CN116371433A - 一种花球状TiO2/BiOBr核壳结构异质结材料及其制备方法、应用 - Google Patents

一种花球状TiO2/BiOBr核壳结构异质结材料及其制备方法、应用 Download PDF

Info

Publication number
CN116371433A
CN116371433A CN202310274782.7A CN202310274782A CN116371433A CN 116371433 A CN116371433 A CN 116371433A CN 202310274782 A CN202310274782 A CN 202310274782A CN 116371433 A CN116371433 A CN 116371433A
Authority
CN
China
Prior art keywords
tio
biobr
core
shell structure
heterojunction material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310274782.7A
Other languages
English (en)
Inventor
邓兆
王坤
江鹏
袁曼曼
陈丽华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202310274782.7A priority Critical patent/CN116371433A/zh
Priority to CN202310723760.4A priority patent/CN116832837A/zh
Publication of CN116371433A publication Critical patent/CN116371433A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/135Halogens; Compounds thereof with titanium, zirconium, hafnium, germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种花球状TiO2/BiOBr核壳结构异质结材料及其制备方法。本发明以二氧化硅作为模板合成规整的TiO2中空微球,再通过原位水热法将片状BiOBr搭载在TiO2中空微球表面,形成了具有强光吸收能力的花球状等级核壳结构TiO2/BiOBr异质结材料。该TiO2/BiOBr异质结材料可以利用光在中空微球内部多次反射的特点,以提高其作为催化剂时对光能利用,从而实现对CO2的高效还原,因此具有较为良好的实际应用价值。

Description

一种花球状TiO2/BiOBr核壳结构异质结材料及其制备方法、 应用
技术领域
本发明涉及光催化降解、光催化二氧化碳还原技术领域,具体为一种花球状TiO2/BiOBr核壳结构异质结材料及其制备方法、应用。
背景技术
随着社会的发展,环境问题和能源危机是我们急迫希望解决的事情。为满足生产生活需求,我们需要燃烧化石能源,而这会产生大量的CO2,加剧了温室效应,导致全球变暖。光催化作为一种新型的催化方式可以充分利用太阳能,为缓解全球能源短缺和环境污染问题提供了一个重要机会。光催化剂通过吸收太阳能,可以将CO2还原为生产燃料和化学品,因其提供了化石原料的替代品并可以大规模的转化和循环温室气体,吸引了很高的社会关注。
TiO2/BiOBr具有较低的成本、无毒、较好的稳定性等特点,因此被广泛应用于光催化领域。但是,由于比表面积小光吸收能力弱;较小的异质结界面区域,限制了TiO2/BiOBr在光催化领域的实际应用。
发明内容
本发明所要解决的技术问题是针对上述现有技术存在的不足而提供一种具有强光吸收能力的TiO2/BiOBr核壳结构异质结材料。该材料有更大的比表面积和异质结界面区域,有多的反应活性位点,作为光催化剂使用可提高光吸收能力,还原CO2的能力也更强。
本发明为解决上述提出的问题所采用的技术方案为:
一种花球状TiO2/BiOBr核壳结构异质结材料,以中空TiO2中空微球为主体,BiOBr纳米片生长在TiO2中空微球表面,形成花球状的具有核壳结构的异质结构;其中,所述TiO2中空微球的尺寸为300~600nm,花球状TiO2/BiOBr核壳结构异质结材料的整体尺寸为400~800nm;所述TiO2/BiOBr核壳结构异质结材料中Ti/Bi的摩尔比为(0.7~3):1。
本发明还提供一种上述TiO2/BiOBr核壳结构异质结的制备方法,以二氧化硅作为模板合成TiO2中空微球,再用原位水热法将片状BiOBr搭载在TiO2中空微球表面,形成了具有强光吸收能力的等级核壳结构TiO2/BiOBr等级核壳结构异质结材料。具体步骤如下:
(1)将硅酸四乙酯溶解在乙醇、去离子水和氨水溶液中,搅拌反应,制备得到SiO2微球;
(2)将SiO2微球分散在乙醇中,再加入氨水,搅拌得到分散液;向所述分散液中加入钛酸四丁酯,进行加热处理;加热处理后所得溶液分离出固体产物并煅烧,得到SiO2@TiO2微球;将SiO2@TiO2微球用氢氟酸溶液刻蚀,得到TiO2中空微球;
(3)将中空TiO2微球用稀硫酸浸泡后,洗涤干燥,分散到乙二醇中,再加入五水硝酸铋、十六烷基三甲基溴化铵(CTAB)与聚乙烯吡咯烷酮(PVP),进行水热反应,BiOBr纳米片在TiO2中空微球表面生长,并均匀包裹在TiO2中空微球表面,得到TiO2/BiOBr核壳结构异质结材料。
进一步地,步骤(1)中,所述硅酸四乙酯与乙醇、去离子水和氨水得体积比为1:(10~15):(1~2):1;搅拌时间为2~5h。
进一步地,步骤(2)中,所述SiO2微球在乙醇中的分散浓度为0.5~2mg/mL,氨水与乙醇的体积比为1:(100~200),钛酸丁酯与乙醇的体积比为1:(50~100);加热温度为40~50℃,加热时间为20~30小时;煅烧温度为500~600℃,煅烧时间为1~4h;氢氟酸溶液的体积浓度为2~5%。
进一步地,步骤(3)中,稀硫酸的浓度为1.5~2.5mol/L,浸泡时间为2~3h;中空TiO2微球在乙二醇中的分散浓度为0.015~0.05mol/L,五水硝酸铋和CTAB按照Ti/Bi的摩尔比为(0.7~3):1,Bi/Br摩尔比为1:(1~1.5)进行投料;PVP在乙二醇中的浓度为0.1~5g/L;水热反应温度为120~180℃,水热时间为0.5~2h。
本发明所述TiO2/BiOBr核壳结构异质结材料可以用于光催化二氧化碳还原以及光催化降解等方面。
与现有技术相比,本发明的有益效果如下:
(1)本发明所述TiO2/BiOBr核壳结构异质结材料,BiOBr纳米片状包围空球状TiO2表面,形成每一个独立的花球,确保了较大BiOBr与TiO2的接触面积,从而构建了较为完善的异质结构,来增强其光生载流子的迁移速率,使其获得高效的CO2还原能力。而且,该材TiO2/BiOBr核壳结构异质结材料具有等级结构,用作催化剂具有较大的比表面积,从而暴露更多的反应活性位点以及对CO2的吸附位点,使其具有对CO2的高效稳定还原性能。
(2)本发明提供的TiO2/BiOBr核壳结构异质结材料的制备方法,通过利用硬模板法制得均匀规则的TiO2中空微球,再通过原位水热法在中空球状TiO2表面生长BiOBr纳米片,形成具有核壳结构的异质结材料。这种核壳结构不仅可以增强光在球形材料内部多次反射,而提高其对可见光的吸收能力,获得对CO2的高效稳定还原性能。
附图说明
图1为实施例1中制备的TiO2/BiOBr核壳结构异质结材料的广角衍射XRD图。
图2为实施例1中制备的中空TiO2微球的扫描电镜(SEM)图。
图3为实施例1中制备的TiO2/BiOBr核壳结构异质结材料的扫描电镜(SEM)图。
图4为实施例1中制备的TiO2/BiOBr核壳结构异质结材料的高角环形暗场像(HAADF-STEM)图。
图5为实施例1、2与3中按照不同Ti/Bi制备的中空TiO2/BiOBr核壳结构异质结材料与对比例1制备的Bulk-TiO2/BiOBr异质结材料在相同条件下对CO2还原为CO的转化率的对比图。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明不仅仅局限于下面的实施例。
下述实施例中,氨水为市售氨水,浓度为25%~28%。
实施例1
一种花球状TiO2/BiOBr核壳结构异质结材料的制备方法,主要包括以下步骤:
(1)用量筒量取硅酸四乙酯、氨水、去离子水以及乙醇于烧杯中混合,在室温条件下搅拌3小时,用去离子水清洗3~5次,干燥,得到SiO2微球,备用;其中,硅酸四乙酯、氨水、去离子水以及乙醇体积比为1:1:2:15;
(2)用电子天平称量步骤(1)中合成的0.2g SiO2微球分散于150mL乙醇中,得到悬浊液;
(3)用量筒量取氨水1mL、钛酸四丁酯2mL加入步骤(2)中的悬浊液中,加热45℃搅拌24小时,所得溶液冷却至室温后,离心干燥,并用无水乙醇和去离子水清洗3~5次,然后置于60℃烘箱中烘干,得到非晶SiO2@TiO2,备用;其中,控制氨水、钛酸四丁酯和悬浊液中乙醇的体积比为1:2:150。
(4)将步骤(3)中得到的非晶SiO2@TiO2转移至马弗炉中550℃加热2小时,随炉冷却至室温,得到SiO2@TiO2微球;
(5)将步骤(4)中得到的SiO2@TiO2微球先在体积浓度5%的氢氟酸溶液中刻蚀,分别用无水乙醇和去离子水清洗3~5次,然后置于60℃烘箱中烘干,得到TiO2中空微球,备用。
(6)将步骤(5)中得到的TiO2中空微球进行表面处理,浸泡在浓度为2mol/L的稀硫酸溶液中2h,分别用无水乙醇和去离子水清洗3~5次,然后置于60℃烘箱中烘干,备用。
(7)称量步骤(6)中获得的TiO2中空微球、五水硝酸铋、十六烷基三甲基溴化铵与PVP溶于乙二醇中搅拌半小时,转移至50mL反应釜中,在160℃下,水热1小时,随炉冷却至室温,离心分离,得到TiO2/BiOBr核壳结构异质结材料粗产品;其中,五水硝酸铋在乙二醇中的浓度为0.02mol/L,PVP在乙二醇中的浓度为0.2g/L,TiO2中空微球与五水硝酸铋、十六烷基三甲基溴化铵的摩尔比为5:4:4。
(8)将步骤(7)中得到的TiO2/BiOBr核壳结构异质结材料粗产品分别用无水乙醇和去离子水清洗3~5次,然后置于60℃烘箱中烘干,得到花球状的TiO2/BiOBr核壳结构异质结材料。
由图1可知,本实施例制备的花球状TiO2/BiOBr核壳结构异质结材料具有单一TiO2与BiOBr的衍射峰。图中峰位分别于标准PDF卡片TiO2(JCPDS:84-1286)与BiOBr(JCPDS:78-0348)相对应。其中2θ=25.3°对应这TiO2的(101)晶面,由于TiO2在样品中所占质量比较低,所以TiO2所具有的衍射峰较小;其他2θ=25.2°、31.7°、32.2°、46.2°、57.2°、67.5°与76.8°分别对应BiOBr的(101)、(102)、(110)、(200)、(212)、(220)与(310)晶面。从XRD图可以看出合成了TiO2/BiOBr复合材料。
由图2可知,本实施例制备的中空TiO2微球直径基本在400~600nm范围内,一些壁厚较小的微球出现了破碎,可以看出中空的结构。
由图3可知,本实施例制备的TiO2/BiOBr核壳结构异质结材料为一个个独立的花球状,并且可看出是BiOBr纳米片包在了中空TiO2微球表面形成的花球状TiO2/BiOBr异质结材料,每个独立花球的整体尺寸基本在400~800nm范围内。
图4为本实施例制备的TiO2/BiOBr核壳结构异质结材料的高角环形暗场像(HAADF-STEM)图,结果显示其为中空核壳异质结构,由BiOBr纳米片堆积在TiO2中空微球表面形成花球状TiO2/BiOBr核壳结构异质结材料。
以CO2还原为模型反应来考察实施例1所制备的花球状TiO2/BiOBr核壳结构异质结材料的光催化性能,具体过程如下:
称取0.05g本实施例所制备的TiO2/BiOBr催化剂装入反应槽中,向反应槽中通入CO2与H2,其体积比为1:4,并持续通气30min以确保排出反应槽中的空气,通气结束后使反应槽密闭;打开光源,使用全光谱光源进行照射,每半个小时抽取1mL反应槽中的气体,并用色谱检测气体种类以及各物质含量。经过3h光照后,测得CO2转化为CO,且转化率为1.5227μmol·h-1·g-1,具有较好的CO转化性能。相比于对比例1中没有添加SiO2微球的块状TiO2/BiOBr复合样品,实施例1的催化性能是对比例1的2.1倍。因此,本发明制备的TiO2/BiOBr核壳结构异质结材料可以增强光在球形材料内部多次反射,而提高其对可见光的吸收能力,还扩大比表面积,增加与反应物的接触面积,从而可以提升其对CO2的高效稳定还原性能。
对比例1
对比例1采用Bulk-TiO2/BiOBr材料,具体制备过程如下:
(1)用量筒量取氨水1mL、钛酸四丁酯2mL和乙醇,加热45℃搅拌24小时,冷却至室温分别用无水乙醇和去离子水清洗3~5次,然后置于60℃烘箱中烘干,得到非晶的块状TiO2颗粒,备用;其中,控制氨水、钛酸四丁酯与乙醇的体积比为1:2:150。
(2)将步骤(1)中得到的非晶块状TiO2转移至马弗炉中550℃加热2小时,随炉冷却至室温,得到块状TiO2
(3)将步骤(2)中得到的块状TiO2进行表面处理,浸泡在浓度为2mol/L的稀硫酸溶液中2h,分别用无水乙醇和去离子水清洗3~5次,然后置于60℃烘箱中烘干,备用。
(4)称量步骤(3)得到的块状TiO2颗粒、五水硝酸铋、十六烷基三甲基溴化铵与PVP溶解于25mL乙二醇中,搅拌30min,转移至50mL反应釜中,在160℃下,水热1小时,随炉冷却至室温,得到Bulk-TiO2/BiOBr粗产品;其中五水硝酸铋在乙二醇中的浓度为0.02mol/L,PVP的浓度为0.2g/L,控制Bulk-TiO2、五水硝酸铋与十六烷基三甲基溴化铵的摩尔比为5:4:4。
(5)将步骤(4)中得到的Bulk-TiO2/BiOBr粗产品分别用无水乙醇和去离子水清洗3~5次,然后置于60℃烘箱中烘干,得到Bulk-TiO2/BiOBr复合材料。
同样,为了跟实施例1进行对照,以CO2还原为模型反应来考察对比例1所制备的Bulk-TiO2/BiOBr复合材料的光催化性能,具体过程如下:
称取0.05g本对比例所制备的Bulk-TiO2/BiOBr复合材料装入反应槽中,向反应槽中通入CO2与H2,其体积比为1:4,并持续通气30min以确保排出反应槽中的空气,通气结束后使反应槽密闭,打开光源,使用全光谱光源进行照射,每半个小时抽取1mL反应槽中的气体,并用色谱检测气体种类以及各物质含量。经过3h光照,通过产物检测可以确定产生CO的转化率为0.7251μmol·h-1·g-1,相比于实施例1的催化性能有明显下降。
实施例2
一种花球状TiO2/BiOBr核壳结构异质结材料的制备方法,主要包括以下步骤:
(1)用量筒量取硅酸四乙酯、氨水、去离子水以及乙醇于烧杯中混合,在室温条件下搅拌3小时,用去离子水清洗3~5次,干燥,得到SiO2微球,备用;其中,硅酸四乙酯、氨水、去离子水以及乙醇体积比为1:1:2:15;
(2)用电子天平称量步骤(1)中合成的0.2g SiO2微球分散于150mL乙醇中,得到悬浊液;
(3)用量筒量取氨水1mL、钛酸四丁酯2mL加入步骤(2)中的悬浊液中,加热45℃搅拌24小时,所得溶液冷却至室温后,离心干燥,并用无水乙醇和去离子水清洗3~5次,然后置于60℃烘箱中烘干,得到非晶SiO2@TiO2,备用;其中,控制氨水、钛酸四丁酯和悬浊液中乙醇的体积比为1:2:150。
(4)将步骤(3)中得到的非晶SiO2@TiO2转移至马弗炉中550℃加热2小时,随炉冷却至室温,得到SiO2@TiO2微球;
(5)将步骤(4)中得到的SiO2@TiO2微球先在体积浓度5%的氢氟酸溶液中刻蚀,分别用无水乙醇和去离子水清洗3~5次,然后置于60℃烘箱中烘干,得到TiO2中空微球,备用。
(6)将步骤(5)中得到的TiO2中空微球进行表面处理,浸泡在浓度为2mol/L的稀硫酸溶液中2h,分别用无水乙醇和去离子水清洗3~5次,然后置于60℃烘箱中烘干,备用。
(7)称量步骤(6)中获得的TiO2中空微球、五水硝酸铋、十六烷基三甲基溴化铵与PVP溶于乙二醇中搅拌半小时,转移至50mL反应釜中,在160℃下,水热1小时,随炉冷却至室温,离心分离,得到TiO2/BiOBr核壳结构异质结材料粗产品;其中,五水硝酸铋在乙二醇中的浓度为0.02mol/L,PVP的浓度为0.2g/L,TiO2中空微球、五水硝酸铋与十六烷基三甲基溴化铵的摩尔比为7:4:4。
(8)将步骤(7)中得到的TiO2/BiOBr核壳结构异质结材料粗产品分别用无水乙醇和去离子水清洗3~5次,然后置于60℃烘箱中烘干,得到花球状的TiO2/BiOBr核壳结构异质结材料。
以CO2还原为模型反应来考察实施例2所制备的花球状TiO2/BiOBr核壳结构异质结材料的光催化性能,具体过程如下:
称取0.05g本实施例所制备的TiO2/BiOBr催化剂装入反应槽中,向反应槽中通入CO2与H2,其体积比为1:4,并持续通气30min以确保排出反应槽中的空气,通气结束后使反应槽密闭;打开光源,使用全光谱光源进行照射,每半个小时抽取1mL反应槽中的气体,并用色谱检测气体种类以及各物质含量。经过3h光照后,通过产物检测可以确定CO2转化为CO,并其转化率为1.3529μmol·h-1·g-1,其催化性能是对比例1合成的Bulk-TiO2/BiOBr的1.87倍。
实施例3
一种花球状TiO2/BiOBr核壳结构异质结材料的制备方法,主要包括以下步骤:
(1)用量筒量取硅酸四乙酯、氨水、去离子水以及乙醇于烧杯中混合,在室温条件下搅拌3小时,用去离子水清洗3~5次,干燥,得到SiO2微球,备用;其中,硅酸四乙酯、氨水、去离子水以及乙醇体积比为1:1:2:15;
(2)用电子天平称量步骤(1)中合成的0.2g SiO2微球分散于150mL乙醇中,得到悬浊液;
(3)用量筒量取氨水1mL、钛酸四丁酯2mL加入步骤(2)中的悬浊液中,加热45℃搅拌24小时,所得溶液冷却至室温后,离心干燥,并用无水乙醇和去离子水清洗3~5次,然后置于60℃烘箱中烘干,得到非晶SiO2@TiO2,备用;其中,控制氨水、钛酸四丁酯和悬浊液中乙醇的体积比为1:2:150。
(4)将步骤(3)中得到的非晶SiO2@TiO2转移至马弗炉中550℃加热2小时,随炉冷却至室温,得到SiO2@TiO2微球;
(5)将步骤(4)中得到的SiO2@TiO2微球先在体积浓度5%的氢氟酸溶液中刻蚀,分别用无水乙醇和去离子水清洗3~5次,然后置于60℃烘箱中烘干,得到TiO2中空微球,备用。
(6)将步骤(5)中得到的TiO2中空微球进行表面处理,浸泡在浓度为2mol/L的稀硫酸溶液中2h,分别用无水乙醇和去离子水清洗3~5次,然后置于60℃烘箱中烘干,备用。
(7)称量步骤(6)中获得的TiO2中空微球、五水硝酸铋、十六烷基三甲基溴化铵与PVP溶于乙二醇中搅拌半小时,转移至50mL反应釜中,在160℃下,水热1小时,随炉冷却至室温,离心分离,得到TiO2/BiOBr核壳结构异质结材料粗产品;其中,五水硝酸铋在乙二醇中的浓度为0.02mol/L,PVP的浓度为0.2g/L,TiO2中空微球、五水硝酸铋与十六烷基三甲基溴化铵的摩尔比为3:4:4。
(8)将步骤(7)中得到的TiO2/BiOBr核壳结构异质结材料粗产品分别用无水乙醇和去离子水清洗3~5次,然后置于60℃烘箱中烘干,得到花球状的TiO2/BiOBr核壳结构异质结材料。
以CO2还原为模型反应来考察实施例2所制备的花球状TiO2/BiOBr核壳结构异质结材料的光催化性能,具体过程如下:
称取0.05g本实施例所制备的TiO2/BiOBr催化剂装入反应槽中,向反应槽中通入CO2与H2,其体积比为1:4,并持续通气30min以确保排出反应槽中的空气,通气结束后使反应槽密闭;打开光源,使用全光谱光源进行照射,每半个小时抽取1mL反应槽中的气体,并用色谱检测气体种类以及各物质含量。经过3h光照后,通过产物检测可以确定产生CO的转化率为1.4526μmol·h-1·g-1,其催化性能是对比例1合成的Bulk-TiO2/BiOBr的2倍。
以上所述仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干改进和变换,这些都属于本发明的保护范围。

Claims (9)

1.一种花球状TiO2/BiOBr核壳结构异质结材料,其特征在于该异质结材料以TiO2中空微球为主体,多个BiOBr纳米片生长在每个TiO2中空微球表面形成独立的花球状核壳结构的异质结构。
2.根据权利要求1所述的TiO2/BiOBr核壳结构异质结材料,其特征在于所述TiO2中空微球的尺寸为300~600nm,花球状TiO2/BiOBr核壳结构异质结材料的整体尺寸为400~800nm;所述TiO2/BiOBr核壳结构异质结材料中Ti/Bi的摩尔比为(0.7~3):1。
3.权利要求1~2中任一项所述的TiO2/BiOBr核壳结构异质结材料的制备方法,其特征在于以二氧化硅作为模板合成TiO2中空微球,再用原位水热法将BiOBr纳米片搭载在TiO2中空微球表面,形成了花球状的TiO2/BiOBr核壳结构异质结材料。
4.一种花球状TiO2/BiOBr核壳结构异质结材料的制备方法,其特征在于包括如下步骤:
(1)将硅酸四乙酯溶解在乙醇、去离子水和氨水中,搅拌反应,制备得到SiO2微球;
(2)将SiO2微球分散在乙醇中,再加入氨水,搅拌得到分散液;向所述分散液中加入钛酸四丁酯,进行加热处理;加热处理后所得溶液分离出固体产物并煅烧,得到SiO2@TiO2微球;将SiO2@TiO2微球用氢氟酸溶液刻蚀,得到TiO2中空微球;
(3)将中空TiO2微球用稀硫酸浸泡后,洗涤干燥,分散到乙二醇中,再加入五水硝酸铋、十六烷基三甲基溴化铵与聚乙烯吡咯烷酮,进行水热反应,得到TiO2/BiOBr核壳结构异质结材料。
5.根据权利要求4所述的TiO2/BiOBr核壳结构异质结材料的制备方法,其特征在于步骤(1)中,所述硅酸四乙酯与乙醇、去离子水和氨水的体积比为1:(10~15):(1~2):1;搅拌时间为2~5h。
6.根据权利要求4所述的TiO2/BiOBr核壳结构异质结材料的制备方法,其特征在于步骤(2)中,所述SiO2微球在乙醇中的分散浓度为0.5~2g/L,氨水与乙醇的体积比为1:(100~200),钛酸丁酯与乙醇的体积比为1:(50~100);加热温度为40~50℃,加热时间为20~30小时;煅烧温度为500~600℃,煅烧时间为1~4h;氢氟酸溶液的体积浓度为2~5%。
7.根据权利要求4所述的TiO2/BiOBr核壳结构异质结材料的制备方法,其特征在于步骤(3)中,稀硫酸的浓度为1.5~2.5mol/L,浸泡时间为2~3h;中空TiO2微球在乙二醇溶液中的分散浓度为0.015~0.05mol/L,五水硝酸铋、十六烷基三甲基溴化铵按照Ti/Bi的摩尔比为(0.7~3):1,Bi/Br摩尔比为1:(1~1.5)进行投料;PVP在乙二醇中的浓度为0.1~5g/L;水热反应温度为120~180℃,水热时间为0.5~2h。
8.权利要求1所述的TiO2/BiOBr核壳结构异质结材料在光催化降解方面的应用。
9.权利要求1所述的TiO2/BiOBr核壳结构异质结材料在光催化二氧化碳还原方面的应用。
CN202310274782.7A 2023-03-21 2023-03-21 一种花球状TiO2/BiOBr核壳结构异质结材料及其制备方法、应用 Pending CN116371433A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202310274782.7A CN116371433A (zh) 2023-03-21 2023-03-21 一种花球状TiO2/BiOBr核壳结构异质结材料及其制备方法、应用
CN202310723760.4A CN116832837A (zh) 2023-03-21 2023-06-16 一种花球状TiO2/BiOBr核壳结构异质结材料及其制备方法、应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310274782.7A CN116371433A (zh) 2023-03-21 2023-03-21 一种花球状TiO2/BiOBr核壳结构异质结材料及其制备方法、应用

Publications (1)

Publication Number Publication Date
CN116371433A true CN116371433A (zh) 2023-07-04

Family

ID=86979866

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310274782.7A Pending CN116371433A (zh) 2023-03-21 2023-03-21 一种花球状TiO2/BiOBr核壳结构异质结材料及其制备方法、应用
CN202310723760.4A Pending CN116832837A (zh) 2023-03-21 2023-06-16 一种花球状TiO2/BiOBr核壳结构异质结材料及其制备方法、应用

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202310723760.4A Pending CN116832837A (zh) 2023-03-21 2023-06-16 一种花球状TiO2/BiOBr核壳结构异质结材料及其制备方法、应用

Country Status (1)

Country Link
CN (2) CN116371433A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116632325A (zh) * 2023-07-20 2023-08-22 江苏中鲈科技发展股份有限公司 固态电解质及其制备方法、异质结纳米纤维、全固态锂电池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104071836B (zh) * 2014-07-25 2015-09-30 浙江师范大学 一种二氧化钛空心纳米球及其制备方法
CN110813331A (zh) * 2019-08-19 2020-02-21 西北矿冶研究院 一种BiOBr/TiO2复合光催化剂及其制备方法
CN110694603A (zh) * 2019-09-07 2020-01-17 苏州羿白环保科技有限公司 一种新型多孔结构光催化剂的制备方法
AU2020102258A4 (en) * 2020-09-15 2020-10-29 Qilu University Of Technology MIXED CRYSTAL TiO2/BiOBr COMPOSITE AND PREPARATION METHOD AND APPLICATION THEREOF
CN112316969A (zh) * 2020-11-18 2021-02-05 广州万顺生物科技有限公司 一种N掺杂TiO2中空微球-BiOBr的光催化降解材料及制备方法
CN117138802A (zh) * 2023-04-13 2023-12-01 江西师范大学 一种Bi2MoO6@ZnIn2S4分级S型异质结构光催化剂及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116632325A (zh) * 2023-07-20 2023-08-22 江苏中鲈科技发展股份有限公司 固态电解质及其制备方法、异质结纳米纤维、全固态锂电池
CN116632325B (zh) * 2023-07-20 2023-11-03 江苏中鲈科技发展股份有限公司 固态电解质及其制备方法、异质结纳米纤维、全固态锂电池

Also Published As

Publication number Publication date
CN116832837A (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
CN107686120B (zh) 一种聚集太阳能催化合成氨的方法及其催化剂
CN111437867A (zh) 一种含钨氧化物的复合光催化剂及其制备方法和应用
CN108654651B (zh) 一种二氧化钛/二氟氧钛复合气相光催化剂的制备方法
CN116832837A (zh) 一种花球状TiO2/BiOBr核壳结构异质结材料及其制备方法、应用
CN113976165B (zh) 一种铋钨酸盐与氮化碳复合光催化材料的制备及应用
CN113351226B (zh) 一种负载花瓣状ZnIn2S4的氧化铋复合可见光催化材料的制备方法及其制得的产品
CN113441145B (zh) 一种钛酸钡/羟基氧化铁光催化剂的制备方法
CN108607536B (zh) 一种制备铋掺杂纳米二氧化钛光催化剂的方法
CN112371113A (zh) 一种Bi2WO6-rGO可见光催化剂的制备方法和应用
CN111017940A (zh) 一种生物质基三维花瓣状碱式硅酸镍催化剂
CN116726973A (zh) 花球状硫铟锌/氮化碳异质结光催化剂及制备方法与应用
CN111628187A (zh) 一种碳载氧化钌催化剂及其制备方法
CN103521205A (zh) 一种制备高光催化活性核壳结构TiO2材料的方法
CN113559856B (zh) 一种钛酸钡/碘酸银异质结光催化剂的制备方法
CN113877556B (zh) 羟基氧化铟/改性凹凸棒石光催化复合材料及其制备方法和应用
CN113117720B (zh) 基于g-C3N4的TiO2晶粒堆积三维贯通孔复合结构及其制备方法
CN111604090B (zh) 一种pi修饰钨酸铋混晶复合材料及其制备方法和应用
CN114011403A (zh) 一种非晶钨酸铋光催化材料制备方法及其应用
CN113713801A (zh) 一种钛酸铋复合光催化剂及其制备方法和应用
CN108404898B (zh) 以质子化钛酸盐制备石墨烯/{001}面暴露的二氧化钛纳米复合材料的方法
CN111495391A (zh) 一种复合光催化剂及其制备方法与应用
CN107649164B (zh) 一种g-C3N4-xFx/TiO2耦合异质结光催化剂及其制备方法
CN111744467A (zh) 一种CaTiO3/CaO/TiO2复合材料的制备方法及其应用
CN111807336A (zh) 一种兼具光催化和光热转换性能的非晶氧化钼纳米点/二维氮化碳纳米片及其制备方法
CN115254168B (zh) 一种复合光催化材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20230704