CN116386973A - 一种强韧性钕铁硼磁体及制备方法 - Google Patents

一种强韧性钕铁硼磁体及制备方法 Download PDF

Info

Publication number
CN116386973A
CN116386973A CN202310651948.2A CN202310651948A CN116386973A CN 116386973 A CN116386973 A CN 116386973A CN 202310651948 A CN202310651948 A CN 202310651948A CN 116386973 A CN116386973 A CN 116386973A
Authority
CN
China
Prior art keywords
neodymium
iron
boron
diamagnetic
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310651948.2A
Other languages
English (en)
Other versions
CN116386973B (zh
Inventor
宋青松
张燕庆
杨慧芳
张锋锐
张敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Huiqiang Magnetic Material Manufacturing Co Ltd
Original Assignee
Shanxi Huiqiang Magnetic Material Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Huiqiang Magnetic Material Manufacturing Co Ltd filed Critical Shanxi Huiqiang Magnetic Material Manufacturing Co Ltd
Priority to CN202310651948.2A priority Critical patent/CN116386973B/zh
Publication of CN116386973A publication Critical patent/CN116386973A/zh
Application granted granted Critical
Publication of CN116386973B publication Critical patent/CN116386973B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1039Sintering only by reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment

Abstract

本申请涉及磁体材料制备技术领域,尤其是涉及一种强韧性钕铁硼磁体及制备方法。该钕铁硼磁体原料包括稀土总量为33‑35wt%的钕铁硼磁粉、0.4‑0.6 wt%的晶态单质硼粉和1‑3 wt%抗磁性纳米金属陶瓷颗粒;所述抗磁性纳米金属陶瓷颗粒的表面原位生长有低熔点纳米金属薄膜。所述抗磁性纳米金属陶瓷颗粒采用粒度小于700nm的WC‑Ni或Ti(C,N)‑Ni基合金为基底。制备时通过MOCVD法在抗磁性纳米金属陶瓷表面生成低熔点合金纳米薄膜,并在混料过程中引入晶态单质硼粉。能够有效解决钕铁硼磁体混入过多合金元素形成软磁相降低整体磁性能的问题并增强韧性。

Description

一种强韧性钕铁硼磁体及制备方法
技术领域
本申请涉及磁体材料制备技术领域,尤其是涉及一种强韧性钕铁硼磁体及制备方法。
背景技术
钕铁硼磁体是迄今为止磁性最强的永磁材料,它被广泛的应用于电子、机电、仪表和医疗等诸多领域,是当今世界上发展最快,市场前景最好的永磁材料。近些年来,随着计算机、通讯器材以及汽车生产的快速发展,对钕铁硼磁体材料的需求量激增;而且对磁体的具体应用,如车用电机等方面,在小型化、轻量化及节能环保等方面提出了进一步的要求,同时为了精密加工,对磁体强韧性的要求越来越高。
传统钕铁硼磁体通过添加高熔点合金或陶瓷相粉末起细化晶粒,起到增加磁体强韧性的效果。但如果添加的物质分散性差发生团聚,磁性能会明显降低,因此这种工艺不稳定性极高。若添加非金属陶瓷颗粒,则会降低磁体电导率,使其在电机上的应用受限。
发明内容
本申请为了解决现有技术制备的钕铁硼磁韧性、磁性等性能差,导致其使用受限的问题,进而提供了一种强韧性钕铁硼磁体及制备方法。
本申请采用如下技术方案:
一种强韧性钕铁硼磁体,其原料包括钕铁硼磁粉、晶态单质硼粉和抗磁性纳米金属陶瓷颗粒。
通过采用上述技术方案,引入晶态单质硼粉能够有效解决钕铁硼磁体混入过多合金元素形成软磁相降低整体磁性能的问题;同时选用抗磁性金属陶瓷颗粒,可以避免取向压型过程中添加物向取向极头处的聚集,
进一步的,所述晶态单质硼粉相对所述钕铁硼磁粉的质量占比为0.4-0.6 wt%,所述抗磁性纳米金属陶瓷颗粒相对所述钕铁硼磁粉的质量占比为1-3 wt%;所述钕铁硼磁粉中的稀土总量为33-35wt%。
通过采用上述技术方案,将钕铁硼磁粉原料中的稀土总量提高到33~35wt%,有利形成更多的富稀土相,从而使韧性增强。
进一步的,所述抗磁性纳米金属陶瓷颗粒的表面原位生长有低熔点纳米金属薄膜。
通过采用上述技术方案,利用抗磁性金属陶瓷表面生成低熔点合金,在后续烧结过程中表面通过液化后的合金液润湿,在长时间保温的热力作用下更好的分散。同时依靠晶态单质硼将多余的合金元素生成金属硼化物,进一步细化晶粒,使磁体强韧性增强。
进一步的,所述抗磁性纳米金属陶瓷颗粒采用粒度小于700nm的WC-Ni或Ti(C,N)-Ni基合金为基底。
通过采用上述技术方案,所述选用的WC-Ni或Ti(C,N)-Ni基合金两种金属化合物具有良好的电导率,制的磁体适用于电机,且高熔点,不会在烧结过程中与稀土反应,且抗磁性,在取向成型阶段不会聚集。采用小于700nm的细小粒度才能起到弥散强化的作用,提高机械性能。
进一步的,所述低熔点纳米金属薄膜是采用MOCVD法将低熔点金属源激发后通过载气氢气带到抗磁性纳米金属陶瓷颗粒基底表面生成。
通过采用上述技术方案,相比传统的MBE法,因其一般在科研单位用的比较多,不适合大批量量产,而采用MOCVD法可实现量产,成本可控,具有市场经济效益。
进一步的,所述低熔点金属为Al75Bi15、Al20Co70 Bi 10、Cu34In66中的一种、两种或三种。
通过采用上述技术方案,所采用的金属化合物Al75Bi15、Al20Co70 Bi 10、Cu34In66的熔点均小于300℃,一级回火段需重新液化分散,与单质硼化合避免形成杂质颗粒。其余无影响。
一种强韧性钕铁硼磁体的制备方法,包括如下步骤:
S1,选用抗磁性纳米金属陶瓷颗粒作为基底,通过MOCVD法将低熔点金属激发后用氢气带到基底表面,生成低熔点合金纳米薄膜;
S2,选用经氢破粉的钕铁硼磁粉,在气流磨前加入晶态单质硼粉,通过气流磨制得粒度2.5-3.5μm的细粉;
S3,将步骤S1处理后的抗磁性纳米金属陶瓷颗粒与步骤S2中制得的细粉混合;
S4,将步骤S3中混合得到的混料通过取向压型、等静压制得生坯;
S5,将步骤S4中制得的生坯通过真空炉进行二次升温烧结制得毛坯;
S6,将步骤S5制得到的毛坯进行三级回火制得钕铁硼磁体。
通过采用上述技术方案,在抗磁性金属陶瓷颗粒表面生成低熔点合金纳米薄膜,同时依靠晶态单质硼,使磁体材料晶粒充分细化,进而增强磁体强韧性。
进一步的,步骤S3中混合时,添加占细粉比例为5wt%的防氧化剂。
通过采用上述技术方案,利用添加的防氧化剂可以避免粉体长时间混合发生氧化,影响钕铁硼磁体性能。
进一步的,所述步骤S5的具体烧结过程为:
先在280℃-340℃下进行10-15h的保温,使抗磁性纳米金属陶瓷颗粒分散均匀;
再升温至800℃-900℃后保温5-10h,使生坯内部氢气、有机物的挥发气体完全排出;
继续升温至1000℃-1100℃保温5h后冷却至室温,致密化生坯同时细化晶粒。
通过采用上述技术方案,在280℃-340℃条件下保温10-15h使MOCVD法在抗磁性纳米金属陶瓷表面生成低熔点合金纳米薄膜成为液相,浸润抗磁性纳米金属陶瓷颗粒表面,利于在磁体烧结过程中分散均匀;800℃-900℃条件下有利于除氢、除有机物,稀土发生析氢反应,氢与粉体中的防氧化剂等发生反应生成气体,使生坯内部氢气、有机物的挥发气体完全排出;最后在1000℃-1100℃条件下保温,致密化生坯的同时,晶态单质硼与晶界处多余的低熔点合金元素生成细小的金属硼化物,金属硼化物进一步细化晶粒。利用多次不同温度条件的升温、保温,使得磁体材料晶粒充分细化,进一步的提高了钕铁硼磁体的强度和韧性。
进一步的,所述步骤S6的具体回火过程为:一级回火是先在280℃-340℃中回火保温10h,冷却至室温后升温到900℃-1000℃保温5h进行二级回火,随炉缓冷却至200℃后,再升温至465-490℃保温4h完成三级回火。
通过上述技术方案,使磁体致密化,密度达标。先在280℃-340℃中回火保温10h有利于抗磁性纳米陶瓷颗粒表面残余的低熔点合金进一步液化分散,避免形成杂质颗粒破坏磁性能,冷却后升温至900℃-1000℃保温5h使富硼相减少,保证磁性能不被破坏,随炉缓冷却至200℃后再升温至465-490℃使富稀土相分散均匀包覆主箱,提高磁性能。
进一步的,抗磁性纳米金属陶瓷颗粒与细粉在50℃-150℃的真空环境中混料。
通过采用上述技术方案,在低温条件下混料可破坏细粉之间的范德华力,分子间作用力减少有利于分散均匀。
综上所述,本申请包括以下至少一种有益技术效果:
1.本申请选用抗磁性金属陶瓷颗粒作为原料,相比传统的添加高熔点合金或陶瓷相粉末方式,可以避免取向压型过程中添加物向取向极头处的聚集,在细化晶粒的同时还能保证钕铁硼磁体的磁性要求;
2.本申请通过MOCVD法在抗磁性纳米金属陶瓷颗粒合金基底表面生产了低熔点合金,可使后续烧结过程中表面通过液化后的合金液润湿,在长时间保温的热力作用下更利于低熔点合金分散,促进晶粒细化;
3.本申请添加了晶态单质硼,利用晶态单质硼粉可将多余的合金元素生成金属硼化物,进一步细化晶粒,使磁体强韧性增强。
附图说明
图1为实施例1制得的钕铁硼磁体的SEM图;
图2为对比例1制得的钕铁硼磁体的SEM图;
图3为对比例2制得的钕铁硼磁体的SEM图;
图4为对比例3制得的钕铁硼磁体的SEM图;
图5为实施例5制得的钕铁硼磁体的SEM图;
图6为实施例6制得的钕铁硼磁体的SEM图。
具体实施方式
以下结合附图1至附图6,对本申请作技术方案的实施作进一步详细说明。
实施例1
一种强韧性钕铁硼磁体,其制备原料采用钕铁硼磁粉、晶态单质硼粉和抗磁性纳米金属陶瓷颗粒,其中,晶态单质硼粉相对钕铁硼磁粉的质量占比为0.4wt%,抗磁性纳米金属陶瓷颗粒相对钕铁硼磁粉的质量占比为1wt%,所选用的钕铁硼磁粉中的稀土总量为35%。
该强韧性钕铁硼磁体的制备方法过程如下:
S1,选用500nm左右的WC-Ni作为抗磁性纳米金属陶瓷颗粒基底,通过MOCVD法将Al75Bi15金属源激发后用氢气带到基底表面,使基底表面生成低熔点合金纳米薄膜。
S2,在气流磨前,在钕铁硼氢破粉中添加0.4wt%的晶态单质硼粉,钕铁硼磁粉和晶态单质硼粉通过气流磨制得粒度为3μm的细粉。
S3,选用1wt%的抗磁性纳米金属陶瓷颗粒,在温度为50℃的真空环境中与步骤S3制得的细粉混合均匀,混料时添加占细粉比例为5wt%的防氧化剂。
S4,将步骤S3混合得到的混料通过取向压型、等静压制得生坯。
S5,将制得的生坯通过真空炉进行二次升温烧结制得毛坯,烧结过程为:生坯在300℃保温10h,然后以15℃/min升温到800℃保温5h,之后以20℃/min升温到1000℃保温5h氩气风冷至室温。
S6,将步骤S5得到的毛坯进行三级回火制得钕铁硼磁体,回火过程为:将经过烧结得到的毛坯在300℃中回火保温10h,冷却至室温后以10℃/min升温到900℃保温5h,随炉缓冷却至200℃后以20℃/min升温至470℃保温4h。
实施例2
一种强韧性钕铁硼磁体,与实施例1的区别点在于晶态单质硼粉占比为0.5wt%,抗磁性纳米金属陶瓷颗粒占比为2wt%,所选用的钕铁硼磁粉中的稀土总量为34%。该强韧性钕铁硼磁体的制备方法与实施例1相同。
实施例3
一种强韧性钕铁硼磁体,与实施例1的区别点在于晶态单质硼粉占比为0.6wt%,抗磁性纳米金属陶瓷颗粒占比为3wt%,所选用的钕铁硼磁粉中的稀土总量为33%。该强韧性钕铁硼磁体的制备方法与实施例1相同。
实施例4
一种强韧性钕铁硼磁体,与实施例1的区别点在于抗磁性纳米金属陶瓷颗粒基底选用Ti(C,N)-Ni基合金,低熔点金属采用Al75Bi15、Al20Co70 Bi 10和Cu34In66。该强韧性钕铁硼磁体的制备方法与实施例1相同。
实施例5
一种5强韧性钕铁硼磁体的制备方法,该强韧性钕铁硼磁体的原料与实施例1相同,制备过程与实施例1的区别在于:
S5,将制得的生坯通过真空炉进行二次升温烧结制得毛坯,烧结过程为:生坯在280℃保温13h,然后以15℃/min升温到850℃保温8h,之后以20℃/min升温到1050℃保温5h氩气风冷至室温。
S6,将步骤S5得到的毛坯进行三级回火制得钕铁硼磁体,回火过程为:将经过烧结得到的毛坯在280℃中回火保温10h,冷却至室温后以10℃/min升温到950℃保温5h,随炉缓冷却至200℃后以20℃/min升温至465℃保温4h。
实施例6
一种强韧性钕铁硼磁体的制备方法,该强韧性钕铁硼磁体的原料与实施例1相同,制备过程与实施例1的区别在于:
S5,将制得的生坯通过真空炉进行二次升温烧结制得毛坯,烧结过程为:生坯在340℃保温15h,然后以15℃/min升温到900℃保温10h,之后以20℃/min升温到1100℃保温5h氩气风冷至室温。
S6,将步骤S5得到的毛坯进行三级回火制得钕铁硼磁体,回火过程为:将经过烧结得到的毛坯在340℃中回火保温10h,冷却至室温后以10℃/min升温到1000℃保温5h,随炉缓冷却至200℃后以20℃/min升温至490℃保温4h。
为了更全面的分析制备原料和制备方法过程对钕铁硼磁体性能的影响,作了如下对比例分析试验。
对比例1
一种强韧性钕铁硼磁体,与实施例1的区别点在于不选用抗磁性纳米金属陶瓷颗粒,替换为同样质量占比的高熔点合金NiFe2O3
该强韧性钕铁硼磁体的制备方法与实施例1的区别在于:不实施步骤S1。
对比例2
一种强韧性钕铁硼磁体,与实施例1的区别点在于不添加晶态单质硼粉原料。
对比例3
一种强韧性钕铁硼磁体,与实施例1的区别点在于,所选用原料钕铁硼磁粉中的稀土总量为30%。
对比例4
一种强韧性钕铁硼磁体,与实施例1的区别点在于,所选用原料钕铁硼磁粉中的稀土总量为28%。
性能检测分析
分别取实施例1、对比例1-4制备的钕铁硼磁体作为试样,实施例与对比例的主要区别在于原材料和原材料配比不同。通过扫描电子显微镜,对各试样的微观结构进行观察。实施例1所制得的钕铁硼磁体的SEM图如图1所示,对比例1所制得的钕铁硼磁体的SEM图如图2所示,对比例2所制得的钕铁硼磁体的SEM图如图3所示,对比例3所制得的钕铁硼磁体的SEM图如图4所示。实施例1可以明显看到抗磁性纳米颗粒分散均匀,富稀土相均匀包覆主相,由于稀土含量高使得晶界清晰。对比例1发现明显的团聚颗粒,带磁性陶瓷材料分散性差。对比例2发现抗磁性纳米颗粒周围存在细小颗粒,说明低熔点合金未生成硼化物流动到晶界包覆主相。对比例3的晶界不清晰,主相体积分数大,不利于韧性的提高。
分别取实施例1、实施5和实施例6制备的钕铁硼磁体作为试样,三个实施例的烧结和回火过程温度、时间控制不同。通过扫描电子显微镜,对各试样的微观结构进行观察。实施例5所制得的钕铁硼磁体的SEM图如图5所示,实施例6所制得的钕铁硼磁体的SEM图如图6所示。由图示观察结果可知,钕铁硼磁体的磁性能受烧结温度影响,过高的烧结温度使晶粒长大,破坏磁性能。
分别取实施例1-6、对比例1-4制备的钕铁硼磁体试样各10件,分别检测其抗拉强度、抗压强度和机加工合格率,检测结果如下表1所示。
表1
Figure SMS_1
通过表1检测可知:
通过本申请技术方案所制备钕铁硼磁体的抗拉强度、抗压强度和机加工合格率提高效果明显,其原因在于:在保证磁性的情况下钕铁硼磁体的晶粒细化、晶界清晰则有利于提升钕铁硼磁体的抗拉强度、抗压强度;相同的加工设备,晶粒过大,晶粒尺寸不均匀会导致晶界相分布不均,可承受应力减弱,机械性能降低,影响机加工合格率。
其中,钕铁硼磁体性能受原材料及其占比影响较大。利用抗磁性纳米金属陶瓷颗粒,不会在烧结过程中与稀土反应,且具有抗磁性,有良好的分散作用,可防止团聚,有利于提高机械性能;因高电导率有利于在电机中的应用,所以本申请利用晶态单质硼将多余的合金元素生成金属硼化物,有效解决了因合金元素形成软磁相降低整体磁性能的问题,而且硼化物颗粒进一步阻碍位错滑移使磁体强韧性增强;高稀土含量有利形成更多的富稀土相,使得晶界清晰,从而使韧性增强。同时,合理的烧结、回火工艺选择,促进了晶粒的细化,进而提高钕铁硼磁体的强度和韧性。
应当注意的是,以上所述的实施例仅用于解释本申请,并不构成对本申请的任何限制。通过参照典型实施例对本申请进行了描述,但应当理解为其中所用的词语为描述性和解释性词汇,而不是限定性词汇。可以按规定在本申请权利要求的范围内对本申请作出修改,以及在不背离本申请的范围和精神内对本发明进行修订。尽管其中描述的本申请涉及特定的方法、材料和实施例,但是并不意味着本申请限于其中公开的特定例,相反,本申请可扩展至其他所有具有相同功能的方法和应用。

Claims (10)

1.一种强韧性钕铁硼磁体,其特征在于,其原料包括钕铁硼磁粉、晶态单质硼粉和抗磁性纳米金属陶瓷颗粒。
2.根据权利要求1所述的一种强韧性钕铁硼磁体,其特征在于,所述晶态单质硼粉相对所述钕铁硼磁粉的质量占比为0.4-0.6 wt%,所述抗磁性纳米金属陶瓷颗粒相对所述钕铁硼磁粉的质量占比为1-3 wt%;所述钕铁硼磁粉中的稀土总量为33-35wt%。
3.根据权利要求2所述的一种强韧性钕铁硼磁体,其特征在于,所述抗磁性纳米金属陶瓷颗粒的表面原位生长有低熔点纳米金属薄膜。
4.根据权利要求3所述的一种强韧性钕铁硼磁体,其特征在于,所述抗磁性纳米金属陶瓷颗粒采用粒度小于700nm的WC-Ni或Ti(C,N)-Ni基合金为基底。
5.根据权利要求4所述的一种强韧性钕铁硼磁体,其特征在于,所述低熔点纳米金属薄膜是采用MOCVD法将低熔点金属源激发后通过载气氢气带到抗磁性纳米金属陶瓷颗粒基底表面生成。
6.根据权利要求5所述的一种强韧性钕铁硼磁体,其特征在于,所述低熔点金属为Al75Bi15、Al20Co70 Bi 10、Cu34In66中的一种、两种或三种。
7.一种如权利要求1-6任一所述强韧性钕铁硼磁体的制备方法,其特征在于,包括如下步骤:
S1,选用抗磁性纳米金属陶瓷颗粒作为基底,通过MOCVD法将低熔点金属激发后用氢气带到基底表面,生成低熔点合金纳米薄膜;
S2,选用经氢破粉的钕铁硼磁粉,在气流磨前加入晶态单质硼粉,通过气流磨制得粒度2.5-3.5μm的细粉;
S3,将步骤S1处理后的抗磁性纳米金属陶瓷颗粒与步骤S2中制得的细粉混合;
S4,将步骤S3中得到的混料通过取向压型、等静压制得生坯;
S5,将步骤S4中制得的生坯通过真空炉进行二次升温烧结制得毛坯;
S6,将步骤S5制得的毛坯进行三级回火制得钕铁硼磁体。
8.根据权利要求7所述强韧性钕铁硼磁体的制备方法,其特征在于,步骤S3中混合时,添加占细粉比例为5wt%的防氧化剂。
9.根据权利要求7所述强韧性钕铁硼磁体的制备方法,其特征在于,所述步骤S5的具体烧结过程为:
先在280℃-340℃下进行10-15h的保温,使抗磁性纳米金属陶瓷颗粒分散均匀;
再升温至800℃-900℃后保温5-10h,使生坯内部的氢气和有机物的挥发气体完全排出;
继续升温至1000℃-1100℃保温5h后冷却至室温,致密化生坯同时细化晶粒。
10.根据权利要求7所述强韧性钕铁硼磁体的制备方法,其特征在于,所述步骤S6的具体回火过程为:一级回火是先在280℃-340℃中回火保温10h,冷却至室温后升温到900℃-1000℃保温5h进行二级回火,随炉缓冷却至200℃后,再升温至465-490℃保温4h完成三级回火。
CN202310651948.2A 2023-06-05 2023-06-05 一种强韧性钕铁硼磁体及制备方法 Active CN116386973B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310651948.2A CN116386973B (zh) 2023-06-05 2023-06-05 一种强韧性钕铁硼磁体及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310651948.2A CN116386973B (zh) 2023-06-05 2023-06-05 一种强韧性钕铁硼磁体及制备方法

Publications (2)

Publication Number Publication Date
CN116386973A true CN116386973A (zh) 2023-07-04
CN116386973B CN116386973B (zh) 2023-08-08

Family

ID=86971527

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310651948.2A Active CN116386973B (zh) 2023-06-05 2023-06-05 一种强韧性钕铁硼磁体及制备方法

Country Status (1)

Country Link
CN (1) CN116386973B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115709A (ja) * 1995-10-16 1997-05-02 Kawasaki Teitoku Kk 永久磁石原料粉末及びその製造法
CN101055779A (zh) * 2007-03-08 2007-10-17 上海交通大学 晶界添加氧化物或氮化物提高钕铁硼永磁材料性能的方法
CN104425092A (zh) * 2013-08-26 2015-03-18 比亚迪股份有限公司 一种钕铁硼磁性材料及其制备方法
US20190051434A1 (en) * 2016-01-28 2019-02-14 Urban Mining Company Grain boundary engineering of sintered magnetic alloys and the compositions derived therefrom
US20210043343A1 (en) * 2018-01-30 2021-02-11 Tdk Corporation R-t-b based rare earth permanent magnet
CN113380527A (zh) * 2021-06-12 2021-09-10 山西汇镪磁性材料制作有限公司 增韧脱模剂的制备方法及其在制备烧结钕铁硼中的应用
CN115662720A (zh) * 2022-10-24 2023-01-31 江西理工大学 钕铁硼磁体、同时提升磁体磁性能和力学性能的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115709A (ja) * 1995-10-16 1997-05-02 Kawasaki Teitoku Kk 永久磁石原料粉末及びその製造法
CN101055779A (zh) * 2007-03-08 2007-10-17 上海交通大学 晶界添加氧化物或氮化物提高钕铁硼永磁材料性能的方法
CN104425092A (zh) * 2013-08-26 2015-03-18 比亚迪股份有限公司 一种钕铁硼磁性材料及其制备方法
US20190051434A1 (en) * 2016-01-28 2019-02-14 Urban Mining Company Grain boundary engineering of sintered magnetic alloys and the compositions derived therefrom
US20210043343A1 (en) * 2018-01-30 2021-02-11 Tdk Corporation R-t-b based rare earth permanent magnet
CN113380527A (zh) * 2021-06-12 2021-09-10 山西汇镪磁性材料制作有限公司 增韧脱模剂的制备方法及其在制备烧结钕铁硼中的应用
CN115662720A (zh) * 2022-10-24 2023-01-31 江西理工大学 钕铁硼磁体、同时提升磁体磁性能和力学性能的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DONGLIANG SHEN,ET AL: "Boron and tis compounds in new energy and materials fields", 《APPLIED MECHANICS AND MATERIALS》, vol. 71, pages 2594 - 2597 *

Also Published As

Publication number Publication date
CN116386973B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
JP5477282B2 (ja) R−t−b系焼結磁石およびその製造方法
CN112136192B (zh) 稀土烧结永磁体的制造方法
CN106555089B (zh) 一种碳纳米管与纳米陶瓷颗粒混杂增强镁基复合材料及其制备方法
CN110415960B (zh) 一种提高烧结钕铁硼磁体磁性能的方法
CN109338172A (zh) 一种高熵合金增强的2024铝基复合材料及其制备方法
CN111408714B (zh) 双尺度结构原位生长石墨烯增强铜基复合材料的制备方法
CN113593799B (zh) 一种细晶、高矫顽力烧结钕铁硼磁体及其制备方法
CN112725660A (zh) 一种石墨烯增强铝基复合材料的粉末冶金制备方法
EP3726549A1 (en) Rare earth permanent magnet material and preparation method therefor
CN111554502A (zh) 增压扩散热处理制备高矫顽力烧结钕铁硼的方法
CN110273078A (zh) 一种磁性(FeCoNi1.5CuBmREn)P/Al复合材料及其制备方法
CN114334416B (zh) 一种固液相分离扩散工艺制备高性能钕铁硼磁体的方法
CN112119475B (zh) 稀土烧结永磁体的制造方法
CN112216460A (zh) 纳米晶钕铁硼磁体及其制备方法
CN116386973B (zh) 一种强韧性钕铁硼磁体及制备方法
CN115259859B (zh) 一种碳化硼防弹陶瓷材料及其制备方法
CN111952032A (zh) 一种低硼低重稀土高矫顽力烧结钕铁硼系永磁体的制备方法
CN112992457A (zh) 一种永磁材料及其制备方法
CN108165791A (zh) 一种无粘结相超细碳化钨硬质合金的制备方法
CN108666064B (zh) 一种添加vc的烧结稀土永磁材料及其制备方法
CN113517104B (zh) 主辅相合金钐钴磁体材料、烧结体用材料、其制备方法和应用
CN115747552A (zh) 一种纳米铜修饰碳纳米管增强钛基复合材料的制备方法
CN108831648A (zh) 喷雾干燥制备高性能烧结钕铁硼磁体的方法
CN114530320A (zh) 微纳米硬软磁双相混杂颗粒增强铝基复合材料及其制备方法
CN113751707A (zh) 一种制备纳米碳化物颗粒弥散强化合金粉末的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant