CN117535163A - 一种高产d-阿拉伯糖醇的鲁氏酵母工程菌及其构建方法和应用 - Google Patents

一种高产d-阿拉伯糖醇的鲁氏酵母工程菌及其构建方法和应用 Download PDF

Info

Publication number
CN117535163A
CN117535163A CN202311429854.7A CN202311429854A CN117535163A CN 117535163 A CN117535163 A CN 117535163A CN 202311429854 A CN202311429854 A CN 202311429854A CN 117535163 A CN117535163 A CN 117535163A
Authority
CN
China
Prior art keywords
arabitol
pgap
ptef1
rpe
plasmid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311429854.7A
Other languages
English (en)
Inventor
齐向辉
李小兰
赵梅
张存胜
陈自卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhenjiang Baitai Biotechnology Co ltd
Jiangsu University
Original Assignee
Zhenjiang Baitai Biotechnology Co ltd
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhenjiang Baitai Biotechnology Co ltd, Jiangsu University filed Critical Zhenjiang Baitai Biotechnology Co ltd
Priority to CN202311429854.7A priority Critical patent/CN117535163A/zh
Publication of CN117535163A publication Critical patent/CN117535163A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/78Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by condensation or crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0036Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • C12N9/92Glucose isomerase (5.3.1.5; 5.3.1.9; 5.3.1.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y106/00Oxidoreductases acting on NADH or NADPH (1.6)
    • C12Y106/01Oxidoreductases acting on NADH or NADPH (1.6) with NAD+ or NADP+ as acceptor (1.6.1)
    • C12Y106/01002NAD(P)+ Transhydrogenase (AB-specific) (1.6.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01017Xylulokinase (2.7.1.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y501/00Racemaces and epimerases (5.1)
    • C12Y501/03Racemaces and epimerases (5.1) acting on carbohydrates and derivatives (5.1.3)
    • C12Y501/03022L-Ribulose-5-phosphate 3-epimerase (5.1.3.22)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/01Intramolecular oxidoreductases (5.3) interconverting aldoses and ketoses (5.3.1)
    • C12Y503/01009Glucose-6-phosphate isomerase (5.3.1.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供了一种高产D‑阿拉伯糖醇的鲁氏酵母工程菌及其构建方法和应用,属于生物工程技术领域;本发明以鲁氏酵母为出发菌,采用合成生物学技术,集结代谢途径工程和辅酶工程构建了一株D‑阿拉伯糖醇生产性能大幅提升的鲁氏酵母工程菌;所述鲁氏酵母工程菌解决了现有技术中D‑阿拉伯糖醇生产菌株存在生产性能低下、D‑阿拉伯糖醇产率不高、下游分离纯化难等突出问题;所述鲁氏酵母工程菌在发酵葡萄糖高产D‑阿拉伯糖醇中具有很好的应用。

Description

一种高产D-阿拉伯糖醇的鲁氏酵母工程菌及其构建方法和 应用
技术领域
本发明属于生物工程技术领域,具体涉及一种高产D-阿拉伯糖醇的鲁氏酵母工程菌及其构建方法和应用。
背景技术
D-阿拉伯糖醇是12种高附加值平台化合物之一,具有低热量、抗龋齿、在体内代谢不影响胰岛素水平等特点,在食品、医药和化工领域具有广阔的应用前景,其市场需求逐年增加。但目前D-阿拉伯糖醇的生产方法中,物理提取法效率低,且存在与粮争地的弊端;化学合成又存在环境污染、成本高、分离纯化难等诸多问题。而生物法以微生物细胞为工厂,利用体内代谢途径负载的酶系统,可催化合成一系列天然产物,具有更高的安全性、环境友好性和可持续性,是当下生产食用营养成分、活性药物及中间体、大宗化学品颇受青睐的主流方法。
微生物法生产D-阿拉伯糖醇的关键取决于菌株的自身生产性能,尽管国内外学者围绕产D-阿拉伯糖醇优势菌株的筛选、发酵优化结合物理/化学诱变、适应性进化、基因组改组等技术以获得遗传稳定性良好且生产性能强的菌株方面做了大量努力,但是D-阿拉伯糖醇产量仍达不到工业化生产的需求。因此需构建一种相比现有菌株生产性能大幅度提高的基因工程菌。
鲁氏酵母(Zygosaccharomyces rouxii)为传统酿造专用酵母,因其独特的胁迫耐受性,较高的生长密度,高通量的戊糖磷酸途径,以及较强的初始D-阿拉伯糖醇合成能力,是生产D-阿拉伯糖醇的潜在理想底盘。随着生物智造技术的发展,集结代谢途径工程和辅酶工程,对Z.rouxii酵母底盘细胞的代谢网络进行针对性的合理改造和平衡调控,构建强健的Z.rouxii酵母细胞工厂,并优化细胞工厂发酵条件,建立下游产物分离纯化技术,是绿色、高效、可持续生产、制备D-阿拉伯糖醇,促进D-阿拉伯糖醇工业化进程的强有力手段。因此,亟需构建一种高产D-阿拉伯糖醇的鲁氏酵母工程菌。
发明内容
针对现有技术中存在的一些不足,本发明提供了一种高产D-阿拉伯糖醇的鲁氏酵母工程菌及其构建方法和应用;本发明以鲁氏酵母为出发菌,采用合成生物学技术,集结代谢途径工程和辅酶工程构建了一株D-阿拉伯糖醇生产性能大幅提升的鲁氏酵母工程菌;所述鲁氏酵母工程菌解决了现有技术中生产D-阿拉伯糖醇的菌株存在生产性能低下、D-阿拉伯糖醇产率不高、下游分离纯化难等突出问题;所述鲁氏酵母工程菌在发酵葡萄糖高产D-阿拉伯糖醇中具有很好的应用。
为了解决上述技术问题,本发明采用以下技术手段:
本发明首先提供了一种高产D-阿拉伯糖醇的鲁氏酵母工程菌,包含:
(1)核苷酸序列如SEQ ID No:1所示的表达质粒pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4;和/或
(2)核苷酸序列如SEQ ID No:2所示的表达质粒pGAP-pntA-pTEF1-pntB;和/或
(3)核苷酸序列如SEQ ID No:3所示的RNAi反向双元启动子沉默质粒pTESH-gpi-dual。本发明还提供了上述高产D-阿拉伯糖醇的鲁氏酵母工程菌的构建方法,包括如下步骤:
(1)分别将表达质粒pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4和pGAP-pntA-pTEF1-pntB线性化处理;
(2)将线性化处理后的表达质粒pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4和pGAP-pntA-pTEF1-pntB,以及RNAi反向双元启动子沉默质粒pTESH-gpi-dual通过电击法转入鲁氏酵母感受态细胞,并通过ZeocinR、G418R和HygR进行筛选,验证,得到所述高产D-阿拉伯糖醇的鲁氏酵母工程菌。
优选地,步骤(1)中,所述表达质粒pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4的核苷酸序列如SEQ ID No:1所示;
所述表达质粒pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4的构建步骤包括:
S1.PCR扩增鲁氏酵母内源基因核酮糖-5P-异构酶基因(rpe)和木酮糖激酶基因(xylb),然后分别与线性化质粒骨架pGAP组装,得到过渡质粒pGAP-rpe和pGAP-xylb;
S2.将得到的过渡质粒pGAP-rpe中的启动子替换为PTEF1,得到pTEF1-rpe,然后将pTEF1-rpe与pGAP-xylb无缝克隆,得到质粒pGAP-xylb-pTEF1-rpe;
S3.PCR扩增毕赤酵母来源的基因Pardh4,构建Pardh4表达盒,将Pardh4表达盒与线性化pGAP-xylb-pTEF1-rpe组装,得到重组表达质粒pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4。
优选地,步骤(1)中,表达质粒pGAP-pntA-pTEF1-pntB的序列如SEQ ID No:2所示;
所述表达质粒pGAP-pntA-pTEF1-pntB的构建步骤包括:
PCR扩增E.coli W3110来源的膜结合转氢酶基因pntAB基因得到pntA和pntB,依次通过反向PCR替换质粒pGAP-xylb-pTEF1-rpe中的xylb和rpe基因,获得表达质粒pGAP-pntA-pTEF1-pntB。
优选地,步骤(1)中,所述RNAi反向双元启动子沉默质粒pTESH-gpi-dual的核苷酸序列如SEQ ID No:3所示;
所述RNAi反向双元启动子沉默质粒pTESH-gpi-dual的构建步骤包括:
a.反向PCR获得pTEF1-rpe质粒骨架,并将其与鲁氏酵母的pSR1复制子连接,然后替换ZeocinR为HygR,构建鲁氏酵母游离表达质粒pTESH;
b.扩增启动子PPGK1,将其与线性化的鲁氏酵母游离表达质粒pTESH无缝克隆,得到含双向启动子PTEF1和PPGK1的过渡质粒;
c.将含双向启动子PTEF1和PPGK1的过渡质粒与扩增的葡萄糖-6P-异构酶(gpi)基因保守区连接,得到RNAi反向双元启动子沉默质粒pTESH-gpi-dual。
优选地,步骤(2)中,所述鲁氏酵母感受态细胞包括野生型Z.rouxii ST109(ZR-ST109),以及ZR-W3A和ZR-W3AB。
本发明还提供了上述鲁氏酵母工程菌在生物合成D-阿拉伯糖醇中的应用。
优选地,所述应用为发酵葡萄糖生产D-阿拉伯糖醇。
本发明还提供了一种生物合成D-阿拉伯糖醇的方法,包括:将上述高产D-阿拉伯糖醇的鲁氏酵母工程菌接种至以葡萄糖为底物的发酵培养基中,发酵得到D-阿拉伯糖醇。
优选地,所述D-阿拉伯糖醇的分离纯化步骤为:Z.rouxii工程菌发酵液离心去除菌体,将上清液脱色、超滤、浓缩并除去副产物,然后在低温条件下结合乙醇沉淀诱导D-阿拉伯糖醇结晶并去除副产物甘油,最后干燥得到D-阿拉伯糖醇晶体。
与现有技术相比,本发明的有益效果在于:
本发明采用代谢工程技术和合成生物学思维,通过构建一系列适用于鲁氏酵母遗传操作的整合表达质粒和RNAi反向双元启动子沉默质粒,以改造和强化鲁氏酵母中D-阿拉伯糖醇的合成途径,优化合成途径关键酶所需的辅因子共给和平衡,并适度沉默分流竞争途径中关键酶的基因表达,最终获得一株能高效生产D-阿拉伯糖醇的工程菌株。本发明首先在ZR-ST109基因组的GAP位点整合表达质粒pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4,以强化Z.rouxii中D-阿拉伯糖醇合成途径,获得工程菌ZR-W3A;然后进一步在ZR-W3A的TEF1位点整合表达质粒pGAP-pntA-pTEF1-pntB,促进限速步骤还原酶P-ArdH4所需的辅因子共给和平衡,获得工程菌株ZR-W3AB;最后向工程菌ZR-W3AB中转入RNAi反向双元启动子沉默质粒pTESH-gpi-dual,干扰分流竞争途径中葡萄糖-6P-异构酶基因(gpi)的表达,获得高产D-阿拉伯糖醇的鲁氏酵母工程菌。
本发明在构建高产D-阿拉伯糖醇的鲁氏酵母工程菌过程中,使用的PGAP、PTEF1以及PPGK1均为强组成型启动子,这使得构建工程菌过程中不需要额外加入诱导剂,操作程序简化,同时避免了诱导剂添加造成的安全隐患和经济成本。此外,本发明在D-阿拉伯糖醇的合成途径强化关键酶所需辅因子的共给和平衡中所构建的质粒均为整合型表达质粒,且采用酵母基因组整合的方法构建得到遗传性能更加稳定的工程菌株,避免了游离表达在菌株传代过程中易引起质粒丢失等弊端。本发明建立的从发酵液中分离纯化D-阿拉伯糖醇技术,在前处理后可直接通过添加廉价的乙醇来沉淀D-阿拉伯糖醇,避免使用复杂的色谱分离技术。
本发明所述高产D-阿拉伯糖醇的鲁氏酵母工程菌ZR-W3AB-5在初始发酵培养基中发酵96h后,能产生34.27g/L的D-阿拉伯糖醇,比原始菌株ZR-ST109提高了73.61%,为已报道的鲁氏酵母工程菌中最高的初始产量。此外,本发明所述D-阿拉伯糖醇的纯化步骤避免了使用大型模拟移动床等繁琐的色谱分离技术,直接通过添加廉价的乙醇促使D-阿拉伯糖醇晶体析出,纯度达96.53%,回收率为80.26%,整个过程操作简单,且更具经济效益。
附图说明
图1为重组质粒pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4和工程菌ZR-W3AD-阿拉伯糖醇生产性能;其中(a)为重组质粒pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4图谱;(b)为重组质粒pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4电泳图;(c)为工程菌ZR-W3AD-阿拉伯糖醇产量。
图2为重组质粒pGAP-pntA-pTEF1-pntB和工程菌ZR-W3AB D-阿拉伯糖醇生产性能;其中(a)为重组质粒pGAP-pntA-pTEF1-pntB图谱;(b)为重组质粒pGAP-pntA-pTEF1-pntB电泳图;(c)为工程菌ZR-W3AB D-阿拉伯糖醇产量。
图3为沉默质粒pTESH-gpi-dual图谱(a)、电泳图(b)以及不同沉默菌株D-阿拉伯糖醇产量(c)。
图4为鲁氏酵母工程菌ZR-W3AB-5在5L发酵罐分批补料发酵结果。
图5为D-阿拉伯糖醇分离纯化步骤(a)和纯化前后对比(b)。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。以下实施例中未注明具体条件者,皆按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。除特殊注明外,本发明所采用的均为该领域现有技术。
实施例1:重组表达质粒pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4构建
(1)重组表达质粒pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4的图谱如图1(a)所示,根据质粒pGAP(武汉淼灵生物科技有限公司)及xylb(XM_002498463.1)、rpe(XM_002496541.1)、Pardh4(KC800813)基因序列,利用Oligo 7.0软件设计引物xylb-F1/R1(SEQID No:6~7)、rpe-F1/R1(SEQ ID No:8~9)和Pardh4-F1/R1(SEQ ID No:10~11),并委托苏州金唯智公司合成。
(2)以野生型Z.rouxii ST109(记为ZR-ST109)菌株的cDNA为模板,分别采用xylb-F1/R1、rpe-F1/R1和Pardh4-F1/R1为引物PCR扩增,其中PCR反应参数:预变性,98℃3min;变性,98℃10s;退火,55℃30s;延伸,72℃30s;终延伸,72℃5min;33个循环。PCR扩增结束后,分别得到xylb、rpe、Pardh4基因片段。
(3)利用Backbone-F1/R1引物(SEQ ID No:4~5)线性化质粒骨架pGAP,然后得到线性化处理的质粒骨架pGAP,分别将PCR扩增得到的xylb、rpe、Pardh4基因片段与线性化处理的质粒骨架pGAP通过2×MultiF Seamless Assembly Mix在50℃下进行Gibson组装30min,获得过渡质粒pGAP-rpe、pGAP-xylb、pGAP-Pardh4。然后分别将pGAP-rpe和pGAP-Pardh4中的启动子替换为鲁氏酵母内源PTEF1和PPGK1启动子,得到pTEF1-rpe和pPGK1-Pardh4。
(4)将pGAP-xylb质粒线性化处理得到线性化的pGAP-xylb质粒骨架;然后PCR扩增pTEF1-rpe和pPGK1-Pardh4中的rpe和Pardh4表达盒,并将rpe和Pardh4表达盒与线性化的pGAP-xylb质粒骨架连接,得到重组表达质粒pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4。
通过热激法转化该重组质粒进入E.coli DH5α感受态中,具体步骤为冰浴5min后加入重组质粒,冰浴30min,42℃热激60s,冰浴2min,加入1mL无抗生素LB培养基,37℃培养45min后涂布至含有25μg/mL博来霉素的LLB平板上。
然后挑取适量单菌落培养并提取重组表达质粒,送至苏州金唯智测序验证,将验证正确的质粒跑胶,结果如图1(b)所示。从图1(b)中可以看出,得到的重组表达质粒大小正确,符合预期,这说明成功构建了表达质粒pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4。
实施例2:重组表达质粒pGAP-pntA-pTEF1-pntB构建
(1)重组表达质粒pGAP-pntA-pTEF1-pntB的图谱如图2(a)所示,根据实施例1中得到的pGAP-xylb和pTEF1-rpe的核苷酸序列、以及pntAB基因序列利用Oligo7.0软件设计引物Backbone-F2/R2(SEQ ID No:12~13)、Backbone-F3/R3(SEQ ID No:14~15)、pntA-F1/R1(SEQ ID No:16~17)和pntB-F1/R1(SEQ ID No:18~19),并委托苏州金唯智公司合成。
(2)分别使用引物pntA-F1/R1、pntB-F1/R1扩增pntAB基因,得到pntA和pntB亚基因片段;分别使用引物Backbone-F2/R2、Backbone-F3/R3对质粒pGAP-xylb、pTEF1-rpe进行反向PCR线性化;其中涉及得到的PCR反应参数均为:预变性,98℃3min;变性,98℃10s;退火,55℃30s;延伸,72℃1min;终延伸,72℃5min;33个循环后分别得到pntA和pntB基因片段以及线性化pGAP-xylb、pTEF1-rpe骨架。
(3)将pntA和pntB基因片段分别与线性化pGAP-xylb、pTEF1-rpe骨架连接获得质粒pGAP-pntA、pTEF1-pntB,随后PCR扩增pTEF1-pntB上的pntB表达盒,并将pntB表达盒与线性化pGAP-pntA在50℃条件下使用2×MultiF Seamless Assembly Mix进行Gibson组装30min,获得重组质粒pGAP-pntA-pTEF1-pntB。
通过热激法将重组质粒pGAP-pntA-pTEF1-pntB转化至E.coli DH5α感受态中,具体步骤为冰浴5min后加入重组质粒pGAP-pntA-pTEF1-pntB,冰浴30min,42℃热激60s,冰浴2min,加入1mL无抗生素LB培养基,37℃培养45min后涂布至含有50μg/mL遗传霉素的LB平板上培养。然后挑取适量单菌落培养并提取重组表达质粒,送至苏州金唯智测序验证,将验证正确的质粒跑胶,结果如图2(b)所示。从图2(b)中可以看出,得到的重组表达质粒大小正确,符合预期,这说明成功构建了重组表达质粒pGAP-pntA-pTEF1-pntB。
实施例3:RNAi反向双元启动子沉默质粒pTESH-gpi-dual构建
(1)RNAi反向双元启动子沉默质粒pTESH-gpi-dual的图谱如图3(a)所示,根据质粒pTESH以及gpi基因(XM_002494880.1)和PPGK1启动子序列利用Oligo7.0软件设计引物LTESH-F1/R1(SEQ ID No:20~21)、gpi-F1/R1(SEQ ID No:22~23)、PGK1-F1-F1/R1(SEQID No:24~25),委托苏州金唯智公司合成。
(2)使用引物gpi-F1/R1扩增gpi基因,得到gpi基因保守区片段;使用PGK1-F1/R1扩增PPGK1启动子,得到PGK1启动子片段;使用LTESH-F1/R1对质粒pTESH进行反向PCR线性化处理,得到线性化pTESH质粒骨架。上述PCR反应参数均为:预变性,98℃3min;变性,98℃15s;退火,55℃30s;延伸,72℃1.5min;终延伸,72℃5min;33个循环。
(3)将gpi基因保守区片段、PGK1启动子片段和线性化pTESH质粒骨架在30℃条件下使用2×MultiF Seamless Assembly Mix进行Gibson组装30min,获得RNAi反向双元启动子沉默质粒pTESH-gpi-dual。
通过热激法将pTESH-gpi-dual转化至E.coli DH5α感受态中,具体步骤为:冰浴5min后加入重组质粒,冰浴30min,42℃热激60s,冰浴2min,加入1mL无抗生素LB培养基,37℃培养45min后涂布至含有50μg/mL潮霉素B的LB平板上培养。
然后挑取适量单菌落培养并提取重组表达质粒,送至苏州金唯智测序验证,将验证正确的质粒跑胶,结果如图3(b)所示。从图3(b)中可以看出,得到的重组表达质粒大小正确,符合预期,这说明成功构建了RNAi反向双元启动子沉默质粒pTESH-gpi-dual。
实施例4:基因工程菌ZR-W3A、ZR-W3AB、ZR-W3AB-5构建及发酵
本实施例分别将重组表达质粒pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4、重组表达质粒pGAP-pntA-pTEF1-pntB和RNAi反向双元启动子沉默质粒pTESH-gpi-dual按顺序导入到鲁氏酵母感受态中,得到基因工程菌ZR-W3A、ZR-W3AB、ZR-W3AB-5,具体步骤如下所示:
(1)基因工程菌ZR-W3A的构建:将pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4进行反向PCR线性化,得到线性化pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4质粒,然后采用电击法将线性化pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4质粒转入感受态ZR-ST109中,获得基因工程菌,采用菌落PCR结合DNA测序鉴定阳性转化子,将验证正确的命名为ZR-W3A。
其中,感受态ZR-ST109的制备方法为:活化培养后的菌液,按照2%的接种量转接至100mL高盐YPDS培养基(YPD中额外加入17.5g/L NaCl),在30℃、220rpm的条件下培养至OD600为0.7-1.0之间。培养结束后,取50mL菌液经无菌H2O洗涤离心,然后向其中添加10mLDTT(25mM)和LiAC(20mM)混合液重悬,在30℃、80rpm的条件下培养60min,冰浴5min,离心后加25mL无菌冰H2O重悬,离心后加20mL EB(10mM Tris-HCl,0.1mM MgCl2,270mM sucrose,pH 7.5)和甘油混合液重悬,离心后加800μL EB和甘油混合液重悬,得到感受态ZR-ST109,分装并保存-80℃待用。
所述电击法的步骤为:将0.5-1μg线性化pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4质粒加入到100μL感受态ZR-ST109细胞中,轻轻混匀冰浴5-10min后转移至2mm电转杯中,在1800V、25μF、400Ω的条件下进行电击,电击结束后立马加入1mL YPD,混匀后转至1.5mL无菌EP管中,30℃静置培养2.5h。培养结束后5000rpm 5min离心并涂布至Zeocin抗生素平板上,然后30℃恒温培养箱倒置培养3-4天。
(2)基因工程菌ZR-W3AB的构建:将实施例2中构建的重组质粒pGAP-pntA-pTEF1-pntB反向PCR线性化处理,得到线性化的重组质粒pGAP-pntA-pTEF1-pntB,然后采用电击法转入感受态ZR-W3A中,采用菌落PCR结合DNA测序鉴定阳性转化子,将验证正确的命名为ZR-W3AB。其中,感受态ZR-W3A的制备方法和电击法的操作步骤与步骤(1)相同。
(3)基因工程菌ZR-W3AB-5的构建:将RNAi反向双元启动子沉默质粒pTESH-gpi-dual直接采用电击法转入感受态ZR-W3AB中,采用菌落PCR结合DNA测序鉴定阳性转化子,将验证正确的命名为ZR-W3AB-5,即本发明所述高产D-阿拉伯糖醇的鲁氏酵母工程菌。
其中,感受态ZR-W3AB的制备方法和电击法的操作步骤与步骤(1)相同。
本实施例还分别考察了步骤(1)~(3)中构建得到的基因工程菌ZR-W3A、ZR-W3AB、ZR-W3AB-5发酵生产D-阿拉伯糖醇的性能,具体步骤如下所示:
分别将基因工程菌ZR-W3A、ZR-W3AB、ZR-W3AB-5画线于YPD平板,在30℃条件下静置倒置培养4天。挑取形态圆润、表面光滑的单菌落接种到5mL YPD培养基中,在30℃、200rpm条件下培养24h得到种子液。然后按照3%的接种量转接种子液到50mL新鲜初始发酵培养基YPDA(200g/L葡萄糖、10g/L蛋白胨、5g/L酵母粉和2g/L硫酸铵)中,在30℃200rpm条件下发酵72h后得到发酵液。
取1mL发酵液,采用HPLC法测定其中的D-阿拉伯糖醇产量、葡萄糖残留量和副产物乙醇含量,具体步骤为:将1mL发酵液离心取上清,过0.22μm滤膜,置于高效液相色谱仪进行分析检测。具体检测条件:RID检测器,AminexHPX-87H色谱柱,柱温65℃,流动相5mM H2SO4,流速0.6mL/min。
检测结果如图1(c)、图2(c)和图3(c)所示,从图中可以看出,最终构建得到的高产D-阿拉伯糖醇的鲁氏酵母工程菌ZR-W3AB-5在初始发酵培养基中发酵96h后,能产生34.27g/L的D-阿拉伯糖醇,比原始菌株ZR-ST109提高了73.61%,优于已报道的鲁氏酵母工程菌ZR-5A的产量(29.01g/L)。
实施例5:高产D-阿拉伯糖醇的鲁氏酵母工程菌分批补料发酵
本实施例中选用将所述高产D-阿拉伯糖醇的鲁氏酵母工程菌在5L生物反应器内进行放大分批补料发酵,具体步骤如下所示:
将培养好的高产D-阿拉伯糖醇的鲁氏酵母工程菌ZR-W3AB-5种子液,以6%的体积比接种到装有2L发酵培养基(200g/L D-葡萄糖、7g/L蛋白胨、10g/L酵母粉、2g/L硫酸铵、2g/L反丁烯二酸)的5L发酵罐中进行发酵得发酵液。具体发酵条件:温度30℃,空气流速1vvm,DO为25%,级联搅拌400-1000rpm。在发酵进行到96h时,开始每隔24h无菌补料葡萄糖一次,以保持发酵液中葡萄糖浓度在50g/L左右,期间加入非离子T-F复合消泡剂以防止起泡。每隔12h取样监测细胞生长、葡萄糖残留、D-阿拉伯糖醇和副产物乙醇生成量测试结果如图4所示。从图4中可以看出,经过216h补料发酵,高产D-阿拉伯糖醇的鲁氏酵母工程菌ZR-W3AB-5最终产生了137.36g/L的D-阿拉伯糖醇,生产强度为0.64g/L/h。
实施例6:D-阿拉伯糖醇的纯化
本实施例采用如图5a所示的方式进行D-阿拉伯糖醇的纯化,具体步骤为:采用实施例4或实施例5中所述方法获得发酵液,离心去除菌体和大分子物质,得到的上清液经活性炭脱色并超滤去除杂蛋白后,在旋转蒸发仪上控制温度和真空度以减压蒸馏的方式去除副产物乙醇,随即在低温条件下结合乙醇诱导D-阿拉伯糖醇结晶,最后在35-55℃下干燥获得D-阿拉伯糖醇晶体。
将D-阿拉伯糖醇晶体复溶后经HPLC分析,分析结果如图5b所示,相比纯化前,纯化后的D-阿拉伯糖醇晶体中几乎不含副产物乙醇和甘油,其纯度达到96.53%,回收率为80.26%。
综上所述,本发明中所构建的高产D-阿拉伯糖醇的鲁氏酵母工程菌ZR-W3AB-5能够以来源广泛且廉价的葡萄糖为底物,通过微生物发酵来高效生产昂贵平台化合物D-阿拉伯糖醇。此外,高产D-阿拉伯糖醇的鲁氏酵母工程菌ZR-W3AB-5的发酵液经前处理后,可通过在低温条件下直接添加乙醇的方式来结晶获得高纯度的产物D-阿拉伯糖醇。所述鲁氏酵母工程菌解决了现有技术中生产D-阿拉伯糖醇的菌株存在生产性能低下、D-阿拉伯糖醇产率不高、下游分离纯化难等突出问题;所述鲁氏酵母工程菌在发酵葡萄糖高产D-阿拉伯糖醇中具有很好的应用。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (10)

1.一种高产D-阿拉伯糖醇的鲁氏酵母工程菌,其特征在于,所述鲁氏酵母工程菌包含:
(1)核苷酸序列如SEQ ID No:1所示的表达质粒pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4;和/或
(2)核苷酸序列如SEQ ID No:2所示的表达质粒pGAP-pntA-pTEF1-pntB;和/或
(3)核苷酸序列如SEQ ID No:3所示的RNAi反向双元启动子沉默质粒pTESH-gpi-dual。
2.权利要求1所述的高产D-阿拉伯糖醇的鲁氏酵母工程菌的构建方法,其特征在于,包括:
(1)分别将表达质粒pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4和pGAP-pntA-pTEF1-pntB线性化处理;
(2)将线性化处理后的表达质粒pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4和pGAP-pntA-pTEF1-pntB,以及RNAi反向双元启动子沉默质粒pTESH-gpi-dual通过电击法转入鲁氏酵母感受态细胞,并通过ZeocinR、G418R和HygR进行筛选,验证,得到所述高产D-阿拉伯糖醇的鲁氏酵母工程菌。
3.根据权利要求2所述的高产D-阿拉伯糖醇的鲁氏酵母工程菌的构建方法,其特征在于,步骤(1)中,所述表达质粒pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4的核苷酸序列如SEQIDNo:1所示;
所述表达质粒pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4的构建步骤包括:
S1.PCR扩增鲁氏酵母内源基因核酮糖-5P-异构酶基因(rpe)和木酮糖激酶基因(xylb),然后分别与线性化质粒骨架pGAP组装,得到过渡质粒pGAP-rpe和pGAP-xylb;
S2.将得到的过渡质粒pGAP-rpe中的启动子替换为PTEF1,得到pTEF1-rpe,然后将pTEF1-rpe与pGAP-xylb无缝克隆,得到质粒pGAP-xylb-pTEF1-rpe;
S3.PCR扩增毕赤酵母来源的基因Pardh4,构建Pardh4表达盒,将Pardh4表达盒与线性化pGAP-xylb-pTEF1-rpe组装,得到重组表达质粒pGAP-xylb-pTEF1-rpe-pPGK1-Pardh4。
4.根据权利要求2所述的高产D-阿拉伯糖醇的鲁氏酵母工程菌的构建方法,其特征在于,步骤(1)中,所述表达质粒pGAP-pntA-pTEF1-pntB的核苷酸序列如SEQ ID No:2所示;
所述表达质粒pGAP-pntA-pTEF1-pntB的构建步骤包括:
PCR扩增E.coli W3110来源的膜结合转氢酶基因pntAB基因得到pntA和pntB,依次通过反向PCR替换质粒pGAP-xylb-pTEF1-rpe中的xylb和rpe基因,获得表达质粒pGAP-pntA-pTEF1-pntB。
5.根据权利要求2所述的高产D-阿拉伯糖醇的鲁氏酵母工程菌的构建方法,其特征在于,步骤(1)中,所述RNAi反向双元启动子沉默质粒pTESH-gpi-dual的核苷酸序列如SEQ IDNo:3所示;
所述RNAi反向双元启动子沉默质粒pTESH-gpi-dual的构建步骤包括:
a.反向PCR获得pTEF1-rpe质粒骨架,并将其与鲁氏酵母的pSR1复制子连接,然后替换ZeocinR为HygR,构建鲁氏酵母游离表达质粒pTESH;
b.扩增启动子PPGK1,将其与线性化的鲁氏酵母游离表达质粒pTESH无缝克隆,得到含双向启动子PTEF1和PPGK1的过渡质粒;
c.将含双向启动子PTEF1和PPGK1的过渡质粒与扩增的葡萄糖-6P-异构酶(gpi)基因保守区连接,得到RNAi反向双元启动子沉默质粒pTESH-gpi-dual。
6.根据权利要求2所述的高产D-阿拉伯糖醇的鲁氏酵母工程菌的构建方法,其特征在于,步骤(2)中,所述鲁氏酵母感受态细胞包括野生型Z.rouxii ST109(ZR-ST109)、ZR-W3A或ZR-W3AB。
7.权利要求1所述的高产D-阿拉伯糖醇的鲁氏酵母工程菌、或权利要求2~6任一项所述方法构建的高产D-阿拉伯糖醇的鲁氏酵母工程菌在生物合成D-阿拉伯糖醇中的应用。
8.根据权利要求7所述的应用,其特征在于,所述应用为发酵葡萄糖生产D-阿拉伯糖醇。
9.一种生物合成D-阿拉伯糖醇的方法,其特征在于,包括:将上述高产D-阿拉伯糖醇的鲁氏酵母工程菌接种至以葡萄糖为底物的发酵培养基中,发酵后,经分离纯化得到产物D-阿拉伯糖醇。
10.根据权利要求9所述的生物合成D-阿拉伯糖醇的方法,其特征在于,所纯化步骤为:Z.rouxii工程菌发酵液离心去除菌体,将上清液脱色、超滤、浓缩并除去副产物,然后在低温条件下结合乙醇沉淀诱导D-阿拉伯糖醇结晶并去除副产物甘油,最后干燥得到D-阿拉伯糖醇晶体。
CN202311429854.7A 2023-10-31 2023-10-31 一种高产d-阿拉伯糖醇的鲁氏酵母工程菌及其构建方法和应用 Pending CN117535163A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311429854.7A CN117535163A (zh) 2023-10-31 2023-10-31 一种高产d-阿拉伯糖醇的鲁氏酵母工程菌及其构建方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311429854.7A CN117535163A (zh) 2023-10-31 2023-10-31 一种高产d-阿拉伯糖醇的鲁氏酵母工程菌及其构建方法和应用

Publications (1)

Publication Number Publication Date
CN117535163A true CN117535163A (zh) 2024-02-09

Family

ID=89794964

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311429854.7A Pending CN117535163A (zh) 2023-10-31 2023-10-31 一种高产d-阿拉伯糖醇的鲁氏酵母工程菌及其构建方法和应用

Country Status (1)

Country Link
CN (1) CN117535163A (zh)

Similar Documents

Publication Publication Date Title
CN114874964B (zh) 一种高产2′-岩藻糖基乳糖的重组大肠杆菌的构建方法及应用
CN109207373B (zh) 一株高产柠檬酸的微生物菌株及其发酵淀粉糖质生产柠檬酸的方法
CN111518806B (zh) 巴氏醋酸杆菌启动子及其应用
CN110272858B (zh) 一种高产l-乳酸的凝结芽孢杆菌及其应用
CN112662637B (zh) 一种甲酸脱氢酶突变体及其制备方法和应用
CN106995794B (zh) 一种提高丁二酸产量的产琥珀酸放线杆菌工程菌株及其构建方法与用途
CN111500479B (zh) 一种非甲醇诱导双启动子毕赤酵母工程菌的构建及其应用
CN111484942A (zh) 一种利用酿酒酵母生产己二酸的方法
CN115058374B (zh) 一种利用丙酮酸合成乙偶姻的重组运动发酵单胞菌及其构建方法与应用
CN116024150A (zh) 一种生产乙偶姻基因工程菌株及其构建方法与应用
CN117535163A (zh) 一种高产d-阿拉伯糖醇的鲁氏酵母工程菌及其构建方法和应用
CN115725484A (zh) 合成d-阿洛酮糖的酶突变表达工程菌及应用
CN112501105B (zh) 一种以蔗糖为原料生产乳酸单体的生产菌株及其获得方法
CN109370969B (zh) 一种重组克雷伯氏杆菌在制备1,3-丙二醇中的应用
CN113249234A (zh) 一种过表达cat和god的产葡萄糖酸钠的黑曲霉基因工程菌的构建方法
CN108913732B (zh) 一种莫纳可林j异源生产的方法及应用
CN113881737A (zh) 利用基因工程菌和酵母耦合发酵大规模产cmp-唾液酸的方法
CN113684191A (zh) 梨头霉甾体11β-羟化酶CYP5311B2突变体构建及其应用
CN115125180B (zh) 一种利用双途径产乙偶姻的重组运动发酵单胞菌及其构建方法与应用
CN115011536B (zh) 一株双厌氧启动子诱导产高光学纯d-乳酸的工程菌及其制备方法与应用
CN115011537B (zh) 一株双厌氧启动子诱导产高光学纯l-乳酸的工程菌及其制备方法与应用
CN115058350B (zh) 一种引入钾离子转运体提高s-腺苷甲硫氨酸产量的方法
CN117187206B (zh) 肠道微生物来源的岩藻糖基转移酶及其应用
CN117965500B (zh) 一种α-L鼠李糖苷酶AfRhase及其产品、应用和生产工艺
CN107338263B (zh) 一种基于树干毕赤酵母合成菌株发酵木糖生产衣康酸的构建方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination