CN116789451A - 一种掺硅锗锑碲靶材及其制备方法 - Google Patents

一种掺硅锗锑碲靶材及其制备方法 Download PDF

Info

Publication number
CN116789451A
CN116789451A CN202310661181.1A CN202310661181A CN116789451A CN 116789451 A CN116789451 A CN 116789451A CN 202310661181 A CN202310661181 A CN 202310661181A CN 116789451 A CN116789451 A CN 116789451A
Authority
CN
China
Prior art keywords
silicon
antimony
germanium
tellurium
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310661181.1A
Other languages
English (en)
Inventor
沈文兴
白平平
童培云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vital Thin Film Materials Guangdong Co Ltd
Original Assignee
Vital Thin Film Materials Guangdong Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vital Thin Film Materials Guangdong Co Ltd filed Critical Vital Thin Film Materials Guangdong Co Ltd
Priority to CN202310661181.1A priority Critical patent/CN116789451A/zh
Publication of CN116789451A publication Critical patent/CN116789451A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及靶材生产技术领域,公开了一种掺硅锗锑碲靶材的制备方法,其步骤包括,先将硅粉、GexSbyTez粉混合且硅粉的质量占粉体总质量的2~10%,随后进行湿法球磨、静置、烘干,制得掺硅锗锑碲粉体;随后,将制得的掺硅锗锑碲粉体真空热压,制得掺硅锗锑碲毛坯;再将掺硅锗锑碲毛坯进行机械加工,得到掺硅锗锑碲靶材,通过上述方法制备得到的掺硅锗锑碲靶材具有纯度高、相对密度大的特点,并且上述掺硅锗锑碲靶材也解决了传统制备薄膜时双靶溅射难以搭配和控制溅射速率的问题。

Description

一种掺硅锗锑碲靶材及其制备方法
技术领域
本发明涉及靶材生产技术领域,尤其涉及一种掺硅锗锑碲靶材及其制备方法。
背景技术
目前,在PCRAM应用中被研究得最多的硫系相变材料是GeTe-Sb2Te3赝二元合金,如Ge1Sb2Te4、Ge2Sb2Te5和Ge1Sb4Te7等,这一系列材料有着极快的晶化速度并且在材料非晶态和晶态之间存在显著的电学差异,可以满足PCRAM器件对相变存储介质层的要求。然而,相变过程中,高热阈值的需求,已成为阻挡纯锗锑碲薄膜储存的障碍。研究表明硅的掺杂有助于锗锑碲薄膜的非晶态稳定性,降低材料的RESET电压,降低器件功耗。为达到上述效果,现有的解决方法为通过溅射镀膜法(PVD)制备薄膜;溅射用原料可选择GexSbyTez靶材和纯Si靶材搭配,以此达到锗锑碲薄膜中掺入Si的目的。但是,同时使用GexSbyTez靶材和纯Si靶材两种靶材进行溅射对溅射条件的要求极高,溅射过程不易控制,会出现产品良率低的问题。
南京大学江一帆在其论文《硅掺杂对硫系相变材料锗锑碲薄膜性质影响基质的研究》中第3页提到了以下内容:“本章通过电子束蒸发的方法制备了GST和Si-GST薄膜,并通过原位电阻测试的方法研究了薄膜的热致相变动力学过程并将不同薄膜的所得结果进行了对比。通过原位变温电阻测试的方法可知相比于纯GST薄膜,Si-GST薄膜有着更高的结晶温度和晶态电阻率,并且这些物理量会随着Si掺杂浓度的增加而进一步提高,这表明Si-GST薄膜有着更好的非品态热稳定性且可有效降低PCRAM器件的功耗;
随后利用变温电阻的实验数据计算了GST和S-GST薄膜的结晶激活能和非晶电导激活能,并发现两种激活能的值均会随着Si掺杂浓度的提高而增加,结晶激活能的值从掺Si前的2.99ev增加至Si后的4.09eV,表明Si-GST薄膜晶化时需要更多的能量,从而使薄膜非晶态热稳定性提高:而非晶电导激活能的值从掺Si前的0.404ev增加值Si后的031eV说明Si杂改变了晶态GST薄膜的能带结构;
在原位恒温电阻测试实验中,实验数据表明在相同的退火温度下Si-GST薄膜晶化所需的孕育时间要长于GST薄膜,从而证实了Si-GST有着更好的非晶态热稳定性;
并且通过对薄膜结晶模型的分析,发现在掺Si之后,薄膜的Avrami系数从2.70左右显著降低约1.30,而结晶激活能则从3.11eV升高至4.17eV。”
由此不难看出,在锗锑碲薄膜中掺入硅元素对能够提高锗锑碲薄膜的结晶温度和晶态电阻,同时,随着在一定范围内薄膜的结晶激活能会随着硅掺杂浓度的提高而上升,这意味着掺硅后的锗锑碲薄膜结晶时需要更多的能量,从而提高了薄膜的非晶态热稳定性;并且薄膜的非晶电导激活能同样随着硅的掺杂浓度的增加而增大,说明硅的掺杂改变了非晶锗锑碲薄膜的能带结构。
结合上述文献,不难发现,硅的掺杂对于锗锑碲薄膜性能的提升具有多方面、多维度的有益效果;而在现有技术中,也存在较多制备掺硅锗锑碲薄膜的先例;
中国专利申请201610742155.1公开了一种基于解析法制备定原子比的掺杂Ge2Sb2Te5相变薄膜的方法,根据掺杂原子比计算得到两靶的沉积厚度比,进而确定两靶的溅射功率,制备形如Ax(Ge2Sb2Te5)100-x的薄膜,其中A为掺杂元素,x为待制备掺杂薄膜中掺杂原子的百分比,测试后调整两靶的溅射功率得到所需掺杂原子比的薄膜;具体制备步骤为:计算两靶的沉积薄膜厚度比,两靶对应薄膜的沉积速率,选取衬底和预处理,确定两靶的溅射功率,溅射镀膜,检测薄膜的化学成分与目标薄膜比照,微调溅射功率制备符合掺杂原子比的GGe2Sb2Te5薄膜;
可以看到,上述方案提供了一种制备掺杂其他元素的锗锑碲薄膜,但是观察该方案的7-21段,不难看出,此方案通过双靶溅射的方法得到含掺杂元素的锗锑碲薄膜,并且在溅射之前需要对两靶材的沉积薄膜厚度比、共溅射时两靶的薄膜沉积速率计算,并选取衬底和预处理、调试两靶的溅射功率;一方面,该方案通过上述处理能够有目的地、非常明确地设定溅射的工艺参数,快捷高效;并且通过精确控制两靶的溅射功率达到准确地控制薄膜成分;
但与此同时,制备含掺杂元素的锗锑碲靶材的制备过程技术含量较高,实施稍显复杂,并且控制需十分精准,而如果能够将硅元素直接掺入靶材内,则可以直接利用掺硅的锗锑碲靶材进行镀膜,由此能够减少对双靶溅射时薄膜沉积速率的计算及对溅射速度的控制。
中国专利申请201910905550.0公开了一种碳掺杂锗锑碲相变靶材的制备方法,制备方法包括以下步骤:以单质锗、单质锑和单质碲为原料,进行真空感应熔炼,球磨、过筛后得到锗锑碲粉体;将锗锑碲粉体和炭黑分散到含丙烯酰胺的反应体系中,经聚合反应得到均匀分布有锗锑碲粉体和炭黑的聚丙烯酰胺胶体;将分布有锗锑碲粉体和炭黑的聚丙烯酰胺胶体在无氧环境中进行煅烧,得到掺碳的锗锑碲粉体;将掺碳的锗锑碲粉体进行真空热压烧结,得到碳掺杂锗锑碲相变靶材;
该方案以聚丙烯酰胺和炭黑为碳源,在聚丙烯酰胺胶体形成过程中,通过搅拌使得锗锑碲粉体、炭黑粉悬浮于溶液中,达到炭黑粉与锗锑碲粉体充分混合的目的,解决了现有技术中采用高能球磨或者其他机械混料时,碳粉因为质软而产生团聚现象,导致碳粉与锗锑碲粉体难以混合均匀。此外,聚丙烯酰胺胶体热分解时,产生的碳碳双键具有较大活性,易与锗锑碲颗粒产生物理化学反应,实现粉体的均匀混合,有效解决了现有掺碳锗锑碲靶材中碳颗粒结块导致掺杂不均匀的问题;但尽管碳与硅属于同一主族的元素,但能否简单地将碳掺杂锗锑碲相变靶材的制备方法轻易地套用至硅掺杂锗锑碲相变靶材中还有待商榷。
本方案需要解决的问题:如何开发一种锗锑碲靶材,并且该锗锑碲靶材中掺有硅元素,以降低制备硅掺杂的锗锑碲薄膜的难度。
发明内容
本申请的目的是开发一种锗锑碲靶材,并且该锗锑碲靶材中掺有硅元素,以降低制备硅掺杂的锗锑碲薄膜的难度。
本申请不作特殊说明的情况下:nM代表纳摩尔/升,μM代表微摩尔/升,mM代表毫摩尔/升,M代表摩尔/升;
一种掺硅锗锑碲靶材的制备方法,包括以下步骤:
步骤1:混合,将硅粉、GexSbyTez粉混合且硅粉的质量占粉体总质量的2~10%,随后进行湿法球磨、烘干,制得掺硅锗锑碲粉体;
步骤2:将步骤1制得的掺硅锗锑碲粉体真空热压,制得掺硅锗锑碲毛坯;
步骤3:将步骤2制得的掺硅锗锑碲毛坯进行机械加工,得到掺硅锗锑碲靶材。
优选地,步骤1的GexSbyTez粉的纯度不低于5N,且GexSbyTez粉中,1≤x≤2、2≤y≤4、4≤z≤7,GexSbyTez粉的粒径小于10微米。
优选地,步骤1的硅粉为通过纯度为4~7N的多晶硅破碎后制得的粒径小于10微米的硅粉。
优选地,步骤1具体为:将硅粉、GexSbyTez粉混合随后放入真空球磨桶中,加入磨球,且磨球与物料的质量比为2~4:1,随后加入有机溶剂并抽真空至10-2Pa,随后进行在60~100r/min的转速下进行湿法球磨,球磨时间为2~4h;
其中有机溶剂选自无水乙醇、异丙醇中的至少一种;
磨球为锆球或不锈钢球。
优选地,步骤2具体为:先将步骤1制得的掺硅锗锑碲粉体放入石墨模具中压实,随后将石墨模具放入真空热压炉中进行预压,预压压力为2~5MPa,时间为3~5min;
随后关闭炉门,炉内抽真空至5~10Pa,并以5~10℃/min升温至500~600℃,进行保温,保温时间为90~130min,且在保温过程中,在保温时间至30~50min时,加压至30~35MPa并保压,保压时间为60~80min,保温保压结束后,缓慢降压至10MPa,随炉冷却,打开炉门,脱模后得到掺杂锗锑碲毛坯。
优选地,步骤3具体为:对步骤2制得的锗锑碲毛坯进行研磨、机械加工,制得掺硅锗锑碲靶材。
此外,还公开了一种掺硅锗锑碲靶材,如上述的掺硅锗锑碲靶材制备方法制得,锗锑碲靶材中掺有硅元素,以质量百分比计,硅元素的掺杂量为2~10%。
优选地,锗锑碲靶材的晶粒尺寸小于6μm。
优选地,锗锑碲靶材中氧含量小于800ppm。
本申请的有益效果是:本申请所公开的通过掺硅锗锑碲靶材制备方法得到的掺硅锗锑碲靶材中的硅掺杂量达到2~10wt%,能够满足掺硅锗锑碲薄膜中对硅掺杂量的基本要求,同时能够解决传统的使用双靶材溅射制备薄膜时工艺复杂的问题,降低了掺硅锗锑碲薄膜的制备难度。
具体实施方式
在本发明的描述中,需要说明的是,实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面将结合本发明的实施例,对本发明进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
选用多晶硅原料,首先对原料进行打磨并清洁外表面,随后破碎为粒径处于50~100目范围内的颗粒,随后湿磨、真空干燥、过筛得到小于10微米的成品原料A;
然后选用粒度小于10微米的Ge2Sb2Te5粉原料B。
步骤1:将原料A和原料B按Si:Ge2Sb2Te5=2:98的质量比混合,放入到真空球磨桶中,放入一定质量的锆球,其中物料与锆球的质量比为2:1,同时加入异丙醇,抽真空至10- 2Pa后,进行湿磨混料;球磨转速100r/min,湿磨时间2h,湿磨完成后静置1.5h;
将球磨并静置后的物料取出,放到真空烘干箱中烘干,温度为100℃,烘干时间为1h,得到掺硅锗锑碲粉体。
步骤2:将步骤1中的掺硅锗锑碲粉体放入四周垫有石墨纸的模具中,采用拨料勺铺平后,接着采用夯实锤将粉体夯实,然后粉体上方依次放入石墨纸、石墨垫片和石墨压头,然后放入真空热压炉,使得压柱和模具中心对齐;
首先以2T/min进行预压,预压压力为3MPa,保持3min后卸压;
随后关闭炉门,抽真空至炉膛内真空度达到8Pa时,开始加热,以5℃/min升温至500℃,进行保温,保温时间为130min,且在保温过程中,在保温时间至50min时加压35MPa,然后保温保压80min,保温保压结束后,缓慢降压至10MPa,随炉冷却,打开炉门,脱模后得到掺杂锗锑碲毛坯。
步骤3:将毛坯靶材经研磨,进行密度、组分、纯度检测,得到相对密度为99.2%、组分均匀、纯度为5N的掺杂硅的锗锑碲靶材。
实施例2
步骤1:将原料A和原料B按Si:Ge2Sb2Te5=4:96的质量比混合,放入到真空球磨桶中,放入一定质量的不锈钢球,且物料与不锈钢球的质量比为3:1,同时放入无水乙醇,抽真空至10-2Pa后,进行湿磨混料。球磨转速80r/min,湿磨时间3h,湿磨完成后静置2h;
将球磨静置后的物料取出,放到真空烘干箱中烘干,温度为90℃,烘干时间为1.5h,得到掺硅锗锑碲粉体。
步骤2:将步骤1中的掺硅锗锑碲粉体放入四周垫有石墨纸的模具中,采用拨料勺铺平后,接着采用夯实锤将粉体夯实,然后粉体上方依次放入石墨纸、石墨垫片和石墨压头,然后放入真空热压炉,使得压柱和模具中心对齐;
首先以2T/min进行预压,预压压力为5MPa,保持5min后卸压;
随后关闭炉门,抽真空至炉膛内真空度达到5Pa时,开始加热,以10℃/min升温至600℃,进行保温,保温时间为100min,且在保温过程中,当保温时间至30min时加压至32MPa,然后保温保压70min,保温保压结束后,缓慢降压至10MPa,随炉冷却,打开炉门,脱模后得到掺杂锗锑碲毛坯。
步骤3:将毛坯靶材经研磨,进行密度、组分、纯度检测,得到相对密度为99.3%、组分均匀、纯度为5N的掺杂硅的锗锑碲靶材。
实施例3
步骤1:将原料A和原料B按Si:Ge2Sb2Te5=10:90的质量比混合,放入到真空球磨桶中,放入一定质量的锆球,其中物料与锆球的质量比为2:1,同时加入无水乙醇,抽真空至10-2Pa后,进行湿磨混料;球磨转速60r/min,湿磨时间4h,湿磨完成后静置1h;
将球磨并静置后的物料取出,放到真空烘干箱中烘干,温度为80℃,烘干时间为2h,得到混合均匀的掺硅锗锑碲粉体。
步骤2:将步骤1中的掺硅锗锑碲粉体放入四周垫有石墨纸的模具中,采用拨料勺铺平后,接着采用夯实锤将粉体夯实,然后粉体上方依次放入石墨纸、石墨垫片和石墨压头,然后放入真空热压炉,使得压柱和模具中心对齐;
首先以3T/min进行预压,预压压力为5MPa,保持4min后卸压;
随后关闭炉门,抽真空至炉膛内真空度达到10Pa时,开始加热,以8℃/min升温至550℃,进行保温,保温时间为90min,且在保温过程中,当保温时间至40min时加压至33MPa,然后保温保压60min,保温保压结束后,缓慢降压至10MPa,随炉冷却,打开炉门,脱模后得到掺杂锗锑碲毛坯。
步骤3:将毛坯靶材经研磨,进行密度、组分、纯度检测,得到相对密度为99.1%、组分均匀、纯度为5N的掺杂硅的锗锑碲靶材。
对比例1
与实施例1基本相同,区别在于,步骤1中,湿磨完成后直接将物料取出并放到真空烘干箱中烘干。
对比例2
与实施例1基本相同,区别在于,使用碳原料代替硅原料。
性能测试:
密度测试:阿基米德排水法测试靶材密度。
硅含量、氧含量测试:利用XRD对单个样品的3处不同位置进行硅含量的检测,同时检测氧含量。
晶粒尺寸:扫描电镜
测试结果如表1所示:
表1
结果分析:
1.通过实施例1-3及对比例1可见,当步骤1中,湿法球磨结束后省略静置步骤后,各位置硅含量之间的差距明显增大,这也证明了,在掺硅锗锑碲靶材的制备过程中,湿磨后静置是不可省略的步骤,我们推测,造成此现象的原因可能是在湿磨过程中,颗粒会受到强烈的撞击和磨损,导致颗粒的大小、形状和分布出现差异,此外,湿法球磨过程中加入的介质有时会发生水平分布不均的情况;而静置可以通过重力作用和表面张力作用等力量,在粉体引起微小的位移和颗粒排列,进而影响颗粒的分布,使得颗粒从密集堆积向更加均匀地分布转变。
2.通过实施例1-3及对比例2可见,当使用碳代替硅后,制备得到的靶材均匀程度和密度均有明显的下降,不难看出,上述制备方法并不适用制备掺碳的锗锑碲靶材;而掺碳锗锑碲靶材的制备方法中所采用的聚丙烯胺不仅作为制备胶体的原料,还提供20%的碳元素,因此,该方法并不能直接用于制备掺硅锗锑碲靶材,而本申请中的掺硅锗锑碲靶材经试验证明制备出的掺碳锗锑碲靶材的均匀程度较差。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种掺硅锗锑碲靶材的制备方法,其特征在于,包括以下步骤:
步骤1:混合,将硅粉、GexSbyTez粉混合且硅粉的质量占粉体总质量的2~10%,随后进行湿法球磨、静置、烘干,制得掺硅锗锑碲粉体;
步骤2:将步骤1制得的掺硅锗锑碲粉体真空热压,制得掺硅锗锑碲毛坯;
步骤3:将步骤2制得的掺硅锗锑碲毛坯进行机械加工,得到掺硅锗锑碲靶材。
2.根据权利要求1所述的掺硅锗锑碲靶材的制备方法,其特征在于,所述静置的时间为1~2小时。
3.根据权利要求1所述的掺硅锗锑碲靶材的制备方法,其特征在于,步骤1的GexSbyTez粉的纯度不低于5N,且GexSbyTez粉中,1≤x≤2、2≤y≤4、4≤z≤7,所述GexSbyTez粉的粒径小于10微米。
4.根据权利要求1所述的掺硅锗锑碲靶材的制备方法,其特征在于,步骤1的硅粉为通过纯度为4~7N的多晶硅破碎后制得的粒径小于10微米的硅粉。
5.根据权利要求1所述的掺硅锗锑碲靶材的制备方法,其特征在于,所述步骤1具体为:将硅粉、GexSbyTez粉混合随后放入真空球磨桶中,加入磨球,且磨球与物料的质量比为2~4:1,随后加入有机溶剂并抽真空至10-2Pa,随后在60~100r/min的转速下进行湿法球磨,球磨时间为2~4h;
其中有机溶剂选自无水乙醇、异丙醇中的至少一种;
所述磨球为锆球或不锈钢球。
6.根据权利要求1所述的掺硅锗锑碲靶材的制备方法,其特征在于,所述步骤2具体为:先将步骤1制得的掺硅锗锑碲粉体放入石墨模具中压实,随后将石墨模具放入真空热压炉中进行预压,预压压力为2~5MPa,时间为3~5min;
随后关闭炉门,炉内抽真空至5~10Pa,并以5~10℃/min升温至500~600℃,进行保温,保温时间为90~130min,且在保温过程中,在保温时间至30~50min时,加压至30~35MPa并保压,保压时间为60~80min,保温保压结束后,缓慢降压至10MPa,随炉冷却,打开炉门,脱模后得到掺杂锗锑碲毛坯。
7.根据权利要求1所述的掺硅锗锑碲靶材的制备方法,其特征在于,所述步骤3具体为:对步骤2制得的锗锑碲毛坯进行研磨、机械加工,制得掺硅锗锑碲靶材。
8.一种掺硅锗锑碲靶材,其特征在于,如权利要求1-6中任一所述的掺硅锗锑碲靶材制备方法制得,所述锗锑碲靶材中掺有硅元素,以质量百分比计,所述硅元素的掺杂量为2~10%。
9.根据权利要求8所述的掺硅锗锑碲靶材,其特征在于,所述锗锑碲靶材的晶粒尺寸小于6μm。
10.根据权利要求8所述的掺硅锗锑碲靶材,其特征在于,所述锗锑碲靶材中氧含量小于800ppm。
CN202310661181.1A 2023-06-06 2023-06-06 一种掺硅锗锑碲靶材及其制备方法 Pending CN116789451A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310661181.1A CN116789451A (zh) 2023-06-06 2023-06-06 一种掺硅锗锑碲靶材及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310661181.1A CN116789451A (zh) 2023-06-06 2023-06-06 一种掺硅锗锑碲靶材及其制备方法

Publications (1)

Publication Number Publication Date
CN116789451A true CN116789451A (zh) 2023-09-22

Family

ID=88039501

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310661181.1A Pending CN116789451A (zh) 2023-06-06 2023-06-06 一种掺硅锗锑碲靶材及其制备方法

Country Status (1)

Country Link
CN (1) CN116789451A (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0107700A1 (en) * 1982-05-03 1984-05-09 Western Electric Co PROCESS FOR MANUFACTURING CERAMIC MATERIALS.
US4800051A (en) * 1982-05-03 1989-01-24 American Telephone And Telegraph Company, At&T Bell Laboratories Method for fabricating ceramic materials
US5380686A (en) * 1992-09-11 1995-01-10 Agency Of Industrial Science & Technology Process for producing composite raw material for ceramics and composite raw material for ceramics produced by said process
US20040195094A1 (en) * 2002-08-06 2004-10-07 Shuichi Irumata Hafnium silicide target and manufacturing method for preparation thereof
JP2005075648A (ja) * 2003-08-29 2005-03-24 Tosoh Corp Ito焼結体の製造方法
JP2007084399A (ja) * 2005-09-26 2007-04-05 Shinshu Univ 炭素繊維複合スピネルセラミックスおよびその製造方法
US20130078475A1 (en) * 2010-03-26 2013-03-28 Advanced Technology Materials, Inc. Germanium antimony telluride materials and devices incorporating same
CN105154740A (zh) * 2015-10-22 2015-12-16 烟台希尔德新材料有限公司 机械合金化铌钼靶材的制备方法
CN105645968A (zh) * 2016-03-03 2016-06-08 南京工业大学 一种超微碳化硅粉体高性能浆料的制备方法
CN105887027A (zh) * 2016-05-11 2016-08-24 洛阳高新四丰电子材料有限公司 一种钼铌合金溅射靶材的制备工艺
CN110342473A (zh) * 2019-07-23 2019-10-18 先导薄膜材料(广东)有限公司 锗锑碲粉体、靶材的制备方法
CN113897503A (zh) * 2021-09-15 2022-01-07 先导薄膜材料(广东)有限公司 一种P型热电材料GeSi靶材及其制备方法
CN114713832A (zh) * 2022-04-26 2022-07-08 哈尔滨工业大学 一种高硬度耐磨球形钛基复合粉末及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0107700A1 (en) * 1982-05-03 1984-05-09 Western Electric Co PROCESS FOR MANUFACTURING CERAMIC MATERIALS.
US4800051A (en) * 1982-05-03 1989-01-24 American Telephone And Telegraph Company, At&T Bell Laboratories Method for fabricating ceramic materials
US5380686A (en) * 1992-09-11 1995-01-10 Agency Of Industrial Science & Technology Process for producing composite raw material for ceramics and composite raw material for ceramics produced by said process
US20040195094A1 (en) * 2002-08-06 2004-10-07 Shuichi Irumata Hafnium silicide target and manufacturing method for preparation thereof
JP2005075648A (ja) * 2003-08-29 2005-03-24 Tosoh Corp Ito焼結体の製造方法
JP2007084399A (ja) * 2005-09-26 2007-04-05 Shinshu Univ 炭素繊維複合スピネルセラミックスおよびその製造方法
US20130078475A1 (en) * 2010-03-26 2013-03-28 Advanced Technology Materials, Inc. Germanium antimony telluride materials and devices incorporating same
CN105154740A (zh) * 2015-10-22 2015-12-16 烟台希尔德新材料有限公司 机械合金化铌钼靶材的制备方法
CN105645968A (zh) * 2016-03-03 2016-06-08 南京工业大学 一种超微碳化硅粉体高性能浆料的制备方法
CN105887027A (zh) * 2016-05-11 2016-08-24 洛阳高新四丰电子材料有限公司 一种钼铌合金溅射靶材的制备工艺
CN110342473A (zh) * 2019-07-23 2019-10-18 先导薄膜材料(广东)有限公司 锗锑碲粉体、靶材的制备方法
CN113897503A (zh) * 2021-09-15 2022-01-07 先导薄膜材料(广东)有限公司 一种P型热电材料GeSi靶材及其制备方法
CN114713832A (zh) * 2022-04-26 2022-07-08 哈尔滨工业大学 一种高硬度耐磨球形钛基复合粉末及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
仝亮: "应用于相变存储器的硅掺杂锗锑碲相变材料制备及光电性质", 《中国优秀硕士学位论文全文数据库 基础科学辑》, no. 11, 30 November 2014 (2014-11-30), pages 005 - 24 *

Similar Documents

Publication Publication Date Title
CN107620049B (zh) 一种无粘结相纯碳化钨靶材的制备方法
CN113579233B (zh) 一种钨钛合金靶材及其制备方法、应用
CN111320478B (zh) 一种碳硅陶瓷靶材的制备方法
CN110714185A (zh) 一种钨硅靶材的制备方法
CN108249911A (zh) 氧化镁氧化锌靶坯的制造方法
CN109136608A (zh) 一种取向可控的TiB晶须增强钛基复合材料的制备方法
CN109837514B (zh) 一种纳米尺度多孔硒/碲化物薄膜材料及其制备方法
CN116789451A (zh) 一种掺硅锗锑碲靶材及其制备方法
CN104532190B (zh) 一种Zr‑Cu金属玻璃薄膜的制备方法
Gao et al. Effect of Cu doping on microstructure and thermal stability of Ge2Sb2Te5 thin film
CN110176536B (zh) 一种二氧化钒-Sb薄膜材料及其制备方法
Huang et al. Thickness effect on the crystallization characteristic of RF sputtered Sb thin films
CN110760805A (zh) 一种薄膜、镀层、化合物靶材及其制作方法、应用
CN113072915B (zh) 基于氧掺杂的Sb2Te3相变材料、相变存储器及制备方法
CN114959582A (zh) 一种高硬度六元高熵合金薄膜及其制备方法
CN111334685B (zh) 一种高致密度的Half-Heusler热电材料的制备方法及所得产品
CN111876731B (zh) 一种Ca掺杂碲化锑超稳相变存储薄膜材料及其制备方法
JP7480533B2 (ja) Cr-Si系焼結体
Liang et al. Preparation of Mn2AlB2 material via thermal explosion
Ta et al. Phase transition behavior and electronic properties of GaSb/Ge2Sb2Te5 superlattice-like structure thin films
TW201348459A (zh) 濺射鉬靶材及其製造方法
CN114525423B (zh) 一种第VIII类Eu-Ga-Ge笼状化合物的简易制备方法
Bharath Kumar et al. Effect of deposition pressure and annealing temperature on the microstructure and oxidation resistance of FeNbMoTaW films
CN116356265A (zh) 一种大尺寸细晶钨硅合金靶材制备方法
JP5367659B2 (ja) 酸化物焼結体及び酸化物半導体薄膜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination