JP2004131839A - パルス化された電力によるスパッタリング堆積 - Google Patents

パルス化された電力によるスパッタリング堆積 Download PDF

Info

Publication number
JP2004131839A
JP2004131839A JP2003172413A JP2003172413A JP2004131839A JP 2004131839 A JP2004131839 A JP 2004131839A JP 2003172413 A JP2003172413 A JP 2003172413A JP 2003172413 A JP2003172413 A JP 2003172413A JP 2004131839 A JP2004131839 A JP 2004131839A
Authority
JP
Japan
Prior art keywords
pulse
approximately
pulse stream
bias power
microseconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003172413A
Other languages
English (en)
Inventor
Wei Wang
ウェイ ワン
Praburam Gopalraja
プラブレム ゴパラジャ
Jianming Fu
ジャンミング フー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2004131839A publication Critical patent/JP2004131839A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】集積回路において銅のような材料をスパッタリング・プロセスを使って堆積することは容易ではなく最適のステップカバレージと層均一性を達成することは特に難しい。印加する電力を増やすとターゲットまたは他のチャンバの部品を損傷することがある。
【解決手段】スパッタリングタイプの物理気相堆積(PVD)のリアクターにおいてターゲットに対して印加される少なくともおよそ300のキロワット(KW)のピーク出力を有する直流パルスストリームを用いる、基板の上に膜を堆積する方法(kW)。直流パルスストリームは材料をターゲットから基板の上へスパッタリングするスパッタリング加工ガスに接続される。上記直流パルスストリームはおよそ1000ヘルツ(Hz)からおよそ100ヘルツ(Hz)のパルス周波数を有してもよい。1つの実施態様において、上記方法はさらにペデスタルにバイアス電力のパルスストリームを印加することを含む。
【選択図】図1

Description

【開示の背景】
【0001】
1. 発明の分野
本発明の実施態様は一般にスパッタリング堆積に関し、より詳しくはパルス化電力の技術を用いたスパッタリング堆積に関する。
2. 関連技術の説明
【0002】
集積回路(IC)は典型的にはICのいろいろな個々の装置を相互接続するのに用いられる金属の導電性の層を含む。相互接続部のフィーチャ、特に約4分の1ミクロン以下の寸法を有するフィーチャを確実に形成することは、IC設計に対する需要の増加に対応するためには非常に重要である。
【0003】
アルミニウム元素(Al)とその合金は,アルミニウムの低い電気抵抗、二酸化シリコン(SiO2)へのその優れた付着性、パターニングの容易性及び高純度形態でそれが得られる能力の故に、半導体加工において金属の相互接続部を形成するのに伝統的に用いられてきた。しかし、アルミニウムは銅のようなより導電性の高い金属よりも電気抵抗が高く、またアルニミウムも又導体中に空げきの形成をもたらすエレクトロマイグレーションに悩まされることもある。
【0004】
銅とその合金はアルミニウムと比較すると、低い比抵抗率を有し、かなり高いエレクトロマイグレーション抵抗性を有する。これらの特徴は、高い集積レベルと増加したデバイス速度において経験されるより高い電流密度を支える上で重要である。このため、銅はサブクオーターミクロンの、半導体基板上の高アスペクト比の相互接続部フィーチャをを充填するために選択可能な金属になりつつある。
【0005】
接着層とかバリアー層等の相互接続部のいろいろな材料層を堆積するための1つの一般的技術が、スパッタリングタイプの物理気相堆積(スパッタリング堆積)である。相互接続部の形成のプロセス処理量を最適化するためには、スパッタリング堆積を用いて銅と銅シード層のような追加の相互接続部を堆積することが望ましい。
【0006】
残念なことに、銅のような材料をスパッタリング・プロセスを使って堆積すること容易ではなく、また、最適のステップカバレッジと層均一性を達成することは特に難しい。銅を含む金属に用いる従来のスパッタリング方法は、スパッタリング・リアクター内で発生するプラズマにおいて金属の不十分なイオン化のためにしばしば制約を受ける。イオン化のレベルをあげるために提案された先行技術の方法には、ターゲットに対して印加される電力を増加することが含まれる。しかし、ターゲットに印加される電力を増やすと、結果としてしばしばスパッタリング・ターゲットを過度に熱することになってしまい、その結果スパッタリング・ターゲットまたは他のチャンバの部品を損傷してしまうかもしれない。
【0007】
イオン化を増やすことに対する他のアプローチには、ターゲットと基板の間のプラズマ源領域の近くに配置された電磁式のコイルを使用することが含まれる。この誘導結合型プラズマ(ICP)技術は基板上のフィーチャの側壁上に不適当なステップカバレッジをもたらすかもしれない。さらに、上記の側壁カバレッジは対称形をなしてもよく、ターゲットの中心に向き合った側部はターゲットの外のより大きい立体角に向き合ったよりシールドされた側部よりも分厚くコートされるかもしれない。このような不適当なステップカバレッジは、堆積された膜に瑕疵を形成する可能性があり、そしてそれはデバイスまたは相互接続部の欠陥をもたらすかもしれない。
【0008】
それ故、ターゲットに損傷を与えず、良好なステップカバレッジと膜品質を提供するスパッタリングによる層の堆積方法が必要とされている。
【発明の概要】
【0009】
本発明の実施態様は、一般に、基板の上で膜をスパッタリング堆積するための方法を提供するものである。この方法はスパッタリングされる材料のターゲットを含むスパッタリング・チャンバ内で実行される。スパッタリング加工ガスがスパッタリング・チャンバに提供されてターゲットのスパッタリングを容易にする。少なくともおよそ300のキロワット(kW)のピーク出力を持っているDCパルスストリームがターゲットに印加され、スパッタリング加工ガスが励起されてプラズマ化し、そして同スパッタリング加工ガスは、ターゲットから基板上に材料をプラズマスパッタリングする。1つの実施態様においては、直流パルスストリームは、およそ100ヘルツ(Hz)から1000Hzまでの範囲で、パルス周波数を持つ。1つの実施態様においては、スパッタリングされた金属イオンを基板へより効果的に引きつけるために、上記方法はさらにバイアス電力のパルスストリームをDCパルスストリームと同時にペデスタルに印加することを含む。このバイアス電力は、高周波数(RF)バイアス電力であっても良い。上記バイアス電力の印加は時間遅延によってDCパルスストリームから相殺されてしまうかもしれない。
【0010】
上記の方法は、集積回路の加工技術とも両立できるものである。1つの実施態様においては、フィーチャ(例えばバイア、トレンチ、アパーチャ、など)を上部に形成した基板構造体が提供される。少なくともおよそ300キロワット(kW)のピーク出力を持っているDCパルスストリームがターゲットに印加され、銅の層が基板構造体上にスパッタリングによって形成される。上記銅層は、先行技術と比較して改善されたステップカバレッジを有する。
【図面の簡単な説明】
【0011】
本発明の上記した特徴がある方法が達成されて詳細に理解されるように、上記に簡単に要約した本発明のより詳細な説明を、添付した図面に示す本発明の実施態様を参照することによって記載する。
【0012】
しかし、添付図面は本発明の典型的な実施例についてのみ述べるものであって、本発明は他の同様に有効な実施例をも含み得るものであるから、本発明の範囲を限定するように解釈されてはならない。
【0013】
図1は、ここで記述される実施態様の実施に用いることができるプロセスチャンバの概略断面図である;
【0014】
図2はスパッタリング堆積のターゲットに対して印加される直流パルスストリームと、本発明の実施態様に沿ってペデスタルに印加されるバイアス・パルスストリームを示す。
及び、
【0015】
図3A−3Cは、相互接続部の製造シーケンスの異なるステージにおける基板の断面図を表す。
【詳細な説明】
【0016】
図1は、ここで記載する本発明の実施態様を実施するために用いることができるスパッタリングタイプの物理気相堆積(PVD)のリアクター10の概略断面図である。リアクター10は、ターゲット14に密封された真空チャンバ12を含む。ターゲットには、スパッタリングされるその他の材料の中でも、例えば、銅、タンタル、チタン、アルミニウム、タングステンが含まれる。ターゲット材は、加熱器ペデスタル18の上に保持された基板16の上にスパッター堆積される。チャンバ内に配置されたシールド20は、スパッターされた材料からチャンバ壁12を保護し、陽極グラウンド面を提供する。選択可能な直流電源装置22は、シールド20との関係ではマイナスの電圧をターゲット14に印加する。ペデスタル18と、従って基板16とは、電気的に浮遊状態に置かれるかもしれない。
【0017】
第一のガス源24は、マス・フロー制御装置26を通してチャンバ12に、典型的には、他のガスの中でもアルゴン(Ar)、ヘリウム(He)、キセノン(Xe)のような不活性ガスをスパッタリング加工ガスとして供給する。第二のガス源54は、窒素(N)のような反応性ガスを、マス・フロー制御装置55を通して、チャンバ12へ供給することができる。上記したガスは、図示されたように、シールドの底を貫通する一つ又はそれ以上の入り口管によって又はシールド20とペデスタル18の間のすき間を通して、チャンバの頂部或いは底部に導入されることが可能である。真空システム28は、チャンバを低圧に維持する。
底面圧力はおよそ10−7トールまたはそれ以下に維持することが可能であるが、加工ガスの圧力は典型的にはおよそ0.2ミリトールと100ミリトールの間で維持される。
【0018】
マイクロプロセッサー制御装置のようなコンピュータに基づく制御装置30は、直流電源装置22及びマス・フロー制御装置26を含むリアクタを制御する。制御装置30は、工業目的で様々なチャンバとサブ・プロセッサを制御するために用いることができる汎用目的コンピュータプロセッサー(CPU)であればどんな形のものであっても良い。コンピュータは、例えばランダム・アクセス・メモリ、読み込みオンリーメモリ、フロッピーディスク装置、ハードディスク、又は他の如何なる形式のデジタル記憶装置も、ローカルであると遠隔であるとを問わず、適当なメモリを用いることができる。プロセッサを従来の方法で支持するために、様々な支持回路をCPUに連結することができる。必要なソフトウェア・ルーチンは、メモリに保存されるか、或いは、遠隔に配置された第二のCPUによって実行される。
【0019】
基板がペデスタル18の上に配置された後、上記ソフトウェア・ルーチンは制御装置30によって実行される。上記ソフトウェア・ルーチンは、実行されると、汎用コンピュータを、チャンバ・プロセスが実行されるようにチャンバ動作を制御する特定目的のプロセスコンピュータに変身させる。あるいは、本発明のプロセスは、特定用途の集積回路又は他のタイプのハードウエアの実施、又はソフトウェア又はハードウエアの組合わせとして、ハードウエアで実行されることも可能である。
【0020】
ターゲット材の効率的なスパッタリングを提供するために、マグネトロン32がターゲット14の背後に配置されている。マグネトロン32は、対向する磁石34、36を有しており、チャンバ内において磁石34、36の近辺で磁場を形成している。上記磁場は電子を制限し、そして、電荷の中和のために、プラズマ密度もマグネトロン32に隣接するチャンバ内で増加して高密度のプラズマ領域38を形成する。マグネトロン32は、通常ターゲット14の中心の回りに回転させられ、ターゲット14のスパッタリングにおいて十分なカバレッジを達成する。
【0021】
マグネトロン32は、例えば楕円形、三角形、レーストラック形状、円、涙形状など、どんな形状であってもよい。マグネトロン32は、内極と外極(図示せず)を有していてもよい。
内極は、連続的な外極によって囲まれていてもよい。ある実施態様においては、マグネットはアンバランスにデザインされており、すなわち、外極の磁束は内極によって生じられる磁束より大きくされている。マグネトロン32の詳細は、同一人に譲渡され2001年9月18日に発行された米国特許番号6,290,825、発明の名称:「イオン化金属堆積のための高密度プラズマ源」に記載されており、本出願に援用されている。
【0022】
制御可能なバイアス電源装置192、典型的にはRF電源装置、は基板16上のスパッター堆積層の堆積を制御することを目的として、基板16をバイアスするためにペデスタル18に接続されても良い。バイアス電力は一般におよそ400kHz〜500MHzの周波数を持ち、ある実施態様においてはバイアス電力はおよそ13.56MHzの周波数を有する。
【薄膜堆積】
【0023】
膜はスパッタリング−タイプの物理気相堆積(PVD)プロセスを用いて形成されるが、そこにおいて磁場が、ターゲット14からスパッタリングされた材料を、堆積チャンバ12の高密度プラズマ領域38の範囲内に閉じ込めるように機能する。磁場は、マグネトロン32から発生することもあるが、チャンバの近辺に配置された他の形態の磁場発生装置によって作り出される場合もある。
【0024】
以下の堆積パラメータは、ターゲットが銅を含んでいる図1に説明されたものと同様のスパッタリング・チャンバを用いて膜を形成する為に用いることができる。基板はおよそ−40℃〜100℃の温度範囲に維持し、そしてプロセスチャンバはおよそ0.5ミリトール〜1ミリトールの圧力範囲に維持することができる。スパッタリング加工ガスが、チャンバ内に導入される。スパッタリング加工ガスの流量は、およそ5sccm(標準立方センチメートル/分)〜およそ200sccmの範囲とすることができる。
【0025】
一連の直流電圧パルス(すなわち直流パルスストリーム)が直流電源装置22からターゲット14とシールド20の間に印加され、当該パルスストリームは加工ガスを点火してプラズマを発生させる。直流パルスストリームの大きさは、およそ500ボルト〜およそ1500ボルトまでの範囲にあっても良い。
【0026】
図2は、スパッタ堆積ターゲット14に印加される直流パルスのパルスストリーム250を表す。直流パルスストリーム250は、およそ300のキロワット(kW)より大きなピーク出力200を持つ。直流パルスストリーム250のピーク出力200は、およそ300キロワット(kW)〜およそ2メガワット(MW)までの範囲にあってもよい。直流パルスストリーム250は、プラズマのインピーダンスに依存したターゲット電流を発生させる。ターゲット電流は、およそ500アンペア (A)〜およそ2000アンペア (A)であってもよい。
【0027】
ある実施態様において、ターゲット14に印加された直流パルス230は、およそ100マイクロ秒未満のランプ時間204以内で、ピーク出力200に到達する。ランプ時間204とは、パルス230の開始(A)とパルス230の最大パワー時点(B)の間で経過する時間の長さである。
【0028】
直流パルス230は、およそ10〜500マイクロ秒のパルス持続時間202を有するかもしれない。ある実施態様において、直流パルスは、およそ10〜100マイクロ秒のパルス持続時間202を持つ。パルス持続時間202とは、パルス230の始まり(A)とパルス230の終了(C)の時点の間で経過する時間の長さである。直流パルスストリーム250は、およそ100ヘルツ(Hz)〜1000(Hz)のパルス周波数を有し、それによっておよそ20kW〜40kWの範囲の平均電力を有するDCパルスストリーム250を提供することもある。パルス周波数とは、一定時間内にターゲットに印加されるパルスの数である。
【0029】
大きな直流パルスストリーム250のピーク出力は、スパッターされた中性の金属原子の高い集中をターゲットの近くで発生させていると思われる。さらに、ターゲットの近辺における加工ガスの密度が、ターゲットの近辺のスパッターされた中性の金属原子の高い集中に起因して、減少すると思われる。その結果、プラズマ中のイオン化された核種の大きな比率を占める部分が、スパッタリング加工ガスのイオンではなく、スパッターされた金属のイオンである。例えばCu+のようなプラズマ中に発生したスパッターされた金属は基板16の表面上に堆積される利用可能な金属イオンの高密度の”雲”を形成することもある。
【0030】
本発明の1つの実施態様において、バイアス電力がペデスタル18に印加され、かつ基板16に容量的に連結されてスパッターされた材料の基板上への堆積を高める。マイナスのバイアス電圧は、ペデスタル18に印加されたバイアス電力に対応して、ペデスタル18の上に蓄積される。ペデスタル18に印加されたバイアス電力は、パルス化されていてもよい。
バイアス・パルスストリーム270の一例が図2に示されている。ペデスタル18に印加されたバイアス・パルスストリーム270は、およそ1000ワット〜10キロワットの範囲のピーク出力210を有してもよい。ペデスタル18に印加されるバイアス電力は、例えば、およそ13.56MHzの周波数を有する高周波数バイアス電力であることが好ましい。
【0031】
バイアス・パルスストリーム270は、パルス260の開始(D)とパルス260の終了(F)の時点の間で経過する時間であるところのパルス持続時間212を有することとして特徴づけられる。バイアス電力のパルス260は、パルス260の開始(D)とパルス260の最大パワー(E)の時点の間で経過する時間であるところのランプ時間214を有する。バイアス・パルスストリーム270はまたバイアスパルス周波数を有する。パルス持続時間212、ランプ時間214、及びバイアスパルス周波数は、それと対応するターゲットに印加される直流パルスストリーム250に伴うパルス持続時間202、ランプ時間214、及びバイアスパルス周波数と類似しても異なってもよい。
【0032】
1つの実施態様において、直流パルス230は、時間遅延220の分だけバイアス電力のパルス260に先行する。時間遅延220は、直流パルス230の開始とバイアス・パルス260の始まりとの間で経過する時間の長さである。時間遅延220は、およそ50マイクロ秒〜およそ200マイクロ秒であるかもしれない。図2は、直流パルスストリーム250とバイアス・パルスストリーム270の例を表すが、そこにおいて、バイアス・パルス260の始まり(D)は直流パルス230の終了(C)の後に開始する。従って、バイアス・パルス260と直流パルス230は、時間的にオーバーラップすることはない。あるいは、バイアス・パルス260の開始(D)は、直流パルス230の終了(C)と同時に、またはその前に開始しても良い。この代替の実施態様においては、直流パルス230とバイアス・パルス260は、時間的にオーバラップする。
【0033】
パルス230のような直流パルスを印加すると、スパッタリング加工ガスはターゲット14に衝突し、それによって材料をターゲット14からスパッタリングする。バイアス・パルス260の印加を時間遅延220の分だけ遅らせることによって、スパッターされた材料が、バイアスパルス260の開始(D)の前にターゲット14から基板16の近辺に移動するための十分な時間をとれると思われる。時間遅延220が経過したあと、バイアス・パルス260を印加することで、イオン化された材料が基板16に引張られる。上記の方法は、特にその上にフィーチャを形成した基板にとって、膜の堆積において優れたステップカバレッジを提供する。
【0034】
本発明の実施態様はまた、例えばタンタル窒化物(TaN)のような材料の堆積のような反応性スパッタリングにおいても実施することができる。この実施態様において、窒素のような反応性ガスとアルゴンのようなスパッタリング加工ガスは、ガス供給54とガス供給24からチャンバに導入され、そして、ターゲット14はスパッタリング加工ガスによってスパッタリングされる。上記のターゲットは、タンタルまたはチタンでできている。上記反応性ガスは、ターゲット14からスパッタリングされた材料と反応して、基板16の上で、例えば形TaNまたはTiNの膜を形成する。
【相互接続部の形成】
【0035】
図3a−3cは、本出願において記載された実施態様に従って、薄膜堆積プロセスを用いて銅のシード層を組み入れる相互接続部の製造工程の異なったステージにおける基板の断面図を示す。たとえば、図3aは基板構造体310の断面図を示すが、そこにおいて同基板構造体は、例えば基板300の頂部に材料層302が形成されている。基板300は、例えばシリコン(Si))等の半導体材料を含んでもよい。材料層302は、例えば酸化物であってもよい。層302に形成された、バイア、トレンチ、アパーチャまたはその種の他のもののようなフィーチャ312が、基板300のいくつかの部分を露出する。フィーチャ312は、従来のリソグラフィとエッチング技術を使って形成される。
【0036】
オプションのバリヤー層304が材料層302の上に形成される。バリヤー層304は、例えばタンタルまたはチタン等の耐火金属を含むかもしれない。1つの実施態様において、バリヤー層は、例えばタンタル窒化物または窒化チタン等の耐火性の金属窒化物を含む。他の実施態様において、バリヤー層304は、例えば一つ以上の耐火性金属層、一つ以上の耐火性金属窒化物層、及び/又は一つ以上のシリサイド層から構成される複数の材料層を含む。
バリヤー層304の厚さは、典型的にはおよそおよそ10A〜およそ1000Aである。
【0037】
図3bを参照して、銅のシード層306はバリヤー層304の頂部に形成される。銅シード層306は、少なくともおよそ300kWのピーク出力を有する直流パルスストリームをターゲット14のようなターゲットに印加して、材料をターゲットから基板310の上へスパッタリングすることによって、図1に記載されているように堆積チャンバ内に形成される。銅のシード層306は、例えば銅の層または銅合金の層であってもよい。銅のシード層は、およそ100オングストロームからおよそ1500オングストロームの厚さを有してもよい。
【0038】
図3cを参照して、相互接続部は銅のシード層306の頂部に導電層308を堆積する(バルク堆積プロセスとして呼ばれる場合もある)ことによって完成される。導電層308は、例えば電気化学的めっき、化学気相堆積またはスパッタリングタイプの物理気相堆積によって形成することができる。導電層308は、たとえば銅、アルミニウム、またはそれらの組合わせを含んでもよい。1つの実施態様において、導電層308はシード層306を形成するのに用いられるプロセスを継続することによって形成される。上記実施態様において、導電層308の堆積は、少なくとも300kWのピーク出力を持っている直流パルスストリーム250をターゲットに印加し、材料をターゲットからシード層306の上へスパッタリングすることを含む。バイアス電力はまた、例えば基板がその上に保持された図1のペデスタル18のようなペデスタルに対して印加されて、導電層308を形成するかもしれない。バイアス電力は、前述したようにパルス化されるかもしれない。
【0039】
以上は本発明の好ましい実施態様について向けられたものであるが、これら以外の、又はこれらに追加する実施態様が本発明の基本的範囲から逸脱することなく考案されることが可能であり、本発明の範囲は以下の請求項によってのみ決定されるものである。

Claims (34)

  1. チャンバ内のペデスタルの上に保持された基板上に膜を堆積する方法であって、
    ターゲットを含むチャンバを提供し;
    チャンバにスパッタリング加工ガスを供給し;
    少なくともおよそ300のキロワット(kW)のピーク出力を有する直流パルスストリームをターゲットに印加し; さらに
    ターゲットから基板の上に材料をスパッタリングする、
    ことを含む前記方法。
  2. 直流パルスストリームがおよそ100ヘルツ(Hz)〜1000Hzまでの範囲のパルス周波数を有する、請求項1の方法。
  3. ターゲットが、銅、タンタル、チタン、タングステン、アルミニウム、及びそれらの組合わせからなるグループの中から選ばれた材料を含む請求項1の方法。
  4. 直流パルスストリームがおよそ300kWから2メガワット(MW)までの範囲のピーク出力を有する請求項1の方法。
  5. 直流パルスストリームがおよそ10マイクロ秒からおよそ500マイクロ秒までのパルス持続時間を有する請求項1の方法。
  6. ペデスタルにバイアス電力のパルスストリームを印加することを更に含んでいる請求項1の方法。
  7. バイアス電力のパルスストリームがおよそ1000のワットからおよそ10キロワットの範囲のピーク出力を有する請求項6の方法。
  8. バイアス電力が高周波数バイアス電力である、請求項6の方法。
  9. 高周波数バイアス電力がおよそ13.56メガヘルツ(MHz)の周波数を有する請求項8の方法。
  10. バイアス電力のパルスストリームと直流パルスストリームとがおよそ50マイクロ秒からおよそ200マイクロ秒までの範囲の時間遅延によって分離される請求項6の方法。
  11. 直流パルスストリームが第一の開始時間を有している直流パルスを含み、バイアス電力のパルスストリームが第二の開始時間を有しているバイアス・パルスを含み、さらに上記第一の開始時間は第二の開始時間に対して時間遅延の分だけ先行し、そして、上記時間遅延はスパッタリングされた材料が基板の近傍に移動するのに十分な時間である、請求項6の方法。
  12. バイアス電力のパルスストリームがおよそ10マイクロ秒からおよそ500マイクロ秒の範囲のパルス持続時間を有する請求項6の方法。
  13. 相互接続部を形成する方法であって、
    フィーチャをその上に形成した基板構造体を有する基板をペデスタル上に保持し; さらに
    上記基板構造体の上に銅層を堆積することを含むが、上記銅層はスパッタリング・プロセスによって形成され、そこにおいて少なくともおよそ300 キロワット(kW)のピーク出力を有する直流パルスストリームがターゲットに印加されて、材料がターゲットから基板構造体の上にスパッタリングされる、
    ことを含む前記方法。
  14. 基板構造体の上に銅層を堆積する前にバリヤー層を堆積することを更に含む請求項13の方法。
  15. 銅層がおよそ100オングストロームからおよそ1500オングストロームの範囲に堆積される、請求項13の方法。
  16. 直流パルスストリームがおよそ100ヘルツ(Hz)からおよそ1000Hzまでの範囲のパルス周波数を有する請求項13の方法。
  17. 直流パルスストリームがおよそ300kWからおよそ2メガワット(MW)の範囲のピーク出力を有する請求項13の方法。
  18. ペデスタルにバイアス電力のパルスストリームを印加することを更に含む請求項13の方法。
  19. バイアス電力が高周波数バイアス電力である請求項18の方法。
  20. 高周波数バイアス電力がおよそ13.56メガヘルツ(MHz)の周波数を有する請求項19の方法
  21. バイアス電力のパルスストリームがおよそ1000のワットからおよそ10のキロワットの範囲のピーク出力を有する請求項18の方法。
  22. 直流パルスストリームとバイアス電力のパルスストリームが、およそ50マイクロ秒からおよそ200マイクロ秒の範囲の時間遅延によって分離されている請求項18の方法。
  23. 直流パルスストリームが最初の開始時間を有している直流パルスを含み、バイアス電力のパルスストリームが第二の開始時間を有しているバイアス・パルスを含み、さらに上記最初の始まり時間は第二の開始時間に対して時間遅延の分だけ先行し、そして、上記時間遅延はスパッタリングされた材料が基板構造体の近辺に移動するのに十分な時間である、請求項18の方法。
  24. バイアス電力のパルスストリームがおよそ10マイクロ秒からおよそ500マイクロ秒までの範囲のパルス持続時間を有する請求項18の方法。
  25. チャンバー内のペデスタルの上に保持された基板上に膜を堆積する方法であって、
    ターゲットを含むチャンバを提供し;
    チャンバにスパッタリング加工ガスを供給し;
    少なくともおよそ300のキロワット(kW)のピーク出力を有する直流パルスストリームをターゲットに印加し;
    RFバイアス電力のパルスストリームをペデスタルに印加し;さらに
    材料をターゲットから基板上にスパッタリングする
    ことを含む前記方法。
  26. 直流パルスストリームがおよそ100ヘルツ(Hz)からおよそ1000Hzの範囲のパルス周波数を有する請求項25の方法。
  27. ターゲットが、銅、タンタル、チタン、タングステン、アルミニウム、及びそれらの組合わせからなるグループから選ばれる材料を含む請求項25の方法。
  28. 直流パルスストリームがおよそ300kWからおよそ2メガワット(MW)の範囲のピーク出力を有する請求項25の方法。
  29. 直流パルスストリームがおよそ10マイクロ秒からおよそ500マイクロ秒までの範囲のパルス持続時間を有する請求項25の方法。
  30. RFバイアス電力のパルスストリームがおよそ1000ワットからおよそ10キロワットの範囲のピーク出力を有する請求項29の方法。
  31. RFバイアス電力がおよそ13.56メガヘルツ(MHz)の周波数を有する請求項30の方法。
  32. 直流パルスストリームとRFバイアス電力のパルスストリームがおよそ50マイクロ秒からおよそ200マイクロ秒の範囲の時間遅延によって分離される請求項25の方法。
  33. 直流パルスストリームが第一の開始時間を有している直流パルスを含み、バイアス電力のパルスストリームが第二の開始時間を有しているバイアス・パルスを含み、さらに上記最初の始まり時間は第二の開始時間に対して時間遅延の分だけ先行し、そして、上記時間遅延はスパッタリングされた材料が基板構造体の近傍に移動するのに十分な時間である、請求項25の方法。
  34. RFバイアス電力のパルスストリームがおよそ10マイクロ秒からおよそ500マイクロ秒までの範囲のパルス持続時間を有する請求項25の方法。
JP2003172413A 2002-06-17 2003-06-17 パルス化された電力によるスパッタリング堆積 Withdrawn JP2004131839A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17438702A 2002-06-17 2002-06-17

Publications (1)

Publication Number Publication Date
JP2004131839A true JP2004131839A (ja) 2004-04-30

Family

ID=32296565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003172413A Withdrawn JP2004131839A (ja) 2002-06-17 2003-06-17 パルス化された電力によるスパッタリング堆積

Country Status (1)

Country Link
JP (1) JP2004131839A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512458A (ja) * 2006-12-12 2010-04-22 オーツェー・エリコン・バルザース・アーゲー 高出力インパルス・マグネトロン・スパッタリング(hipims)を用いたrf基板バイアス
JP2011516728A (ja) * 2008-04-03 2011-05-26 オーシー オリコン バルザース エージー スパッタリング装置および金属化構造体を製造する方法
CN106811726A (zh) * 2015-11-30 2017-06-09 北京北方微电子基地设备工艺研究中心有限责任公司 溅射沉积工艺及溅射沉积设备
CN110709964A (zh) * 2017-06-16 2020-01-17 应用材料公司 用于调整硅化镍的电阻率的工艺整合方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512458A (ja) * 2006-12-12 2010-04-22 オーツェー・エリコン・バルザース・アーゲー 高出力インパルス・マグネトロン・スパッタリング(hipims)を用いたrf基板バイアス
JP2011516728A (ja) * 2008-04-03 2011-05-26 オーシー オリコン バルザース エージー スパッタリング装置および金属化構造体を製造する方法
US9644261B2 (en) 2008-04-03 2017-05-09 Evatec Advanced Technologies Ag Apparatus for sputtering and a method of fabricating a metallization structure
EP2268844B1 (en) * 2008-04-03 2020-11-25 Evatec AG Apparatus for sputtering and a method of fabricating a metallization structure
CN106811726A (zh) * 2015-11-30 2017-06-09 北京北方微电子基地设备工艺研究中心有限责任公司 溅射沉积工艺及溅射沉积设备
CN110709964A (zh) * 2017-06-16 2020-01-17 应用材料公司 用于调整硅化镍的电阻率的工艺整合方法

Similar Documents

Publication Publication Date Title
US7659204B2 (en) Oxidized barrier layer
US8668816B2 (en) Self-ionized and inductively-coupled plasma for sputtering and resputtering
US7294574B2 (en) Sputter deposition and etching of metallization seed layer for overhang and sidewall improvement
US7504006B2 (en) Self-ionized and capacitively-coupled plasma for sputtering and resputtering
JP4936604B2 (ja) プラズマ波を励起可能なイオン化金属堆積のための高密度プラズマ源
US6350353B2 (en) Alternate steps of IMP and sputtering process to improve sidewall coverage
TWI328258B (en) Aluminum sputtering while biasing wafer
US6709553B2 (en) Multiple-step sputter deposition
US20080190760A1 (en) Resputtered copper seed layer
KR100993046B1 (ko) 스퍼터링 및 재스퍼터링을 위한 자기-이온화 및 유도 결합플라즈마
US20030116427A1 (en) Self-ionized and inductively-coupled plasma for sputtering and resputtering
JP2001284286A (ja) オーバハングの低減および底部カバレージの改善のための変調誘導電力及びバイアス電力の使用
US20180327893A1 (en) Self-ionized and inductively-coupled plasma for sputtering and resputtering
WO2009071667A1 (en) Reactive sputtering with hipims
US6200433B1 (en) IMP technology with heavy gas sputtering
JP2001279436A (ja) 変調電源を用いる物理的気相成長方法及び装置
JP2011500967A5 (ja) 3次元半導体パッケージングにおけるSi貫通ビアのメタライゼーションへのHIPIMSの適用
TW201226600A (en) Methods for depositing metal in high aspect ratio features
JP2004131839A (ja) パルス化された電力によるスパッタリング堆積
KR20220116251A (ko) 펄스형 바이어스를 사용한 오버행 감소
WO2003042424A1 (en) Self-ionized and inductively-coupled plasma for sputtering and resputtering
WO2002009149A2 (en) Post deposition sputtering
JPH05179438A (ja) スパッタ装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905