在本发明的一个方式的正极活性物质100中,选自添加元素A中的一个或两个以上在表层部100a的浓度优选高于在内部100b的浓度。就是说,选自添加元素A中的一个或两个以上在表层部100a的浓度优选高于在正极活性物质100整体的添加元素A的平均浓度。因此,例如可以说通过XPS等测量的选自添加元素A中的一个或两个以上在表层部100a的浓度优选高于通过ICP-MS(感应耦合等离子体质谱)或GD-MS(辉光放电质谱法分析)等测量的在正极活性物质100整体的添加元素A的平均浓度。例如,通过XPS等测量的表层部100a的至少一部分的镁浓度优选高于正极活性物质100整体的镁浓度。另外,表层部100a的至少一部分的镍浓度优选高于正极活性物质100整体的镍浓度。另外,表层部100a的至少一部分的铝浓度优选高于正极活性物质100整体的铝浓度。另外,表层部100a的至少一部分的氟浓度优选高于正极活性物质100整体的氟浓度。
注意,本发明的一个方式的正极活性物质100的表面及表层部100a不包含制造正极活性物质100之后化学吸附的碳酸盐、羟基等。另外,也不包含附着于正极活性物质100的表面的电解液、粘合剂、导电材料或来源于它们的化合物。因此,在对正极活性物质所包含的元素进行定量化时,也可以进行如下校正,即去除有可能通过XPS等表面分析检测出的碳、氢、过剩氧、过剩氟等。例如,XPS可以通过分析辨认键合种类,也可以进行去除来源于粘合剂的C-F键的校正。
另外,也可以在进行各种分析之前对正极活性物质及正极活性物质层等的样品进行洗涤等,以去除附着于正极活性物质的表面的电解液、粘合剂、导电材料或来源于它们的化合物。此时,有时锂溶解于用于洗涤的溶剂等,但是添加元素A不容易溶解出,所以对添加元素A的原子数比没有影响。
另外,添加元素A的浓度也可以用与钴之比进行比较。通过利用与钴之比,可以减少制造正极活性物质后化学吸附的碳酸盐等的影响而进行比较,所以是优选的。例如,通过XPS的分析而得的镁与钴的原子数的比Mg/Co优选为0.4以上且1.5以下。另一方面,通过ICP-MS的分析而得的Mg/Co优选为0.001以上且0.06以下。
同样地,为了充分确保锂的插入和脱离的路径,正极活性物质100的表层部100a中的锂及钴的浓度优选高于各添加元素A的浓度。这可以说表层部100a的锂及钴的浓度优选高于通过XPS等测量的选自表层部100a所包含的添加元素A中的一个或两个以上的各添加元素A的浓度。例如,通过XPS等测量的表层部100a的至少一部分的钴的浓度优选高于通过XPS等测量的表层部100a的至少一部分的镁的浓度。同样地,锂的浓度优选高于镁的浓度。另外,钴的浓度优选高于镍的浓度。同样地,锂的浓度优选高于镍的浓度。另外,钴的浓度优选高于铝的浓度。同样地,锂的浓度优选高于铝的浓度。另外,钴的浓度优选高于氟的浓度。同样地,锂的浓度优选高于氟的浓度。
另外,铝等添加元素Y更优选在较深的区域,例如距离表面的深度为5nm以上且50nm以内的区域中广泛地分布。因此,在利用ICP-MS、GD-MS等的正极活性物质100整体的分析中检测出铝等添加元素Y,但是更优选的是,在XPS等中铝等添加元素Y为检测下限以下。
再者,在对本发明的一个方式的正极活性物质100进行XPS分析时,相对于钴的原子数的镁的原子数优选为0.4倍以上且1.2倍以下,更优选为0.65倍以上且1.0倍以下。另外,相对于钴的原子数的镍的原子数优选为0.15倍以下,更优选为0.03倍以上且0.13倍以下。另外,相对于钴的原子数的铝的原子数优选为0.12倍以下,更优选为0.09倍以下。另外,相对于钴的原子数的氟的原子数优选为0.3倍以上且0.9倍以下,更优选为0.1倍以上且1.1倍以下。
当进行XPS分析时,例如作为X射线源可以使用单色化铝Kα射线。此外,例如,提取角为可以45°。例如,可以以如下装置及条件进行测量。
测量装置:PHI公司制造的QuanteraII
X射线源:单色化铝Kα(1486.6eV)
检测区域:
检测深度:4nm至5nm左右(提取角为45°)
测量光谱:宽扫描,各检测元素的窄扫描
此外,在利用XPS分析本发明的一个方式的正极活性物质100时,示出氟与其他元素的键合能量的峰优选为682eV以上且小于685eV,更优选为684.3eV左右。该值与氟化锂的键合能量的685eV以及氟化镁的键合能量的686eV都不同。换言之,在本发明的一个方式的正极活性物质100包含氟时,优选的是氟化锂及氟化镁以外的键合。
此外,在利用XPS分析本发明的一个方式的正极活性物质100时,示出镁与其他元素的键合能量的峰优选为1302eV以上且小于1304eV,更优选为1303eV左右。该值与氟化镁的键合能量的1305eV不同,是接近于氧化镁的键合能量的值。换言之,在本发明的一个方式的正极活性物质100包含镁时,优选的是氟化镁以外的键合。
<<EDX>>
正极活性物质100所包含的选自添加元素A中的一个或两个优选具有浓度梯度。另外,正极活性物质100更优选根据添加元素A浓度峰的距离表面的深度不同。添加元素A的浓度梯度例如可以通过FIB等使正极活性物质100的截面露出而对该截面利用EDX、EPMA等进行分析来评价。
在EDX测量中,将在区域内进行扫描的同时进行测量以进行二维评价的方法称为EDX面分析。另外,将边线状扫描边进行测量以对正极活性物质内的原子浓度分布进行评价的方法称为线分析。有时将从EDX的面分析抽出线状区域的数据的方法称为线分析。此外,将在某个区域中不扫描而进行测量的方法称为点分析。
通过EDX面分析(例如元素映射),可以半定量地分析正极活性物质100的表层部100a、内部100b及晶界附近等的添加元素A的浓度。另外,通过EDX线分析,可以分析添加元素A的浓度分布及最大值。另外,如STEM-EDX那样的使样品薄片化的分析中,可以分析从特定区域中的正极活性物质表面向中心的深度方向上的浓度分布而不受到纵深方向上的分布的影响,所以是优选的。
因此,在对本发明的一个方式的正极活性物质100进行EDX面分析或EDX点分析时,各添加元素A,尤其是添加元素X在表层部100a的浓度优选高于在内部100b的浓度。
例如,在对作为添加元素X包含镁的正极活性物质100进行EDX面分析或EDX点分析时,表层部100a的镁浓度优选高于内部100b的镁浓度。另外,在进行EDX线分析时,表层部100a的镁浓度峰优选出现在从正极活性物质100的表面向中心的深度3nm的范围内,更优选出现在深度1nm的范围内,进一步优选出现在深度0.5nm的范围内。另外,镁浓度优选在从峰顶(peak top)到1nm的深度的点减少到峰浓度的60%以下。另外,优选在从峰顶到2nm的深度的点减少到峰浓度的30%以下。在此说明的浓度峰是浓度的极大值。
另外,在包含镁及氟作为添加元素X的正极活性物质100中,氟的分布优选重叠于镁的分布。例如,氟浓度峰和镁浓度峰的深度方向的差优选为10nm以内,更优选为3nm以内,进一步优选为1nm以内。
另外,在进行EDX线分析时,表层部100a的氟浓度峰优选出现在从正极活性物质100的表面向中心的深度3nm的范围内,更优选出现在深度1nm的范围内,进一步优选出现在深度0.5nm的范围内。另外,氟浓度峰优选比镁浓度峰稍微靠近表面一侧,此时对氢氟酸的耐性得到提高,所以是优选的。例如,氟浓度峰优选比镁浓度峰靠近表面一侧0.5nm以上,更优选比镁浓度峰靠近表面一侧1.5nm以上。
另外,在作为添加元素X包含镍的正极活性物质100中,表层部100a的镍浓度峰优选出现在从正极活性物质100的表面向中心的深度3nm的范围内,更优选出现在深度1nm的范围内,进一步优选出现在深度0.5nm的范围内。另外,在包含镁及镍的正极活性物质100中,镍的分布优选重叠于镁的分布。例如,镍浓度峰和镁浓度峰的深度方向的差优选为10nm以内,更优选为3nm以内,进一步优选为1nm以内。
另外,在正极活性物质100包含铝作为添加元素Y时,在进行EDX线分析时,优选与表层部100a的铝浓度峰相比,镁、镍或氟的浓度峰靠近表面。例如,铝浓度峰优选出现在从正极活性物质100的表面向中心的深度0.5nm以上且50nm以下的范围内,更优选出现在深度5nm以上且50nm以下的范围内。
另外,在对正极活性物质100进行EDX线分析、面分析或点分析时,镁浓度峰中的镁Mg与钴Co的原子数之比(Mg/Co)优选为0.05以上且0.6以下,更优选为0.1以上且0.4以下。铝浓度峰中的铝Al与钴Co的原子数之比(Al/Co)优选为0.05以上且0.6以下,更优选为0.1以上且0.45以下。镍浓度峰中的镍Ni与钴Co的原子数之比(Ni/Co)优选为0以上且0.2以下,更优选为0.01以上且0.1以下。氟浓度峰中的氟F与钴Co的原子数之比(F/Co)优选为0以上且1.6以下,更优选为0.1以上且1.4以下。
正极活性物质100是锂能够插入和脱离的包含过渡金属及氧的化合物,所以将存在有随着锂的插入和脱离而被氧化还原的过渡金属M(例如,Co、Ni、Mn、Fe等)及氧的区域与不存在有过渡金属M及氧的区域的界面称为正极活性物质的表面。另外,也可以将因滑动、裂纹及/或裂缝而产生的面也称为正极活性物质的表面。在分析正极活性物质时有时用保护膜覆盖表面,但是保护膜不包括在正极活性物质中。作为保护膜,有时使用碳、金属、氧化物、树脂等的单层膜或多层膜。
因此,STEM-EDX线分析等中的正极活性物质的表面是指上述过渡金属M的检测量的值相等于内部的检测量的平均值MAVE和背景的平均值MBG之总和的50%的点以及氧的检测量的值相等于内部的检测量的平均值OAVE和背景的平均值OBG之总和的50%的点。另外,可认为在上述过渡金属M和氧各自的内部和背景之总和的50%的点互不相同的情况起因于附着于表面的包含氧的金属氧化物、碳酸盐等的影响,所以可以采用上述过渡金属M内部的检测量的平均值MAVE和背景的平均值MBG之总和50%的点。另外,在使用包括多种过渡金属M的正极活性物质时,可以使用内部100b中的计数最多的元素的MAVE及MBG决定表面。
上述过渡金属M的背景的平均值MBG例如可以通过使避免过渡金属M的检测量开始增加的部分附近的外部,即2nm以上,优选为3nm以上的范围平均化来求出。另外,内部的检测量的平均值MAVE可以通过在过渡金属M及氧的计数饱和且稳定的区域如从过渡金属M的检测量开始增加的区域到30nm以上的深度部分,优选为到超过50nm的深度的部分使2nm以上,优选为3nm以上的范围平均化来求出。氧的背景的平均值OBG及氧内部的检测量的平均值OAVE也可以同样地求出。
另外,截面STEM(扫描型透射电子显微镜)图像等中的正极活性物质100的表面是指:观察到来源于正极活性物质的晶体结构的图像的区域和观察不到该图像的区域的边界,并且是指确认到来源于在构成正极活性物质的金属元素中原子序数大于锂的金属元素的原子核的原子列的区域的最外一侧。或者,正极活性物质100的表面是指:在STEM图像中的从表面向块体(bulk)的亮度的分布划的切线与深度方向的轴的交点。STEM图像等中的表面也可以还参照空间分辨率更高的分析来判断。
另外,STEM-EDX的空间分辨率为1nm左右。因此,有可能添加元素分布的最大值也发生1nm左右的偏离。例如,在镁等添加元素分布的最大值位于在上面算出的表面的外侧的情况下,只要最大值与表面之差小于1nm就可以视为误差。
另外,STEM-EDX线分析中的峰是指各元素分布中的检测强度或每个元素的特性X射线的最大值。作为STEM-EDX线分析中的噪声,考虑到空间分辨率(R)以下,例如R/2以下的半宽的测量值等。
通过以相同条件对相同部分进行多次扫描,可以减少噪声的影响。例如,可以将进行六次扫描的累计值作为各元素的分布。扫描次数不局限于六次,也可以进行六次以上而将其平均作为各元素的分布。
STEM-EDX线分析例如可以通过如下步骤进行。首先,对正极活性物质的表面上蒸镀保护膜。例如,通过离子溅射装置(日立高新技术公司制造的MC1000)蒸镀碳。
接着,使正极活性物质薄片化来制造STEM截面样品。例如,可以通过FIB-SEM装置(日立高新技术公司制造的XVision200TBS)进行薄片化加工。此时,使用MPS(微探针系统)拾取,最后加工的条件例如可以为加速电压10kV。
STEM-EDX线分析例如使用STEM装置(日立高新技术公司制造的HD-2700),作为EDX检测器可以使用EDAX公司制造的Octane TUltra W(设置有两个)。在进行EDX线分析时,以STEM装置的发射电流设定为6μA以上且10μA以下,测量薄片化了的样品的深度浅且凹凸少的部分。倍率例如为15万倍左右。EDX线分析的条件为如下;有漂移校正;线宽度为42nm;间距为0.2nm;帧数为六次以上。
<<表面粗糙度及比表面积>>
本发明的一个方式的正极活性物质100优选为表面平滑且凹凸少。表面平滑且凹凸少表示后述的熔剂的效果充分发挥且添加元素A源和复合氧化物的表面被熔化。因此,这是表示表层部100a中的添加元素A的分布良好的一个要素。“分布良好”例如是指表层部100a中的添加元素A的浓度分布均匀。
例如,可以参照正极活性物质100的截面SEM图像或截面TEM图像、正极活性物质100的比表面积等判断表面是否平滑且凹凸少。
例如,如下所示,可以根据正极活性物质100的截面SEM图像量化表面平滑度。
首先,通过FIB等对正极活性物质100进行加工来使其截面露出。此时,优选使用保护膜、保护剂等覆盖正极活性物质100。接着,拍摄保护膜等与正极活性物质100的界面的SEM图像。对该SEM图像利用图像处理软件进行噪声处理。例如,在进行高斯模糊(GaussianBlur)(σ=2)之后进行二值化。并且,利用图像处理软件进行界面抽出。再者,用自动选择工具等选择保护膜等与正极活性物质100的界面线,将数据抽出到表计算软件等。使用表计算软件等的功能如下所述那样求出均方根(RMS)表面粗糙度,即根据回归曲线(二次回归)进行校正,从倾斜校正后数据求出粗糙度算出用参数,由此算出标准偏差。此外,该表面粗糙度是至少在正极活性物质的粒子外周400nm的表面粗糙度。
在本实施方式的正极活性物质100的粒子表面,作为粗糙度的指标的均方根(RMS)表面粗糙度优选小于3nm,更优选小于1nm,进一步优选小于0.5nm。
注意,对进行噪声处理、界面抽出等的图像处理软件没有特别的限制,例如可以使用非专利文献7至9所记载的“ImageJ”。
例如,也可以根据利用恒容气体吸附法测量的实际上的比表面积SR与理想的比表面积Si的比例量化正极活性物质100的表面平滑度。
理想的比表面积Si在所有正极活性物质的粒子直径与D50相同,重量也相同且其形状是理想的球形的假定上进行计算来求出。
中值粒径D50可以通过利用激光衍射及散射法的粒度分布仪等进行测量。比表面积例如可以通过利用恒容气体吸附法的比表面积测量装置等进行测量。
在本发明的一个方式的正极活性物质100中,优选从中值粒径D50求出的理想的比表面积Si与实际上的比表面积SR的比例SR/Si为2.1以下。
或者,通过以下方法也可以根据正极活性物质100的截面SEM图像量化表面平滑度。
首先,取得正极活性物质100的表面SEM图像。此时,作为观察预处理,也可以进行导电性覆膜。观察面优选与电子束垂直。在比较多个样品时,测量条件及观察面积设定为相同。
接着,利用图像处理软件(例如,“ImageJ”)取得例如将上述SEM图像转换为8位的图像(被称为灰度级图像)。灰度级图像包括亮度(亮度的信息)。例如,在8位的灰度级图像中,亮度可以以2的8次方=256灰度表示。昏暗部分的灰度数低,明亮部分的灰度数高。可以与灰度数相关联量化亮度变化。将该数值称为灰度值。通过取得灰度值,可以评价正极活性物质的凹凸作为数值。
另外,也可以以直方图表示对象区域的亮度变化。直方图以立体的方式表示对象区域中的灰度分布,也被称为亮度直方图。通过取得亮度直方图,可以在视觉上清楚的方式评价正极活性物质的凹凸。
本发明的一个方式的正极活性物质100的上述灰度值的最大值与最小值之差优选为120以下,更优选为115以下,进一步优选为70以上且115以下。另外,灰度值的标准偏差优选为11以下,更优选为8以下,进一步优选为4以上且8以下。
<凹坑>
另外,在以4.5V以上进行充电的条件下或者在45℃以上等高温环境下进行充放电时,在正极活性物质中有时产生从表面向内部加深而进行的进行性缺陷。在正极活性物质中缺陷进行而形成孔的现象也可以被称为点蚀(Pitting Corrosion),在本说明书中,在该现象中产生的孔也被称为凹坑。
图13是示出具有凹坑的正极活性物质51的截面示意图。另外,还示出与阳离子排列平行的结晶面55。图13是截面图,所以以孔表示凹坑54及凹坑58,但是开口形状不是圆形而是有深度的像槽那样的形状。另外,与凹部52不同,凹坑54及凹坑58容易与锂离子的排列平行地产生。
另外,符号53及56表示正极活性物质51中存在有添加元素A的表层部。在产生凹坑的表层部中,添加元素A少于表层部53及56或者添加元素A为检测下限以下,可认为用作阻挡膜的功能减少。另外,可认为:复合氧化物的晶体结构在产生凹坑附近崩塌而成为与层状岩盐型晶体结构不同的晶体结构。在晶体结构崩塌时作为载体离子的锂离子的扩散及释放被阻挡,所以可认为凹坑是循环特性劣化的原因。
凹坑有可能因点缺陷而产生。可认为:反复进行充放电而正极活性物质所具有的点缺陷变化,由于周围的电解质等在化学上或电化学上侵蚀或者材质劣化而产生凹坑。该劣化不是在正极活性物质的表面均匀地发生而是局部性且集中地发生。
另外,如图13的裂缝57那样,有时由于充放电的正极活性物质的膨胀及收缩而产生裂缝(也被称为裂口)等缺陷。在本说明书中,裂缝与凹坑不同。刚正极活性物质的制造完后存在有裂缝而不存在有凹坑。凹坑可以说是:通过例如在4.5V以上的高电压条件或高温(45℃以上)下进行充放电,几个层中的过渡金属M及氧被抽取,由此形成的孔,也可以说是过渡金属M被溶解的部分。裂缝例如是指通过被施加物理上的压力而产生的新的面或者因晶界而产生的裂口。有时由于随着充放电而发生的正极活性物质的膨胀及收缩,产生裂缝。另外,有时从裂缝及/或正极活性物质内部的空洞产生凹坑。
[正极活性物质的制造方法]
为了制造具有如上述实施方式所示的添加元素A的分布、组成及/或晶体结构的正极活性物质100,添加元素A的添加方法是重要的。并且,内部100b的结晶性良好也是重要的。
因此,在正极活性物质100的制造工序中,优选的是,首先合成包含锂及过渡金属的复合氧化物,然后混合添加元素A源进行加热处理。
在同时混合过渡金属M源、锂源及添加元素A源而合成添加元素A与包含锂及过渡金属M的复合氧化物的方法中,不容易提高表层部100a的添加元素A的浓度。另外,在合成包含锂及过渡金属M的复合氧化物之后只混合添加元素源A不进行加热的情况下,添加元素A只附着于复合氧化物而不固溶于复合氧化物。除非经过充分加热,否则不容易使添加元素A良好地分布。因此,优选的是,在合成复合氧化物之后混合添加元素A源来进行加热处理。有时将该混合添加元素A源之后的加热处理称为退火。
但是,在退火的温度过高时,发生阳离子混排而镁等添加元素A进入过渡金属M位置的可能性增高。存在于过渡金属M位置的镁不具有在LixCoO2中的x较小时保持属于R-3m层状岩盐型晶体结构的效果。再者,在加热处理温度过高时,还有产生钴被还原而成为二价、锂蒸发等不利影响的担忧。
于是,优选混合添加元素A源和被用作熔剂的材料。其熔点低于包含锂及过渡金属M的复合氧化物的材料可以说被用作熔剂的材料。例如,氟化锂等氟化合物是优选的。在添加熔剂时,发生添加元素A源与包含锂及过渡金属M的复合氧化物的熔点下降。通过进行熔点下降,可以在不容易发生阳离子混排的温度容易使添加元素A良好地分布。
另外,更优选的是,在合成包含锂及过渡金属M的复合氧化物之后且混合添加元素A之前也进行加热。有时将该加热称为初始加热。
通过进行初始加热,由于从包含锂及过渡金属M的复合氧化物的表层部100a的一部分脱离锂,所以添加元素A的分布更加良好。
更具体地说,可认为通过以下机理而由于初始加热容易使各添加元素A的分布不同。首先,由于初始加热而非意图地残留在钴酸锂表面的锂化合物(例如,碳酸锂)脱离。接着,混合该非意图的锂化合物排除的包含锂及过渡金属M的复合氧化物、镍源、铝源、镁源等添加元素A源而进行加热。添加元素A中的镁是二价的典型元素,镍是过渡金属但容易成为二价的离子。因此,在表层部100a的一部分形成包含Co2+以及Mg2+及Ni2+的岩盐型的相。
在表层部100a为层状岩盐型的包含锂及过渡金属M的复合氧化物的情况下,添加元素A中的镍容易被固溶而扩散到内部100b,但是在表层部100a的一部分为岩盐型的情况下,易于留在表层部100a。
另外,与层状岩盐型相比,在这些岩盐型中,金属Me与氧的键合距离(Me-O距离)趋于变长。
例如,岩盐型Ni0.5Mg0.5O中的Me-O距离为岩盐型MgO中的Me-O距离为另外,如果表层部100a的一部分中形成尖晶石型的相,则尖晶石型NiAl2O4的Me-O距离为/>尖晶石型MgAl2O4的Me-O距离为/>任何Me-O距离都超过/>
另一方面,层状岩盐型中的锂以外的金属与氧的键合距离比上述距离短。例如,层状岩盐型LiAlO2中的Al-O距离为(Li-O距离为/>)。另外,层状岩盐型LiCoO2中的Co-O距离为/>(Li-O距离为/>)。
另外,根据Shannon离子半径(Shannon et al.,Acta A 32(1976)751.),六配位的铝的离子半径为六配位的氧的离子半径为/>它们的总和为/>
由此,可认为:与岩盐型相比,铝在层状岩盐型的锂以外的位置更稳定地存在。因此,与表层部100a中的具有岩盐型相的接近于表面的区域相比,铝更容易分布于具有层状岩盐型的更深区域及/或内部100b。
另外,由于初始加热,还可以期待如下效果:内部100b的层状岩盐型晶体结构的结晶性得到提高。
但是,并不一定需要进行初始加热。通过在其他加热工序如退火中控制气氛、温度、时间等,有时可以制造在LixCoO2中的x较小时具有O3’型结构及/或单斜晶O1(15)型结构的正极活性物质100。
接着,参照图14A至图14C说明经过退火及初始加热的正极活性物质100的制造流程的一个例子。
<步骤S11>
在图14A所示的步骤S11中,作为起始材料的锂及过渡金属M的材料,分别准备锂源(Li源)及过渡金属M源(M源)。
作为锂源优选使用包含锂的化合物,例如可以使用碳酸锂、氢氧化锂、硝酸锂或氟化锂等。锂源的纯度优选高,例如优选使用纯度为99.99%以上的材料。
过渡金属M可以选自周期表第4族至第13族所记载的元素中,例如使用锰、钴和镍中的至少一种。就是说,作为过渡金属M,只使用钴,只使用镍,使用钴及锰的两种,使用钴及镍的两种或者使用钴、锰、镍的三种。在只使用钴的情况下所得到的正极活性物质包含钴酸锂(LCO),在使用钴、锰及镍的三种的情况下所得到的正极活性物质包含镍-钴-锰酸锂(NCM)。
作为过渡金属M源优选使用包含上述过渡金属M的化合物,例如可以使用作为上述过渡金属M的例子示出的金属的氧化物或氢氧化物等。作为钴源,可以使用四氧化三钴、氢氧化钴等。作为锰源,可以使用氧化锰、氢氧化锰等。作为镍源,可以使用氧化镍、氢氧化镍等。作为铝源,可以使用氧化铝、氢氧化铝等。
过渡金属M源的纯度优选高,例如优选使用纯度为3N(99.9%)以上,优选为4N(99.99%)以上,更优选为4N5(99.995%)以上,进一步优选为5N(99.999%)以上的材料。通过使用高纯度的材料,可以控制正极活性物质中的杂质。其结果,二次电池的容量得到提高且/或者二次电池的可靠性得到提高。
并且,过渡金属M源的结晶性优选高,例如优选具有单晶粒子。作为过渡金属M源的结晶性的评价方法,可以举出:利用TEM(透射电子显微镜)图像、STEM(扫描透射电子显微镜)图像、HAADF-STEM(高角度环形暗场-扫描透射电子显微法)图像、ABF-STEM(环形明场扫描透射电子显微镜)图像等的判断;或者利用X射线衍射(XRD)、电子衍射、中子衍射等的判断。上述评价结晶性的方法除了过渡金属M源以外还可以用于其他结晶性的评价。
另外,在使用两种以上的过渡金属M源时,优选以可具有层状岩盐型晶体结构的比例(混合比)准备该两种以上的过渡金属M源。
<步骤S12>
接着,作为图14A所示的步骤S12,对锂源及过渡金属M源进行粉碎而混合来制造混合材料。粉碎及混合可以以干法或湿法进行。湿法可以将粒子研碎得小,所以是优选的。在以湿法进行粉碎及混合时,准备溶剂。作为溶剂,可以使用丙酮等酮、乙醇及异丙醇等醇、乙醚、二氧六环、乙腈、N-甲基-2-吡咯烷酮(NMP)等。优选使用不容易与锂发生反应的非质子性溶剂。在本实施方式中使用纯度为99.5%以上的脱水丙酮。优选的是,对水分含量抑制到10ppm以下且纯度为99.5%以上的脱水丙酮混合锂源及过渡金属M源来进行研碎及混合。通过使用上述纯度的脱水丙酮,可以减少有可能混入的杂质。
作为进行混合等的单元,可以使用球磨机或砂磨机等。在使用球磨机时,作为粉碎介质优选使用氧化铝质球或氧化锆球。氧化锆球的杂质的排出较少,所以是优选的。另外,在使用球磨机或砂磨机等的情况下,为了抑制来自介质的污染,圆周速度优选设定为100mm/s以上且2000mm/s以下。在本实施方式中,圆周速度优选设定为838mm/s(旋转数为400rpm,球磨机的直径为40mm)进行粉碎及混合。
<步骤S13>
接着,作为图14A所示的步骤S13,加热上述混合材料。加热优选以800℃以上且1100℃以下,更优选以900℃以上且1000℃以下,进一步优选以950℃左右进行。在温度过低时,有锂源及过渡金属M源的分解及熔化不充分的担忧。另一方面,在温度过高时,有可能因如下原因而导致缺陷:锂从锂源蒸发;以及/或者用作过渡金属M源的金属过度地被还原;等。作为该缺陷,例如有时在作为过渡金属M使用钴的情况下,钴过度地被还原而从三价变为二价,引起氧缺陷等。
在加热时间过短时LiMO2不合成,但是在加热时间过长时生产率降低。例如,加热时间优选为1小时以上且100小时以下,更优选为2小时以上且20小时以下。
虽然根据加热温度的所达到的温度而不同,但是升温速率优选为80℃/h以上且250℃/h以下。例如,在以1000℃加热10小时的情况下,升温速率优选为200℃/h。
加热优选在干燥空气等水较少的气氛下进行,例如优选在露点为-50℃以下,更优选在露点为-80℃以下的气氛下进行。在本实施方式中,在露点为-93℃的气氛下进行加热。另外,为了抑制有可能混入到材料中的杂质,加热气氛中的CH4、CO、CO2及H2等的杂质浓度优选都为5ppb(parts per billion)以下。
作为加热气氛,优选采用含氧气氛。例如,可以举出对反应室继续导入干燥空气的方法。在此情况下,干燥空气的流量优选为10L/min。将向反应室继续导入氧而使氧流过反应室内的方法称为“流动”。
在加热气氛为含氧气氛的情况下,也可以采用不流动的方法。例如,可以采用先对反应室进行减压而填充氧来防止该氧从反应室泄漏或者氧进入反应室的方法,将这个方法称为吹扫。例如,将反应室减压到-970hPa,然后直到50hPa为止继续填充氧即可。
加热后可以自然冷却,从规定温度到室温的降温时间优选在10小时以上且50小时以下的范围内。注意,并不一定需要冷却到室温,冷却到下一个步骤允许的温度即可。
在本工序的加热中,可以进行利用回转窑(rotary kiln)或辊道窑(rollerhearth kiln)的加热。利用连续式或成批式(batch-type)的回转窑的加热可以在进行搅拌的同时进行加热。
加热时使用的坩埚或鞘优选包含用矾土(氧化铝)制造的材料、用莫来石-堇青石制造的材料、用氧化镁制造的材料、用氧化锆制造的材料等耐热性高的材料。并且,因为氧化铝是使杂质不易混入的材料,所以用矾土制造的坩埚或鞘的纯度为99%以上、优选为99.5%以上。在本实施方式中,使用纯度为99.9%的用氧化铝制造的坩埚。优选对坩埚或鞘盖上盖进行加热。由此,可以防止材料的挥发。
加热结束后,也可以根据需要进行粉碎而还进行筛选。在回收加热后的材料时,也可以将加热后的材料先从坩埚移动到研钵,然后回收。另外,作为该研钵优选使用用氧化锆制造的研钵。用氧化锆制造的研钵不容易释放杂质。具体而言,使用纯度为90%以上,优选为99%以上的氧化锆的研钵。另外,也可以在步骤S13以外的后述的加热工序中采用与步骤S13相同的加热条件。
<步骤S14>
通过上述工序,可以在图14A所示的步骤S14中得到包含过渡金属M的复合氧化物(LiMO2)。复合氧化物具有以LiMO2表示的锂复合氧化物的晶体结构即可,其组成并不是严密地限定于Li:M:O=1:1:2。在作为过渡金属M使用钴时将该复合氧化物称为含有钴的复合氧化物,以LiCoO2表示。组成并不严密地限定于Li:Co:O=1:1:2。
示出如步骤S11至步骤S14所示地通过固相法制造复合氧化物的例子,但是也可以通过共沉淀法制造复合氧化物。另外,也可以通过水热法制造复合氧化物。
<步骤S15>
接着,作为图14A所示的步骤S15,加热上述复合氧化物。该加热是对复合氧化物进行的第一次的加热,所以可以将步骤S15的加热称为初始加热。或者,该加热是以下所示的步骤S20之前进行的,有时称为预热处理或预处理。
由于初始加热,如上所述,非意图地残留在复合氧化物表面的锂化合物脱离。另外,可以期待提高内部100b的结晶性的效果。另外,在步骤S11等中准备的锂源及/或过渡金属M源有时混入有杂质。通过进行初始加热可以减少在步骤S14完成的复合氧化物中的杂质。
经过初始加热,还有使复合氧化物的表面平滑的效果。复合氧化物的表面平滑是指:凹凸较少且整体带弧形,并且角部带弧形的状态。另外,附着于表面的异物较少的状态也被称为“平滑”。可认为异物是凹凸的原因,优选不附着于表面。
在上述初始加热中,也可以不准备锂化合物源。或者,也可以不准备添加元素A源。或者,也可以不准备被用作熔剂的材料。
在本工序的加热时间过短时不能得到充分效果,但是在加热时间过长时生产率降低。例如,可以从在步骤S13中说明的加热条件选择而实施。补充说明该加热条件:为了保持复合氧化物的晶体结构,本工序的加热温度优选低于步骤S13的温度。另外,为了保持复合氧化物的晶体结构,本工序的加热时间优选比步骤S13的加热时间短。例如,优选以700℃以上且1000℃以下的温度加热2小时以上且20小时以下。
另外,提高内部100b的结晶性的效果例如是指缓和起因于在步骤S13制造的复合氧化物的收缩差等而发生的歪斜、偏离等的效果。
在上述复合氧化物中,通过步骤S13的加热而有时在复合氧化物的表面与内部间发生温度差。有时温度差导致收缩差。也可认为:由于表面与内部的流动性根据温度差不同,由此发生收缩差。因与收缩差有关的能量而在复合氧化物中发生内部应力之差。内部应力之差也被称为畸变,该能量有时被称为畸变能。可认为:内部应力通过步骤S15的初始加热被去除,换言之,畸变能通过步骤S15的初始加热被均匀化。在畸变能被均匀化时,复合氧化物的畸变缓和。因而,通过步骤S15,复合氧化物的表面有可能变平滑。也可以说表面得到改善。换言之,可认为:通过步骤S15产生在复合氧化物中的收缩差缓和,从而复合氧化物的表面变平滑。
另外,收缩差有时导致上述复合氧化物中的微小偏离的产生诸如结晶的偏离的产生。为了减少该偏离,优选进行本工序。通过本工序,可以使上述复合氧化物的偏离均匀化。在偏离被均匀化时,复合氧化物的表面有可能变平滑。也可以说结晶粒子被排列。换言之,可认为:通过步骤S15,缓和产生在复合氧化物中的结晶等的偏离,从而复合氧化物的表面变平滑。
通过将表面平滑的复合氧化物用作正极活性物质,作为二次电池进行充放电时的劣化变少,从而可以防止正极活性物质的破裂。
当在复合氧化物的一个截面上根据测量数据量化表面的凹凸信息时,可以说复合氧化物的表面平滑的状态是至少具有10nm以下的表面粗糙度的状态。上述一个截面例如为通过扫描透射电子显微镜(STEM)观察时取得的截面。
另外,在步骤S14中也可以使用预先合成包含锂、过渡金属M及氧的复合氧化物。在此情况下,可以省略步骤S11至步骤S13。通过对预先合成的复合氧化物进行步骤S15,可以得到表面平滑的复合氧化物。
可以考虑通过初始加热非意图地残留在复合氧化物表面的锂化合物脱离的情况。此外,可以考虑通过初始加热减少复合氧化物中的裂缝及/或结晶缺陷的情况。此外,由于这些的影响,在下一个步骤S20等说明的添加元素A有可能易于进入复合氧化物中。
<步骤S20>
另外,也可以在可具有层状岩盐型晶体结构的范围内对表面平滑的复合氧化物加入添加元素A。在对对表面平滑的复合氧化物加入添加元素A时,可以均匀地加入添加元素A。因此,优选先进行初始加热然后加入添加元素A。使用图14B及图14C说明加入添加元素A的步骤。
<步骤S21>
在图14B所示的步骤S21,准备添加到复合氧化物的添加元素A源(A源)。除了添加元素A源以外,还可以准备锂源。
作为添加元素A,可以使用选自镍、钴、镁、钙、氯、氟、铝、锰、钛、锆、钇、钒、铁、铬、铌、镧、铪、锌、硅、硫、磷、硼及砷中的一个或多个。另外,作为添加元素可以使用选自溴和铍中的一个或多个。注意,溴及铍是对生物具有毒性的元素,所以优选使用上述添加元素。
在作为添加元素A选择镁时,添加元素A源可以被称为镁源。作为该镁源,可以使用氟化镁、氧化镁、氢氧化镁或碳酸镁等。另外,也可以使用多个上述镁源。
在作为添加元素A选择氟时,添加元素A源可以被称为氟源。作为该氟源,例如可以使用氟化锂、氟化镁、氟化铝、氟化钛、氟化钴、氟化镍、氟化锆、氟化钒、氟化锰、氟化铁、氟化铬、氟化铌、氟化锌、氟化钙、氟化钠、氟化钾、氟化钡、氟化铈、氟化镧或六氟化铝钠等。其中,氟化锂的熔点较低,即848℃,并且在后述的加热工序中容易被熔化,所以是优选的。
氟化镁既可以用作氟源又可以用作镁源。另外,氟化锂可以用作锂源。作为在步骤S21使用的其他锂源,有碳酸锂。
此外,氟源也可以为气体,也可以使用氟、氟化碳、氟化硫或氟化氧等,在后述加热工序中将其混合在气氛中。另外,也可以使用多个上述氟源。
在本实施方式中,作为氟源准备氟化锂(LiF),作为氟源及镁源准备氟化镁(MgF2)。当氟化锂和氟化镁以LiF:MgF2=65:35(摩尔比)左右混合时,对降低熔点最有效。另一方面,当氟化锂较多时,锂变得过于多而可能导致循环特性恶化。因此,氟化锂和氟化镁的摩尔比优选为LiF:MgF2=x:1(0≤x≤1.9),更优选为LiF:MgF2=x:1(0.1≤x≤0.5),进一步优选为LiF:MgF2=x:1(x=0.33及其附近)。另外,在本说明书等中,附近是指大于其值0.9倍且小于1.1倍的值。
同时,镁的添加量优选以LiCoO2为基准超过0.1atomic%且为3atomic%以下,更优选为0.5atomic%以上且2atomic%以下,进一步优选为0.5atomic%以上且1atomic%以下。在镁的添加量为0.1atomic%以下时,初次放电容量大,但是随着反复进行充电深度提高的充放电而放电容量急剧地降低。在镁的添加量超过0.1atomic%且为3atomic%以下时,即使反复进行充电深度提高的充放电初次放电特性及充放电循环特性也都良好。另一方面,在镁的添加量超过3atomic%时,有初次放电容量及充放电循环特性都逐渐地降低的倾向。
<步骤S22>
接着,在图14B所示的步骤S22中,对镁源及氟源进行粉碎而混合。本工序可以从在步骤S12中说明的粉碎及混合的条件选择而实施。
<步骤S23>
接着,在图14B所示的步骤S23中,回收上述粉碎并混合的材料来可以得到添加元素A源(A源)。步骤S23所示的添加元素A源包含多个起始材料,可以被称为混合物。
上述混合物的粒径的D50(中值粒径)优选为600nm以上且20μm以下,更优选为1μm以上且10μm以下。在作为添加元素A源使用一种材料的情况下的D50(中值粒径)也优选为600nm以上且20μm以下,更优选为1μm以上且10μm以下。
在使用上述被微粉化的混合物(包括添加元素A为一种的情况)时,在后面工序中与复合氧化物混合时容易将混合物均匀地附着于复合氧化物的粒子的表面。在混合物均匀地附着于复合氧化物的粒子表面时,在加热后容易使氟及镁均匀地分布或扩散到复合氧化物的表层部,所以是优选的。氟及镁分布的区域也可以被称为表层部。当在表层部中存在有不包含氟及镁的区域时,在充电状态下有时不容易成为后述的O3’型结构。注意,使用氟进行说明,但是也可以使用氯代替氟,可以被称为卤素作为包含上述元素的物质。
<步骤S21>
使用图14C说明与图14B不同的工序。在图14C所示的步骤S21中,准备添加到复合氧化物的四种添加元素A源。就是说,图14C的添加元素A源的种类与图14B不同。除了添加元素A源以外,还可以准备锂源。
作为四种添加元素A源,准备镁源(Mg源)、氟源(F源)、镍源(Ni源)及铝源(Al源)。镁源及氟源可以从图14B所说明的化合物等中选择。作为镍源,可以使用氧化镍、氢氧化镍等。作为铝源,可以使用氧化铝、氢氧化铝等。
<步骤S22及步骤S23>
接着,图14C所示的步骤S22及步骤S23与在图14B中说明的步骤同样。
<步骤S31>
接着,在图14A的步骤S31中,混合复合氧化物及添加元素源A源(A源)。包含锂、添加元素M及氧的复合氧化物中的添加元素M的原子数M与添加元素A源中的镁的原子数Mg之比优选为M:Mg=100:y(0.1≤y≤6),更优选为M:Mg=100:y(0.3≤y≤3)。
为了不损坏复合氧化物,步骤S31的混合优选在比步骤S12的混合更温和的条件下进行。例如,优选在与步骤S12的混合相比旋转数更少或时间更短的条件下进行。另外,与湿法相比干法是更为温和的条件。在混合中,例如可以使用球磨机、砂磨机等。当利用球磨机时,例如优选使用氧化锆球作为介质。
在本实施方式中,使用利用直径1mm的氧化锆球的球磨机以150rpm通过干法进行混合1小时。另外,该混合在露点为-100℃以上且-10℃以下的干燥室进行。
<步骤S32>
接着,在图14A的步骤S32中,回收上述混合了的材料而得到混合物903。在回收时,也可以根据需要进行研碎。
注意,在本实施方式中,将用作氟源的氟化锂及用作镁源的氟化镁添加到通过初始加热后的复合氧化物的方法。但是,本发明不局限于上述方法。可以在步骤S11的阶段,即复合氧化物的起始材料的阶段将镁源及氟源等添加到锂源及过渡金属M源。然后,可以在步骤S13中进行加热来得到添加有镁及氟的LiMO2。在此情况下,不需要分成步骤S11至步骤S14的工序和步骤S21至步骤S23的工序。可以说上述方法是简单且生产率高的方法。
另外,也可以使用预先添加有镁及氟的复合氧化物。在使用添加有镁及氟的复合氧化物时,可以省略步骤S11至步骤S14及步骤S20的工序。可以说上述方法是简单且生产率高的方法。
或者,也可以根据步骤S20对预先添加有镁及氟的复合氧化物还添加镁源及氟源或者镁源、氟源、镍源及铝源。
<步骤S33>
接着,在图14A所示的步骤S33中,加热混合物903。可以从在步骤S13说明的加热条件中选择而实施。加热时间优选为2小时以上。
在此,补充说明加热温度。步骤S33的加热温度的下限值需要为复合氧化物(LiMO2)与添加元素A源的反应进展的温度以上。反应进展的温度设定为发生LiMO2与添加元素A源所包含的元素的相互扩散的温度即可,也可以低于上述材料的熔化温度。以氧化物为例进行说明,已知从熔化温度Tm的0.757倍(塔曼温度Td)发生固相扩散。由此,步骤S33中的加热温度设定为500℃以上即可。
当然,在设定混合物903的至少一部分被熔化的温度以上时,反应更容易进展。例如,在作为添加元素A源包含LiF及MgF2时,LiF与MgF2的共熔点为742℃附近,所以步骤S33的加热温度的下限值优选设定为742℃以上。
另外,以LiCoO2:LiF:MgF2=100:0.33:1(摩尔比)的方式混合而得到的混合物903在差示扫描量热测量(DSC测量)中在830℃附近观察到吸热峰。因此,加热温度的下限值更优选设定为830℃以上。
加热温度越高反应越容易进展,加热时间缩短而生产率提高,所以是优选的。
加热温度的上限设定为低于LiMO2的分解温度(LiCoO2的分解温度为1130℃)。在分解温度附近的温度下,有可能发生微小的LiMO2的分解。因此,加热温度的上限更优选为1000℃以下,进一步优选为950℃以下,更进一步优选为900℃以下。
总之,作为步骤S33的加热温度,优选为500℃以上且1130℃以下,更优选为500℃以上且1000℃以下,进一步优选为500℃以上且950℃以下,更进一步优选为500℃以上且900℃以下。另外,优选为742℃以上且1130℃以下,更优选为742℃以上且1000℃以下,进一步优选为742℃以上且950℃以下,更进一步优选为742℃以上且900℃以下。另外,优选为800℃以上且1100℃以下,更优选为830℃以上且1130℃以下,进一步优选为830℃以上且1000℃以下,更进一步优选为830℃以上且950℃以下,还进一步优选为830℃以上且900℃以下。另外,步骤S33的加热温度优选高于步骤S13的加热温度。
另外,在加热混合物903时,优选将起因于氟源等的氟或氟化物的分压控制为适当的范围内。
在本实施方式所说明的制造方法中,有时作为氟源的LiF等一部分材料被用作熔剂。通过上述功能,可以使加热温度降低到低于复合氧化物(LiMO2)的分解温度,例如742℃以上且950℃以下,可以使镁等添加元素A分布在表层部中,由此可以制造具有良好特性的正极活性物质。
但是,LiF的气体状态的比重比氧轻,所以有可能LiF通过加热被挥发,在LiF被挥发时混合物903中的LiF减少。此时,LiF的作为熔剂的功能降低。因此,需要抑制LiF的挥发的同时进行加热。另外,即使作为氟源等不使用LiF也有可能LiMO2表面的Li与作为氟源的F起反应生成LiF而该LiF被挥发。由此,即使使用其熔点高于LiF的氟化物,也同样地需要抑制挥发。
于是,优选在包含LiF的气氛下加热混合物903,即在加热炉内的LiF的分压高的状态下加热混合物903。通过上述加热,可以抑制混合物903中的LiF的挥发。
本工序的加热优选以不使混合物903的粒子粘合在一起的方式进行。在进行加热时混合物903的粒子粘合在一起时,与气氛中的氧的接触面积缩小,并且添加元素A(例如氟)扩散的路径被阻挡,由此有可能添加元素A(例如镁及氟)不容易分布在表层部中。
另外,可认为在添加元素A(例如氟)在表层部中均匀地分布时可以得到平滑且凹凸较少的正极活性物质。因此,为了在本工序中保持经过步骤S15的加热的表面平滑的状态或者进一步变平滑,优选不使混合物903的粒子粘合在一起。
另外,在利用回转窑进行加热的情况下,优选控制窑(kiln)内的含氧气氛的流量进行加热。例如,优选的是:减少含氧气氛的流量;首先对气氛进行吹扫而向窑内导入氧气氛,然后不进行气氛流动;等。在使氧流动时有可能氟源被蒸发,这是为了保持表面的平滑度不是优选的。
在利用辊道窑进行加热的情况下,例如通过对装有混合物903的容器盖上盖,可以在含LiF气氛下加热混合物903。
补充说明加热时间。加热时间根据加热温度、步骤S14的LiMO2的大小、组成等的条件变化。在LiMO2较小时,有时优选以与LiMO2较大的情况相比低温度或者短时间进行加热。
在图14A的步骤S14的复合氧化物(LiMO2)的中值粒径(D50)为12μm左右时,加热温度例如优选设定为600℃以上且950℃以下。加热时间例如优选设定为3小时以上,更优选设定为10小时以上,进一步优选设定为60小时以上。另外,加热后的降温时间例如优选设定为10小时以上且50小时以下。
另一方面,在步骤S14的复合氧化物(LiMO2)的中值粒径(D50)为5μm左右时,加热温度例如优选设定为600℃以上且950℃以下。加热时间例如优选设定为1小时以上且10小时以下,更优选设定为2小时左右。另外,加热后的降温时间例如优选设定为10小时以上且50小时以下。
<步骤S34>
接着,在图14A所示的步骤S34中,回收加热了的材料而根据需要进行研碎来得到正极活性物质100。此时,优选还对所回收的正极活性物质100进行筛选。通过上述工序,可以制造本发明的一个方式的正极活性物质100。本发明的一个方式的正极活性物质的表面平滑。
本实施方式可以与其他实施方式组合而使用。
(实施方式2)
在本实施方式中,参照图15A及图15B、图16A及图16B、图17A至图17C以及图18A及图18B说明本发明的一个方式的二次电池的例子。
<二次电池的结构例子>
以下,以正极、负极及电解液被外包装体包围的二次电池为例子进行说明。
〔正极〕
正极包括正极活性物质层及正极集流体。正极活性物质层包含正极活性物质,也可以包含导电材料及粘合剂。正极活性物质使用通过在上述实施方式中说明的制造方法制造的正极活性物质。
另外,也可以将在上述实施方式中说明的正极活性物质和其他正极活性物质混合而使用。
作为其他正极活性物质,例如有具有橄榄石型晶体结构、层状岩盐型晶体结构或尖晶石型晶体结构的复合氧化物等。例如,可以举出LiFePO4、LiFeO2、LiNiO2、LiMn2O4、V2O5、Cr2O5、MnO2等化合物。
另外,作为其他正极活性物质,优选对LiMn2O4等含有锰的具有尖晶石型晶体结构的含锂材料中混合镍酸锂(LiNiO2或LiNi1-xMxO2(0<x<1)(M=Co、Al等))。通过采用该结构可以提高二次电池的特性。
另外,作为其他正极活性物质,可以使用能够以组成式LiaMnbMcOd表示的锂锰复合氧化物。在此,元素M优选使用从锂、锰之外的金属元素选择的金属元素或硅、磷,更优选使用镍。另外,在对锂锰复合氧化物的粒子整体进行测量时,优选放电时满足0<a/(b+c)<2、c>0且0.26≤(b+c)/d<0.5。锂锰复合氧化物的粒子整体的金属、硅、磷等的组成例如可以利用ICP-MS(感应耦合等离子体质谱)测量。另外,锂锰复合氧化物的粒子整体的氧的组成,例如可以利用EDX(能量分散型X射线分析)进行测量。另外,还可以与ICP-MS分析一起利用融合气体分析(fusion gas analysis)、XAFS(X-ray Absorption Fine Structure:X射线吸收精细结构)分析的化合价评价来算出。注意,锂锰复合氧化物是指至少包含锂和锰的氧化物,还可以包含选自铬、钴、铝、镍、铁、镁、钼、锌、铟、镓、铜、钛、铌、硅和磷等所组成的组中的至少一种元素。
以下,作为一个例子说明作为活性物质层200的导电材料采用石墨烯或石墨烯化合物时的截面结构例子。
图15A示出活性物质层200的纵截面图。活性物质层200包含:粒状正极活性物质100;用作导电材料的石墨烯或石墨烯化合物201;以及粘合剂(未图示)。
本说明书等中的石墨烯化合物201包括多层石墨烯、多石墨烯(multi graphene)、氧化石墨烯、多层氧化石墨烯、多氧化石墨烯、被还原的氧化石墨烯、被还原的多层氧化石墨烯、被还原的多氧化石墨烯、石墨烯量子点等。石墨烯化合物是指含有碳且具有平板状、片状等形状的具有由碳原子组成的六元环所形成的二维结构的化合物。另外,可以将由碳原子组成的六元环所形成的二维结构称为碳片。石墨烯化合物也可以具有官能团。此外,石墨烯化合物优选具有弯曲的形状。此外,石墨烯化合物也可以蜷成碳纳米纤维那样。
在本说明书等中,氧化石墨烯含有碳和氧,具有片状形状,并包括官能团,尤其是包括环氧基、羧基或羟基。
在本说明书等中,被还原的氧化石墨烯含有碳和氧具有片状形状且具有由碳原子组成的六元环所形成的二维结构。一层被还原的氧化石墨烯就可以发挥作用,但是也可以采用叠层结构。被还原的氧化石墨烯优选具有碳浓度大于80atomic%且氧浓度为2atomic%以上且15atomic%以下的部分。通过具有该碳浓度及氧浓度,少量的被还原氧化石墨烯也可以具有导电性高的导电材料的功能。另外,优选被还原的氧化石墨烯的拉曼光谱的G带与D带的强度比G/D为1以上。具有该强度比的被还原的氧化石墨烯,即便是少量,也可以具有导电性高的导电材料的功能。
石墨烯化合物有时具有优良的电特性如高导电性以及优良的物理特性如高柔软性及高机械强度。另外,石墨烯化合物具有片状形状。石墨烯化合物有时具有弯曲面,可以实现接触电阻低的面接触。石墨烯化合物有时即使薄也具有非常高的导电性,因此可以在活性物质层中以少量高效率地形成导电路径。所以,通过将石墨烯化合物用作导电材料,可以增大活性物质与导电材料的接触面积。石墨烯化合物优选覆盖活性物质的80%以上的面积。注意,优选石墨烯化合物缠绕(cling)活性物质粒子的至少一部分。优选石墨烯化合物覆盖活性物质粒子的至少一部分。优选石墨烯化合物的形状与活性物质粒子的形状的至少一部分一致。该活性物质粒子的形状是指如单个活性物质粒子所具有的凹凸或者由多个活性物质粒子形成的凹凸。优选石墨烯化合物围绕活性物质粒子的至少一部分。石墨烯化合物可以有孔。
在使用粒径小的活性物质粒子,例如使用粒径为1μm以下的活性物质粒子时,活性物质粒子的比表面积大,所以需要更多的连接活性物质粒子彼此之间的导电路径。在这种情况下,优选使用即便少量也能够高效地形成导电路径的石墨烯化合物。
由于具有上述性质,所以作为需要进行急速充电及急速放电的二次电池将石墨烯化合物用作导电材料是尤其有效的。例如,两轮或四轮的车载二次电池、无人机用二次电池等有时需要具有急速充电及急速放电特性。移动电子设备等有时也需要具有急速充电特性。急速充电及急速放电也可以称为高速率充电及高速率放电。例如,是指1C、2C或5C以上的充电及放电。
在活性物质层200的纵截面中,如图15B所示,片状的石墨烯或石墨烯化合物201大致均一地分散在活性物质层200的内部。在图15B中,虽然示意性地以粗线示出石墨烯或石墨烯化合物201,但实际上石墨烯或石墨烯化合物201是具有碳分子的单层或多层的厚度的薄膜。由于多个石墨烯或石墨烯化合物201以覆盖多个粒状正极活性物质100的一部分的方式或者以贴在多个粒状正极活性物质100的表面的方式形成,所以多个石墨烯或石墨烯化合物201与多个粒状正极活性物质100形成面接触。
在此,通过使多个石墨烯或石墨烯化合物彼此结合,可以形成网状的石墨烯化合物薄片(以下称为石墨烯化合物网或石墨烯网)。当石墨烯网覆盖活性物质时,石墨烯网可以被用作使活性物质彼此结合的粘合剂。因此,可以减少粘合剂的量或不使用粘合剂,由此可以增高电极体积及电极重量中活性物质所占的比率。也就是说,可以提高二次电池的充放电容量。
在此,优选的是,作为石墨烯或石墨烯化合物201使用氧化石墨烯,并通过对其混合活性物质形成成为活性物质层200的层之后进行还原。就是说,完成后的活性物质层优选包含被还原的氧化石墨烯。通过在石墨烯或石墨烯化合物201的形成中使用极性溶剂中的分散性极高的氧化石墨烯,石墨烯或石墨烯化合物201可以大致均一地分散在活性物质层200的内部。通过使溶剂从包含均一地分散的氧化石墨烯的分散介质中挥发而去除,氧化石墨烯被还原,因此残留在活性物质层200中的石墨烯或石墨烯化合物201相互部分重叠,以形成面接触的方式分散,由此可以形成三维导电路径。此外,作为氧化石墨烯的还原,可以通过加热处理进行,也可以使用还原剂进行。
因此,不同于与活性物质形成点接触的乙炔黑等粒状导电材料,石墨烯或石墨烯化合物201可以形成接触电阻低的面接触,所以可以以比一般的导电材料相比少的石墨烯及石墨烯化合物201提高粒状正极活性物质100与石墨烯或石墨烯化合物201间的导电性。因此,可以增加活性物质层200中的正极活性物质100所占的比率。由此,可以增加二次电池的放电容量。
此外,通过预先使用喷雾干燥装置,可以以覆盖活性物质的整个表面的方式形成用作覆膜的导电材料的石墨烯化合物,在活性物质间以石墨烯化合物形成导电路径。
另外,也可以除了石墨烯化合物以外还混合形成石墨烯化合物时使用的材料而将其用于活性物质层200。例如,也可以将用作形成石墨烯化合物时的催化剂的粒子与石墨烯化合物混合。作为形成石墨烯化合物时的催化剂,例如可以举出包含氧化硅(SiO2、SiOx(x<2))、氧化铝、铁、镍、钌、铱、铂、铜、锗等的粒子。该粒子的中值粒径(D50)优选为1μm以下,更优选为100nm以下。
[粘合剂]
作为粘合剂优选例如使用丁苯橡胶(SBR:styrene-butadiene rubber)、苯乙烯-异戊二烯-苯乙烯橡胶(styrene-isoprene-styrene rubber)、丙烯腈-丁二烯橡胶、丁二烯橡胶(butadiene rubber)、乙烯-丙烯-二烯共聚物(ethylene-propylene-dienecopolymer)等橡胶材料。作为粘合剂也可以使用氟橡胶。
此外,作为粘合剂例如优选使用水溶性高分子。作为水溶性高分子,例如也可以使用多糖类等。作为多糖类,可以使用羧甲基纤维素(CMC)、甲基纤维素、乙基纤维素、羟丙基纤维素、二乙酰纤维素、再生纤维素等纤维素衍生物和淀粉等。更优选并用这些水溶性高分子和上述橡胶材料。
或者,作为粘合剂,优选使用聚苯乙烯、聚丙烯酸甲酯、聚甲基丙烯酸甲酯(PMMA)、聚丙烯酸钠、聚乙烯醇(PVA)、聚环氧乙烷(PEO)、聚环氧丙烷、聚酰亚胺、聚氯乙烯、聚四氟乙烯、聚乙烯、聚丙烯、聚异丁烯、聚对苯二甲酸乙二醇酯、尼龙、聚偏二氟乙烯(PVDF)、聚丙烯腈(PAN)、乙烯丙烯二烯聚合物、聚乙酸乙烯酯、硝酸纤维素等材料。
作为粘合剂,也可以组合使用上述材料中的多种。
[正极集流体]
作为正极集流体,可以使用不锈钢、金、铂、铝、钛等金属及它们的合金等导电性高的材料。此外,用于正极集流体的材料优选不因正极的电位而溶解。此外,可以使用添加有硅、钛、钕、钪、钼等的提高耐热性的元素的铝合金。此外,也可以使用与硅起反应形成硅化物的金属元素。作为与硅起反应形成硅化物的金属元素,有锆、钛、铪、钒、铌、钽、铬、钼、钨、钴、镍等。作为正极集流体可以适当地使用箔状、板状、片状、网状、冲孔金属网状、拉制金属网状等形状。正极集流体的厚度优选为5μm以上且30μm以下。
〔负极〕
负极包括负极活性物质层及负极集流体。负极活性物质层也可以包含导电材料及粘合剂。
[负极活性物质]
作为负极活性物质,例如可以使用合金类材料及/或碳类材料等。
作为负极活性物质,可以使用能够通过与锂的合金化/脱合金化反应进行充放电反应的元素。例如,可以使用包含选自硅、锡、镓、铝、锗、铅、锑、铋、银、锌、镉和铟等中的至少一个的材料。这种元素的充放电容量比碳大,尤其是硅的理论容量大,为4200mAh/g。因此,优选将硅用于负极活性物质。此外,也可以使用含有这些元素的化合物。例如可以举出SiO、Mg2Si、Mg2Ge、SnO、SnO2、Mg2Sn、SnS2、V2Sn3、FeSn2、CoSn2、Ni3Sn2、Cu6Sn5、Ag3Sn、Ag3Sb、Ni2MnSb、CeSb3、LaSn3、La3Co2Sn7、CoSb3、InSb和SbSn等。在此,有时将能够通过与锂的合金化/脱合金化反应进行充放电反应的元素及包含该元素的化合物等称为合金类材料。
在本说明书等中,SiO例如是指一氧化硅。或者SiO也可以表示为SiOx。在此,x优选表示1附近的值。例如x优选为0.2以上且1.5以下,更优选为0.3以上且1.2以下。或者,优选为0.2以上且1.2以下。或者,优选为0.3以上且1.5以下。
作为碳类材料,可以使用石墨、易石墨化碳(软碳)、难石墨化碳(硬碳)、碳纳米管、石墨烯、碳黑等。
作为石墨,可以举出人造石墨或天然石墨等。作为人造石墨例如可以举出中间相碳微球(MCMB)、焦炭基人造石墨(coke-based artificial graphite)、沥青基人造石墨(pitch-based artificial graphite)等。在此,作为人造石墨可以使用具有球状形状的球状石墨。例如,MCMB有时具有球状形状,所以是优选的。此外,MCMB比较容易减小其表面积,所以有时是优选的。作为天然石墨,例如可以举出鳞片状石墨、球状化天然石墨等。
当锂离子被嵌入在石墨中时(锂-石墨层间化合物的生成时)石墨示出与锂金属相同程度的低电位(0.05V以上且0.3V以下vs.Li/Li+)。由此,锂离子二次电池可以示出高工作电压。石墨还有如下优点:单位体积的充放电容量较大;体积膨胀比较小;较便宜;与锂金属相比安全性高等,所以是优选的。
此外,作为负极活性物质,可以使用氧化物诸如二氧化钛(TiO2)、锂钛氧化物(Li4Ti5O12)、锂-石墨层间化合物(LixC6)、五氧化铌(Nb2O5)、氧化钨(WO2)、氧化钼(MoO2)等。
此外,作为负极活性物质,可以使用包含锂和过渡金属的氮化物的具有Li3N型结构的Li3-xMxN(M=Co、Ni、Cu)。例如,Li2.6Co0.4N3示出较大的充放电容量(900mAh/g,1890mAh/cm3),所以是优选的。
当作为负极活性物质使用包含锂和过渡金属的氮化物时,在负极活性物质中含有锂离子,因此可以将该负极活性物质与用作正极活性物质的V2O5、Cr3O8等不包含锂离子的材料组合,所以是优选的。注意,当将含有锂离子的材料用作正极活性物质时,通过预先使包含在正极活性物质中的锂离子脱离,作为负极活性物质,也可以使用包含锂和过渡金属的氮化物。
此外,也可以将引起转化反应的材料用于负极活性物质。例如,将氧化钴(CoO)、氧化镍(NiO)、氧化铁(FeO)等不与锂形成合金的过渡金属氧化物用于负极活性物质。作为引起转化反应的材料,还可以举出Fe2O3、CuO、Cu2O、RuO2、Cr2O3等氧化物、CoS0.89、NiS、CuS等硫化物、Zn3N2、Cu3N、Ge3N4等氮化物、NiP2、FeP2、CoP3等磷化物、FeF3、BiF3等氟化物。
作为负极活性物质层可包含的导电材料及粘合剂,可以使用与正极活性物质层可包含的导电材料及粘合剂同样的材料。
[负极集流体]
作为负极集流体,可以使用与正极集流体同样的材料。此外,作为负极集流体,优选使用不与锂等载体离子合金化的材料。
〔电解液〕
电解液包含溶剂及电解质。作为电解液的溶剂,优选使用非质子有机溶剂,例如可以使用碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸丁烯酯、碳酸氯乙烯酯、碳酸亚乙烯酯、γ-丁内酯、γ-戊内酯、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、甲酸甲酯、乙酸甲酯、乙酸乙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、1,3-二氧六环、1,4-二氧六环、乙二醇二甲醚(DME)、二甲亚砜、二乙醚、甲基二甘醇二甲醚(methyl diglyme)、乙腈、苯腈、四氢呋喃、环丁砜、磺内酯等中的一种,或者可以以任意组合及比率使用上述中的两种以上。
此外,通过作为电解液的溶剂使用一种或多种具有阻燃性及难挥发性的离子液体(室温熔融盐),即使因二次电池的内部短路及/或过充电等而使内部温度上升也可以防止二次电池的破裂及起火等。离子液体由阳离子和阴离子构成,包含有机阳离子和阴离子。作为用于电解液的有机阳离子,可以举出季铵阳离子、叔锍阳离子及季鏻阳离子等脂肪族鎓阳离子或咪唑鎓阳离子及吡啶鎓阳离子等芳香族阳离子。此外,作为用于电解液的阴离子可以举出一价酰胺类阴离子、一价甲基化物类阴离子、氟磺酸阴离子、全氟烷基磺酸阴离子、四氟硼酸阴离子、全氟烷基硼酸阴离子、六氟磷酸阴离子或全氟烷基磷酸阴离子等。
此外,作为溶解于上述溶剂中的电解质,例如可以使用LiPF6、LiClO4、LiAsF6、LiBF4、LiAlCl4、LiSCN、LiBr、LiI、Li2SO4、Li2B10Cl10、Li2B12Cl12、LiCF3SO3、LiC4F9SO3、LiC(CF3SO2)3、LiC(C2F5SO2)3、LiN(CF3SO2)2、LiN(C4F9SO2)(CF3SO2)、LiN(C2F5SO2)2等锂盐中的一种,或者可以以任意组合及比率使用上述中的两种以上。
作为用于二次电池的电解液,优选使用粒状的尘埃及电解液的构成元素以外的元素(以下,简称为“杂质”)的含量少的高纯度化的电解液。具体而言,杂质在电解液的重量中所占的比率优选为1%以下,更优选为0.1%以下,进一步优选为0.01%以下。
此外,也可以对电解液添加碳酸亚乙烯酯、丙磺酸内酯(PS)、叔丁基苯(TBB)、氟代碳酸乙烯酯(FEC)、双乙二酸硼酸锂(LiBOB)或丁二腈、己二腈等二腈化合物等添加剂。将添加的材料的浓度可以设定为例如在溶剂整体中占0.1wt%以上且5wt%以下。VC或LiBOB容易形成良好的覆膜,所以是尤其优选的。
此外,也可以使用用电解液使聚合物溶胀了的聚合物凝胶电解质。
此外,通过使用聚合物凝胶电解质,针对漏液性的安全性得到提高。而且,可以实现二次电池的薄型化以及轻量化。
作为凝胶化的聚合物,可以使用硅酮凝胶、丙烯类酸胶、丙烯腈类凝胶、聚氧化乙烯类凝胶、聚氧化丙烯类凝胶、氟类聚合物凝胶等。
作为聚合物,例如,可以使用聚氧化乙烯(PEO)等具有聚氧化烷烯结构的聚合物、PVDF及聚丙烯腈等、以及包含这些的共聚物等。例如,可以使用作为PVDF及六氟丙烯(HFP)的共聚物的PVDF-HFP。此外,所形成的聚合物也可以具有多孔形状。
此外,可以使用包含硫化物类及氧化物类等的无机材料的固体电解质及包含PEO(聚氧化乙烯)类等的高分子材料的固体电解质代替电解液。当使用固体电解质时,不需要设置隔离体及间隔物。此外,由于可以使电池整体固态化,所以没有漏液的担忧而显著提高安全性。
[隔离体]
此外,二次电池优选包括隔离体。作为隔离体,例如可以使用如下材料:纸、无纺布、玻璃纤维、陶瓷或包含尼龙(聚酰胺)、维尼纶(聚乙烯醇类纤维)、聚酯、丙烯酸树脂、聚烯烃、聚氨酯的合成纤维等。优选将隔离体加工为袋状,并以包围正极和负极中的任一个的方式配置。
隔离体可以具有多层结构。例如,可以对聚丙烯、聚乙烯等有机材料薄膜涂敷陶瓷类材料、氟类材料、聚酰胺类材料或其混合物等。作为陶瓷类材料,例如可以使用氧化铝粒子、氧化硅粒子等。作为氟类材料,例如可以使用PVDF、聚四氟乙烯等。作为聚酰胺类材料,例如可以使用尼龙、芳族聚酰胺(间位芳族聚酰胺、对位芳族聚酰胺)等。
通过涂敷陶瓷类材料抗氧化性得到提高,由此可以抑制高电压充电和放电时隔离体劣化,从而可以提高二次电池的可靠性。通过涂敷氟类材料易于使隔离体与电极密接,而可以提高输出特性。通过涂敷聚酰胺类材料(尤其是芳族聚酰胺)耐热性得到提高,由此可以提高二次电池的安全性。
例如,也可以对聚丙烯薄膜的两面涂敷氧化铝与芳族聚酰胺的混合材料。或者,也可以对聚丙烯薄膜的与正极接触的面涂敷氧化铝与芳族聚酰胺的混合材料而对与负极接触的面涂敷氟类材料。
通过采用多层结构的隔离体即使隔离体的总厚度较小也可以确保二次电池的安全性,因此可以增大二次电池的单位体积的充放电容量。
[外包装体]
作为二次电池所包括的外包装体例如可以使用铝等金属材料及/或树脂材料等。此外,也可以使用薄膜状的外包装体。作为薄膜,例如可以使用如下三层结构的薄膜:在由聚乙烯、聚丙烯、聚碳酸酯、离聚物、聚酰胺等的材料构成的膜上设置铝、不锈钢、铜、镍等的柔性优良的金属薄膜,在该金属薄膜上还可以设置聚酰胺类树脂、聚酯类树脂等的绝缘性合成树脂膜作为外包装体的外表面。
(实施方式3)
在本实施方式中,对包括上述实施方式所说明的正极的二次电池的形状的例子进行说明。用于本实施方式所说明的二次电池的材料可以参照上述实施方式的记载。
<硬币型二次电池>
首先,说明硬币型二次电池的一个例子。图16A是硬币型(单层扁平型)二次电池的外观图,图16B是其截面图。
在硬币型二次电池300中,兼用作正极端子的正极罐301和兼用作负极端子的负极罐302由使用聚丙烯等形成的垫片303绝缘并密封。正极304由正极集流体305和以与此接触的方式设置的正极活性物质层306形成。负极307由负极集流体308和以与此接触的方式设置的负极活性物质层309形成。
用于硬币型二次电池300的正极304及负极307分别包括的活性物质层可以只形成在正极和负极中的一个表面。
作为正极罐301及负极罐302,可以使用对电解液具有抗腐蚀性的镍、铝、钛等金属、它们的合金及/或它们和其他金属的合金(例如不锈钢等)。此外,为了防止因电解液所引起的腐蚀,正极罐301及负极罐302优选被镍或铝等覆盖。正极罐301与正极304电连接,并且负极罐302与负极307电连接。
通过将这些负极307、正极304及隔离体310浸渗在电解质中,如图16B所示,将正极罐301设置下方按顺序层叠正极304、隔离体310、负极307及负极罐302,并且夹着垫片303压合正极罐301和负极罐302来制造硬币型二次电池300。
通过将上述实施方式所说明的正极活性物质用于正极304,可以实现充放电容量大且循环特性优异的硬币型二次电池300。
在此,参照图16C说明在对二次电池进行充电时电流如何流过。当将使用锂的二次电池看作一个闭路时,锂离子迁移的方向和电流流动的方向相同。注意,在使用锂的二次电池中,由于阳极及阴极、氧化反应及还原反应根据充电或放电调换,所以将反应电位高的电极称为正极,而将反应电位低的电极称为负极。由此,在本说明书中,即使在充电、放电、供应反向脉冲电流以及供应充电电流时也将正极称为“正极”或“+极”,而将负极称为“负极”或“-极”。如果使用与氧化反应及还原反应有关的阳极及阴极的术语,则充电时和放电时的阳极与阴极是相反的,这有可能引起混乱。因此,在本说明书中,不使用阳极及阴极的术语。当使用阳极及阴极的术语时,明确表示是充电时还是放电时,并示出是对应正极(+极)还是负极(-极)。
图16C所示的两个端子与充电器连接,对二次电池300进行充电。随着二次电池300的充电的进展,电极之间的电位差增大。
<圆筒型二次电池>
接着,参照图17A至图17D对圆筒型二次电池的例子进行说明。图17A示出圆筒型二次电池600的外观图。图17B是示意性地示出圆筒型二次电池600的截面图。如图17B所示,圆筒型二次电池600在顶面具有正极盖(电池盖)601,并在侧面及底面具有电池罐(外装罐)602。上述正极盖601与电池罐(外装罐)602通过垫片(绝缘垫片)610绝缘。
在中空圆柱状电池罐602的内侧设置有电池元件,在该电池元件中,带状的正极604和带状的负极606夹着隔离体605被卷绕。虽然未图示,但是电池元件以中心销为中心被卷绕。电池罐602的一端关闭且另一端开着。作为电池罐602可以使用对电解液具有抗腐蚀性的镍、铝、钛等金属、它们的合金及它们和其他金属的合金(例如不锈钢等)。此外,为了防止电解液所引起的腐蚀,电池罐602优选被镍及铝等覆盖。在电池罐602的内侧,正极、负极及隔离体被卷绕而成的电池元件由对置的一对绝缘板608和绝缘板609夹着。此外,在设置有电池元件的电池罐602的内部中注入有非水电解液(未图示)。作为非水电解液,可以使用与硬币型二次电池相同的电解液。
因为用于圆筒型蓄电池的正极及负极被卷绕,从而活性物质优选形成在集流体的两个表面。正极604与正极端子(正极集流导线)603连接,而负极606与负极端子(负极集流导线)607连接。正极端子603及负极端子607都可以使用铝等金属材料。将正极端子603电阻焊接到安全阀机构612,而将负极端子607电阻焊接到电池罐602底。安全阀机构612与正极盖601通过PTC(Positive Temperature Coefficient:正温度系数)元件611电连接。当电池的内压上升到超过规定的阈值时,安全阀机构612切断正极盖601与正极604的电连接。此外,PTC元件611是在温度上升时其电阻增大的热敏感电阻元件,并通过电阻的增大来限制电流量以防止异常发热。作为PTC元件,可以使用钛酸钡(BaTiO3)类半导体陶瓷等。
此外,如图17C所示那样,也可以将多个二次电池600夹在导电板613和导电板614之间而构成模块615。多个二次电池600可以被并联连接、被串联连接或者被并联连接后再被串联连接。通过构成包括多个二次电池600的模块615,可以提取较大电力。
图17D是模块615的俯视图。为了明确起见,以虚线表示导电板613。如图17D示出,模块615也可以包括使多个二次电池600电连接的导线616。可以以与导线616重叠的方式在导线616上设置导电板。此外,也可以在多个二次电池600之间包括温度控制装置617。在二次电池600过热时可以通过温度控制装置617冷却,在二次电池600过冷时可以通过温度控制装置617加热。由此模块615的性能不容易受到外部气温的影响。温度控制装置617所包括的热媒体优选具有绝缘性及不燃性。
通过将上述实施方式所说明的正极活性物质用于正极604,可以实现充放电容量大且循环特性优异的圆筒型二次电池600。
<包括二次电池的蓄电装置的结构例子>
参照图18A及图18B、图19A至图19D对二次电池的其他结构例子进行说明。
图18A及图18B是电池组的外观图。电池组包括二次电池913和电路板900。二次电池913通过电路板900与天线914连接。在二次电池913上贴合有签条910。再者,如图18B所示,二次电池913与端子951和端子952连接。另外,电路板900被密封剂915固定。
电路板900包括端子911和电路912。端子911与端子951、端子952、天线914及电路912连接。此外,也可以设置多个端子911,将多个端子911分别用作控制信号输入端子、电源端子等。
电路912也可以设置在电路板900的背面。此外,天线914的形状不局限于线圈状,例如也可以为线状、板状。此外,还可以使用平面天线、口径天线、行波天线、EH天线、磁场天线或介质天线等天线。或者,天线914也可以为平板状的导体。该平板状的导体也可以用作电场耦合用导体之一。换言之,也可以将天线914用作电容器所具有的两个导体之一。由此,不但利用电磁、磁场,而且还可以利用电场交换电力。
电池组在天线914与二次电池913之间包括层916。层916例如具有可遮蔽来自二次电池913的电磁场的功能。作为层916,例如可以使用磁性体。
电池组的结构不局限于图18A及图18B所示的结构。
例如,如图19A及图19B所示,也可以在图18A及图18B所示的二次电池913的对置的一对表面分别设置天线。图19A是示出上述一对表面中的一个表面一侧的外观图,图19B是示出上述一对表面中的另一个表面一侧的外观图。此外,与图18A和图18B所示的二次电池相同的部分可以适当地援用图18A和图18B所示的二次电池的说明。
如图19A所示,在二次电池913的一对表面中的一个表面上夹着层916设置有天线914,如图19B所示,在二次电池913的一对表面中的另一个表面上夹着层917设置有天线918。层917例如具有可遮蔽来自二次电池913的电磁场的功能。作为层917,例如可以使用磁性体。
通过采用上述结构,可以增大天线914和天线918双方的尺寸。天线918例如具有与外部设备进行数据通信的功能。作为天线918,例如可以使用具有能应用于天线914的形状的天线。作为利用天线918的二次电池与其他设备之间的通信方法,可以使用NFC(近距离无线通讯)等能够在二次电池与其他设备之间使用的响应方式等。
或者,如图19C所示,也可以在图18A及图18B所示的二次电池913上设置显示装置920。显示装置920与端子911电连接。此外,也可以在设置有显示装置920的部分不贴合有签条910。此外,与图18A及图18B所示的二次电池相同的部分可以适当地援用图18A及图18B所示的二次电池的说明。
在显示装置920上,例如可以显示示出是否正在进行充电的图像、示出蓄电量的图像等。作为显示装置920,例如可以使用电子纸、液晶显示装置、电致发光(也称为EL)显示装置等。例如,通过使用电子纸可以降低显示装置920的耗电量。
或者,如图19D所示,也可以在图18A和图18B所示的二次电池913中设置传感器921。传感器921通过端子922与端子911电连接。此外,与图18A和图18B所示的二次电池相同的部分可以适当地援用图18A和图18B所示的二次电池的说明。
传感器921例如可以具有测量如下因素的功能:位移、位置、速度、加速度、角速度、转动数、距离、光、液、磁、温度、化学物质、声音、时间、硬度、电场、电流、电压、电力、辐射线、流量、湿度、斜率、振动、气味或红外线。通过设置传感器921,例如可以检测出示出设置有二次电池的环境的数据(温度等),而将其储存在电路912中的存储器。
(实施方式4)
在本实施方式中,说明将本发明的一个方式的二次电池安装在电子设备的例子。
首先,图20A至图20G示出将上述实施方式所说明的可弯曲的二次电池安装在电子设备的例子。作为应用可弯曲的二次电池的电子设备,例如可以举出电视装置(也称为电视或电视接收机)、用于计算机等的显示器、数码相机、数码摄像机、数码相框、移动电话机(也称为移动电话、移动电话装置)、便携式游戏机、便携式信息终端、声音再现装置、弹珠机等大型游戏机等。
此外,也可以将具有柔性的二次电池沿着在房屋及高楼等的内壁或外壁、汽车的内部装修或外部装修的曲面组装。
图20A示出移动电话机的一个例子。移动电话机7400除了组装在框体7401中的显示部7402之外还具备操作按钮7403、外部连接端口7404、扬声器7405、麦克风7406等。此外,移动电话机7400具有二次电池7407。通过将本发明的一个方式的二次电池用作上述二次电池7407,可以提供轻量且使用寿命长的移动电话机。
图20B示出使移动电话机7400弯曲的状态。在因外部的力量使移动电话机7400变形而使其整体弯曲时,设置在其内部的二次电池7407也被弯曲。图20C示出此时被弯曲的二次电池7407的状态。二次电池7407是薄型蓄电池。二次电池7407在弯曲状态下被固定。二次电池7407具有与集流体电连接的导线电极。例如,集流体是铜箔,使其一部分与镓合金化,提高与接触于集流体的活性物质层的密接性,使得二次电池7407在被弯曲的状态下的可靠性得到提高。
图20D示出手镯型显示装置的一个例子。便携式显示装置7100具备框体7101、显示部7102、操作按钮7103及二次电池7104。此外,图20E示出被弯曲的二次电池7104。当将弯曲的二次电池7104戴上使用者的胳膊时,二次电池7104的框体变形,使得二次电池7104的一部分或全部的曲率发生变化。以等价圆半径的值表示曲线的任意点的弯曲程度的值是曲率半径,并且将曲率半径的倒数称为曲率。具体而言,框体或二次电池7104的主表面的一部分或全部在曲率半径为40mm以上且150mm以下的范围变形。只要二次电池7104的主表面中的曲率半径在40mm以上且150mm以下的范围内,就可以保持高可靠性。通过将本发明的一个方式的二次电池用作上述二次电池7104,可以提供轻量且使用寿命长的便携式显示装置。
图20F是手表型便携式信息终端的一个例子。便携式信息终端7200包括框体7201、显示部7202、带子7203、带扣7204、操作按钮7205、输入输出端子7206等。
便携式信息终端7200可以执行移动电话、电子邮件、文章的阅读及编写、音乐播放、网络通信、电脑游戏等各种应用程序。
显示部7202的显示面是弯曲的,能够沿着弯曲的显示面进行显示。此外,显示部7202具备触摸传感器,可以用手指或触屏笔等触摸屏幕来进行操作。例如,通过触摸显示于显示部7202的图标7207,可以启动应用程序。
操作按钮7205除了时刻设定之外,还可以具有电源开关、无线通信的开关、静音模式的设置及取消、省电模式的设置及取消等各种功能。例如,通过利用组装在便携式信息终端7200中的操作系统,可以自由地设定操作按钮7205的功能。
此外,便携式信息终端7200可以执行被通信标准化的近距离无线通信。例如,通过与可无线通信的耳麦相互通信,可以进行免提通话。
此外,便携式信息终端7200具备输入输出端子7206,可以通过连接器直接向其他信息终端发送数据或从其他信息终端接收数据。此外,也可以通过输入输出端子7206进行充电。此外,充电工作也可以利用无线供电进行,而不利用输入输出端子7206。
便携式信息终端7200的显示部7202包括本发明的一个方式的二次电池。通过使用本发明的一个方式的二次电池,可以提供轻量且使用寿命长的便携式信息终端。例如,可以将弯曲状态的图20E所示的二次电池7104组装在框体7201的内部,或者,将二次电池7104以能够弯曲的状态组装在带子7203的内部。
便携式信息终端7200优选包括传感器。作为传感器例如优选安装指纹传感器、脉搏传感器、体温传感器等人体传感器、触摸传感器、压力传感器、加速度传感器等。
图20G示出袖章型显示装置的一个例子。显示装置7300具备显示部7304以及本发明的一个方式的二次电池。显示装置7300也可以在显示部7304具备触摸传感器,并被用作便携式信息终端。
显示部7304的显示面是弯曲的,能够沿着弯曲的显示面进行显示。此外,显示装置7300可以利用被通信标准化的近距离无线通信等改变显示情况。
显示装置7300具备输入输出端子,可以通过连接器直接向其他信息终端发送数据或从其他信息终端接收数据。此外,也可以通过输入输出端子进行充电。此外,充电工作也可以利用无线供电进行,而不利用输入输出端子。
通过将本发明的一个方式的二次电池用作显示装置7300所包括的二次电池,可以提供轻量且使用寿命长的显示装置。
此外,参照图20H、图21A至图21C及图22说明将上述实施方式所示的循环特性优异的二次电池安装在电子设备的例子。
通过将本发明的一个方式的二次电池用作日用电子设备的二次电池,可以提供轻量且使用寿命长的产品。例如,作为日用电子设备,可以举出电动牙刷、电动剃须刀、电动美容器等。这些产品中的二次电池被期待为了便于使用者容易握持而具有棒状形状且为小型、轻量、大充放电容量。
图20H是被称为烟液容纳式吸烟装置(电子烟)的装置的立体图。在图20H中,电子烟7500包括:包括加热元件的雾化器(atomizer)7501;对雾化器供电的二次电池7504;包括液体供应容器及传感器等的烟弹(cartridge)7502。为了提高安全性,也可以将防止二次电池7504的过充电及/或过放电的保护电路电连接到二次电池7504。图20H所示的二次电池7504包括用来与充电器连接的外部端子。在取拿时,二次电池7504位于顶端部,因此优选其总长度较短且重量较轻。由于本发明的一个方式的二次电池的充放电容量大且循环特性优异,所以可以提供在长期间能够长时间使用的小型轻量的电子烟7500。
接着,图21A和图21B示出能够进行对折的平板终端的一个例子。图21A和图21B所示的平板终端9600包括框体9630a、框体9630b、连接框体9630a和框体9630b的可动部9640、包括显示部9631a和显示部9631b的显示部9631、开关9625至开关9627、扣件9629以及操作开关9628。通过将具有柔性的面板用于显示部9631,可以实现显示部更大的平板终端。图21A示出打开平板终端9600的状态,图21B示出合上平板终端9600的状态。
平板终端9600在框体9630a及框体9630b的内部具备蓄电体9635。蓄电体9635穿过可动部9640设置在框体9630a及框体9630b。
在显示部9631中,可以将其整体或一部分的区域用作触摸面板的区域,并且可以通过接触在上述区域上所显示的包含图标的图像、文字、输入框等来输入数据。例如,使框体9630a一侧的显示部9631a的整个面显示键盘并使框体9630b一侧的显示部9631b显示文字、图像等的信息而使用。
此外,使框体9630b一侧的显示部9631b显示键盘并使框体9630a一侧的显示部9631a显示文字、图像等的信息而使用。此外,也可以通过使显示部9631显示触摸面板上的键盘显示切换按钮而使用手指或触屏笔等接触,在显示部9631上显示键盘。
此外,可以同时对框体9630a一侧的显示部9631a的触摸面板区域和框体9630b一侧的显示部9631b的触摸面板区域进行触摸输入。
此外,开关9625至开关9627除了被用作操作平板终端9600的接口以外,还可以被用作可进行各种功能的切换的接口。例如,开关9625至开关9627中的至少一个可以被用作切换平板终端9600的电源的开启/关闭的开关。此外,例如,开关9625至开关9627中的至少一个可以具有:切换竖屏显示和横屏显示等显示的方向的功能;以及切换黑白显示和彩色显示等的功能。此外,例如,开关9625至开关9627中的至少一个可以具有调节显示部9631的亮度的功能。此外,根据通过平板终端9600所内置的光传感器所检测的使用时的外光的光量,可以使显示部9631的亮度最优化。注意,平板终端除了光传感器以外还可以内置陀螺仪和加速度传感器等检测倾斜度的传感器等的其他检测装置。
此外,图21A示出框体9630a一侧的显示部9631a与框体9630b一侧的显示部9631b的显示面积基本相同的例子,但是对显示部9631a及显示部9631b的显示面积没有特别的限定,其中一方的大小可以与另一方的大小不同,显示品质也可以不同。例如,显示部9631a和9631b中的一个可以显示比另一个更高清晰的图像。
图21B是平板终端9600被对折的状态,并且平板终端9600包括框体9630、太阳能电池9633、具备DCDC转换器9636的充放电控制电路9634。作为蓄电体9635使用本发明的一个方式的蓄电体。
此外,如上所述,平板终端9600能够对折,因此不使用时可以以彼此重叠的方式折叠框体9630a及框体9630b。通过折叠框体9630a及框体9630b,可以保护显示部9631,而可以提高平板终端9600的耐久性。此外,由于使用本发明的一个方式的二次电池的蓄电体9635的充放电容量大且循环特性优异,所以可以提供在长期间能够长时间使用的平板终端9600。
此外,图21A和图21B所示的平板终端9600还可以具有如下功能:显示各种各样的信息(静态图像、动态图像、文字图像等);将日历、日期或时刻等显示在显示部上;对显示在显示部上的信息进行触摸输入操作或编辑的触摸输入;通过各种各样的软件(程序)控制处理等。
通过利用安装在平板终端9600的表面上的太阳能电池9633,可以将电力供应到触摸面板、显示部或图像信号处理部等。注意,太阳能电池9633可以设置在框体9630的一个表面或两个表面,可以高效地对蓄电体9635进行充电。通过作为蓄电体9635使用锂离子电池,有可以实现小型化等的优点。
此外,参照图21C所示的方框图而对图21B所示的充放电控制电路9634的结构和工作进行说明。图21C示出太阳能电池9633、蓄电体9635、DCDC转换器9636、转换器9637、开关SW1至开关SW3以及显示部9631,蓄电体9635、DCDC转换器9636、转换器9637、开关SW1至开关SW3对应图21B所示的充放电控制电路9634。
首先,说明在利用外光使太阳能电池9633发电时的工作的例子。使用DCDC转换器9636对太阳能电池所产生的电力进行升压或降压以使它成为用来对蓄电体9635进行充电的电压。并且,当利用来自太阳能电池9633的电力使显示部9631工作时使开关SW1导通,并且,利用转换器9637将其升压或降压到显示部9631所需要的电压。此外,可以采用在不进行显示部9631中的显示时使开关SW1断开且使开关SW2导通来对蓄电体9635进行充电的结构。
注意,作为发电单元的一个例子示出太阳能电池9633,但是不局限于此,也可以使用压电元件(piezoelectric element)或热电转换元件(珀耳帖元件(Peltier element))等其他发电单元进行蓄电体9635的充电。例如,也可以使用以无线(非接触)的方式能够收发电力来进行充电的非接触电力传输模块且组合其他充电方法进行充电。
图22示出其他电子设备的例子。在图22中,显示装置8000是使用根据本发明的一个方式的二次电池8004的电子设备的一个例子。具体地说,显示装置8000相当于电视广播接收用显示装置,包括框体8001、显示部8002、扬声器部8003及二次电池8004等。根据本发明的一个方式的二次电池8004设置在框体8001的内部。显示装置8000既可以接收来自商业电源的电力供应,又可以使用蓄积在二次电池8004中的电力。因此,即使当由于停电等不能接收来自商业电源的电力供应时,通过将根据本发明的一个方式的二次电池8004用作不间断电源,也可以利用显示装置8000。
作为显示部8002,可以使用半导体显示装置诸如液晶显示装置、在每个像素中具备有机EL元件等发光元件的发光装置、电泳显示装置、DMD(数字微镜装置:DigitalMicromirror Device)、PDP(等离子体显示面板:Plasma Display Panel)及FED(场致发射显示器:Field Emission Display)等。
此外,除了电视广播接收用的显示装置之外,显示装置还包括所有显示信息用显示装置,例如个人计算机用显示装置或广告显示用显示装置等。
在图22中,安镶型照明装置8100是使用根据本发明的一个方式的二次电池8103的电子设备的一个例子。具体地说,照明装置8100包括框体8101、光源8102及二次电池8103等。虽然在图22中例示出二次电池8103设置在安镶有框体8101及光源8102的天花板8104的内部的情况,但是二次电池8103也可以设置在框体8101的内部。照明装置8100既可以接收来自商业电源的电力供应,又可以使用蓄积在二次电池8103中的电力。因此,即使当由于停电等不能接收来自商业电源的电力供应时,通过将根据本发明的一个方式的二次电池8103用作不间断电源,也可以利用照明装置8100。
此外,虽然在图22中例示出设置在天花板8104的安镶型照明装置8100,但是根据本发明的一个方式的二次电池可以用于设置在天花板8104以外的例如侧壁8105、地板8106或窗户8107等的安镶型照明装置,也可以用于台式照明装置等。
此外,作为光源8102,可以使用利用电力人工性地得到光的人工光源。具体地说,作为上述人工光源的例子,可以举出白炽灯泡、荧光灯等放电灯、LED以及有机EL元件等发光元件。
在图22中,具有室内机8200及室外机8204的空调器是使用根据本发明的一个方式的二次电池8203的电子设备的一个例子。具体地说,室内机8200包括框体8201、送风口8202及二次电池8203等。虽然在图22中例示出二次电池8203设置在室内机8200中的情况,但是二次电池8203也可以设置在室外机8204中。或者,也可以在室内机8200和室外机8204的双方中设置有二次电池8203。空调器可以接收来自商业电源的电力供应,也可以使用蓄积在二次电池8203中的电力。尤其是,当在室内机8200和室外机8204的双方中设置有二次电池8203时,即使当由于停电等不能接收来自商业电源的电力供应时,通过将根据本发明的一个方式的二次电池8203用作不间断电源,也可以利用空调器。
此外,虽然在图22中例示由室内机和室外机构成的分体式空调器,但是也可以将根据本发明的一个方式的二次电池用于在一个框体中具有室内机的功能和室外机的功能的一体式空调器。
在图22中,电冷藏冷冻箱8300是使用根据本发明的一个方式的二次电池8304的电子设备的一个例子。具体地说,电冷藏冷冻箱8300包括框体8301、冷藏室门8302、冷冻室门8303及二次电池8304等。在图22中,二次电池8304设置在框体8301的内部。电冷藏冷冻箱8300可以接收来自商业电源的电力供应,也可以使用蓄积在二次电池8304中的电力。因此,即使当由于停电等不能接收来自商业电源的电力供应时,通过将根据本发明的一个方式的二次电池8304用作不间断电源,也可以利用电冷藏冷冻箱8300。
在上述电子设备中,微波炉等高频加热装置、电饭煲等的电子设备在短时间内需要高电力。因此,通过将根据本发明的一个方式的二次电池用作用来辅助商业电源不能充分供应的电力的辅助电源,在使用电子设备时可以防止商业电源的总开关跳闸。
此外,在不使用电子设备的时间段,尤其是在商业电源的供应源能够供应的电力总量中的实际上使用的电力量的比率(称为电力使用率)低的时间段中,将电力蓄积在二次电池中,由此可以抑制在上述时间段以外的时间段中电力使用率增高。例如,在为电冷藏冷冻箱8300时,在气温低且不进行冷藏室门8302或冷冻室门8303的开关的夜间,将电力蓄积在二次电池8304中。并且,在气温高且进行冷藏室门8302或冷冻室门8303的开关的白天,将二次电池8304用作辅助电源,由此可以抑制白天的电力使用率。
通过采用本发明的一个方式,可以提高二次电池的循环特性并提高可靠性。此外,通过采用本发明的一个方式,可以实现充放电容量大的二次电池而可以提高二次电池的特性,所以可以使二次电池本身小型化及轻量化。因此,通过将本发明的一个方式的二次电池安装在本实施方式所说明的电子设备,可以提供使用寿命更长且更轻量的电子设备。
本实施方式可以与其他实施方式适当地组合而实施。
(实施方式5)
在本实施方式中,参照图23A至图23C对使用上述实施方式中说明的二次电池的电子设备的例子进行说明。
图23A示出可穿戴设备的例子。可穿戴设备的电源使用二次电池。另外,为了提高使用者在生活中或户外使用时的防溅、防水或防尘性能,使用者不仅希望可穿戴设备能够进行用于连接的连接器部分露出的有线充电,还希望能够进行无线充电。
例如,可以将本发明的一个方式的二次电池安装于图23A所示的眼镜型设备4000上。眼镜型设备4000包括镜框4000a和显示部4000b。通过在具有弯曲的镜框4000a的镜腿部安装二次电池,可以实现轻量且重量平衡性好的连续使用时间长的眼镜型设备4000。通过使用本发明的一个方式的二次电池,可以实现框体的小型化所需的节省化。
另外,可以将本发明的一个方式的二次电池安装在耳麦型设备4001上。耳麦型设备4001至少包括麦克风部4001a、柔性管4001b和耳机部4001c。可以在柔性管4001b内及/或耳机部4001c内设置二次电池。通过使用本发明的一个方式的二次电池,可以实现框体的小型化所需的节省化。
另外,可以将本发明的一个方式的二次电池安装在能直接安在身上的设备4002上。另外,可以将二次电池4002b设置在设备4002的薄型框体4002a中。通过使用本发明的一个方式的二次电池,可以实现框体的小型化所需的节省化。
另外,可以将本发明的一个方式的二次电池安装在能够安到衣服上的设备4003。可以将二次电池4003b设置在设备4003的薄型框体4003a中。通过使用本发明的一个方式的二次电池,可以实现框体的小型化所需的节省化。
另外,可以将本发明的一个方式的二次电池安装在腰带型设备4006上。腰带型设备4006包括腰带部4006a及无线供电受电部4006b,可以将二次电池安装在腰带部4006a的内部。通过使用本发明的一个方式的二次电池,可以实现框体的小型化所需的节省化。
另外,可以将本发明的一个方式的二次电池安装在腕表型设备4005上。腕表型设备4005包括显示部4005a及表带部4005b,可以将二次电池设置在显示部4005a或表带部4005b上。通过使用本发明的一个方式的二次电池,可以实现框体的小型化所需的节省化。
显示部4005a除了能够显示时间之外还可以显示电子邮件及电话来电等各种信息。
另外,由于腕表型设备4005为直接缠在手腕上可穿戴设备,所以也可以安装有测量使用者的脉搏、血压等的传感器。由此,可以储存使用者的运动量及与健康有关的数据而进行健康管理。
图23B示出从手腕上取下的腕表型设备4005的立体图。
另外,图23C示出侧面图。图23C示出内部内置有二次电池913的情况。二次电池913是实施方式4所示的二次电池。二次电池913设置在与显示部4005a重叠的位置,小型且轻量。
图23D示出无线耳机的例子。在此,示出包括一对的主体4100a及主体4100b的无线耳机,但是主体并不需要为一对。
主体4100a及4100b包括驱动器单元4101、天线4102、二次电池4103。另外,也可以包括显示部4104。另外,优选包括安装有无线用IC等的电路的基板及充电用端子等。另外,也可以包括麦克风。
收纳盒4110包括二次电池4111。另外,优选包括安装有无线用IC、充电控制IC等的电路的基板、充电用端子。另外,也可以包括显示部、按钮等。
主体4100a及4100b可以以无线与智能手机等其他电子设备通信。因此,可以在主体4100a及4100b再现从其他电子设备接收的声音数据等。另外,在主体4100a及4100b包括麦克风时,可以将通过麦克风取得的声音传送到其他电子设备而由该电子设备处理,然后将该声音数据传送到主体4100a及4100b而再现。由此,例如可以被用作翻译机。
另外,可以从收纳盒4100所包括的二次电池4111充电到主体4100a所包括的二次电池4103。作为二次电池4111及二次电池4103,可以使用上述实施方式的硬币型二次电池、圆筒型二次电池等。将可以在实施方式1中获得的正极活性物质100用于正极的二次电池具有高能量密度,通过将正极活性物质100用于二次电池4103及二次电池4111,可以实现能够应付无线耳机的小型化所需的空间节省的结构。
图24A示出扫地机器人的一个例子。扫地机器人6300包括配置在框体6301表面的显示部6302、配置在侧面的多个照相机6303、刷子6304、操作按钮6305、二次电池6306、各种传感器等。虽然没有图示,扫地机器人6300还有轮子、吸口等。扫地机器人6300可以自动行走,检测垃圾6310,可以从设置在下面的吸口吸入垃圾。
例如,扫地机器人6300可以通过分析照相机6303拍摄的图像来判断是否有墙壁、家具或台阶等障碍物。另外,当通过图像分析发现电线等可能会与刷子6304缠在一起的物体时,可以停止刷子6304的转动。扫地机器人6300的内部备有根据本发明的一个方式的二次电池6306及半导体装置或电子构件。通过将根据本发明的一个方式的二次电池6306用于扫地机器人6300,可以使扫地机器人6300成为驱动时间长且可靠性高的电子设备。
图24B示出机器人的一个例子。图24B所示的机器人6400包括二次电池6409、照度传感器6401、麦克风6402、上部照相机6403、扬声器6404、显示部6405、下部照相机6406、障碍物传感器6407、移动机构6408、运算装置等。
麦克风6402具有检测使用者的声音及周围的声音等的功能。另外,扬声器6404具有发出声音的功能。机器人6400可以通过麦克风6402及扬声器6404与使用者交流。
显示部6405具有显示各种信息的功能。机器人6400可以将使用者所需的信息显示在显示部6405上。显示部6405也可以安装有触摸面板。另外,显示部6405可以是可拆卸的信息终端,通过将其设置在机器人6400的固定位置上,可以进行充电及数据的收发。
上部照相机6403及下部照相机6406具有对机器人6400的周围环境进行拍摄的功能。另外,障碍物传感器6407可以利用移动机构6408检测机器人6400前进时的前进方向是否存在障碍物。机器人6400可以利用上部照相机6403、下部照相机6406及障碍物传感器6407确认周围环境而安全地移动。
机器人6400的内部备有根据本发明的一个方式的二次电池6409及半导体装置或电子构件。通过将根据本发明的一个方式的二次电池用于机器人6400,可以使机器人6400成为驱动时间长且可靠性高的电子设备。
图24C示出飞行体的一个例子。图24C所示的飞行体6500包括螺旋桨6501、照相机6502及二次电池6503等,并具有自主飞行功能。
例如,照相机6502拍摄的图像数据被储存至电子构件6504。电子构件6504能够通过分析图像数据来判断移动时是否有障碍物等。另外,可以利用电子构件6504从二次电池6503的蓄电容量的变化推测电池的剩余电量。飞行体6500的内部备有根据本发明的一个方式的二次电池6503。通过将根据本发明的一个方式的二次电池用于飞行体6500,可以使飞行体6500成为驱动时间长且可靠性高的电子设备。
本实施方式可以与其他实施方式适当地组合而实施。
(实施方式6)
在本实施方式中,示出将本发明的一个方式的二次电池安装在车辆的例子。
当将二次电池安装在车辆时,可以实现混合动力汽车(HV)、电动汽车(EV)或插电式混合动力汽车(PHV)等新一代清洁能源汽车。
在图25A至图25C中,例示出使用本发明的一个方式的二次电池的车辆。图25A所示的汽车8400是作为用来行驶的动力源使用电发动机的电动汽车。或者,汽车8400是作为用来行驶的动力源能够适当地使用电发动机或引擎的混合动力汽车。通过使用本发明的一个方式的二次电池,可以实现行驶距离长的车辆。此外,汽车8400具备二次电池。作为二次电池,可以将图17C及图17D所示的二次电池模块排列在车内的地板部分而使用。二次电池不但驱动电发动机8406,而且还可以将电力供应到车头灯8401及室内灯(未图示)等发光装置。
此外,二次电池可以将电力供应到汽车8400所具有的速度表、转速计等的显示装置。此外,二次电池可以将电力供应到汽车8400所具有的导航系统等的半导体装置。
在图25B所示的汽车8500中,可以通过利用插电方式及/或非接触供电方式等从外部的充电设备接收电力,来对汽车8500所具有的二次电池进行充电。图25B示出从地上设置型的充电装置8021通过电缆8022对安装在汽车8500中的二次电池8024进行充电的情况。当进行充电时,作为充电方法及连接器的规格等,可以根据CHAdeMO(注册商标)及联合充电系统“Combined Charging System”等的规定的方式而适当地进行。作为充电装置8021,也可以使用设置在商业设施的充电站或家庭的电源。例如,通过利用插电技术从外部供应电力,可以对安装在汽车8500中的二次电池8024进行充电。可以通过AC/DC转换器等转换装置将交流电力转换成直流电力来进行充电。
此外,虽然未图示,但是也可以将受电装置安装在车辆中并从地上的送电装置非接触地供应电力来进行充电。当利用该非接触供电方式时,通过在公路及/或外壁中组装送电装置,不但停车中而且行驶中也可以进行充电。此外,也可以利用该非接触供电方式,在车辆之间进行电力的发送及接收。再者,还可以在车辆的外部设置太阳能电池,在停车时及/或行驶时进行二次电池的充电。可以利用电磁感应方式及/或磁场共振方式实现这样的非接触供电。
图25C是使用本发明的一个方式的二次电池的两轮车的例子。图25C所示的小型摩托车8600包括二次电池8602、后视镜8601及方向灯8603。二次电池8602可以对方向灯8603供电。
此外,在图25C所示的小型摩托车8600中,可以将二次电池8602收纳在座位下收纳箱8604中。即使座位下收纳箱8604为小型,也可以将二次电池8602收纳在座位下收纳箱8604中。二次电池8602是可拆卸的,因此在充电时将二次电池8602搬到室内,对其进行充电,行驶之前将二次电池8602收纳即可。
通过采用本发明的一个方式,可以提高二次电池的循环特性及充放电容量。由此,可以使二次电池本身小型轻量化。此外,如果可以使二次电池本身小型轻量化,就有助于实现车辆的轻量化,从而可以延长行驶距离。此外,可以将安装在车辆中的二次电池用作车辆之外的电力供应源。此时,例如可以避免在电力需求高峰时使用商业电源。如果可以避免在电力需求高峰时使用商业电源,就有助于节省能量以及二氧化碳排放量的减少。此外,如果循环特性优异,就可以长期间使用二次电池,从而可以降低钴等稀有金属的使用量。
本实施方式可以与其他实施方式适当地组合而实施。
[符号说明]
100:正极活性物质、100a:表层部、100b:内部

Claims (4)

1.一种正极活性物质,包括:
锂;
钴;
氧;以及
添加元素,
其中,所述正极活性物质具有表层部及内部,
所述正极活性物质在所述表层部包含所述添加元素,
所述表层部是从所述正极活性物质的表面向所述内部10nm以下的区域,
所述表层部及所述内部处于拓扑衍生,
所述添加元素的扩散程度根据所述表层部的结晶面而不同,
并且,所述添加元素是选自镍、铝和镁中的至少一个或两个以上。
2.根据权利要求1所述的正极活性物质,
其中所述正极活性物质具有被识别为空间群R-3m的晶体结构,
并且在所述表层部,与平行于阳离子排列的区域相比,在不平行于阳离子排列的区域中所述添加元素存在于更深的位置。
3.根据权利要求1或2所述的正极活性物质,
其中所述镍的原子数为所述钴的原子数的0.1%以上且2%以下,
并且所述铝的原子数为所述钴的原子数的0.1%以上且2%以下。
4.根据权利要求3所述的正极活性物质,
其中作为所述添加元素还包含氟。
CN202280046632.4A 2021-07-09 2022-06-27 正极活性物质 Pending CN117597795A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021-114347 2021-07-09
JP2021114347 2021-07-09
PCT/IB2022/055923 WO2023281346A1 (ja) 2021-07-09 2022-06-27 正極活物質

Publications (1)

Publication Number Publication Date
CN117597795A true CN117597795A (zh) 2024-02-23

Family

ID=84800452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280046632.4A Pending CN117597795A (zh) 2021-07-09 2022-06-27 正极活性物质

Country Status (4)

Country Link
JP (1) JPWO2023281346A1 (zh)
CN (1) CN117597795A (zh)
TW (1) TW202313481A (zh)
WO (1) WO2023281346A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117393769B (zh) * 2023-12-13 2024-04-19 天津力神电池股份有限公司 正极活性材料、正极材料、正极极片和电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686852B2 (ja) * 2000-12-04 2011-05-25 ソニー株式会社 非水電解液電池
JP6611438B2 (ja) * 2015-01-30 2019-11-27 マクセルホールディングス株式会社 非水電解質二次電池用正極材料及びその製造方法、並びに非水電解質二次電池
JP6560917B2 (ja) * 2015-07-09 2019-08-14 マクセルホールディングス株式会社 正極材料、および正極材料を用いた非水電解質二次電池
WO2019211366A1 (en) * 2018-05-04 2019-11-07 Umicore A lithium cobalt oxide secondary battery comprising a fluorinated electrolyte and a positive electrode material for high voltage applications
WO2020026078A1 (ja) * 2018-08-03 2020-02-06 株式会社半導体エネルギー研究所 正極活物質および正極活物質の作製方法

Also Published As

Publication number Publication date
JPWO2023281346A1 (zh) 2023-01-12
TW202313481A (zh) 2023-04-01
WO2023281346A1 (ja) 2023-01-12

Similar Documents

Publication Publication Date Title
CN115117444B (zh) 锂离子二次电池
CN115995554A (zh) 锂离子二次电池
US20220131146A1 (en) Secondary battery and electronic device
US20230052866A1 (en) Positive electrode active material, secondary battery, and electronic device
JP2021093356A (ja) 正極活物質、二次電池、電子機器
WO2022096989A1 (ja) 正極活物質、リチウムイオン二次電池、および車両
CN117597795A (zh) 正极活性物质
US20220359870A1 (en) Positive electrode active material, secondary battery, and vehicle
KR20240015086A (ko) 전지, 전자 기기, 축전 시스템, 및 이동체
CN117355971A (zh) 二次电池、电子设备及飞行体
US20240170667A1 (en) Battery, electronic device, and vehicle
WO2022130100A1 (ja) イオン液体、二次電池、電子機器および車両
CN117043989A (zh) 电池、电子设备及车辆
CN117355955A (zh) 电池、电子设备、蓄电系统及移动体
CN116615814A (zh) 离子液体、二次电池、电子设备以及车辆
CN117594784A (zh) 正极活性物质及二次电池
KR20230053598A (ko) 전극의 제작 방법, 이차 전지, 전자 기기, 및 차량

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication