CN116618056B - 可见光响应的层状硅酸铁光芬顿催化剂、制备方法和应用 - Google Patents

可见光响应的层状硅酸铁光芬顿催化剂、制备方法和应用 Download PDF

Info

Publication number
CN116618056B
CN116618056B CN202310427133.6A CN202310427133A CN116618056B CN 116618056 B CN116618056 B CN 116618056B CN 202310427133 A CN202310427133 A CN 202310427133A CN 116618056 B CN116618056 B CN 116618056B
Authority
CN
China
Prior art keywords
photo
silicate
fenton catalyst
ferric
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310427133.6A
Other languages
English (en)
Other versions
CN116618056A (zh
Inventor
王兰
侯晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202310427133.6A priority Critical patent/CN116618056B/zh
Publication of CN116618056A publication Critical patent/CN116618056A/zh
Application granted granted Critical
Publication of CN116618056B publication Critical patent/CN116618056B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了可见光响应的层状硅酸铁光芬顿催化剂、制备方法和应用,具体为:先对蒸馏水进行脱气处理,再依次向蒸馏水加入硅酸钠、四水合氯化亚铁及六水合氯化铁,溶解后加入四甲基氢氧化铵或氢氧化钠,调节溶液pH为碱性,得到混合溶液;将混合溶液转移到反应釜中进行水热反应,冷却得到反应物;将反应物洗涤至中性,干燥后研磨成粉,得到层状硅酸铁光芬顿催化剂。层状硅酸铁光芬顿催化剂为一种类蛭石层状结构的二维纳米片,可见光吸收能力强,光芬顿催化活性高,可快速降解水体中的有机污染物。该制备方法成本低,制备过程简单可控,且所得材料可以广泛应用于环境修复技术领域,如染料废水和医疗废水等有机废水的净化处理。

Description

可见光响应的层状硅酸铁光芬顿催化剂、制备方法和应用
技术领域
本发明属于催化剂技术领域,涉及可见光响应的层状硅酸铁光芬顿催化剂,还涉及上述催化剂的制备方法,还涉及上述催化剂的应用。
背景技术
高效彻底地去除水体中有机污染物对于维持自然资源的可持续性具有重要意义。处理有机废水的传统方法包含物理法、化学法和生物法,这些方法存在色度难达到排放标准,生化处理困难,不能彻底去除有机污染物等问题。芬顿技术因催化效率高、操作简单常被应用于去除水体中难降解的有机污染物,但均相芬顿技术通常存在pH适用范围窄、铁离子循环缓慢、易产生铁泥等缺点。因此人们致力于研究异相芬顿技术以克服这些缺点,其中光芬顿技术可以通过在芬顿体系中引入光源以提高铁离子循环效率,减少铁泥的产生而受到科研人员的广泛关注。
催化材料不易回收、成本高、H2O2利用率低等因素制约了光芬顿体系的发展。铁基固相催化剂因成本低廉、铁溶出率低、易分离回收等特点在光芬顿技术中广泛应用,但是大多铁基催化剂活性位点少、光吸收能力有限且催化效率低。Zhang等人报道了一种钠离子柱撑的层状硅酸盐,该材料的晶体结构与皂石一致,且合成过程需加入有机还原剂抑制二价铁的氧化(J.Energy Chem67(2022)92-100)。中国发明专利CN108636415A公开了一种硅酸铁的制备方法,该方法采用砂磨法制得硅酸铁纳米颗粒,且尚未明确材料的晶体结构和铁的价态。中国发明专利CN105502422A公开了一种类蛭石结构纳米层状硅酸盐材料的制备方法,该方法所制得的硅酸盐材料为一种非铁基的层状硅酸盐材料。上述方法所制备的硅酸盐在光芬顿催化方面的应用均未见公开。
发明内容
本发明的第一目的是提供一种可见光响应的层状硅酸铁光芬顿催化剂,解决了现有技术中存在的光吸收能力有限和催化效率低的问题。
本发明所采用的第一技术方案是,可见光响应的层状硅酸铁光芬顿催化剂,催化剂的结构式为Na(x+y)(Si4+ 4-xFe3+ x)(Fe3+ 2-yFe2+ y)O10(OH)2·nH2O,其中0≤x≤0.1,0.6≤y≤0.8,0.3≤n≤10。
本发明的第二目的是提供一种可见光响应的层状硅酸铁光芬顿催化剂的制备方法。
本发明所采用的第二技术方案是,可见光响应的层状硅酸铁光芬顿催化剂的制备方法,包括以下步骤:
步骤1、先对蒸馏水进行脱气处理,再依次向蒸馏水加入硅酸钠、四水合氯化亚铁及六水合氯化铁,溶解后加入四甲基氢氧化铵或氢氧化钠,调节溶液pH为碱性,得到混合溶液;
步骤2、将混合溶液转移到反应釜中进行水热反应,冷却得到反应物;
步骤3、将反应物洗涤至中性,干燥后研磨成粉,得到层状硅酸铁光芬顿催化剂。
本发明的特点还在于:
硅酸钠的摩尔质量1.5-2.0mmol。
四水合氯化亚铁与六水合氯化铁的摩尔比为1:2.4-1:7.5。
层状硅酸铁光芬顿催化剂的结构为类蛭石结构层状硅酸铁纳米片层板,厚度为5-30nm,直径为50-250nm,比表面积为80-120m2/g。
步骤1中脱气处理的过程为:将氮气通入蒸馏水中脱气20-60min,氮气的流速为50-200ml/min,压力为0.2-1.4Mpa。
本发明的第三目的是提供一种可见光响应的层状硅酸铁光芬顿催化剂在有机污染物中的应用。
有机污染物为染料或PPCPs。
本发明的有益效果是:本发明的层状硅酸铁光芬顿催化剂,禁带宽度较小,可见光吸收能力强;大比表面积能提供更多的活性位点参与反应,有利于催化剂与有机污染物的接触;光生电荷的高效传输促进Fe(Ⅲ)/Fe(Ⅱ)循环,提高了催化效率;光芬顿降解有机污染物性能优异,在10min内,可将10-50mg/L的有机污染物(染料,PPCPs)完全降解。本发明的层状硅酸铁光芬顿催化剂的制备方法,原材料廉价易得,制备成本低;制备过程简单可控。
附图说明
图1是本发明可见光响应的层状硅酸铁光芬顿催化剂的X射线衍射谱图;
图2是本发明可见光响应的层状硅酸铁光芬顿催化剂的扫描电镜和透射电镜图;
图3是本发明可见光响应的层状硅酸铁光芬顿催化剂的紫外漫反射图;
图4是本发明可见光响应的层状硅酸铁光芬顿催化剂与蛭石、四氧化三铁对卡马西平的光芬顿降解。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
可见光响应的层状硅酸铁光芬顿催化剂,催化剂的结构式为Na(x+y)(Si4+ 4-xFe3+ x)(Fe3+ 2-yFe2+ y)O10(OH)2·nH2O,其中0≤x≤0.1,0.6≤y≤0.8,0.3≤n≤10。
可见光响应的层状硅酸铁光芬顿催化剂的制备方法,包括以下步骤:
步骤1、将流速为50-200ml/min,压力为0.2-1.4Mpa氮气通入蒸馏水进行脱气处理20-60min,再依次向蒸馏水加入硅酸钠1.5-2.0mmol、四水合氯化亚铁及六水合氯化铁,六水合氯化铁和四水合氯化亚铁的摩尔比为1:2.4-1:7.5,搅拌使其溶解后加入四甲基氢氧化铵或氢氧化钠,调节溶液pH为11-14,得到混合溶液;
步骤2、将混合溶液在温度20-35℃下搅拌60-100min后转移到反应釜,在温度100-200℃下水热反应16-40h,冷却得到反应物;
步骤3、将反应物用去离子水洗涤至中性,在温度60-100℃下干燥12-24min后研磨成粉,得到层状硅酸铁纳米片层板,即层状硅酸铁光芬顿催化剂,层状硅酸铁纳米片层板的厚度为5-30nm,直径为50-250nm,比表面积为80-120m2/g。
可见光响应的层状硅酸铁光芬顿催化剂在有机污染物中的应用。有机污染物为染料或PPCPs,PPCPs为药品及个人护理品。
本发明的层状硅酸铁光芬顿催化剂应用于光芬顿降解有机污染物,反应条件如下:以功率300W的氙灯(λ>422nm)作为激发光源,反应温度为25℃,有机污染物在水溶液中的浓度为10-50mg/L,层状硅酸铁光芬顿催化剂在光芬顿反应体系中的浓度为100-600mg/L,过氧化氢在水溶液中的浓度为0.5-7.5mmol/L,含层状硅酸铁光芬顿催化剂和有机污染物的混合溶液预先在暗条件下保持30-60min直到达到吸附-脱附平衡,打开光源,光源在溶液表面单位面积的辐照量为540-660mW/cm2
通过以上方式,本发明的层状硅酸铁光芬顿催化剂,禁带宽度较小,可见光吸收能力强;具有大比表面积,能提供更多的活性位点参与反应,有利于催化剂与有机污染物的接触;光生电荷的高效传输促进Fe(Ⅲ)/Fe(Ⅱ)循环,提高了催化效率;光芬顿降解有机污染物性能优异,在10min内,可将10-50mg/L的有机污染物(染料,PPCPs)完全降解。本发明的层状硅酸铁光芬顿催化剂的制备方法,制备成本低,原材料廉价易得;制备过程简单可控。
实施例1
步骤1、将流速为60ml/min,压力为0.4Mpa氮气通入50ml蒸馏水进行脱气处理20min,再依次向蒸馏水加入硅酸钠1.6mmol、摩尔比为1:3的四水合氯化亚铁及六水合氯化铁,搅拌使其溶解后加入四甲基氢氧化铵,调节溶液pH为11,得到混合溶液;
步骤2、将混合溶液在温度25℃下搅拌80min后转移到反应釜中,在温度120℃下水热反应32h,常温冷却得到反应物;
步骤3、将反应物用去离子水洗涤至中性,在温度60℃下干燥14h后研磨成粉,得到层状硅酸铁纳米片层板,层状硅酸铁纳米片层板的厚度为10nm,直径为100nm,比表面积为85m2/g,其结构式为Na(x+y)(Si4+ 4-xFe3+ x)(Fe3+ 2-yFe2+ y)O10(OH)2·nH2O,其中x=0.1,y=0.7,n=0.3。
将得到的层状硅酸铁光芬顿催化剂降解卡马西平:以功率300W的氙灯(λ>422nm)作为激发光源,反应温度为25℃,卡马西平在水溶液中的浓度为20mg/L,层状硅酸铁光芬顿催化剂在反应体系中的浓度为300mg/L,过氧化氢在水溶液中的浓度为4.0mmol/L,层状硅酸铁光芬顿催化剂和苯酚的混合溶液预先在暗条件下保持30min直到达到吸附-脱附平衡,打开光源,光源在溶液表面单位面积的辐照量为630mW/cm2,搅拌反应6min后,测得卡马西平降解率为100%。
本实施例得到的类蛭石结构层状硅酸铁光芬顿催化剂的X射线衍射谱图见图1,该XRD谱图显示了能表征硅酸铁层状结构的特征衍射峰(002)、(020)和(060);本实施例得到的层状硅酸铁光芬顿催化剂的扫描电镜和透射电镜图见图2a-b,从a扫描电镜图可以看出,硅酸铁由薄纳米片组成的层状结构,且片的边缘呈卷曲状,从b透射电镜图可以看出,硅酸铁具有超薄二维纳米片结构;本实施例得到的层状硅酸铁光芬顿催化剂紫外漫反射见图3,可以看出层状硅酸铁在200-600nm范围内具有较强的光吸收;本实施例得到的层状硅酸铁光芬顿催化剂与蛭石、四氧化三铁对卡马西平的光芬顿降解图见图4,可以看出层状硅酸铁在6min内对卡马西平的降解率为100%。
实施例2
步骤1、将流速为70ml/min,压力为0.8Mpa氮气通入50ml蒸馏水进行脱气处理35min,再依次向蒸馏水加入硅酸钠1.8mmol、摩尔比为1:2.4的四水合氯化亚铁及六水合氯化铁,搅拌使其溶解后加入氢氧化钠,调节溶液pH为13,得到混合溶液;
步骤2、将混合溶液在温度20℃下搅拌70min后转移到反应釜中,在温度180℃下水热反应24h,常温冷却得到反应物;
步骤3、将反应物用去离子水洗涤至中性,在温度80℃下干燥10h后研磨成粉,得到层状硅酸铁纳米片层板,层状硅酸铁纳米片层板的厚度为25nm,直径为120nm,比表面积为80m2/g,其结构式为Na(x+y)(Si4+ 4-xFe3+ x)(Fe3+ 2-yFe2+ y)O10(OH)2·nH2O,其中x=0.05,y=0.6,n=2。
将得到的层状硅酸铁光芬顿催化剂降解卡马西平:以功率300W的氙灯(λ>422nm)作为激发光源,反应温度为25℃,卡马西平在水溶液中的浓度为25mg/L,层状硅酸铁光芬顿催化剂在反应体系中的浓度为100mg/L,过氧化氢在水溶液中的浓度为5.0mmol/L,层状硅酸铁光芬顿催化剂和苯酚的混合溶液预先在暗条件下保持30min直到达到吸附-脱附平衡,打开光源,光源在溶液表面单位面积的辐照量为540mW/cm2,搅拌反应10min后,测得卡马西平降解率为100%。
实施例3
步骤1、将流速为50ml/min,压力为0.3Mpa氮气通入50ml蒸馏水进行脱气处理50min,再依次向蒸馏水加入硅酸钠1.7mmol、摩尔比为1:6的四水合氯化亚铁及六水合氯化铁,搅拌使其溶解后加入四甲基氢氧化铵,调节溶液pH为12,得到混合溶液;
步骤2、将混合溶液在温度30℃下搅拌90min后转移到反应釜中,在温度180℃下水热反应24h,常温冷却得到反应物;
步骤3、将反应物用去离子水洗涤至中性,在温度50℃下干燥20h后研磨成粉,得到层状硅酸铁纳米片层板,层状硅酸铁纳米片层板的厚度为18nm,直径为210nm,比表面积为110m2/g,其结构式为Na(x+y)(Si4+ 4-xFe3+ x)(Fe3+ 2-yFe2+ y)O10(OH)2·nH2O,其中x=0.1,y=0.8,n=5。
将得到的层状硅酸铁光芬顿催化剂降解双氯芬酸:以功率300W的氙灯(λ>422nm)作为激发光源,反应温度为25℃,双氯芬酸在水溶液中的浓度为40mg/L,层状硅酸铁光芬顿催化剂在反应体系中的浓度为400mg/L,过氧化氢在水溶液中的浓度为1.0mmol/L,层状硅酸铁光芬顿催化剂和苯酚的混合溶液预先在暗条件下保持30min直到达到吸附-脱附平衡,打开光源,光源在溶液表面单位面积的辐照量为620mW/cm2,搅拌反应8min后,测得双氯芬酸降解率为100%。
实施例4
步骤1、将流速为100ml/min,压力为0.3Mpa氮气通入50ml蒸馏水进行脱气处理60min,再依次向蒸馏水加入硅酸钠1.8mmol、摩尔比为1:5.5的四水合氯化亚铁及六水合氯化铁,搅拌使其溶解后加入氢氧化钠,调节溶液pH为13,得到混合溶液;
步骤2、将混合溶液在温度25℃下搅拌100min后转移到反应釜中,在温度140℃下水热反应24h,常温冷却得到反应物;
步骤3、将反应物用去离子水洗涤至中性,在温度70℃下干燥18h后研磨成粉,得到层状硅酸铁纳米片层板,层状硅酸铁纳米片层板的厚度为30nm,直径为100nm,比表面积为100m2/g,其结构式为Na(x+y)(Si4+ 4-xFe3+ x)(Fe3+ 2-yFe2+ y)O10(OH)2·nH2O,其中x=0.04,y=0.6,n=4。
将得到的层状硅酸铁光芬顿催化剂降解双酚A:以功率300W的氙灯(λ>422nm)作为激发光源,反应温度为25℃,双酚A在水溶液中的浓度为20mg/L,层状硅酸铁光芬顿催化剂在反应体系中的浓度为400mg/L,过氧化氢在水溶液中的浓度为2.5mmol/L,层状硅酸铁光芬顿催化剂和苯酚的混合溶液预先在暗条件下保持30min直到达到吸附-脱附平衡,打开光源,光源在溶液表面单位面积的辐照量为610mW/cm2,搅拌反应8min后,测得双酚A降解率为100%。
实施例5
步骤1、将流速为80ml/min,压力为1.2Mpa氮气通入50ml蒸馏水进行脱气处理40min,再依次向蒸馏水加入硅酸钠1.7mmol、摩尔比为1:7.5的四水合氯化亚铁及六水合氯化铁,搅拌使其溶解后加入四甲基氢氧化铵,调节溶液pH为12,得到混合溶液;
步骤2、将混合溶液在温度25℃下搅拌80min后转移到反应釜中,在温度160℃下水热反应16h,常温冷却得到反应物;
步骤3、将反应物用去离子水洗涤至中性,在温度80℃下干燥14h后研磨成粉,得到层状硅酸铁纳米片层板,层状硅酸铁纳米片层板的厚度为10nm,直径为220nm,比表面积为100m2/g,其结构式为Na(x+y)(Si4+ 4-xFe3+ x)(Fe3+ 2-yFe2+ y)O10(OH)2·nH2O,其中x=0,y=0.7,n=8。
将得到的层状硅酸铁光芬顿催化剂降解亚甲基蓝:以功率300W的氙灯(λ>422nm)作为激发光源,反应温度为25℃,亚甲基蓝在水溶液中的浓度为10mg/L,层状硅酸铁光芬顿催化剂在反应体系中的浓度为600mg/L,过氧化氢在水溶液中的浓度为0.5mmol/L,层状硅酸铁光芬顿催化剂和苯酚的混合溶液预先在暗条件下保持30min直到达到吸附-脱附平衡,打开光源,光源在溶液表面单位面积的辐照量为600mW/cm2,搅拌反应9min后,测得亚甲基蓝降解率为100%。

Claims (6)

1.可见光响应的层状硅酸铁光芬顿催化剂,其特征在于,所述催化剂的结构式为Na(x+y)(Si4+ 4-xFe3+ x)(Fe3+ 2-yFe2+ y)O10(OH)2·nH2O,其中0≤x≤0.1,0.6≤y≤0.8,0.3≤n≤10。
2.根据权利要求1所述的可见光响应的层状硅酸铁光芬顿催化剂的制备方法,其特征在于,包括以下步骤:
步骤1、先对蒸馏水进行脱气处理,再依次向蒸馏水加入硅酸钠、四水合氯化亚铁及六水合氯化铁,溶解后加入四甲基氢氧化铵或氢氧化钠,调节溶液pH为碱性,得到混合溶液;
步骤2、将所述混合溶液转移到反应釜中进行水热反应,冷却得到反应物;
步骤3、将所述反应物洗涤至中性,干燥后研磨成粉,得到层状硅酸铁光芬顿催化剂;
所述硅酸钠的摩尔质量1.5-2.0mmol;四水合氯化亚铁与六水合氯化铁的摩尔比为1:2.4-1:7.5。
3.根据权利要求2所述的可见光响应的层状硅酸铁光芬顿催化剂的制备方法,其特征在于,所述层状硅酸铁光芬顿催化剂的结构为层状硅酸铁纳米片层板,厚度为5-30nm,直径为50-250nm,比表面积为80-120m2/g。
4.根据权利要求2所述的可见光响应的层状硅酸铁光芬顿催化剂的制备方法,其特征在于,步骤1中所述脱气处理的过程为:将氮气通入蒸馏水中脱气20-60min,氮气的流速为50-200ml/min,压力为0.2-1.4Mpa。
5.根据权利要求1所述的可见光响应的层状硅酸铁光芬顿催化剂在有机污染物中的应用。
6.根据权利要求5所述的可见光响应的层状硅酸铁光芬顿催化剂在有机污染物中的应用,所述有机污染物为染料或PPCPs。
CN202310427133.6A 2023-04-20 2023-04-20 可见光响应的层状硅酸铁光芬顿催化剂、制备方法和应用 Active CN116618056B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310427133.6A CN116618056B (zh) 2023-04-20 2023-04-20 可见光响应的层状硅酸铁光芬顿催化剂、制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310427133.6A CN116618056B (zh) 2023-04-20 2023-04-20 可见光响应的层状硅酸铁光芬顿催化剂、制备方法和应用

Publications (2)

Publication Number Publication Date
CN116618056A CN116618056A (zh) 2023-08-22
CN116618056B true CN116618056B (zh) 2023-12-29

Family

ID=87590980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310427133.6A Active CN116618056B (zh) 2023-04-20 2023-04-20 可见光响应的层状硅酸铁光芬顿催化剂、制备方法和应用

Country Status (1)

Country Link
CN (1) CN116618056B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283043A (en) * 1992-04-16 1994-02-01 Mobil Oil Corp. Direct crystallization of organic-swelled layered silicates and preparation of layered silicates containing interlayer polymeric chalcogenides therefrom
RU2301790C1 (ru) * 2005-12-21 2007-06-27 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Способ окисления органических соединений в присутствии пероксида водорода (варианты)
CN107670670A (zh) * 2017-10-23 2018-02-09 周开珍 一种可见光芬顿催化剂的制备方法和应用
CN108079939A (zh) * 2017-12-19 2018-05-29 陕西科技大学 一种磁性高比表面积高硅沸石及其制备方法和应用
CN108232167A (zh) * 2018-01-19 2018-06-29 洛阳理工学院 一种碳@硅酸铁空心结构复合物及其制备方法
CN108636415A (zh) * 2018-05-17 2018-10-12 曲阜师范大学 一种硅酸铁钠纳米线的制备方法
CN108786810A (zh) * 2018-05-18 2018-11-13 东南大学 一种磁性硅酸铜及其在催化降解亚甲基蓝废水中的应用
CN114425305A (zh) * 2022-01-25 2022-05-03 中南大学 一种汞吸附材料及其制备方法和在烟气或溶液脱汞方面的应用
CN115121249A (zh) * 2022-05-29 2022-09-30 北京工业大学 一种磁性硅酸铁钠/赤铁矿复合光催化剂的制备方法及应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060076299A1 (en) * 2004-10-08 2006-04-13 The Hong Kong University Of Science And Technology Synthesis of bentonite clay-based iron nanocomposite and its use as a heterogeneous photo fenton catalyst
ITSA20070020A1 (it) * 2007-05-24 2008-11-25 Uiversita Degli Studi Di Saler Processo foto-fenton eterogeneo ad alta efficienza per la degradazione di inquinanti organici.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283043A (en) * 1992-04-16 1994-02-01 Mobil Oil Corp. Direct crystallization of organic-swelled layered silicates and preparation of layered silicates containing interlayer polymeric chalcogenides therefrom
RU2301790C1 (ru) * 2005-12-21 2007-06-27 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Способ окисления органических соединений в присутствии пероксида водорода (варианты)
CN107670670A (zh) * 2017-10-23 2018-02-09 周开珍 一种可见光芬顿催化剂的制备方法和应用
CN108079939A (zh) * 2017-12-19 2018-05-29 陕西科技大学 一种磁性高比表面积高硅沸石及其制备方法和应用
CN108232167A (zh) * 2018-01-19 2018-06-29 洛阳理工学院 一种碳@硅酸铁空心结构复合物及其制备方法
CN108636415A (zh) * 2018-05-17 2018-10-12 曲阜师范大学 一种硅酸铁钠纳米线的制备方法
CN108786810A (zh) * 2018-05-18 2018-11-13 东南大学 一种磁性硅酸铜及其在催化降解亚甲基蓝废水中的应用
CN114425305A (zh) * 2022-01-25 2022-05-03 中南大学 一种汞吸附材料及其制备方法和在烟气或溶液脱汞方面的应用
CN115121249A (zh) * 2022-05-29 2022-09-30 北京工业大学 一种磁性硅酸铁钠/赤铁矿复合光催化剂的制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Construction of TiO2−x Confined by Layered Iron Silicate toward Efficient Visible-Light-Driven Photocatalysis−Fenton Synergistic Removal of Organic Pollutants";Chen Hou et al;《ACS Appl. Mater. Interfaces》;第15卷;23124−23135 *
"Tunable Fe-deficiency modified sodium ferric silicate for improving photo-Fenton-like activity";He, H et al.;《CHEMICAL ENGINEERING JOURNAL》;第450卷;全文 *
"硅酸盐纳米材料的制备及光催化性能探索";乔峥;《万方学位论文数据库》;正文第3.2.2、3.2.5节 *

Also Published As

Publication number Publication date
CN116618056A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
CN111204837B (zh) 一种四环素降解方法
CN107008467B (zh) 一种异质结光催化剂的制备方法和用途
CN112337490B (zh) 一种Mn-FeOCl材料制备及其催化降解水中孔雀石绿使用方法
CN113428901A (zh) 降解废水中染料的二硫化钼及其制备和应用
CN111604083B (zh) 含氧空位钨酸铋/富氧结构的石墨型氮化碳复合光催化材料及其制备方法和应用
CN104549375A (zh) 一种新颖复合光催化剂Bi2S3/BiOCl的合成及其应用
CN106630102B (zh) Ce-OMS-2催化剂降解有机废水的应用及方法
CN112960756A (zh) 一种海泡石负载纳米零价铁耦合过硫酸盐的水处理方法
CN111871403A (zh) 一种石墨烯量子点复合二氧化钛纳米管光催化剂及其制备方法
CN115069282A (zh) 一种铋酸铜/碳酸氧铋异质结光催化剂及制备方法和应用
Li et al. Visible light assisted heterogeneous photo-Fenton-like degradation of Rhodamine B based on the Co-POM/N-TiO2 composites: Catalyst properties, photogenerated carrier transfer and degradation mechanism
CN116618056B (zh) 可见光响应的层状硅酸铁光芬顿催化剂、制备方法和应用
CN111151238B (zh) 一种钒酸铋异质结BiVO4/Bi25VO40材料及其制备方法和应用
CN111203245B (zh) 一种高效降解环丙沙星的复合光催化剂及其制备方法和应用
CN111545211A (zh) 一种氧化石墨烯-氧化镧-氢氧化钴复合材料、合成方法及其应用
CN115814829B (zh) 一种Co与Mo2C共掺杂的生物炭基复合材料及其制备方法与应用
CN110586149A (zh) 钼酸铋/碳化钛异质结二维光催化材料及其制备方法和应用
CN115715980A (zh) Mn3O4/CNTs类芬顿催化剂及其制备方法和应用
CN113559857B (zh) 磁性可见光非均相Fenton核壳结构CuFe2O4催化剂及其应用
CN114588946A (zh) 一种二价铁掺杂Fe-MOF基复合材料的制备方法及其应用
CN111569890B (zh) 一种氧化石墨烯-氧化铽-氧化铁复合材料、合成方法及其在催化降解中的应用
CN109092335B (zh) 一种硅酸银/氯化银复合光催化材料及应用
CN114870842B (zh) 一种固定化Z型Fe2O3/CuFe2O4|Cu光催化剂复合膜及其制备方法和应用
CN115636440B (zh) In+掺杂(001)晶面暴露含氧空位BiOCl纳米片及其制备方法
CN115999587B (zh) 一种光催化材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant