CN116864485A - 用于调整硅化镍的电阻率的工艺整合方法 - Google Patents

用于调整硅化镍的电阻率的工艺整合方法 Download PDF

Info

Publication number
CN116864485A
CN116864485A CN202310657384.3A CN202310657384A CN116864485A CN 116864485 A CN116864485 A CN 116864485A CN 202310657384 A CN202310657384 A CN 202310657384A CN 116864485 A CN116864485 A CN 116864485A
Authority
CN
China
Prior art keywords
layer
nickel
target
electronic device
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310657384.3A
Other languages
English (en)
Inventor
任河
于敏锐
梅裕尔·B·奈克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN116864485A publication Critical patent/CN116864485A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/06Metal silicides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0682Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3417Arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • H01J37/3429Plural materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3435Target holders (includes backing plates and endblocks)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3447Collimators, shutters, apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32051Deposition of metallic or metal-silicide layers
    • H01L21/32053Deposition of metallic or metal-silicide layers of metal-silicide layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67138Apparatus for wiring semiconductor or solid state device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53271Conductive materials containing semiconductor material, e.g. polysilicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本文描述在形成互连中使用的用于沉积低电阻率硅化镍层的方法和使用所述方法形成的电子装置。在一个实施方式中,一种用于沉积层的方法包括:将基板定位在处理腔室中的基板支撑件上,所述处理腔室具有设置在所述处理腔室中的镍靶材和硅靶材,所述镍靶材和硅靶材的面向基板部分各自具有从基板的面向靶材表面的在约10度与约50度之间的角度;使气体流动到处理腔室中;向镍靶材施加射频功率并且同时向硅靶材施加直流功率;分别从硅靶材和镍靶材同时地溅射硅和镍;并且在基板上沉积NixSi1‑x层,其中x在约0.01与约0.99之间。

Description

用于调整硅化镍的电阻率的工艺整合方法
本申请是申请日为2018年6月12日、申请号为201880036646.1、发明名称为“用于调整硅化镍的电阻率的工艺整合方法”的发明专利申请的分案申请。
背景
技术领域
本文所述的实施方式总体涉及半导体装置制造的领域,并且更特别地涉及在多阴极物理气相沉积(physical vapor deposition;PVD)腔室中使用共溅射物理气相沉积(PVD)工艺形成金属硅化物互连的方法,和使用所述方法形成的电子装置。
背景技术
随着下一代装置的电路密度增加并且晶体管尺寸持续缩小,用于电线互连(wireinterconnect)的材料的性质开始主导针对主要性能度量标准(metric)的装置性能,所述主要性能度量标准包括功耗、电阻电容(resistance-capacitance;RC)延迟和可靠性。因为铜通常表现出相对较低的电阻率,并且从而表现出高的导电率,所以铜在过去的二十年里用于先进的USLI和VSLI技术中的电线互连。然而,随着装置的互连布线(wiring)的宽度缩小至互连布线材料的电子平均自由程(electron mean free path;eMFP)的尺寸或更小,材料的有效电阻率(effective resistivity)由于在互连布线的表面处的不希望的侧壁电子散射和材料的晶界界面而增加。因此,通常用于互连中的铜的有效电阻率对于具有低于铜的39nm的eMFP的宽度的铜互连开始增加,并且对于具有20nm或更小的宽度的互连显著增加。此外,与铜互连一起使用以防止铜材料至周围电介质材料的不希望扩散的阻挡层促成增加的电线互连的总体电阻率。
因此,在本技术中需要替代的导体材料。
发明内容
本文所述的实施方式通常涉及制造半导体装置的方法,并且特别地涉及在多阴极物理气相沉积(PVD)腔室中将硅化镍层共溅射至基板上的方法。
在一个实施方式中,用于沉积层的方法包括:将基板定位在处理腔室中的基板支撑件上,所述处理腔室具有设置在所述处理腔室中的镍靶材和硅靶材,所述镍靶材和硅靶材的面向基板部分各自具有从基板的面向靶材表面的在约10度与约50度之间的角度;使气体流动到处理腔室中;向镍靶材施加射频功率并且同时向硅靶材施加直流功率;分别从硅靶材和镍靶材同时地溅射硅和镍;并且在基板上沉积NixSi1-x层,其中x在约0.01与约0.99之间。
在另一实施方式中,一种形成装置的方法包括:将基板定位在处理腔室内的基板支撑件上,所述基板具有设置在所述基板上的复数个特征和设置在复数个特征之间的复数个开口;使气体流动到处理腔室中;向镍靶材施加射频功率并且同时向硅靶材施加直流功率,其中镍靶材和硅靶材设置在处理腔室中,并且面向基板的镍靶材和硅靶材的表面各自与面向靶材的基板的表面具有在约10度与约50度之间的角度;分别从硅靶材和镍靶材同时地溅射硅和镍;并且在基板上沉积NixSi1-x层以形成复数个互连,其中x在约0.01与约0.09之间。
在另一实施方式中,电子装置的特征在于图案化的基板,所述基板包含电介质层和设置在电介质层中的复数个互连特征,其中复数个互连特征包含具有约30μohm-cm或更低的有效电阻率的NixSi1-x,x在约0.4与约0.6之间,并且一个或多个互连特征具有小于约20nm的宽度和是所述宽度的约2倍或更大的高度。
在另一实施方式中,一种沉积包含镍和硅的层的方法包括:将基板定位在处理腔室中的基板支撑件上,所述处理腔室具有镍靶材和硅靶材,所述镍靶材和硅靶材具有与基板支撑件的表面在约10度与约50度之间的角度;使惰性气体流动到处理腔室中;向镍靶材施加射频功率并且向硅靶材施加直流功率,其中射频功率与直流功率的比率在约1:1与约1:12之间;并且共溅射NixSi1-x层至基板上,所述NixSi1-x层具有小于约200μohm-cm的电阻率,其中x在约0.01与0.99之间。
附图描述
为了可以详细理解本公开内容的上述特征的方式,可参照实施方式获得上文简要概述的本公开内容的更具体描述,所述实施方式的一些实施方式在附图中示出。然而,应注意,附图仅示出本公开内容的典型实施方式,并且因此不视为限制本公开内容的范围,因为本公开可允许其他同等有效的实施方式。
图1示出在到50nm和更小的电线互连按比例缩放(scale)与用于所述电线互连的材料选择之间的关系。
图2A是用于实践本文所公开的实施方式的多阴极处理腔室的横截面图。
图2B示出在图2A的处理腔室中的沉积期间靶材与基板的相对位置。
图2C是示出设置在用于实践本文公开的方法的处理腔室的腔室盖中的屏蔽组件的示意图。
图3A示出根据本文公开的实施方式沉积的硅化镍层的电阻率。
图3B将铜层、退火的钴层、退火的钌层和硅化镍层的电阻率相比较,其中根据本文所述的方法沉积所述硅化镍层。
图4是阐述根据本文公开的实施方式的将硅化镍层沉积至基板上的方法的流程图。
图5A至图5C图示使用图4阐述的方法的电线互连的形成。
为了促进理解,已经尽可能使用相同的参考数字指示附图共有的相同元件。预期一个实施方式的元件和特征可有益的并入其他实施方式中,而无需进一步叙述。
具体实施方式
本公开内容的实施方式通常描述用于使用在多阴极PVD腔室中的共溅射物理气相沉积(PVD)工艺将硅化镍层沉积至基板上(包括在基板上先前形成的层上方)的方法,并且所述方法特别地用于通过控制施加于镍靶材和硅靶材的功率和功率比来控制所沉积的硅化镍层的所得电阻率、组成和晶体取向的方法。
图1示出在到50nm和更小的厚度的沟槽按比例缩放与用于电线互连的材料选择之间的关系,其中按比例缩放涉及随着电线变窄到达并且超过材料的电子平均自由程eMFP,所选择的材料的线电阻率(电线电阻率)的变化。在图1中,互连电线在设置于电介质材料中的沟槽中,并且具有50nm和更小的宽度(沟槽CD)和2:1的深宽比(深度比宽度)。图1示出铜105、钴103和硅化镍101的有效电阻率之间的关系,其中衬垫/阻挡层插置在铜、钴或硅化镍与电介质材料之间以防止铜、钴或硅化镍原子扩散至周围电介质材料中。
如本文使用的,有效电阻率是指材料的所测量的电阻率,而不是材料的体积电阻率(bulk resistivity)。如从图1中可见,三种材料的有效电阻率随着电线互连的宽度按比例缩放至20nm和更小而开始有意义地增加,但是具有减小的沟槽CD的钴103(具有9.5的eMFP)的电阻率增加递增地小于铜105的电阻率的增加,使得钴103成为对于10nm和更小的沟槽CD的有前途的材料;事实上,对于在10nm至50nm宽度范围中的特征而言小于钴的有效电阻率的铜的有效电阻率在稍小于10nm宽的特征尺寸处变得大于钴的有效电阻率。硅化镍101(取决于镍与硅的组成而具有小于10nm的eMFP)的有效电阻率的递增增加小于钴103的有效电阻率的递增增加,使得硅化镍101成为对于具有7nm至8nm和更小的沟槽CD的电线互连的有前途的材料,并且钴的有效电阻率在大约6nm的线宽处变得大于硅化镍的有效电阻率。
图2A是根据本文所述的方法的用于将硅化镍沉积至基板228上的多阴极物理气相沉积(PVD)处理腔室200的横截面图。图2C是示出设置在处理腔室200的腔室盖240中的阴极屏蔽配置的示意图。图2C中所示的阴极屏蔽配置未在图2A中示出,然而,本文描述的方法包括使用阴极屏蔽配置,诸如图2C中所示的与处理腔室200一起的阴极屏蔽配置。在此实施方式中,处理腔室200被配置以处理单个基板,诸如设置在图2A中的基板支撑件226上的基板228。在其他实施方式中,本文描述的方法用于被配置以处理设置在基板转台上的多个基板。
在本文中,处理腔室200的特征在于限定处理容积299的一个或多个侧壁230、腔室盖240和腔室底部234。处理容积299流体耦接至真空209,诸如一个或多个专用真空泵,并且具有设置在处理容积299中的基板支撑件226。基板支撑件226包括由在处理腔室外部的基板支撑波纹管222围绕并且密封地延伸通过腔室底部234的轴224,所述轴224升高或降低基板支撑件226以促进将基板228传送到处理腔室200和从处理腔室200传送。基板228通过在一个或多个侧壁230的一个中的可密封开口232装载至处理容积299中,所述可密封开口常规地在沉积工艺期间用门或阀(未示出)密封。在一些实施方式中,轴224进一步耦接至致动器220,所述致动器220在处理期间旋转轴224,并且从而旋转设置在基板支撑件226上的基板228;在一些情况下,此举改善在基板228的表面上的沉积膜的厚度均匀性。
处理腔室200包括复数个阴极250A至250E,在本文中复数个阴极包含通过腔室盖240中的开口设置的五个阴极(在图2C中示出阴极250D至250E),其中复数个阴极250A至250E的每个阴极被配置以将一种或多种材料溅射至基板228上。在此实施方式中,第一阴极250A被配置以从镍靶材252溅射镍,而第二阴极250B被配置以从硅靶材262同时溅射(共溅射)硅,从而在基板228的表面上沉积均匀的硅化镍层。在本文中,第三阴极250C被配置以在存在含氮的反应性气体(诸如氮或氨)的情况下从钛靶材264溅射钛,从而在基板228的表面上沉积氮化钛层。在其他实施方式中,第三阴极250C被配置以从氮化钛靶材溅射氮化钛。
复数个阴极250A至250E的一个或多个包括磁性组件254和靶材背板253,磁性组件254设置在由阴极外壳255限定的外壳容积267内,靶材背板253具有靶材,诸如设置在靶材背板253上的镍靶材252。磁性组件254耦接至旋转轴256,旋转轴256耦接至电动机258,电动机258旋转旋转轴256,并且因此旋转在靶材背板253的后部非溅射侧上方的磁性组件254。复数个阴极250A至250E的每一个耦接至电源,诸如耦接至第一阴极250A并且耦接至第三阴极250C的射频(RF)电源263,或者耦接至第二阴极的250B的直流(DC)电源265。在其他实施方式中,直流电源265是脉冲直流电源。通过进气口211向处理腔室提供溅射气体和/或反应性气体。
复数个阴极250A至250E的每一个包括波纹管257和角度调节机构(未示出),所述角度调节机构耦接至腔室盖240的外部并且耦接至阴极外壳255。波纹管257用于通过防止大气进入处理容积299中并且防止处理气体从处理容积299泄漏至周围环境来维持处理容积299的真空条件。角度调节机构用于以参考图2B进一步详细描述的相对于基板228的表面的角度,改变并且随后固定阴极外壳255的位置,并且因此改变和固定设置于所述阴极外壳中的靶材的位置,所述靶材诸如第一阴极250A的镍靶材252。
图2B示出在沉积期间靶材260(诸如处理腔室200中的复数个阴极250A至250E的靶材的任一个)与基板228的相对位置。在本文中,基板228具有300mm的直径并且靶材260具有小于基板228的直径的直径,诸如小于约300mm,诸如在约100mm与约300mm之间。在处理期间,基板228通过升高图2A中所示的基板支撑件226移动至处理位置,至其中基板228的表面的水平平面与靶材260隔开竖直距离Z1的位置。从最接近于基板228的表面的水平平面的靶材的位置测量竖直距离Z1。在本文中,Z1在约100mm与约400mm之间,诸如在约150mm与约350mm之间,诸如在约200mm与约300mm之间,诸如在约225mm与约275mm之间。靶材260的表面的平面以角度θ相对于基板228的表面的水平平面成角度,其中θ在约10度与约50度之间,诸如在约20度与约40度之间、在约20度与约30度之间或在约30度与约40度之间。
图2C是示出设置在处理腔室200的腔室盖240中的屏蔽组件282的示意图。屏蔽组件282包括复数个竖直壁285,所述复数个竖直壁在复数个阴极250A至250E的每一个之间延伸,其中复数个竖直壁285在中心线处耦接并且从中心线向外径向延伸。通过在复数个竖直壁285之间提供物理阻挡物,定位复数个竖直壁285以防止处理期间在复数个阴极250A至250E的两个或更多个之间的相互影响和/或相互靶材污染。相互影响是指在共溅射工艺中,来自一个阴极的电源(诸如射频电源263)与另一阴极电源(诸如直流电源265)的不希望的电干扰。相互靶材污染是指在共溅射和/或顺序溅射工艺中来自一个靶材的材料至另一靶材上的不希望的沉积。
在一些实施方式中,处理腔室200进一步包括耦接至如图2C中所示的复数个阴极250A至250E的一个或多个阴极的一个或多个圆柱形屏蔽物280。在那些实施方式中,一个或多个圆柱形屏蔽物280围绕阴极外壳255并且从而围绕复数个阴极250A至250C的一个或多个阴极的设置在阴极外壳255中的靶材。圆柱形屏蔽物280被配置以通过在腔室中的阴极之间提供物理阻挡物来防止相互影响和相互靶材污染。在其他实施方式中,处理腔室200包括圆柱形屏蔽物280而不包括屏蔽组件282。
图3A示出根据本文公开的实施方式沉积的硅化镍层的电阻率。线316、317、318、319各自表示在共溅射PVD工艺期间供应至镍阴极的功率与供应至硅阴极的功率的比率,其中与供应至硅阴极(诸如第二阴极250B)的功率相比,供应至镍阴极(诸如第一阴极250A)的功率从由线316表示的第一功率比增加至由线319表示的第四功率比,从而增加在沉积的层中的镍与硅的比率,使得以第一功率比316沉积的硅化镍层是富硅层,而以第四功率比319沉积的硅化镍层是富镍层。使用线316至319的功率比沉积所得到的硅化镍层R1至R8的电阻率在表1中展示。R1和R5各自使用第一功率比316沉积,R2和R6各自使用第二功率比317沉积,R3和R7各自使用第三功率比318沉积,R4和R8各自使用第四功率比319沉积。
如图3A中所示,R1至R4全部在相同的直流功率下沉积,同时至镍靶材的射频功率变化;R5至R8全部在相同的射频功率下沉积,同时至硅靶材的直流功率变化。通过测量所沉积膜的薄层电阻、测量所沉积膜的厚度,并且从薄层电阻和膜厚度测量推定膜的有效电阻率来计算比率R1至R8的材料层的有效电阻率。意外地,所沉积的层的电阻率不随着镍浓度增加而线性改变,例如,尽管与在比率R1处的硅化镍组成相比,在比率R2处的硅化镍组成显示有效电阻率的显著减小(由于在比率R2处的硅化镍组成具有较高浓度的更导电的镍,这会是预期的),在比率R3和R4处的硅化镍组成比在比率R2处的硅化镍组成具有更高浓度的镍,但也具有从在比率R2处的硅化镍组成增加的有效电阻率。同时意外的是使用相同功率比(诸如第一功率比316)、但在不同的射频和直流功率水平处沉积的硅化镍层中的电阻率的差异,其中在比率R1和R4下的硅化镍组成中的镍和硅的浓度大体上相同。
虽然不限于任何特定理论,但应相信,除了镍和硅浓度之外,根据本文所述的方法沉积的硅化镍层的晶体取向可通过调整施加至镍和硅阴极的功率水平并且从而调整对应的功率比来控制,以用期望的晶体取向和/或期望的有效电阻率沉积硅化镍层。此外,本文描述的方法可用于沉积具有期望的晶体取向的硅化镍层而无需在沉积之后的退火工艺,或至少无需高温退火工艺。这在由于低K电介质材料的低热预算而不希望高温的互连领域(interconnect level)是有益的。
表1
图3B比较不同材料的层的有效电阻率,所述不同材料诸如铜321、退火的钴323、退火的钌324和硅化镍325,其中根据本文所述的方法来沉积硅化镍325。针对25nm和更小的层厚度来测量有效电阻率。如图3b中所示,与在小于约10nm的覆盖膜厚度下的其他互连材料相比,根据本文所述的方法沉积的硅化镍325层持续具有相当低的有效电阻率,使得硅化镍成为用于不足10nm的互连宽度的合适材料。
图4是阐述将硅化镍层沉积至基板上、或沉积至设置在基板上的特征上的方法的流程图。图5A至图5C图示使用在图4中阐述的方法400的电线互连的形成。在活动405处,方法400包括将基板(诸如图案化的基板)定位在多阴极处理腔室中的基板支撑件上。在图5A中图示图案化的基板,其中图案包含具有高度H的复数个特征535和设置在复数个特征535之间的具有宽度W的复数个开口537。在本文中,复数个特征535是由电介质材料形成,诸如氧化硅、SIN、SiOC、SiC或低k聚合物(诸如聚酰胺)或上述材料的组合。开口的宽度小于约20nm,诸如小于约15nm、小于约10nm、小于约8nm、小于约7nm,诸如小于约5nm。复数个特征的高度H等于或大于复数个开口537的宽度W的约两倍。处理腔室维持在小于约1毫托,诸如在约0.5毫托与1毫托之间的压力下。在一些实施方式中,图案化的基板进一步包括阻挡层(未示出),诸如Ta、TaN、Ti、W、WN或上述材料的组合。在那些实施方式中,阻挡层设置在复数个特征535上方,并且用作设置在复数个特征535之间的复数个开口537中的衬垫。在一些实施方式中,阻挡层在与随后沉积的硅化镍层相同的处理腔室中沉积,并且因此在沉积阻挡层与沉积硅化镍层之间不存在基板破坏真空。
在活动410处,方法400包括使溅射气体流动到处理腔室中,其中溅射气体是诸如氩、氦或氮的惰性气体。
在活动415处,方法400包括向镍靶材施加射频功率并且相邻于所述镍靶材的表面形成第一溅射等离子体。镍靶材的表面以相对于基板支撑件的表面的在约10度与约50度之间的角度设置在处理腔室中,并且这相对于设置在基板支撑件上的基板的表面在约10度与约50度之间的角度。射频功率在约100瓦与约1000瓦之间。在本文中,射频功率耦接至背板,背板具有设置在背板上的镍靶材。在另一实施方式中,射频功率耦接至镍靶材。
在活动420处,方法400包括向硅靶材施加直流功率并且相邻于所述硅靶材的表面形成第二溅射等离子体。硅靶材以相对于基板支撑件的表面和设置在基板支撑件上的基板的表面的在约10度与约50度之间的角度设置在处理腔室中。直流功率在约600瓦与约1200瓦之间,并且与施加射频功率至镍靶材同时地施加直流功率至硅靶材。在本文中,直流功率耦接至背板,背板具有设置在背板上的硅靶材。在另一实施方式中,直流功率耦接至硅靶材。硅靶材包含非晶硅、多晶硅、结晶硅或上述材料的组合。在本文中,射频功率和直流功率的比率在约1:1与约1:12之间。
在活动425处,方法400包括通过从镍和硅靶材共溅射材料至基板和/或设置在所述基板上的特征上来沉积均匀的硅化镍层539(NixSi1-x,其中x在0.01与0.99之间,诸如在0.1与0.9之间)。图5B图示将硅化镍层539沉积至设置在基板228上的复数个特征535上。图5C图示根据上文描述的方法形成的复数个互连541,其中使用合适的工艺从复数个特征535的表面去除硅化镍层539的部分,所述工艺诸如蚀刻或化学机械抛光工艺,以形成电子装置。
本文的方法400通过调节射频功率、直流功率和射频功率与直流功率之间的比率,通过调节镍和硅靶材角度,并且通过调节处理腔室的压力而对调整硅化镍层的电阻率和组成有用。例如,在一个实施方式中,方法400用于沉积低电阻率NixSi1-x层,其中x在约0.4与约0.6之间,例如其中x是约0.5。低电阻率NixSi1-x层在小于约20nm的厚度和全晶体取向(full crystalline orientation)下具有小于约30μohm-cm的电阻率,诸如在约10μohm-cm与约30μohm-cm之间的电阻率。在具有在约0.6毫托与约0.7毫托之间的压力的处理腔室中通过共溅射镍和硅来沉积低电阻率NixSi1-x层。镍和硅靶材的面各自相对于基板支撑件的表面并且因此从设置在基板支撑件上的基板的表面具有在约20度与约40度之间的角度。在此实施方式中,射频功率和直流功率的比率在约1:1.6与约1:4之间,其中射频功率在约300瓦与约500瓦之间,直流功率在约800瓦与约1200瓦之间。
在另一实施方式中,方法400用于沉积中等电阻率NixSi1-x层,其中x大于约0.6。中等电阻率层在小于约20nm的厚度下具有在约30μohm-cm与约60μohm-cm之间的电阻率,诸如在约30μohm-cm与约50μohm-cm之间的电阻率。在具有在约0.5毫托与约0.8毫托之间的压力的处理腔室中通过共溅射镍和硅来沉积中等电阻率NixSi1-x层,其中镍和硅靶材各自从基板支撑件的表面并且从设置在基板支撑件上的基板的表面具有在约20度与约30度之间的角度。在此实施方式中,射频功率与直流功率的比率大于约1:2.4,诸如大于约1:1.6,其中大于涉及与直流功率相比增加的射频功率。射频功率大于约500瓦,例如在约500瓦与约1000瓦之间,并且直流功率在约800瓦与约1200瓦之间。
在另一实施方式中,方法400用于沉积高电阻率NixSi1-x层,其中x小于约0.4,诸如小于约0.33。高电阻率NixSi1-x层在小于约20nm的厚度下具有大于约60μohm-cm的电阻率,诸如在约60μohm-cm与200μohm-cm之间的电阻率。在具有在约0.5毫托与约1毫托之间的压力的处理腔室中通过共溅射镍和硅来沉积高电阻率NixSi1-x层。镍和硅靶材各自从基板支撑件的表面并且从设置在基板支撑件上的基板的表面具有在约30度与约40度之间的角度。在此实施方式中,射频功率与直流功率之间的比率在约1:12与约1:2之间。射频功率在约100瓦与约300瓦之间,直流功率在约600瓦与约1200瓦之间。
在另一实施方式中,方法400进一步包含在硅化镍层上沉积TiN钝化层,其中在与硅化镍层相同的处理腔室中沉积TiN钝化层,并且因此不存在基板破坏真空。通过使包含氩的溅射气体和与钛反应的气体(诸如氮、NH4或上述项的组合)流动到处理腔室中,向钛靶材施加射频功率,形成溅射气体的溅射等离子体,并且将TiN钝化层沉积至硅化镍层上来沉积TiN层。在另一实施方式中,靶材包含TiN并且溅射气体包含氩、氦、氮或上述项的组合。
在一些实施方式中,氮化硅层在约400℃以下的温度下退火。
上文所述的方法允许通过调节多阴极处理腔室的处理参数来沉积具有可调整的组成(镍和硅浓度)、晶体取向和电阻率的硅化镍层。在具有可调整的电阻率的情况下,根据本文公开的实施方式沉积的硅化镍层可用于需要中等电阻率或高电阻率的应用,诸如需要嵌入式电阻(诸如板电阻或线电阻)的装置。此外,根据本文所述的实施方式形成的低电阻率硅化镍层适用于用作如硅化镍的eMPF的不足20nm状况中的互连并且因此适用于互连的有效电阻率,允许将线宽度和其他导体特征宽度按比例缩放至小于当前可从其他已知材料获得的尺寸。
虽然前述内容针对本公开内容的实施方式,但是可在不背离本公开内容的基本范围的情况下设计本公开内容的其他和进一步的实施方式,并且本公开内容的范围由所附权利要求书确定。

Claims (20)

1.一种电子装置,包含:
图案化基板,所述图案化基板包含电介质层和设置在所述电介质层中的复数个互连特征,其中
所述复数个互连特征包含NixSi1-x层,
x在约0.4与约0.6之间,
所述NixSi1-x层具有30μohm-cm或更小的有效电阻率,并且
所述互连特征的一个或多个具有小于约20nm的宽度和是所述宽度的约2倍或更大的高度。
2.如权利要求1所述的电子装置,进一步包含阻挡层,所述阻挡层设置在所述电介质层与所述互连特征之间。
3.如权利要求1所述的电子装置,进一步包含氮化钛层,所述氮化钛层设置在所述NixSi1-x层上。
4.如权利要求1所述的电子装置,其中通过同时地从镍靶材溅射镍和从硅靶材溅射硅以形成均匀的硅化镍层来形成所述复数个互连特征。
5.如权利要求4所述的电子装置,进一步包含阻挡层,所述阻挡层设置在所述电介质层与所述互连特征之间。
6.如权利要求4所述的电子装置,进一步包含氮化钛层,所述氮化钛层设置在所述NixSi1-x层上。
7.如权利要求4所述的电子装置,其中如所沉积的所述均匀的硅化镍层具有全晶体取向。
8.一种电子装置,包含:
图案化基板,所述图案化基板包含设置在电介质层中的复数个特征,其中
所述复数个特征包含NixSi1-x层,其中x大于约0.6,
所述NixSi1-x层具有小于20nm的厚度,并且
所述NixSi1-x层的有效电阻率在约30μohm-cm与约60μohm-cm之间。
9.如权利要求8所述的电子装置,进一步包含阻挡层,所述阻挡层设置在所述电介质层与所述特征之间。
10.如权利要求8所述的电子装置,进一步包含氮化钛层,所述氮化钛层设置在所述NixSi1-x层上。
11.如权利要求8所述的电子装置,其中所述特征的一个或多个形成嵌入式电阻。
12.如权利要求8所述的电子装置,其中通过同时地从镍靶材溅射镍和从硅靶材溅射硅以形成均匀的硅化镍层来形成所述复数个特征。
13.如权利要求12所述的电子装置,其中所述特征形成嵌入式电阻。
14.一种电子装置,包含:
图案化基板,所述图案化基板包含设置在电介质层中的复数个特征,其中
所述复数个特征包含NixSi1-x层,其中x小于约0.4,
所述NixSi1-x层具有小于20nm的厚度,并且
所述NixSi1-x层的有效电阻率大于约60μohm-cm。
15.如权利要求14所述的电子装置,进一步包含阻挡层,所述阻挡层设置在所述电介质层与所述特征之间。
16.如权利要求14所述的电子装置,进一步包含氮化钛层,所述氮化钛层设置在所述NixSi1-x层上。
17.如权利要求14所述的电子装置,其中所述特征的一个或多个形成嵌入式电阻。
18.如权利要求14所述的电子装置,其中通过同时地从镍靶材溅射镍和从硅靶材溅射硅以形成均匀的硅化镍层来形成所述复数个特征。
19.如权利要求18所述的电子装置,其中所述特征的一个或多个形成嵌入式电阻。
20.如权利要求19所述的电子装置,其中所述有效电阻率小于约200μohm-cm。
CN202310657384.3A 2017-06-16 2018-06-12 用于调整硅化镍的电阻率的工艺整合方法 Pending CN116864485A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201762521100P 2017-06-16 2017-06-16
US62/521,100 2017-06-16
US15/988,854 US10388533B2 (en) 2017-06-16 2018-05-24 Process integration method to tune resistivity of nickel silicide
US15/988,854 2018-05-24
PCT/US2018/037032 WO2018231780A1 (en) 2017-06-16 2018-06-12 Process integration method to tune resistivity of nickel silicide
CN201880036646.1A CN110709964B (zh) 2017-06-16 2018-06-12 用于调整硅化镍的电阻率的工艺整合方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201880036646.1A Division CN110709964B (zh) 2017-06-16 2018-06-12 用于调整硅化镍的电阻率的工艺整合方法

Publications (1)

Publication Number Publication Date
CN116864485A true CN116864485A (zh) 2023-10-10

Family

ID=64658344

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310657384.3A Pending CN116864485A (zh) 2017-06-16 2018-06-12 用于调整硅化镍的电阻率的工艺整合方法
CN201880036646.1A Active CN110709964B (zh) 2017-06-16 2018-06-12 用于调整硅化镍的电阻率的工艺整合方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201880036646.1A Active CN110709964B (zh) 2017-06-16 2018-06-12 用于调整硅化镍的电阻率的工艺整合方法

Country Status (5)

Country Link
US (2) US10388533B2 (zh)
JP (1) JP6995890B2 (zh)
KR (1) KR102436280B1 (zh)
CN (2) CN116864485A (zh)
WO (1) WO2018231780A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10622214B2 (en) 2017-05-25 2020-04-14 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
US10276411B2 (en) 2017-08-18 2019-04-30 Applied Materials, Inc. High pressure and high temperature anneal chamber
KR102405723B1 (ko) 2017-08-18 2022-06-07 어플라이드 머티어리얼스, 인코포레이티드 고압 및 고온 어닐링 챔버
CN111357090B (zh) 2017-11-11 2024-01-05 微材料有限责任公司 用于高压处理腔室的气体输送系统
KR20200075892A (ko) 2017-11-17 2020-06-26 어플라이드 머티어리얼스, 인코포레이티드 고압 처리 시스템을 위한 컨덴서 시스템
KR20230079236A (ko) 2018-03-09 2023-06-05 어플라이드 머티어리얼스, 인코포레이티드 금속 함유 재료들을 위한 고압 어닐링 프로세스
US10916433B2 (en) 2018-04-06 2021-02-09 Applied Materials, Inc. Methods of forming metal silicide layers and metal silicide layers formed therefrom
US10950429B2 (en) 2018-05-08 2021-03-16 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
US11965236B2 (en) 2018-07-17 2024-04-23 Applied Materials, Inc. Method of forming nickel silicide materials
US10748783B2 (en) 2018-07-25 2020-08-18 Applied Materials, Inc. Gas delivery module
US10692734B2 (en) 2018-10-25 2020-06-23 Applied Materials, Inc. Methods of patterning nickel silicide layers on a semiconductor device
WO2020117462A1 (en) 2018-12-07 2020-06-11 Applied Materials, Inc. Semiconductor processing system
US11205589B2 (en) 2019-10-06 2021-12-21 Applied Materials, Inc. Methods and apparatuses for forming interconnection structures
US11901222B2 (en) 2020-02-17 2024-02-13 Applied Materials, Inc. Multi-step process for flowable gap-fill film
US20230257868A1 (en) * 2022-02-14 2023-08-17 Applied Materials, Inc. Apparatus and method for fabricating pvd perovskite films

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424101A (en) 1980-11-06 1984-01-03 The Perkin-Elmer Corp. Method of depositing doped refractory metal silicides using DC magnetron/RF diode mode co-sputtering techniques
US4954852A (en) * 1987-12-24 1990-09-04 Ford Microelectronics, Inc. Sputtered metallic silicide gate for GaAs integrated circuits
JPH0521347A (ja) 1991-07-11 1993-01-29 Canon Inc スパツタリング装置
WO1999025892A1 (en) * 1997-11-19 1999-05-27 Tosoh Smd, Inc. METHOD FOR MAKING Ni-Si MAGNETRON SPUTTERING TARGETS AND TARGETS MADE THEREBY
JP3296281B2 (ja) 1998-01-22 2002-06-24 日本電気株式会社 スパッタリング装置及びスパッタリング方法
US6905578B1 (en) 1998-04-27 2005-06-14 Cvc Products, Inc. Apparatus and method for multi-target physical-vapor deposition of a multi-layer material structure
US6599644B1 (en) * 2000-10-06 2003-07-29 Foundation For Research & Technology-Hellas Method of making an ohmic contact to p-type silicon carbide, comprising titanium carbide and nickel silicide
US20020132473A1 (en) * 2001-03-13 2002-09-19 Applied Materials ,Inc. Integrated barrier layer structure for copper contact level metallization
US6806172B1 (en) * 2001-04-05 2004-10-19 Advanced Micro Devices, Inc. Physical vapor deposition of nickel
US6709553B2 (en) * 2002-05-09 2004-03-23 Applied Materials, Inc. Multiple-step sputter deposition
JP2004131839A (ja) * 2002-06-17 2004-04-30 Applied Materials Inc パルス化された電力によるスパッタリング堆積
KR100480634B1 (ko) 2002-11-19 2005-03-31 삼성전자주식회사 니켈 살리사이드 공정을 이용한 반도체 소자의 제조방법
WO2004099458A2 (en) * 2003-05-02 2004-11-18 Tosoh Smd, Inc. METHODS FOR MAKING LOW SILICON CONTENT Ni-Si SPUTTERING TARGETS AND TARGETS MADE THEREBY
US7268065B2 (en) * 2004-06-18 2007-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of manufacturing metal-silicide features
TWI267183B (en) * 2004-09-29 2006-11-21 Sanyo Electric Co Semiconductor device and manufacturing method of the same
CN1778731B (zh) * 2004-11-26 2011-02-02 鸿富锦精密工业(深圳)有限公司 模造玻璃模仁及其制造方法
US7485556B2 (en) * 2005-03-18 2009-02-03 Applied Materials, Inc. Forming metal silicide on silicon-containing features of a substrate
JP2007067225A (ja) * 2005-08-31 2007-03-15 Toshiba Corp 半導体装置およびその製造方法
US8460519B2 (en) * 2005-10-28 2013-06-11 Applied Materials Inc. Protective offset sputtering
JP4983087B2 (ja) * 2006-04-27 2012-07-25 富士通セミコンダクター株式会社 成膜方法、半導体装置の製造方法、コンピュータ可読記録媒体、スパッタ処理装置
JP4819566B2 (ja) * 2006-04-28 2011-11-24 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US20080280439A1 (en) * 2007-05-08 2008-11-13 Atmel Corporation Optimal concentration of platinum in a nickel film to form and stabilize nickel monosilicide in a microelectronic device
US20080311711A1 (en) * 2007-06-13 2008-12-18 Roland Hampp Gapfill for metal contacts
JP5584409B2 (ja) 2008-02-21 2014-09-03 キヤノンアネルバ株式会社 スパッタリング装置およびその制御方法
CN101555016B (zh) * 2008-04-09 2011-06-08 清华大学 硅化镍纳米线的制备方法
JP5446148B2 (ja) * 2008-07-02 2014-03-19 富士電機株式会社 炭化珪素半導体装置の製造方法
JP2011066060A (ja) * 2009-09-15 2011-03-31 Tokyo Electron Ltd 金属シリサイド膜の形成方法
US8563428B2 (en) * 2010-09-17 2013-10-22 Applied Materials, Inc. Methods for depositing metal in high aspect ratio features
US8491759B2 (en) 2010-10-20 2013-07-23 COMET Technologies USA, Inc. RF impedance matching network with secondary frequency and sub-harmonic variant
JP5662583B2 (ja) * 2011-09-09 2015-02-04 キヤノンアネルバ株式会社 成膜装置
US9499901B2 (en) * 2012-01-27 2016-11-22 Applied Materials, Inc. High density TiN RF/DC PVD deposition with stress tuning
JP6325229B2 (ja) * 2012-10-17 2018-05-16 株式会社半導体エネルギー研究所 酸化物膜の作製方法
US9190527B2 (en) * 2013-02-13 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
CN103741104B (zh) * 2013-12-24 2016-01-20 南京航空航天大学 通过磁控溅射在锆表面镀锆铜镍三元非晶合金薄膜的方法
US11183375B2 (en) 2014-03-31 2021-11-23 Applied Materials, Inc. Deposition system with multi-cathode and method of manufacture thereof
US9416049B2 (en) 2014-06-23 2016-08-16 Intermolecular, Inc. Low-e panels and methods for forming the same
US20160268127A1 (en) * 2015-03-13 2016-09-15 Semiconductor Energy Laboratory Co., Ltd. Oxide and Manufacturing Method Thereof
US9812328B2 (en) * 2015-06-22 2017-11-07 Applied Materials, Inc. Methods for forming low resistivity interconnects
US9666606B2 (en) * 2015-08-21 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US10468238B2 (en) 2015-08-21 2019-11-05 Applied Materials, Inc. Methods and apparatus for co-sputtering multiple targets
WO2017149413A1 (en) * 2016-03-04 2017-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10516060B2 (en) * 2016-03-11 2019-12-24 Semiconductor Energy Laboratory Co., Ltd. Composite and transistor

Also Published As

Publication number Publication date
KR20200007093A (ko) 2020-01-21
KR102436280B1 (ko) 2022-08-26
CN110709964A (zh) 2020-01-17
US20190371610A1 (en) 2019-12-05
JP6995890B2 (ja) 2022-01-17
US20180366328A1 (en) 2018-12-20
JP2020523484A (ja) 2020-08-06
US10651043B2 (en) 2020-05-12
US10388533B2 (en) 2019-08-20
CN110709964B (zh) 2023-06-23
WO2018231780A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
CN110709964B (zh) 用于调整硅化镍的电阻率的工艺整合方法
CN110349838B (zh) 形成金属硅化物层的方法和由此形成的金属硅化物层
TWI602263B (zh) Cu wiring formation method and memory medium
US20110018073A1 (en) Substrate device having a tuned work function and methods of forming thereof
KR20180101226A (ko) 루테늄 배선의 제조 방법
TWI723465B (zh) 形成鎳矽化物材料之方法
CN110574143A (zh) 阻挡膜沉积及处理
US20020093101A1 (en) Method of metallization using a nickel-vanadium layer
KR102017944B1 (ko) 니켈 배선의 제조 방법
US9297775B2 (en) Combinatorial screening of metallic diffusion barriers
US20150130064A1 (en) Methods of manufacturing semiconductor devices and a semiconductor structure
KR20230145215A (ko) 서브트랙티브 금속들 및 서브트랙티브 금속 반도체 구조들
JP4640281B2 (ja) バリヤメタル層及びその形成方法
US7341950B2 (en) Method for controlling a thickness of a first layer and method for adjusting the thickness of different first layers
JPWO2011034092A1 (ja) バリアメタル膜の形成方法
Barth et al. Advanced PVD Ti/TiN liners for contact and via applications
WO2011034089A1 (ja) 成膜方法
Ishii et al. METAL CLAD LAYER FORMATION FOR CMOSFETs/SIMOX BY SELECTIVE CHEMICAL VAPOR DEPOSITION OF TUNGSTEN

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination