CN107686120B - 一种聚集太阳能催化合成氨的方法及其催化剂 - Google Patents

一种聚集太阳能催化合成氨的方法及其催化剂 Download PDF

Info

Publication number
CN107686120B
CN107686120B CN201610639111.6A CN201610639111A CN107686120B CN 107686120 B CN107686120 B CN 107686120B CN 201610639111 A CN201610639111 A CN 201610639111A CN 107686120 B CN107686120 B CN 107686120B
Authority
CN
China
Prior art keywords
catalyst
active component
carrier material
hydrogen
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610639111.6A
Other languages
English (en)
Other versions
CN107686120A (zh
Inventor
张礼知
毛成梁
贾法龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central China Normal University
Original Assignee
Central China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central China Normal University filed Critical Central China Normal University
Priority to CN201610639111.6A priority Critical patent/CN107686120B/zh
Priority to US15/370,379 priority patent/US10112841B2/en
Publication of CN107686120A publication Critical patent/CN107686120A/zh
Application granted granted Critical
Publication of CN107686120B publication Critical patent/CN107686120B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0411Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0417Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the synthesis reactor, e.g. arrangement of catalyst beds and heat exchangers in the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0482Process control; Start-up or cooling-down procedures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Catalysts (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

本发明属于合成氨领域,具体涉及一种聚集太阳能催化合成氨的方法及其催化剂。具体为:将催化剂放于反应装置中,通入氮气和氢气,然后在聚集的太阳光照射下,控制催化剂表面温度达到300‑550摄氏度,进行氮气和氢气合成氨反应;所述的催化剂以无定型、富电子、表面无序的黑色纳米TiO2‑z(0<z<2)为载体材料,以Fe或Ru的单质纳米晶为活性组分,活性组分负载在载体材料上。本发明以太阳光作为能源合成氨,能充分利用太阳能中各波段的光,达到高效利用太阳能催化合成氨目的,且不需要消耗化石能源或者电能,表现出光和热的协同催化效果。

Description

一种聚集太阳能催化合成氨的方法及其催化剂
技术领域
本发明属于合成氨技术领域,涉及太阳能的利用,具体涉及一种聚集太阳能催化氮气和氢气合成氨的技术及其相关催化剂。
背景技术
氨气是一种重要的化工和能源材料。氮原子是生物分子的重要组成元素,因而是药剂、肥料的必要成分,同时氮原子在非生物领域如染料、炸药和树脂也有广泛应用,而制备以上物质都需要以氨气为原料;氨气裂解可产生氢气,因此氨气也作为一种储氢材料广泛应用于能源领域。
通过空气中的氮气合成氨被誉为是20世纪最伟大的科学进展,每年有超过1%地球的总能量用于合成氨。目前最主要的合成氨方式是Haber-Bosch循环:氮气和氢气为反应气,高温高压反应条件下,基于Fe基或者Ru基催化剂的热催化技术。但热催化(300-550摄氏度,15-25MPa)需要消耗大量化石能源,化石能源燃烧又导致温室气体二氧化碳的排放。面对全球日益受关注的能源问题和环境问题,节能减排始终是合成氨工业面临的重大挑战。
太阳能是一种清洁廉价的可再生能源,是地球上大部分能量的最终来源,直接利用太阳光具有巨大的应用潜力。在我国,太阳光光致热效果已经被用于光热发电、太阳能热水器等行业。然而,利用太阳光驱动化学反应依然面临极大挑战。近年来出现的光热催化技术能有效利用太阳光中全光谱范围内的光波,既利用高频波段激发半导体产生光生载流子实现光催化反应,也利用载流子复合所产生的热能和太阳光中红外波段产生的热能促进热反应,从而有效提高光能利用率和催化反应效率。然而,现有的光热催化技术依然无法实现常压下氨的合成。这主要是由于氮气中氮氮三键非常稳定(键能946千焦/摩尔),不能被文献报道的催化剂活化,专利CN104016825A公开了一种含Fe或Ru的催化剂,但其是用于二氧化碳转化制备有机燃料,无法用于催化氮气和氢气合成氨反应(结果具体见表1)。
由此,如能开发一种将太阳能高效吸收利用进行催化氮气和氢气制备氨气的技术,对于环境和能源意义重大,并且能降低生产成本,具有巨大的商业化前景。
发明内容
本发明所要解决的技术问题是针对现有技术的不足提供一种聚集太阳能催化氮气和氢气合成氨的方法及其催化剂。本发明以太阳光作为能源合成氨,能充分利用太阳能中各波段的光,达到高效利用太阳能催化合成氨目的,且不需要消耗化石能源或者电能,聚集太阳能催化常压合成氨的性能优异,表现出光和热的协同催化效果。本发明的催化剂能够有效利用太阳光的能量,实现反应温度100-800摄氏度自由调控,满足合成氨生产需求。利用本发明的催化剂,以太阳光作为能源合成氨,能缓解目前热催化能耗大、成本高的问题。
本发明采用的技术方案是:
一种聚集太阳能催化氮气和氢气合成氨的方法,其特征在于:将催化剂放于反应装置中,通入氮气和氢气,然后在聚集的太阳光照射下,控制催化剂表面温度达到300-550摄氏度,进行氮气和氢气合成氨反应。通过聚集方式将太阳光的光能和热能汇聚到催化剂表面,可解决太阳光能量密度低问题,为氮气和氢气反应合成氨过程提供能量。
按上述方案,所述的催化剂以无定型、富电子、表面无序的黑色纳米TiO2-z(0<z<2)为载体材料,以Fe或Ru的单质纳米晶为活性组分,活性组分负载在载体材料上。
按上述方案,所述的催化剂还包括碱金属或碱土金属K、Rb、Cs、Mg、Ca、Sr、Ba作为促进剂,促进剂负载在载体材料上,促进剂与活性组分的原子比为10:1-1:100。
按上述方案,所述的碱金属或碱土金属促进剂为K、Rb、Cs、Mg、Ca、Sr、Ba的氢氧化物、硝酸盐、碳酸盐或者碳酸氢盐。
按上述方案,所述氮气和氢气的体积比为1:3。
按上述方案,所述活性组分的尺寸在1-20纳米。
按上述方案,所述催化剂具有50-100平方米/克的比表面积。
按上述方案,所述无定型、富电子、表面无序的黑色纳米TiO2-z是将纳米TiO2和硼氢化钠按质量比为1:0.5-1:8研磨混合均匀,于马弗炉370-420℃密闭加热,然后取出急速冷却后,后处理而得。所述的后处理为用水清洗多次,低温烘干。
按上述方案,所述的活性组分为Fe单质时,用量占载体材料质量百分比为5%-50%,活性组分为Ru时,用量占载体材料质量百分比为1%-8%。
提供一种催化剂,所述的催化剂以无定型、富电子、表面无序的黑色纳米TiO2-z(0<z<2)为载体材料,以Fe或Ru的单质纳米晶为活性组分,活性组分负载在载体材料上。
按上述方案,所述的催化剂还包括碱金属或碱土金属K、Rb、Cs、Mg、Ca、Sr、Ba作为促进剂,促进剂负载在载体材料上,促进剂与活性组分的原子比为10:1-1:100。
按上述方案,所述的碱金属或碱土金属促进剂为K、Rb、Cs、Mg、Ca、Sr、Ba的氢氧化物、硝酸盐、碳酸盐或者碳酸氢盐。
按上述方案,所述的活性组分为Fe单质时,用量占载体材料质量百分比为5%-50%,活性组分为Ru时,用量占载体材料质量百分比为1%-8%。
按上述方案,所述活性组分的尺寸在1-20纳米。
按上述方案,所述催化剂具有50-100平方米/克的比表面积。
按上述方案,所述无定型、富电子、表面无序的黑色纳米TiO2-z是将纳米TiO2和硼氢化钠按质量比为1:0.5-1:8研磨混合均匀,于马弗炉370-420℃密闭加热,然后取出急速冷却后,后处理而得。所述的后处理为用水清洗多次,低温烘干。
提供一种上述催化剂的制备方法,其特征在于催化剂的制备可采用浸渍负载-高温氢气还原或液相还原-促进剂负载方法,即将活性组分负载在基底材料上,然后经高温氢气还原或液相还原得到活性组分/TiO2-z,,然后根据需要再进行促进剂的负载,具体步骤如下:
将纳米TiO2和硼氢化钠按质量比为1:0.5-8研磨混合均匀,于马弗炉密闭加热至370-420℃,然后取出急速冷却后,经后处理得到载体材料TiO2-z(0<z<2);
将载体材料浸渍在一定量的Fe、Ru的前驱体溶液中,超声混合后烘干,所得的样品通过高温氢气还原或液相还原得到活性组分/TiO2-z,然后根据需要将所得的样品浸渍在促进剂溶液中并于非氧化气氛中干燥或真空干燥得到催化剂样品。
按上述方案,所述Fe、Ru的前驱体为Fe、Ru的氯化物、硝酸盐、羰基化物,配制前驱体溶液用溶剂为水、丙酮或四氢呋喃。所述的前驱体为Fe、Ru氯化物时,将前驱体样品还原后用去离子水多次洗涤后干燥,充分除去氯离子。
按上述方案,所述还原采用高温氢气还原时,采用太阳光供热,在催化装置中利用合成氨的反应气氛还原活性组分,具体为:将浸渍了活性组分前驱体的载体材料放置在反应器中,聚集太阳光使催化剂表面温度到300-550摄氏度,通入合成氨的反应原料气氮气和氢气的混合气或者氢气还原得到活性组分/TiO2-z催化剂。还原时间一般可为0.1-2小时。
按上述方案,所述还原为液相还原时,液相还原所用还原剂为NaBH4,还原时间为2-8小时。
按上述方案,所述促进剂溶液为促进剂的乙醇或者乙二醇溶液,所述浸渍了促进剂溶液的样品放于反应装置中,通入合成氨的反应原料气氮气和氢气的混合气或氮气中利用会聚太阳光照射烘干。
本发明的优点是:
1.环境友好低成本的高效催化过程。本发明能充分利用太阳能中各波段的光,达到高效利用太阳能催化合成氨目的,不需要消耗化石能源或者电能,是对热催化Haber-Bosch循环的革新升级,是一种全新的太阳能催化的Haber-Bosch循环,聚集太阳能催化常压合成氨的性能可达到32.2毫升氨/(克催化剂*小时),表现出光和热的协同催化效果。
2.基底材料对光吸收增强作用以及对活性组分的活性增强作用。本发明以表面无序、富电子的非化学计量比化合物TiO2-z作为基底能够增强催化剂利用太阳光的效率,同时表面无序结构和氧空位的存在为活性组分的负载、均匀分散、活性组分-基底相互作用提供支持,使得本发明的催化剂拥有一般催化剂不具备的合成氨催化活性。
3.聚集太阳光的催化技术和促进剂稳定催化剂的活性。无序结构是催化性能的保证,但是无序结构在高温下易发生重结晶而不利于保持。本发明的催化剂具有良好的光致热转换能力,表面温度在光照下急剧升高,而在关灯时温度急剧下降,在氢气存在的氛围中保证材料氧空位的稳定存在,快速的温度变化和材料氧空位的保持使得无序结构再生和循环;碱金属和碱土金属助剂不仅从电子结构上促进催化剂性能,而且具有结构助剂的功能,使得基底材料无序结构稳定。进而基底无序结构的保持也有利于稳定活性组分,从而稳定催化剂的活性。
综上所述,本发明提供的催化剂能有效利用太阳中0.2-2.5微米全光谱范围内的光波,表现出较高的光热转换能力和较高的催化合成氨性能。通过聚集方式将太阳光的光能和热能汇聚到催化剂表面,为氮气和氢气反应生成氨提供驱动力,实现常压合成氨,且在光和热的协同催化作用使得同温度下聚集太阳光催化比传统热催化性能更高;采用表面无序的纳米TiO2-z为基底材料不仅增强了催化剂利用太阳光的效率,而且增强并稳定了活性组分的催化能力;催化剂的急速升温降温能力保持了催化剂的结构,稳定了催化剂性能。由于在催化剂活性组分还原和合成氨催化过程中都使用聚集的太阳光供能,使得整个过程能耗低、清洁环保,解决了合成氨工业面临的节能减排问题,因而很可能是下一代合成氨工业技术,具有商业化前景。
附图说明
图1 TiO2-z的X射线衍射图谱;
图2 TiO2-z的高分辨透射电镜图;
图3 TiO2-z的顺磁电子共振图谱,其中g为电子顺磁共振因子;
图4为Ru/TiO2-z合成氨催化剂的透射电镜照片,图4左图显示Ru纳米颗粒均匀负载在载体TiO2-z上,右图为单个Ru纳米颗粒的细节图;
图5为K/Ru/TiO2-z合成氨催化剂的近红外-可见-紫外吸收光谱;
图6为K/Ru/TiO2-z合成氨催化剂在聚集太阳光下的光照升温曲线和闭光降温曲线;
图7 K/Ru/TiO2-z循环反应6次后的透射电镜照片。
具体实施方式
实施例1
碱金属、碱土金属为促进剂,Ru为活性组分负载在黑色TiO2-z的催化剂制备及其聚集太阳光催化合成氨
称取1克纳米氧化钛和2克硼氢化钠,充分研磨混合,将所得产物置于马弗炉,以10摄氏度/分钟升温到370摄氏度,在370摄氏度时将坩埚从马弗炉内取出至室温空气环境快速降温,将固体产物转移至烧杯加入100毫升去离子水静置1小时,过滤所得固体用去离子水清洗,将所得固体放置于真空干燥箱100摄氏度4小时烘干,得到载体黑色TiO2-z固体,载体TiO2-z的X射线衍射图谱见图1,X射线衍射图谱中无明显峰表明材料结晶性差或者无结晶性,载体TiO2-z的高分辨透射电镜图见图2,通过紊乱的晶格条纹可以看出材料结晶性差,整体呈现无序状态,载体材料的电子顺磁共振图谱见图3,在g值为2.0附近的峰表明材料含有丰富的氧空位,而无序结构和氧空位都使得材料富含电子。
称取1克载体黑色TiO2-z,十二羰基三钌以其中的钌元素含量计,按3%(可在1%-8%范围内变动)的质量比量取配置好的十二羰基三钌的四氢呋喃或者丙酮溶液,将二者混合后蒸干,将蒸干得到的黑色固体在管式炉中真空干燥1小时,将所得的固体在反应器中,聚集太阳光使催化剂表面温度到400摄氏度左右,氢气气氛下(N2:H2=1:3,流量为10毫升/分钟)还原催化剂1小时,得到Ru/TiO2-z催化剂,所制备的催化剂为黑色或深黑灰色。透射电镜照片见图4,图4左图显示Ru纳米颗粒均匀负载在载体TiO2-z上,右图为单个Ru纳米颗粒的细节图,透射电镜观察到Ru颗粒尺寸在1-20纳米范围内。
称取如上制备的Ru/TiO2-z催化剂1克,按照所需比例(促进剂和活性组分的比例10:1-1:100)量取KOH的乙醇溶液。将促进剂与催化剂充分混合后置于反应釜中,于聚集太阳光下,惰性气氛(氮气或者氮氢混合气,20毫升/分钟)、温度为100度左右干燥样品,所得样品即为最终合成氨的催化剂,催化剂的比表面积为84平方米/克的比表面积。
用配置好的RuCl3、Ru(NO3)3水溶液也能制得Ru负载在黑色TiO2-z的催化剂,在利用含Cl前驱体时,所制得的催化剂需要用去离子水多次清洗以除去Cl离子,真空烘干或者用聚集太阳光惰性气氛烘干后再进行促进剂的负载。用配置好的K、Rb、Cs、Mg、Ca、Sr、Ba的氢氧化物、硝酸盐、碳酸盐或者碳酸氢盐的水溶液、乙醇溶液或者乙二醇溶液为促进剂,即可制备不同促进剂的催化剂。
催化合成氨实验:
将催化剂放于反应器中,通入氮气和氢气,氮气和氢气的体积比为1:3,然后在聚集的太阳光照射下,控制催化剂表面温度达到预设温度,进行氮气和氢气合成氨反应。反应气(N2:H2=1:3)流量为6毫升每分钟,催化剂用量为0.1克。
文献报道含Fe、Ru元素为活性组分的催化剂不具有催化合成氨性能,结果见表1。
调整本专利催化剂制备中前驱体的用量,获得不同含量活性组分的催化剂,具体含量可在1%-8%范围内变动。不同Ru负载量对反应活性的影响见表2;表2看出:增加活性组分Ru的负载量,反应活性会相应增加;
改变助剂,获得不同助剂作促进剂的催化剂,不同助剂对反应活性的影响见表3;助剂对催化性能的增强顺序为:Rb>Ba>Cs>K>Sr>Ca>Mg>无助剂;
保持活性组分负载量不变,调整助剂用量,不同助剂量对催化剂活性的影响见表4。结果表明:增加助剂用量,反应活性也会增加。
温度对催化活性的影响见表5,同一催化剂,升高反应温度,催化活性增加。
为了研究催化的催化寿命,采用K/3%Ru/TiO2-z(K:Ru为1:1)进行了6次循环实验,每次实验7小时,实验结果见表6。结果表明:催化剂在反应条件下循环性良好。
为了评价聚焦太阳光相对于传统热催化的性能,采用K为促进剂(K:Ru为1:1),质量比3%的Ru负载在黑色TiO2-z的聚集太阳光催化剂和负载在Al2O3、MgO、活性炭传统催化剂的热催化剂进行合成氨性能对比,结果见表7结果表明:本专利发明的催化剂聚集太阳光合成氨效果明显优于传统热催化剂的热催化效果。
以上制备的催化剂颜色为黑色或者深黑灰色,具有50-100平方米/克的比表面积,都具有利用太阳光中红外、可见、紫外部分的能力,K/3%Ru/TiO2-z(K:Ru为1:1)的近红外-可见-紫外吸收光谱具体见图5。以上催化剂在聚集的太阳光下,催化剂表面温度能在1-3分钟内升温至300-500摄氏度,满足合成氨所需温度。黑色TiO2-z是表面无序的富电子材料,无序表面为Ru负载提供位点,能够均匀分散Ru组分,负载后由于Ru和基底的肖特基接触使得黑色TiO2-z中的电子转移到Ru上,从而使催化剂有高效的催化合成氨活性,而文献报道的催化剂则不能催化合成氨,(结果见表1)。在聚集太阳光下的光照升温曲线和闭光降温曲线见图6。图6表明:本发明的催化剂在太阳光照射下能迅速升温达到满足合成氨的温度要求、且关灯后可迅速降温。由于光激发TiO2-z在氢气气氛下还原、光照催化剂迅速升温、关灯后迅速降温以及促进剂都能使TiO2-z的无序结构得到维持,使得催化剂寿命较长。具体结果见图7,从透射电镜可以看到,6次循环反应后,载体材料TiO2-z仍然呈现表面无序状态,与反应前的样品相比(图2),活性组分Ru的颗粒大小没有明显的改变,表明材料稳定性良好,使得催化剂寿命较长。
表1文献报道含Fe、Ru活性组分的催化剂合成氨性能
Figure BDA0001071066510000071
表2碱金属K为促进剂,Ru负载量对聚集太阳光催化合成氨的性能的影响
Figure BDA0001071066510000072
表3碱金属、碱土金属为促进剂,质量比3%的Ru负载在黑色TiO2-z的催化剂聚集太阳光催化合成氨的性能及不同促进剂对活性的影响对比
Figure BDA0001071066510000073
Figure BDA0001071066510000081
表4碱金属K为促进剂,K与活性组分Ru的原子比对聚集太阳光催化合成氨的性能的影响
Figure BDA0001071066510000082
表5碱金属K为促进剂(K:Ru为1:1),质量比3%的Ru负载在黑色TiO2-z的催化剂,温度对催化活性的影响
Figure BDA0001071066510000083
表6碱金属K为促进剂(K:Ru为1:1),质量比3%的Ru负载在黑色TiO2-z的催化剂在聚集太阳光催化合成氨的循环实验
Figure BDA0001071066510000084
Figure BDA0001071066510000091
表7碱金属K为促进剂(K:Ru为1:1),质量比3%的Ru负载在黑色TiO2-z的聚集太阳光催化和负载在Al2O3、MgO、活性炭传统催化剂的热催化合成氨性能对比
Figure BDA0001071066510000092
实施例2
碱金属、碱土金属为促进剂,Fe为活性组分负载在黑色TiO2-z的催化剂制备及其聚集太阳光催化合成氨
称取1克纳米氧化钛和1.5克硼氢化钠,充分研磨混合,将所得产物置于马弗炉,以10摄氏度/分钟升温到410摄氏度,在410摄氏度时将坩埚从马弗炉内取出至室温空气环境快速降温,将固体产物转移至烧杯加入100毫升去离子水静置1小时,过滤所得固体用去离子水清洗,将所得固体放置于真空干燥箱100摄氏度4小时烘干,得到载体黑色TiO2-z固体。经表征,其为无定型、富电子、表面无序、含有氧空位的TiO2-z
称取1克载体黑色TiO2-z,按30%(可在5%-50%范围内变动)的质量比量取配置好的氯化铁的水溶液,将二者混合后转移到烧杯中,氮气气氛下红外灯干燥,在研钵内将所得固体压实后再充分研磨。将所得的固体在反应器中,聚集太阳光使催化剂表面温度到350摄氏度左右,惰性气氛下保持1小时,之后进行还原。两种还原方法:1)高温氢气还原。将所得的固体置于调节聚集太阳光使温度到320摄氏度左右氢气气氛下(N2:H2=1:3,流量为20毫升/分钟)还原催化剂1小时,冷却后用去离子水乙醇抽滤清洗,在惰性气氛下红外灯干燥。2)液相还原。将1克所得的固体置于NaBH4水溶液(6克硼氢化钠溶于1升水)中,静置2小时。将静置后的溶液过滤充分洗涤除去Cl离子,真空烘干或氮气气氛下红外灯干燥得到催化剂即为Fe/TiO2-z
按照所需比例(促进剂和活性组分的比例10:1-1:100)量取KOH的乙醇溶液。将促进剂与催化剂充分混合后置于聚集太阳光下,惰性气氛(氮气或者氮氢混合气,20毫升/分钟)红外灯下干燥样品,所得样品即为最终合成氨的催化剂K/Fe/TiO2-z,催化剂的比表面积为62平方米/克的比表面积。
按照上述方法用配置好的FeCl3、Fe(NO3)3水溶液也能制得Fe负载在黑色TiO2-z的催化剂,在利用含Cl前驱体时,所制得的催化剂需要用去离子水多次清洗以除去Cl离子,真空烘干或者用聚集太阳光惰性气氛烘干后再进行促进剂的负载。用配置好的K、Rb、Cs的氢氧化物、硝酸盐、碳酸盐或者碳酸氢盐的水溶液、乙醇溶液或者乙二醇溶液为促进剂,即可制备不同促进剂的催化剂。不同Fe负载量对催化性能的影响见表8,不同促进剂的催化剂合成氨效果见表9,K促进剂含量对催化性能的影响见表10。
以上制备的催化剂颜色为黑色,都具有利用太阳光中红外、可见、紫外部分的能力,在聚集的太阳光下,温度能在1-3分钟内升温至300-500摄氏度,满足合成氨所需温度,黑色TiO2-z是表面无序的富电子材料,能提供负载位点,促进电子转移到Fe上,从而使催化剂有高效的催化活性。由于光激发TiO2-z在氢气气氛下还原、关灯后催化剂迅速降温以及促进剂都能使TiO2-z的无序结构得到维持,使得催化剂寿命较长。
表8碱金属K为促进剂,Fe负载量对催化剂合成氨的性能的影响
Figure BDA0001071066510000101
表9碱金属、碱土金属为促进剂,Fe为活性组分负载在黑色TiO2-z的催化剂聚集太阳光催化合成氨的性能
Figure BDA0001071066510000102
Figure BDA0001071066510000111
表10碱金属K为促进剂,促进剂含量对30%Fe/TiO2-x催化剂合成氨性能的影响
Figure BDA0001071066510000112

Claims (9)

1.一种聚集太阳能催化氮气和氢气合成氨的方法,其特征在于:将催化剂放于反应装置中,通入氮气和氢气,然后在聚集的太阳光照射下,控制催化剂表面温度达到300-550摄氏度,进行氮气和氢气合成氨反应;所述的催化剂以无定型、富电子、表面无序的黑色纳米TiO2-z,其中:0<z<2,为载体材料,以Fe或Ru的单质纳米晶为活性组分,活性组分负载在载体材料上。
2.根据权利要求1所述的聚集太阳能催化氮气和氢气合成氨的方法,其特征在于:所述的催化剂还包括碱金属或碱土金属K、Rb、Cs、Mg、Ca、Sr、Ba作为促进剂,促进剂负载在载体材料上,促进剂与活性组分的原子比为10:1-1:100。
3.根据权利要求2所述的聚集太阳能催化氮气和氢气合成氨的方法,其特征在于:所述的碱金属或碱土金属促进剂为K、Rb、Cs、Mg、Ca、Sr、Ba的氢氧化物、硝酸盐、碳酸盐或者碳酸氢盐。
4.根据权利要求1所述的聚集太阳能催化氮气和氢气合成氨的方法,其特征在于:所述氮气和氢气的体积比为1:3。
5.根据权利要求1所述的聚集太阳能催化氮气和氢气合成氨的方法,其特征在于:所述的活性组分为Fe单质时,用量占载体材料质量百分比为5%-50%,活性组分为Ru时,用量占载体材料质量百分比为1%-8%。
6.催化剂,其特征在于:所述的催化剂以无定型、富电子、表面无序的黑色纳米TiO2-z,其中:0<z<2,为载体材料,以Fe或Ru的单质纳米晶为活性组分,活性组分负载在载体材料上。
7.根据权利要求6所述的催化剂,其特征在于:所述的活性组分为Fe单质时,用量占载体材料质量百分比为5%-50%,活性组分为Ru时,用量占载体材料质量百分比为1%-8%。
8.根据权利要求6所述的催化剂,其特征在于:所述的催化剂还包括碱金属或碱土金属K、Rb、Cs、Mg、Ca、Sr、Ba作为促进剂,促进剂负载在载体材料上,促进剂与活性组分的原子比为10:1-1:100。
9.权利要求6所述的催化剂的制备方法,其特征在于:采用浸渍负载-高温氢气还原或液相还原-促进剂负载方法:即先将活性组分负载在基底材料上,然后经高温氢气还原或液相还原得到活性组分/TiO2-z,再根据需要再进行促进剂的负载,具体步骤如下:
将纳米TiO2和硼氢化钠按质量比为1:0.5-1:8研磨混合均匀,于马弗炉密闭加热至370-420℃,然后取出急速冷却后,经后处理得到载体材料TiO2-z,其中:0<z<2;
将载体材料浸渍在一定量的Fe、Ru的前驱体溶液中,超声混合后烘干,所得的样品通过高温氢气还原或液相还原得到活性组分/TiO2-z,然后根据需要将所得的样品浸渍在促进剂溶液中并于非氧化气氛中干燥或真空干燥得到催化剂样品。
CN201610639111.6A 2016-08-05 2016-08-05 一种聚集太阳能催化合成氨的方法及其催化剂 Active CN107686120B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610639111.6A CN107686120B (zh) 2016-08-05 2016-08-05 一种聚集太阳能催化合成氨的方法及其催化剂
US15/370,379 US10112841B2 (en) 2016-08-05 2016-12-06 Method for catalytic ammonia synthesis under concentrated solar energy and catalysts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610639111.6A CN107686120B (zh) 2016-08-05 2016-08-05 一种聚集太阳能催化合成氨的方法及其催化剂

Publications (2)

Publication Number Publication Date
CN107686120A CN107686120A (zh) 2018-02-13
CN107686120B true CN107686120B (zh) 2020-04-21

Family

ID=61072131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610639111.6A Active CN107686120B (zh) 2016-08-05 2016-08-05 一种聚集太阳能催化合成氨的方法及其催化剂

Country Status (2)

Country Link
US (1) US10112841B2 (zh)
CN (1) CN107686120B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020055385A1 (en) * 2018-09-11 2020-03-19 West Virginia University Methods and compositions for microwave catalytic ammonia synthesis
CN111482172B (zh) * 2019-01-25 2022-08-16 华中师范大学 CuO/缺陷二氧化钛的复合纳米材料及其应用
CN110585904A (zh) * 2019-08-30 2019-12-20 浙江工业大学 一种光热催化降解室内挥发性有机物的装置
CN111167440B (zh) * 2020-01-07 2023-05-02 郑州大学 一种氨硼烷水解析氢用催化剂及其制备方法
CN111054331B (zh) * 2020-01-09 2021-11-23 吉林大学 一种高分散钌负载的全光谱响应半导体光催化剂、制备方法及其应用
CN111450843B (zh) * 2020-01-21 2021-05-18 福州大学 一种高效Ru/Co限域氨合成催化剂及其制备方法和用途
FR3109900B1 (fr) * 2020-05-07 2024-02-16 Centre Nat Rech Scient Procédé de préparation d’un catalyseur métallique supporté, catalyseur obtenu selon ce procédé et utilisations
US20230183082A1 (en) * 2020-05-15 2023-06-15 Beijing Guanghe Original Technology Co., Ltd. Method for Catalytic Synthesis of Ammonia by Means of Radiation
CN112250088B (zh) * 2020-10-30 2022-04-01 上海科技大学 基于液态合金催化合成氨的方法
CN112403462A (zh) * 2020-12-01 2021-02-26 吉林大学 一种高分散钌修饰的富含氧缺陷半导体光催化剂、制备方法及其应用
CN113351203A (zh) * 2021-07-09 2021-09-07 雷振东 石墨烯复合材料合成氨催化剂及制备方法和制备氨气方法
CN114672823A (zh) * 2022-05-16 2022-06-28 西安交通大学 基于高-低频声波组合的光电催化合成氨反应器及方法
CN115591546A (zh) * 2022-10-13 2023-01-13 华中师范大学(Cn) 一种利用负载型催化剂直接转化二氧化碳制备甲烷的方法
CN116408079A (zh) * 2022-11-21 2023-07-11 石河子大学 一种负载型铜铁双金属合成氨催化剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101322938A (zh) * 2008-07-29 2008-12-17 福州大学 一种钌基氨合成催化剂及其制备方法
CN103108994A (zh) * 2010-07-21 2013-05-15 日立造船株式会社 氨的合成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4568532A (en) * 1984-10-16 1986-02-04 The M. W. Kellogg Company Supplemental ammonia synthesis
JP2015218101A (ja) * 2014-05-21 2015-12-07 国立大学法人 千葉大学 空中窒素固定化材料及び固定化方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101322938A (zh) * 2008-07-29 2008-12-17 福州大学 一种钌基氨合成催化剂及其制备方法
CN103108994A (zh) * 2010-07-21 2013-05-15 日立造船株式会社 氨的合成方法

Also Published As

Publication number Publication date
US20180037465A1 (en) 2018-02-08
CN107686120A (zh) 2018-02-13
US10112841B2 (en) 2018-10-30

Similar Documents

Publication Publication Date Title
CN107686120B (zh) 一种聚集太阳能催化合成氨的方法及其催化剂
CN109119646B (zh) 一种高性能Co3O4-CeO2/Co-N-C复合催化剂及其制备方法和应用
CN111437867B (zh) 一种含钨氧化物的复合光催化剂及其制备方法和应用
CN105195197A (zh) 一种大比表面积-可见光响应TiO2催化剂及其制备方法
CN108525677B (zh) 一种二氧化铈/硫化铟锌纳米片复合催化剂及其在可见光催化co2转化中的应用
CN112774692B (zh) 一种Ru@Ni2V2O7高效光热协同催化剂及其制备方法和应用
Chen et al. 2D ultrathin CoP modified Mn x Cd 1− x S with controllable band structure and robust photocatalytic performance for hydrogen generation
CN108355662B (zh) 镍负载埃洛石基甲烷干重整催化剂的制备方法
CN112517043B (zh) 一种氮空位与羟基协同修饰石墨相氮化碳光催化剂及其制备和在光催化产氢中的应用
CN111659434A (zh) 一种CuO纳米片/g-C3N4纳米片异质结复合材料制备方法及应用
CN111974436B (zh) 一种石墨相氮化碳及其制备方法、以及光催化水产氢的方法
CN110876953A (zh) 一种p,s共掺杂氮化碳同型异质结复合光催化剂
CN107308973B (zh) 一种碱式磷酸钴纳米针复合lton光催化剂及其制备方法和应用
CN116078419B (zh) 一种负载核壳状非晶磷酸钴包覆的磷化钴的氮化碳
CN113546658A (zh) 一种二维层状三元纳米复合光催化剂及其制备方法和应用
CN113117672A (zh) 一种支链烷烃重整光热催化剂及其制备方法和应用
CN116726973A (zh) 花球状硫铟锌/氮化碳异质结光催化剂及制备方法与应用
CN116832837A (zh) 一种花球状TiO2/BiOBr核壳结构异质结材料及其制备方法、应用
CN114452998B (zh) 一种多壁碳纳米管和石墨化氮化碳复合材料的制备方法及应用
CN102626650A (zh) 一种纳米多孔氮掺杂氧化钛可见光催化剂的制备方法
CN111013622B (zh) Z型石墨化氮化碳/碳/硫掺杂的石墨化氮化碳复合材料及其制法
Wang et al. N-doped carbon-supported Cu–CuO nanoparticles for photocatalytic reduction of carbon dioxide
CN116078402B (zh) 铈掺杂二硫化锡光催化剂及其制备方法与应用
Anaqah et al. C/N/CeO2/Alpha-Fe2O3 Doped Mesoporous Carbon as A Photocatalyst Material for Hydrogen Gas Production by Water Splitting Method
CN117427660A (zh) 具有锌、氧双空位的二氧化钛/硫化镉锌异质结空心微球的催化剂、制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20180213

Assignee: Wuhan Nanwang Environmental Protection Technology Research Co.,Ltd.

Assignor: CENTRAL CHINA NORMAL University

Contract record no.: X2023980053268

Denomination of invention: A method and catalyst for aggregating solar energy to catalyze the synthesis of ammonia

Granted publication date: 20200421

License type: Common License

Record date: 20231220

EE01 Entry into force of recordation of patent licensing contract