CN116969763A - 一种石墨烯增韧无粘接相wc基硬质合金及其制备方法 - Google Patents

一种石墨烯增韧无粘接相wc基硬质合金及其制备方法 Download PDF

Info

Publication number
CN116969763A
CN116969763A CN202311237515.9A CN202311237515A CN116969763A CN 116969763 A CN116969763 A CN 116969763A CN 202311237515 A CN202311237515 A CN 202311237515A CN 116969763 A CN116969763 A CN 116969763A
Authority
CN
China
Prior art keywords
slurry
graphene
hard alloy
reaction kettle
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311237515.9A
Other languages
English (en)
Other versions
CN116969763B (zh
Inventor
李京懋
秦海旭
郑友平
游彦军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Advanced Metal Materials Industry Technology Research Institute Co Ltd
Original Assignee
Chengdu Advanced Metal Materials Industry Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Advanced Metal Materials Industry Technology Research Institute Co Ltd filed Critical Chengdu Advanced Metal Materials Industry Technology Research Institute Co Ltd
Priority to CN202311237515.9A priority Critical patent/CN116969763B/zh
Publication of CN116969763A publication Critical patent/CN116969763A/zh
Application granted granted Critical
Publication of CN116969763B publication Critical patent/CN116969763B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/02Single layer graphene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明属于合金材料技术领域,公开了一种石墨烯增韧无粘接相WC基硬质合金及其制备方法,该方法步骤为:将偏钨酸铵、可溶性金属硝酸盐和葡萄糖混合并加入晶粒抑制剂,得WC‑陶瓷粉末前驱体浆料;将前驱体浆料与硅烷偶联剂共同溶解于纯水中,得待用浆料;加热可膨胀石墨,使其膨胀为单层或多层石墨烯;将膨胀后的石墨破碎置于反应釜中并加入待用浆料,滴入氨水调节pH>7,并将反应釜抽真空搅拌反应,得反应后浆料;将反应后浆料湿式球磨,干燥、碾碎、过筛,得颗粒尺寸≤250μm的混合粉末;将混合粉末压制成型并进行原位多步烧结,得到WC硬质合金。本发明的方法可以制得高硬度、高韧性和高耐磨的单层或多层石墨烯增韧WC硬质合金。

Description

一种石墨烯增韧无粘接相WC基硬质合金及其制备方法
技术领域
本发明属于合金材料技术领域,具体涉及一种短流程单层石墨烯或多层石墨烯增韧无粘接相WC基硬质合金粉末及其原位烧结制备方法,并且更具体地,涉及一种石墨烯增韧无粘接相WC基硬质合金及其制备方法。
背景技术
WC-Co硬质合金是一种常用的刃具、模具用粉末冶金材料。随着应用工况日趋严峻,例如:高速切削、干式切削以及待加工材料硬度的提高等,传统WC-Co硬质合金变得难以满足现代工业生产对材料加工精度、质量、成本等方面的更高要求。因此,迫切需要研制综合性能更优异的新型WC材料。
石墨烯是一种由单个碳原子构建的二维材料,其具有诸多优异的性质,例如高导电性、高导热性、高强度和高的比表面积等,是一种较理想的增强体。已有研究将其应用于陶瓷材料制备中,其可以在保持较高强度的前提下,显著提高材料的韧性。然而WC与石墨烯的密度太大,传统的机械混合或球磨很难将之分散均匀,若采用超声分散则需要几天的时间,极大的浪费生产时间和资源。
研发新型粘结相以获得更高性能WC材料一直是领域研究热点,采用Ni、Fe、Cu、Cr等金属部分或全部替代Co粘结WC硬质合金的研究也一直经久不衰。然而,Ni、Fe、Cu、Cr 等金属对WC的润湿性更差、与WC相结合强度显著低于Co金属,此类代Co类硬质合金还面临着力学性能差的难题。
此外,传统的WC-Co硬质合金制备过程中还涉及到将APT原料煅烧成钨的氧化物,再通过氢气还原、高温碳化。该生产工艺流程很长,耗时久,能耗大。
目前,国内外现均有采用石墨烯增强WC材料的研究报道。例如,陈奇等的文献(《低压烧结制备石墨烯增强WC-Co 硬质合金》,有色金属材料与工程,2020,41(4))报道了使用静电吸附工艺制备氧化石墨烯增WC-Co硬质合金,在石墨烯质量分数为0.10%时静电吸附较机械混合方法制备的硬质合金弯曲强度稍高8%。虽然他们引入氧化石墨烯的给静电吸附工艺创造了条件,降低了材料分散的难度,但是需要在烧结过程中增加氧化石墨烯转化为石墨烯的步骤。中国专利号为ZL201811062507.4(授权公告号:CN109320249B)的专利文献公开了一种掺杂氧化硼与氧化铝氧化锆复合增韧碳化钨复合材料及其制备方法,该方法是利用放电等离子烧结技术制备氧化硼、氧化铝、氧化锆复合增韧WC硬质合金,获得的复合材料有着良好的硬度和断裂韧性。前期研究证实以氧化硼、氧化铝、氧化锆替代金属粘接相,可克服金属粘结相的不足,然而如何进一步提高材料的断裂韧性以及降低材料的制备成本、制备难度等综合问题,仍是本领域技术人员需要解决的问题。
因此,现有技术有待改进。
发明内容
本发明的目的在于提供一种短流程、低成本生产单层或多层石墨烯增韧WC硬质合金粉末的制备方法以及提供一种通过上述方法制备得到的单层或多层石墨烯增韧WC硬质合金。
为了解决上述技术问题,本发明采用以下技术方案:
根据本发明的一方面,提供一种石墨烯增韧无粘接相WC基硬质合金的制备方法,包括以下步骤:
1)将原料偏钨酸铵、可溶性金属硝酸盐和葡萄糖进行混合并加入晶粒抑制剂,得到WC-陶瓷粉末前驱体浆料;
2)将WC-陶瓷粉末前驱体浆料与硅烷偶联剂共同溶解于纯水中,得到待用浆料;
3)加热可膨胀石墨,使石墨膨胀为单层或多层石墨烯;
4)将膨胀后的石墨破碎后置于反应釜中,并向反应釜中加入待用浆料,滴入氨水调节反应釜中的浆料至pH>7,然后将反应釜抽真空并进行搅拌反应,得到反应后的浆料;
5)将反应后的浆料进行湿式球磨,然后进行干燥、碾碎、过筛,得到颗粒尺寸≤250μm的混合粉末;
6)将得到的混合粉末加入成型剂压制成型,脱脂后进行原位多步烧结,制备得到石墨烯增韧无粘接相WC基硬质合金。
在本发明的一个实施例中,在步骤1)中,偏钨酸铵的纯度≥99%,偏钨酸铵中WO3的质量分数≥92%,W的质量分数≥73%;可溶性金属硝酸盐包括硝酸锆、硝酸铝、硝酸镁和硝酸钇。
在本发明的一个实施例中,按WC-x wt.%陶瓷相的成分配比等效计算偏钨酸铵和可溶性金属硝酸盐配料的质量,其中0<x≤12,陶瓷相包括氧化铝、氧化锆、氧化镁和氧化钇;葡萄糖中的C元素摩尔量配比为偏钨酸铵中的W元素摩尔量的3.5-4.0倍。
在本发明的一个实施例中,在步骤1)中,晶粒抑制剂由碳化铬和碳化钒按质量比2:1组成。
在本发明的一个实施例中,在步骤2)中,硅烷偶联剂采用KH570。
在本发明的一个实施例中,在步骤3)中,可膨胀石墨通过高温或微波进行加热,加热时间为30-60秒。
在本发明的一个实施例中,在步骤4)中,反应釜内采用磁力搅拌进行搅拌反应。
在本发明的一个实施例中,在步骤5)中,湿式球磨的条件为:磨球、罐体材质均为WC-Co硬质合金,球磨介质为无水乙醇,球料比为3:1,转速250 r/min。
在本发明的一个实施例中,在步骤6)中,成型剂为分子量4000的PEG,并且烧结采用真空烧结,具体条件如下:
多步烧结的条件为:400℃保温60min,550℃保温60min,750℃保温60min,1000℃保温2h;
烧结升温速率:10-50 ℃/min;
最终烧结温度:1200-1600 ℃;
最终烧结保温时间:60-120 min;
烧结真空度:≤6 Pa。
此外,本发明还提供一种石墨烯增韧无粘接相WC基硬质合金,该硬质合金通过如前所述的石墨烯增韧无粘接相WC基硬质合金的制备方法来制备得到。
通过采用上述技术方案,本发明相比于现有技术具有如下优点:
本发明的方法可以制备得到高硬度、高韧性和高耐磨的单层或多层石墨烯增韧WC硬质合金,开发出单层或多层石墨烯增韧无粘接相WC基硬质合金粉末及块体材料,技术可实现工业应用,使得产品竞争力大幅度提升,产品附加值高;并且本发明方法制备得到的无粘接相硬质合金可以降低我国对进口钴金属的依存度,降低硬质合金的使用成本,具有可观的经济效益和技术显示度。
附图说明
图1示出了本发明提供的一种石墨烯增韧无粘接相WC基硬质合金的制备方法的流程示意图。
具体实施方式
应当理解,在示例性实施例中所示的本发明的实施例仅是说明性的。虽然在本发明中仅对少数实施例进行了详细描述,但本领域技术人员很容易领会在未实质脱离本发明主题的教导情况下,多种修改是可行的。相应地,所有这样的修改都应当被包括在本发明的范围内。在不脱离本发明的主旨的情况下,可以对以下示例性实施例的设计、操作条件和参数等做出其他的替换、修改、变化和删减。
如图1所示,本发明提供的一种石墨烯增韧无粘接相WC基硬质合金的制备方法,包括以下步骤:
S101:将原料偏钨酸铵、可溶性金属硝酸盐和葡萄糖进行混合并加入晶粒抑制剂,得到WC-陶瓷粉末前驱体浆料;
S102:将WC-陶瓷粉末前驱体浆料与硅烷偶联剂共同溶解于纯水中,得到待用浆料;
S103:加热可膨胀石墨,使石墨膨胀为单层或多层石墨烯;
S104:将膨胀后的石墨破碎后置于反应釜中,并向反应釜中加入待用浆料,滴入氨水调节反应釜中的浆料至pH>7,然后将反应釜抽真空并进行搅拌反应,得到反应后的浆料;
S105:将反应后的浆料进行湿式球磨,然后进行干燥、碾碎、过筛,得到颗粒尺寸≤250 μm的混合粉末;
S106:将得到的混合粉末加入成型剂压制成型,脱脂后进行原位多步烧结,制备得到石墨烯增韧无粘接相WC基硬质合金。
在上述制备方法中,在S101中,偏钨酸铵的纯度≥99%,偏钨酸铵中WO3的质量分数≥92%,W的质量分数≥73%;可溶性金属硝酸盐包括硝酸锆、硝酸铝、硝酸镁和硝酸钇;按WC-x wt.%陶瓷相的成分配比等效计算偏钨酸铵和可溶性金属硝酸盐配料的质量,其中0<x≤12,陶瓷相包括氧化铝、氧化锆、氧化镁和氧化钇;葡萄糖中的C元素摩尔量配比为偏钨酸铵中的W元素摩尔量的3.5-4.0倍,优选3.75倍;晶粒抑制剂由碳化铬和碳化钒按质量比2:1组成。
在上述制备方法中,在S102中,硅烷偶联剂采用KH570(γ-(甲基丙烯酰氧)丙基三甲氧基)。
在上述制备方法中,在S103中,可膨胀石墨通过高温或微波进行加热,加热时间为30-60秒。
在上述制备方法中,在步骤S104中,膨胀石墨加入量小于球磨粉末总质量的1%,反应釜内采用磁力搅拌进行搅拌反应。
在上述制备方法中,在步骤S105中,干燥是指烘干至溶剂残余量≤1%;湿式球磨的条件为:磨球、罐体材质均为WC-Co硬质合金,球磨介质为无水乙醇,球料比为3:1,转速250r/min。
在上述制备方法中,在步骤S106中,成型剂为分子量4000的PEG,加入量为球磨粉末总质量的1.50%-4.20%,并且烧结采用真空烧结,具体条件如下:
多步烧结的条件为:400℃保温60min,550℃保温60min,750℃保温60min,1000℃保温2h;
烧结升温速率:10-50 ℃/min;
最终烧结温度:1200-1600 ℃;
最终烧结保温时间:60-120 min;
烧结真空度:≤6 Pa。
此外,本发明还提供一种石墨烯增韧无粘接相WC基硬质合金,该硬质合金通过如前所述的石墨烯增韧无粘接相WC基硬质合金的制备方法来制备得到。
例如,采用上述方法制备得到的WC-(1-8)wt.%氧化铝-0.25 wt.%石墨烯硬质合金材料横向断裂强度为1100-2000MPa,断裂韧性为6.5-10.0MPa·m1/2;WC-(1-10)wt.%氧化锆-0.50 wt.%石墨烯材料横向断裂强度为1500-2200MPa,断裂韧性为7.8-13.0MPa·m1/2
下面通过具体实施例来对本发明的上述技术方案进行详细地说明。
实施例1
一种石墨烯增韧无粘接相WC基硬质合金的制备方法,步骤如下:
(1)制备WC-1wt.%Al2O3陶瓷粉末前驱体浆料:将原料粉末偏钨酸铵、硝酸铝和葡萄糖进行混合并加入碳化铬和碳化钒;其中各个物料配料为偏钨酸铵124.03g、硝酸铝4.18g、葡萄糖56.34g、碳化铬0.65g和碳化钒0.32g;
(2)将上述前驱体浆料与KH570硅烷偶联剂8 mL共同溶解于1000 mL纯水中,得到待用浆料;
(3)通过高温或微波加热1g可膨胀石墨 30秒,使之膨胀为多层石墨烯;
(4)将膨胀后的石墨破碎后置于反应釜中,并向反应釜中加入待用浆料,逐滴滴入氨水并保持反应釜中的浆料pH值>7,然后反应釜抽真空并使用磁力搅拌进行反应,得到反应后的浆料;
(5)将上述反应后的浆料置于行星式球磨机中进行湿式球磨,磨球、罐体材质均为WC-Co硬质合金,球磨介质为无水乙醇,球料比为3:1,转速250 r/min,球磨30小时制得混合浆料,然后将混合浆料置于干燥炉内烘干至溶剂残余量≤1%,并碾碎、过筛,得到颗粒尺≤250 μm的WC-1wt.%Al2O3-1wt.%石墨烯混合粉末;
(6)将得到的WC-1wt.%Al2O3-1wt.%石墨烯混合粉末加入分子量4000的PEG进行预压成型,得到直径20mm的待烧结坯,然后将待烧结坯脱脂后采用真空炉对上述圆柱坯进行烧结,其中烧结工艺为:升温速率为20 ℃/min,400℃保温60min,550℃保温60min,750℃保温60min,1000℃保温2h,最终烧结温度为1600 ℃,保温时间为60 min,真空度为4 Pa,制备得到WC-1 wt.% Al2O3-1 wt.%石墨烯硬质合金。
通过上述实施例1,得到的WC-1 wt.% Al2O3-1 wt.%石墨烯硬质合金材料的硬度为23 GPa HV30,横向断裂强度为1300MPa,断裂韧性为7.5MPa·m1/2;抗压强度为1014.5MPa。
实施例2
一种石墨烯增韧无粘接相WC基硬质合金的制备方法,步骤如下:
(1)制备WC-1wt.%Al2O3-1wt.%ZrO2陶瓷粉末前驱体浆料:将原料粉末偏钨酸铵、硝酸铝和葡萄糖进行混合并加入碳化铬和碳化钒;其中各个物料配料为偏钨酸铵122.76g、硝酸铝4.18g、硝酸锆2.75g、葡萄糖55.76g、碳化铬0.65g、碳化钒0.32g;
(2)将上述前驱体浆料与KH570硅烷偶联剂8 mL共同溶解于1000 mL纯水中,得到待用浆料;
(3)通过高温或微波加热1g可膨胀石墨 30秒,使之膨胀为多层石墨烯;
(4)将膨胀后的石墨破碎后置于反应釜中,并向反应釜中加入待用浆料,逐滴滴入氨水并保持反应釜中的浆料pH值>7,然后反应釜抽真空并使用磁力搅拌进行反应,得到反应后的浆料;
(5)将上述反应后的浆料置于行星式球磨机中进行湿式球磨,磨球、罐体材质均为WC-Co硬质合金,球磨介质为无水乙醇,球料比为3:1,转速250 r/min,球磨30小时制得混合浆料,然后将混合浆料置于干燥炉内烘干至溶剂残余量≤1%,并碾碎、过筛,得到颗粒尺≤250 μm的WC-1wt.%Al2O3-1wt.%ZrO2-1wt.%石墨烯混合粉末;
(6)将得到的WC-1wt.%Al2O3-1wt.%ZrO2-1wt.%石墨烯混合粉末加入分子量4000的PEG进行预压成型,得到直径20mm的待烧结坯,然后将待烧结坯脱脂后采用真空炉对上述圆柱坯进行烧结,其中烧结工艺为:升温速率为20 ℃/min,400℃保温60min,550℃保温60min,750℃保温60min,1000℃保温2h,最终烧结温度为1600 ℃,保温时间为60 min,真空度为4 Pa,制备得到WC-1wt.%Al2O3-1wt.%ZrO2-1wt.%石墨烯硬质合金。
通过上述实施例2,得到的WC-1wt.%Al2O3-1wt.%ZrO2-1wt.%石墨烯硬质合金材料的硬度为21 GPa HV30,横向断裂强度为1500MPa,断裂韧性为8.5MPa·m1/2;抗压强度为1773.5MPa。
实施例3
一种石墨烯增韧无粘接相WC基硬质合金的制备方法,步骤如下:
(1)制备WC-2wt.%Al2O3陶瓷粉末前驱体浆料:将原料粉末偏钨酸铵、硝酸铝和葡萄糖进行混合并加入碳化铬和碳化钒;其中各个物料配料为偏钨酸铵123.03g、硝酸铝4.08g、葡萄糖54.34g、碳化铬0.64g和碳化钒0.32g;
(2)将上述前驱体浆料与KH570硅烷偶联剂10 mL共同溶解于1000 mL纯水中,得到待用浆料;
(3)通过高温或微波加热1g可膨胀石墨 45秒,使之膨胀为多层石墨烯;
(4)将膨胀后的石墨破碎后置于反应釜中,并向反应釜中加入待用浆料,逐滴滴入氨水并保持反应釜中的浆料pH值>7,然后反应釜抽真空并使用磁力搅拌进行反应,得到反应后的浆料;
(5)将上述反应后的浆料置于行星式球磨机中进行湿式球磨,磨球、罐体材质均为WC-Co硬质合金,球磨介质为无水乙醇,球料比为3:1,转速250 r/min,球磨35小时制得混合浆料,然后将混合浆料置于干燥炉内烘干至溶剂残余量≤1%,并碾碎、过筛,得到颗粒尺≤250 μm的WC-2wt.%Al2O3-0.25wt.%石墨烯混合粉末;
(6)将得到的WC-2wt.%Al2O3-0.25wt.%石墨烯混合粉末加入分子量4000的PEG进行预压成型,得到直径25mm的待烧结坯,然后将待烧结坯脱脂后采用真空炉对上述圆柱坯进行烧结,其中烧结工艺为:升温速率为10 ℃/min,400℃保温60min,550℃保温60min,750℃保温60min,1000℃保温2h,最终烧结温度为1200 ℃,保温时间为120 min,真空度为3 Pa,制备得到WC-2 wt.% Al2O3-0.25 wt.%石墨烯硬质合金。
通过上述实施例3,得到的WC-2 wt.% Al2O3-0.25 wt.%石墨烯硬质合金材料的硬度为22 GPa HV30,横向断裂强度为1100MPa,断裂韧性为6.5MPa·m1/2;抗压强度为1025.5MPa。
实施例4
一种石墨烯增韧无粘接相WC基硬质合金的制备方法,步骤如下:
(1)制备WC-8wt.%Al2O3陶瓷粉末前驱体浆料:将原料粉末偏钨酸铵、硝酸铝和葡萄糖进行混合并加入碳化铬和碳化钒;其中各个物料配料为偏钨酸铵123.03g、硝酸铝4.08g、葡萄糖54.34g、碳化铬0.65g和碳化钒0.32g;
(2)将上述前驱体浆料与KH570硅烷偶联剂5 mL共同溶解于1000 mL纯水中,得到待用浆料;
(3)通过高温或微波加热1g可膨胀石墨 60秒,使之膨胀为单层石墨烯;
(4)将膨胀后的石墨破碎后置于反应釜中,并向反应釜中加入待用浆料,逐滴滴入氨水并保持反应釜中的浆料pH值>7,然后反应釜抽真空并使用磁力搅拌进行反应,得到反应后的浆料;
(5)将上述反应后的浆料置于行星式球磨机中进行湿式球磨,磨球、罐体材质均为WC-Co硬质合金,球磨介质为无水乙醇,球料比为3:1,转速250 r/min,球磨30小时制得混合浆料,然后将混合浆料置于干燥炉内烘干至溶剂残余量≤1%,并碾碎、过筛,得到颗粒尺≤250 μm的WC-8wt.%Al2O3-0.25wt.%石墨烯混合粉末;
(6)将得到的WC-8wt.%Al2O3-0.25wt.%石墨烯混合粉末加入分子量4000的PEG进行预压成型,得到直径25mm的待烧结坯,然后将待烧结坯脱脂后采用真空炉对上述圆柱坯进行烧结,其中烧结工艺为:升温速率为50 ℃/min,400℃保温60min,550℃保温60min,750℃保温60min,1000℃保温2h,最终烧结温度为1500 ℃,保温时间为100 min,真空度为6 Pa,制备得到WC-8 wt.% Al2O3-0.25 wt.%石墨烯硬质合金。
通过上述实施例4,得到的WC-8 wt.% Al2O3-0.25 wt.%石墨烯硬质合金材料的硬度为25 GPa HV30,横向断裂强度为2000MPa,断裂韧性为10MPa·m1/2;抗压强度为1032.5MPa。
实施例5
一种石墨烯增韧无粘接相WC基硬质合金的制备方法,步骤如下:
(1)制备WC-1wt.% ZrO2陶瓷粉末前驱体浆料:将原料粉末偏钨酸铵、硝酸铝和葡萄糖进行混合并加入碳化铬和碳化钒;其中各个物料配料为偏钨酸铵121.03g、硝酸铝4.15g、葡萄糖55.34g、碳化铬0.65g和碳化钒0.31g;
(2)将上述前驱体浆料与KH570硅烷偶联剂8 mL共同溶解于1000 mL纯水中,得到待用浆料;
(3)通过高温或微波加热1g可膨胀石墨 40秒,使之膨胀为多层石墨烯;
(4)将膨胀后的石墨破碎后置于反应釜中,并向反应釜中加入待用浆料,逐滴滴入氨水并保持反应釜中的浆料pH值>7,然后反应釜抽真空并使用磁力搅拌进行反应,得到反应后的浆料;
(5)将上述反应后的浆料置于行星式球磨机中进行湿式球磨,磨球、罐体材质均为WC-Co硬质合金,球磨介质为无水乙醇,球料比为3:1,转速250 r/min,球磨30小时制得混合浆料,然后将混合浆料置于干燥炉内烘干至溶剂残余量≤1%,并碾碎、过筛,得到颗粒尺≤250 μm的WC-1wt.% ZrO2-0.50wt.%石墨烯混合粉末;
(6)将得到的WC-1wt.% ZrO2-0.50wt.%石墨烯混合粉末加入分子量4000的PEG进行预压成型,得到直径20mm的待烧结坯,然后将待烧结坯脱脂后采用真空炉对上述圆柱坯进行烧结,其中烧结工艺为:升温速率为40 ℃/min,400℃保温60min,550℃保温60min,750℃保温60min,1000℃保温2h,最终烧结温度为1500 ℃,保温时间为100 min,真空度为5Pa,制备得到WC-1 wt.% ZrO2-0.50 wt.%石墨烯硬质合金。
通过上述实施例5,得到的WC-1 wt.% ZrO2-0.50 wt.%石墨烯硬质合金材料的硬度为24 GPa HV30,横向断裂强度为1500MPa,断裂韧性为7.8MPa·m1/2;抗压强度为1523.6MPa。
实施例6
一种石墨烯增韧无粘接相WC基硬质合金的制备方法,步骤如下:
(1)制备WC-10wt.% ZrO2陶瓷粉末前驱体浆料:将原料粉末偏钨酸铵、硝酸铝和葡萄糖进行混合并加入碳化铬和碳化钒;其中各个物料配料为偏钨酸铵122.03g、硝酸铝4.17g、葡萄糖54.34g、碳化铬0.65g和碳化钒0.32g;
(2)将上述前驱体浆料与KH570硅烷偶联剂10mL共同溶解于1000 mL纯水中,得到待用浆料;
(3)通过高温或微波加热1g可膨胀石墨 60秒,使之膨胀为单层石墨烯;
(4)将膨胀后的石墨破碎后置于反应釜中,并向反应釜中加入待用浆料,逐滴滴入氨水并保持反应釜中的浆料pH值>7,然后反应釜抽真空并使用磁力搅拌进行反应,得到反应后的浆料;
(5)将上述反应后的浆料置于行星式球磨机中进行湿式球磨,磨球、罐体材质均为WC-Co硬质合金,球磨介质为无水乙醇,球料比为3:1,转速250 r/min,球磨30小时制得混合浆料,然后将混合浆料置于干燥炉内烘干至溶剂残余量≤1%,并碾碎、过筛,得到颗粒尺≤250 μm的WC-10wt.% ZrO2-0.50wt.%石墨烯混合粉末;
(6)将得到的WC-10wt.% ZrO2-0.50wt.%石墨烯混合粉末加入分子量4000的PEG进行预压成型,得到直径20mm的待烧结坯,然后将待烧结坯脱脂后采用真空炉对上述圆柱坯进行烧结,其中烧结工艺为:升温速率为50 ℃/min,400℃保温60min,550℃保温60min,750℃保温60min,1000℃保温2h,最终烧结温度为1600 ℃,保温时间为100 min,真空度为5Pa,制备得到WC-10 wt.% ZrO2-0.50 wt.%石墨烯硬质合金。
通过上述实施例6,得到的WC-10 wt.% ZrO2-0.50 wt.%石墨烯硬质合金材料的硬度为24 GPa HV30,横向断裂强度为2200MPa,断裂韧性为13.0MPa·m1/2;抗压强度为1554.6MPa。
实施例7
一种石墨烯增韧无粘接相WC基硬质合金的制备方法,步骤如下:
(1)制备WC-5wt.% ZrO2陶瓷粉末前驱体浆料:将原料粉末偏钨酸铵、硝酸铝和葡萄糖进行混合并加入碳化铬和碳化钒;其中各个物料配料为偏钨酸铵120.03g、硝酸铝4.27g、葡萄糖56.34g、碳化铬0.65g和碳化钒0.32g;
(2)将上述前驱体浆料与KH570硅烷偶联剂15mL共同溶解于1000 mL纯水中,得到待用浆料;
(3)通过高温或微波加热1g可膨胀石墨 40秒,使之膨胀为单层石墨烯;
(4)将膨胀后的石墨破碎后置于反应釜中,并向反应釜中加入待用浆料,逐滴滴入氨水并保持反应釜中的浆料pH值>7,然后反应釜抽真空并使用磁力搅拌进行反应,得到反应后的浆料;
(5)将上述反应后的浆料置于行星式球磨机中进行湿式球磨,磨球、罐体材质均为WC-Co硬质合金,球磨介质为无水乙醇,球料比为3:1,转速250 r/min,球磨30小时制得混合浆料,然后将混合浆料置于干燥炉内烘干至溶剂残余量≤1%,并碾碎、过筛,得到颗粒尺≤250 μm的WC-5wt.% ZrO2-0.50wt.%石墨烯混合粉末;
(6)将得到的WC-5wt.% ZrO2-0.50wt.%石墨烯混合粉末加入分子量4000的PEG进行预压成型,得到直径22mm的待烧结坯,然后将待烧结坯脱脂后采用真空炉对上述圆柱坯进行烧结,其中烧结工艺为:升温速率为15 ℃/min,400℃保温60min,550℃保温60min,750℃保温60min,1000℃保温2h,最终烧结温度为1600 ℃,保温时间为120min,真空度为5 Pa,制备得到WC-5 wt.% ZrO2-0.50 wt.%石墨烯硬质合金。
通过上述实施例7,得到的WC-5wt.% ZrO2-0.50wt.%石墨烯硬质合金材料的硬度为26 GPa HV30,横向断裂强度为2000MPa,断裂韧性为12.5MPa·m1/2;抗压强度为1561.6MPa。
由上述实施例1-7可以看出,本发明的方法可以制备得到高硬度、高韧性和高耐磨的单层或多层石墨烯增韧WC硬质合金,本发明的方法可以短流程、低成本生产单层或多层石墨烯增韧WC硬质合金粉末。
以上所述仅为本发明的较佳实施例,并非用来限定本发明的实施范围;如果不脱离本发明的精神和范围,对本发明进行修改或者等同替换,均应涵盖在本发明权利要求的保护范围当中。

Claims (10)

1.一种石墨烯增韧无粘接相WC基硬质合金的制备方法,其特征在于,包括以下步骤:
1)将原料偏钨酸铵、可溶性金属硝酸盐和葡萄糖进行混合并加入晶粒抑制剂,得到WC-陶瓷粉末前驱体浆料;
2)将所述WC-陶瓷粉末前驱体浆料与硅烷偶联剂共同溶解于纯水中,得到待用浆料;
3)加热可膨胀石墨,使石墨膨胀为单层或多层石墨烯;
4)将膨胀后的石墨破碎后置于反应釜中,并向所述反应釜中加入所述待用浆料,滴入氨水调节反应釜中的浆料至pH>7,然后将反应釜抽真空并进行搅拌反应,得到反应后的浆料;
5)将所述反应后的浆料进行湿式球磨,然后进行干燥、碾碎、过筛,得到颗粒尺寸≤250μm的混合粉末;
6)将得到的所述混合粉末加入成型剂压制成型,脱脂后进行原位多步烧结,制备得到石墨烯增韧无粘接相WC基硬质合金。
2.根据权利要求1所述的石墨烯增韧无粘接相WC基硬质合金的制备方法,其特征在于,在步骤1)中,所述偏钨酸铵的纯度≥99%,所述偏钨酸铵中WO3的质量分数≥92%,W的质量分数≥73%;所述可溶性金属硝酸盐包括硝酸锆、硝酸铝、硝酸镁和硝酸钇。
3. 根据权利要求2所述的石墨烯增韧无粘接相WC基硬质合金的制备方法,其特征在于,按WC-x wt.%陶瓷相的成分配比等效计算偏钨酸铵和可溶性金属硝酸盐配料的质量,其中0<x≤12,所述陶瓷相包括氧化铝、氧化锆、氧化镁和氧化钇;所述葡萄糖中的C元素摩尔量配比为偏钨酸铵中的W元素摩尔量的3.5-4.0倍。
4.根据权利要求1所述的石墨烯增韧无粘接相WC基硬质合金的制备方法,其特征在于,在步骤1)中,所述晶粒抑制剂由碳化铬和碳化钒按质量比2:1组成。
5.根据权利要求1所述的石墨烯增韧无粘接相WC基硬质合金的制备方法,其特征在于,在步骤2)中,硅烷偶联剂采用KH570。
6.根据权利要求1所述的石墨烯增韧无粘接相WC基硬质合金的制备方法,其特征在于,在步骤3)中,所述可膨胀石墨通过高温或微波进行加热,加热时间为30-60秒。
7.根据权利要求1所述的石墨烯增韧无粘接相WC基硬质合金的制备方法,其特征在于,在步骤4)中,反应釜内采用磁力搅拌进行搅拌反应。
8. 根据权利要求1所述的石墨烯增韧无粘接相WC基硬质合金的制备方法,其特征在于,在步骤5)中,所述湿式球磨的条件为:磨球、罐体材质均为WC-Co硬质合金,球磨介质为无水乙醇,球料比为3:1,转速250 r/min。
9.根据权利要求1所述的石墨烯增韧无粘接相WC基硬质合金的制备方法,其特征在于,在步骤6)中,成型剂为分子量4000的PEG,并且烧结采用真空烧结,具体条件如下:
多步烧结的条件为:400℃保温60min,550℃保温60min,750℃保温60min,1000℃保温2h;
烧结升温速率:10-50 ℃/min;
最终烧结温度:1200-1600 ℃;
最终烧结保温时间:60-120 min;
烧结真空度:≤6 Pa。
10.一种石墨烯增韧无粘接相WC基硬质合金,其特征在于,通过前述权利要求1-9中任一项所述的石墨烯增韧无粘接相WC基硬质合金的制备方法来制备得到。
CN202311237515.9A 2023-09-25 2023-09-25 一种石墨烯增韧无粘接相wc基硬质合金及其制备方法 Active CN116969763B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311237515.9A CN116969763B (zh) 2023-09-25 2023-09-25 一种石墨烯增韧无粘接相wc基硬质合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311237515.9A CN116969763B (zh) 2023-09-25 2023-09-25 一种石墨烯增韧无粘接相wc基硬质合金及其制备方法

Publications (2)

Publication Number Publication Date
CN116969763A true CN116969763A (zh) 2023-10-31
CN116969763B CN116969763B (zh) 2023-12-12

Family

ID=88480009

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311237515.9A Active CN116969763B (zh) 2023-09-25 2023-09-25 一种石墨烯增韧无粘接相wc基硬质合金及其制备方法

Country Status (1)

Country Link
CN (1) CN116969763B (zh)

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2108131A1 (en) * 1991-04-10 1992-10-11 Stefan Ederyd Method of making cemented carbide articles
JP2009179519A (ja) * 2008-01-31 2009-08-13 Nippon Tokushu Gokin Kk バインダレス合金
WO2013020317A1 (zh) * 2011-08-05 2013-02-14 华南理工大学 含氧化铝颗粒与氮化硅晶须的碳化钨复合材料及制备方法
JP2013040396A (ja) * 2011-08-19 2013-02-28 Seiko Epson Corp 超硬合金及びその製造方法
JP2015045080A (ja) * 2013-11-20 2015-03-12 冨士ダイス株式会社 バインダーレス超微粒超硬合金またはそれを用いた工具
CN105907997A (zh) * 2016-06-02 2016-08-31 华南理工大学 原位自生纳米Al2O3增韧WC-Ni3Al复合材料及其制备方法
CN106670505A (zh) * 2017-01-13 2017-05-17 昆明理工大学 一种喷雾热解法制备钨钴炭复合粉末的方法
CN106825599A (zh) * 2017-01-19 2017-06-13 北京科技大学 一种添加晶粒长大抑制剂的WC‑Co纳米粉末的制备方法
CN106978005A (zh) * 2017-03-03 2017-07-25 厦门纳诺泰克科技有限公司 一种含钨金属氧化物纳米颗粒及其制备方法
CN108103344A (zh) * 2018-01-11 2018-06-01 湖南科技大学 一种(W,Mo2)C-Al2O3复合粉体及其制备方法
CN108585870A (zh) * 2018-06-20 2018-09-28 湖南科技大学 一种La2O3-Al2O3-(W,Mo2)C无粘结相硬质合金材料及其制备方法
CN110616345A (zh) * 2018-06-19 2019-12-27 中国科学院苏州纳米技术与纳米仿生研究所 一种细晶硬质合金及其制备方法
CN110616346A (zh) * 2018-06-19 2019-12-27 中国科学院苏州纳米技术与纳米仿生研究所 基于有机金属框架的晶粒抑制剂制备超细硬质合金的方法
CN110629060A (zh) * 2018-06-25 2019-12-31 中国科学院苏州纳米技术与纳米仿生研究所 一种含稀土元素的晶粒细化剂及其制备方法与应用
CN111018530A (zh) * 2019-12-18 2020-04-17 赛福纳米科技(徐州)有限公司 高硬超轻陶瓷复合材料及其制备方法
CN111056852A (zh) * 2019-12-19 2020-04-24 西安交通大学 一种无粘结相wc基硬质合金刀具材料及其制备方法
WO2020186752A1 (zh) * 2019-03-15 2020-09-24 华南理工大学 一种等离子体球磨制备超细晶 WC-Co 硬质合金的方法
CN112250442A (zh) * 2020-09-30 2021-01-22 北京科技大学 一种高强韧无粘结相纳米晶硬质合金的制备方法
CN115652122A (zh) * 2022-10-09 2023-01-31 成都川硬合金材料有限责任公司 一种硬质合金及其制备工艺
CN116065074A (zh) * 2022-07-13 2023-05-05 成都邦普切削刀具股份有限公司 一种无粘接相碳化钨基硬质相合金材料及制备方法
KR20230104343A (ko) * 2021-12-30 2023-07-10 한국재료연구원 텅스텐 탄화물 입자의 제조방법 및 이로부터 제조된 텅스텐 탄화물 입자

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2108131A1 (en) * 1991-04-10 1992-10-11 Stefan Ederyd Method of making cemented carbide articles
JP2009179519A (ja) * 2008-01-31 2009-08-13 Nippon Tokushu Gokin Kk バインダレス合金
WO2013020317A1 (zh) * 2011-08-05 2013-02-14 华南理工大学 含氧化铝颗粒与氮化硅晶须的碳化钨复合材料及制备方法
JP2013040396A (ja) * 2011-08-19 2013-02-28 Seiko Epson Corp 超硬合金及びその製造方法
JP2015045080A (ja) * 2013-11-20 2015-03-12 冨士ダイス株式会社 バインダーレス超微粒超硬合金またはそれを用いた工具
CN105907997A (zh) * 2016-06-02 2016-08-31 华南理工大学 原位自生纳米Al2O3增韧WC-Ni3Al复合材料及其制备方法
CN106670505A (zh) * 2017-01-13 2017-05-17 昆明理工大学 一种喷雾热解法制备钨钴炭复合粉末的方法
CN106825599A (zh) * 2017-01-19 2017-06-13 北京科技大学 一种添加晶粒长大抑制剂的WC‑Co纳米粉末的制备方法
CN106978005A (zh) * 2017-03-03 2017-07-25 厦门纳诺泰克科技有限公司 一种含钨金属氧化物纳米颗粒及其制备方法
CN108103344A (zh) * 2018-01-11 2018-06-01 湖南科技大学 一种(W,Mo2)C-Al2O3复合粉体及其制备方法
CN110616346A (zh) * 2018-06-19 2019-12-27 中国科学院苏州纳米技术与纳米仿生研究所 基于有机金属框架的晶粒抑制剂制备超细硬质合金的方法
CN110616345A (zh) * 2018-06-19 2019-12-27 中国科学院苏州纳米技术与纳米仿生研究所 一种细晶硬质合金及其制备方法
CN108585870A (zh) * 2018-06-20 2018-09-28 湖南科技大学 一种La2O3-Al2O3-(W,Mo2)C无粘结相硬质合金材料及其制备方法
CN110629060A (zh) * 2018-06-25 2019-12-31 中国科学院苏州纳米技术与纳米仿生研究所 一种含稀土元素的晶粒细化剂及其制备方法与应用
WO2020186752A1 (zh) * 2019-03-15 2020-09-24 华南理工大学 一种等离子体球磨制备超细晶 WC-Co 硬质合金的方法
CN111018530A (zh) * 2019-12-18 2020-04-17 赛福纳米科技(徐州)有限公司 高硬超轻陶瓷复合材料及其制备方法
CN111056852A (zh) * 2019-12-19 2020-04-24 西安交通大学 一种无粘结相wc基硬质合金刀具材料及其制备方法
CN112250442A (zh) * 2020-09-30 2021-01-22 北京科技大学 一种高强韧无粘结相纳米晶硬质合金的制备方法
KR20230104343A (ko) * 2021-12-30 2023-07-10 한국재료연구원 텅스텐 탄화물 입자의 제조방법 및 이로부터 제조된 텅스텐 탄화물 입자
CN116065074A (zh) * 2022-07-13 2023-05-05 成都邦普切削刀具股份有限公司 一种无粘接相碳化钨基硬质相合金材料及制备方法
CN115652122A (zh) * 2022-10-09 2023-01-31 成都川硬合金材料有限责任公司 一种硬质合金及其制备工艺

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHENXIN OUYANG 等: "Microstructure and mechanical properties of hot-pressed WC–MgO composites with Cr3C2 or VC addition", INT. JOURNAL OF REFRACTORY METALS AND HARD MATERIALS, vol. 41 *
XIAOXIAO ZHANG 等: "Preparation, mechanical and tribological properties of WC-Al2O3 composite doped with graphene platelets", CERAMICS INTERNATIONAL, vol. 46 *
郭圣达;鲍瑞;刘亮;杨平;易健宏;羊建高;陈颢;: "原位合成复合粉制备超细WC-Co硬质合金", 稀有金属材料与工程, no. 12 *
陈奇;贾雪冰;廖英杰;张柯;: "低压烧结制备石墨烯增强WC-Co硬质合金", 有色金属材料与工程, no. 04 *

Also Published As

Publication number Publication date
CN116969763B (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
CN101423912B (zh) 一种纳米晶钨基合金块体材料及其制备方法
CN109576545B (zh) 一种具有混晶结构的Ti(C,N)基金属陶瓷及其制备方法
CN107345284B (zh) 采用Ni-Cu连续固溶体作粘结相的Ti基金属陶瓷材料
CN106435322B (zh) 一种低成本高性能WC-Fe-Ni-Co-Cr硬质合金辊环
CN109338193B (zh) 一种无芯-环结构金属陶瓷合金及其制备方法
CN110257681B (zh) 一种聚晶立方氮化硼复合片及其制备方法
CN112647006B (zh) 一种以碳化钨为基础的硬质合金及其制备方法
CN112063905B (zh) 一种高性能WC-WCoB-Co复相硬质合金及其制备方法
CN102796932B (zh) 用于制备金属陶瓷的粉末颗粒及金属陶瓷的制备方法
CN103924111A (zh) 一种硬质合金纳米粒径粉末与高性能烧结块体材料的制备方法
CN111778436B (zh) 一种冷压-热压烧结制备wc-y2o3无粘结相硬质合金的方法
CN110735064A (zh) 固相原位反应生成耐高温高强度TiC增强钛基复合材料及其制备方法
CN110735075A (zh) 一种高耐磨wc基硬质合金的制备方法
CN106756599A (zh) cBN‑高速钢复合材料及cBN‑高速钢复合材料的制备方法
CN110499442B (zh) 一种高强度抗腐蚀Cr3C2基轻质金属陶瓷合金及其制备方法
CN109053191B (zh) 一种无粘结相碳氮化钛基金属陶瓷及其制备方法
CN110684919A (zh) 一种耐磨、耐腐蚀Ti(C,N)金属陶瓷材料及制备方法
CN116969763B (zh) 一种石墨烯增韧无粘接相wc基硬质合金及其制备方法
CN105986139A (zh) 一种新型碳化钛金属陶瓷及其制备方法
CN109943761B (zh) 一种生产硬质合金棒材的挤压方法
CN114273659B (zh) 一种石墨烯/纳米Al2O3增韧Ti(C,N)基金属陶瓷刀具材料及其制备方法
CN114540724A (zh) 一种协同强韧化金属陶瓷材料及其制备方法
CN108411180A (zh) 一种加钌硬质合金
CN113373336A (zh) 一种超细多元Ti(C,N)基金属陶瓷的制备
CN109956754B (zh) 石墨烯纳米片增韧TiB2基陶瓷刀具材料及其制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant