CN116355880A - 融合酶、毕赤酵母、其制备方法及应用 - Google Patents

融合酶、毕赤酵母、其制备方法及应用 Download PDF

Info

Publication number
CN116355880A
CN116355880A CN202211077488.9A CN202211077488A CN116355880A CN 116355880 A CN116355880 A CN 116355880A CN 202211077488 A CN202211077488 A CN 202211077488A CN 116355880 A CN116355880 A CN 116355880A
Authority
CN
China
Prior art keywords
pichia pastoris
fusion
man1
aga1
galactomannan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211077488.9A
Other languages
English (en)
Inventor
朱佑民
张慧
陈海鸣
马赛飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Guolong Biotechnology Co ltd
Original Assignee
Shanghai Guolong Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Guolong Biotechnology Co ltd filed Critical Shanghai Guolong Biotechnology Co ltd
Priority to CN202211077488.9A priority Critical patent/CN116355880A/zh
Publication of CN116355880A publication Critical patent/CN116355880A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2465Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1) acting on alpha-galactose-glycoside bonds, e.g. alpha-galactosidase (3.2.1.22)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/2488Mannanases
    • C12N9/2491Beta-mannosidase (3.2.1.25), i.e. mannanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/2488Mannanases
    • C12N9/2494Mannan endo-1,4-beta-mannosidase (3.2.1.78), i.e. endo-beta-mannanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01022Alpha-galactosidase (3.2.1.22)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01025Beta-mannosidase (3.2.1.25), i.e. mannanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01078Mannan endo-1,4-beta-mannosidase (3.2.1.78), i.e. endo-beta-mannanase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/84Pichia

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种融合酶,其序列如SEQ ID No.9所示,还公共了一种毕赤酵母,其细胞表面表达如SEQ ID No.9所示的蛋白。还公开了其在催化降解半乳甘露聚糖中的应用,及其制备方法。本发明将三个酶融合而成的超大多功能融合酶展示在毕赤酵母表面,与分3次发酵产3种酶后共同催化降解半乳甘露聚糖相比,采用该毕赤酵母全细胞催化降解半乳甘露聚糖可以有效提高半乳甘露聚糖的降解效率。因此,本发明的表面展示三个酶融合而成的超大多功能融合酶的毕赤酵母可用于提高半乳甘露聚糖的降解效率。

Description

融合酶、毕赤酵母、其制备方法及应用
技术领域
本发明涉及一种融合酶、表面表达融合酶的毕赤酵母、其制备方法及其在提高半乳甘露聚糖降解效率中的应用,属于合成生物学领域。
背景技术
现有技术通过单一的表达α半乳糖苷酶或β甘露聚糖酶,将酶分离纯化固定后用于催化降解半乳甘露聚糖,或者使用3次发酵技术分别表达α半乳糖苷酶1(AGA1)、β甘露聚糖酶1(MAN1)和β甘露聚糖酶2(MAN2),然后将α半乳糖苷酶1(AGA1)、β甘露聚糖酶1(MAN1)和β甘露聚糖酶2(MAN2)分别分离纯化固定后共同催化降解半乳甘露聚糖。由于半乳甘露聚糖的分子结构比较复杂,既有直链又有侧链,α半乳糖苷酶只能降解侧链,β甘露聚糖酶只能降解直链。单一的表达α半乳糖苷酶或β甘露聚糖酶,只能部分降解半乳甘露聚糖,达不到彻底降解半乳甘露聚糖的目的。在使用3次发酵技术分别表达α半乳糖苷酶1(AGA1)、β甘露聚糖酶1(MAN1)和β甘露聚糖酶2(MAN2),然后将α半乳糖苷酶1(AGA1)、β甘露聚糖酶1(MAN1)和β甘露聚糖酶2(MAN2)分别分离纯化固定后共同催化降解半乳甘露聚糖时,发酵次数多,分离纯化固定步骤繁琐,酶也不能重复利用,使得发酵的效率低成本高。
发明内容
本发明的目的是提供一种融合酶,为α半乳糖苷酶1-β甘露聚糖酶1-β甘露聚糖酶2融合蛋白,具有较高的催化降解半乳甘露聚糖的效率。
本发明采取的技术方案为:
一种融合酶,其序列如SEQ ID No.9所示。
本发明还公开了一种毕赤酵母,在其细胞表面表达如SEQ ID No.9所示的蛋白。
本发明还公开了上述的毕赤酵母在催化降解半乳甘露聚糖中的应用。
优选的,其步骤包括:收集培养的毕赤酵母全细胞,将毕赤酵母全细胞加入半乳甘露聚糖水溶液中进行反应。
本发明还公开了上述的毕赤酵母的制备方法,其特征在于其步骤包括:
(1)化学合成如SEQ ID No.6所示的融合基因anc-L-aga1-L-man1-L-man2,其中融合基因序列包含毕赤酵母锚定蛋白基因序列、α半乳糖苷酶1、β甘露聚糖酶1和β甘露聚糖酶2基因序列,毕赤酵母锚定蛋白基因序列、α半乳糖苷酶1、β甘露聚糖酶1和β甘露聚糖酶2基因序列四者以融合基因形式连接,毕赤酵母锚定蛋白基因序列与α半乳糖苷酶1基因序列之间有连接肽序列,α半乳糖苷酶1基因序列与β甘露聚糖酶1基因序列之间有连接肽序列,β甘露聚糖酶1基因序列与β甘露聚糖酶2基因序列之间有连接肽序列,融合基因序列两端包含EcoRI和Not1的酶切位点序列,以及载体pPIC9K的同源臂序列;
(2)将步骤(1)合成的融合基因片段和载体pPIC9K分别经EcoRI和Not1双酶切;
(3)将酶切后的融合基因片段与酶切后的pPIC9K载体连接,使融合基因构建到载体pPIC9K中;
(4)将连接产物转化入大肠杆菌感受态细胞,筛选出阳性克隆;
(5)培养大肠杆菌感受态细胞阳性克隆,从中抽提出质粒pPIC9K-anc-L-aga1-L-man1-L-man2;
(6)将质粒pPIC9K-anc-L-aga1-L-man1-L-man2线性化;
(7)将线性化的质粒电转化入毕赤酵母感受态细胞,筛选出阳性克隆,得到表面表达AGA1-MAN1-MAN2的毕赤酵母。
优选的,步骤(3)中采用T4 DNA连接酶连接酶切后的融合基因片段与酶切后的pPIC9K载体。
优选的,步骤(6)中将质粒用SacI酶切线性化。
本发明具有以下有益效果:
本发明将α半乳糖苷酶1-β甘露聚糖酶1-β甘露聚糖酶2融合酶展示在毕赤酵母表面,采用该毕赤酵母全细胞催化降解半乳甘露聚糖,可以有效提高半乳甘露聚糖的降解率。且本发明还发现,表面展示α半乳糖苷酶1-β甘露聚糖酶1-β甘露聚糖酶2融合酶的毕赤酵母比表面展示α半乳糖苷酶1-β甘露聚糖酶1融合酶或β甘露聚糖酶1-β甘露聚糖酶2-α半乳糖苷酶1融合酶的毕赤酵母在催化降解半乳甘露聚糖时酶活更高,半乳甘露聚糖的降解率更高。因此,本发明的毕赤酵母可用于提高半乳甘露聚糖的降解率。
附图说明
图1为本发明与现有技术相比的流程对照图。
图2为本发明与现有技术相比的半乳甘露聚糖降解率对照图。图中标记:A:实施例1中使用本发明表面展示AGA1-MAN1-MAN2三融合酶的毕赤酵母全细胞催化降解半乳甘露聚糖,降解率达到95%以上;B:使用对比例1的表面展示AGA1-MAN1二融合酶毕赤酵母全细胞催化降解半乳甘露聚糖,降解率约为70%。
具体实施方式
为更进一步阐述本发明为实现预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明的具体实施方式、结构、特征及其功效,详细说明如后。附图1可以展示本发明与现有技术相比的流程对照。
实施例1将融合α半乳糖苷酶1-β甘露聚糖酶1-β甘露聚糖酶2展示在毕赤酵母细胞表面的方法及其在全细胞直接催化提高半乳甘露聚糖降解率中的应用,包括如下步骤:
(1)优化毕赤酵母锚定蛋白基因、α半乳糖苷酶1、β甘露聚糖酶1、β甘露聚糖酶2和连接肽的序列,如SEQ ID No.1、SEQ ID No.2、SEQ ID No.3、SEQ ID No.4和SEQ ID No.5;
(2)化学合成如SEQ ID No.6所示的锚定蛋白-连接肽-α半乳糖苷酶1-连接肽-β甘露聚糖酶1-连接肽-β甘露聚糖酶2融合基因(anc-L-aga1-L-man1-L-man2);融合基因序列两端包含EcoRI和Not1酶切位点序列和载体pPIC9K的同源臂序列;
(3)融合基因片段和载体pPIC9K均经EcoRI和Not1双酶切,酶切体系如下:
Figure BDA0003832203790000031
(4)将酶切后的融合基因片段与酶切后的pPIC9K载体连接,连接体系如下:
Figure BDA0003832203790000032
Figure BDA0003832203790000041
(5)将连接产物转化入大肠杆菌Top10感受态细胞;
(6)涂布含氨苄青霉素的平板;
(7)PCR检测阳性克隆。菌检上游引物PF1:AGCATCCTCCGCATTAGCTG,下游引物PR1:CTGATCAGGTGGCAGGGAAG;
(8)扩大培养并用质粒小提试剂盒抽提质粒,得到目的质粒pPIC9K-anc-L-aga1-L-man1-L-man2;
(9)质粒均用SacI酶切线性化,酶切体系如下:
Figure BDA0003832203790000042
(10)跑1%的agarose琼脂糖凝胶确认质粒完全线性化;
(11)将线性化的质粒电转化入毕赤酵母GS115感受态细胞中,220rpm条件下进行摇床培养1-2h,4000rpm离心10min收集菌体;
(12)将菌体涂布在His缺陷平板上培养2-3天,挑选单菌落;
(13)通过3-5mg/mL G418的平板筛选出含有融合基因的毕赤酵母菌p-anc-L-aga1-L-man1-L-man2;
(14)将毕赤酵母工程菌p-anc-L-aga1-L-man1-L-man2转接入含有10-15mL BMGY培养基带透气塞的50mL离心管,在28℃,220rpm条件下进行摇床培养至OD600=4-5;
(15)4000rpm离心10min收集菌体;
(16)菌体重悬于BMM培养基,220rpm条件下进行摇床培养,每24h加0.5%甲醇诱导,培养4-5天,离心收集菌体;
(17)以半乳甘露聚糖为底物,使用毕赤酵母全细胞催化降解半乳甘露聚糖,反应体系如下:
含3%半乳甘露聚糖的1ml底物+10mg全细胞,混匀后静置,反应温度:60℃,反应时间:3h
(18)跑PLC检测降解结果。结果如图2所示。
对比例1将融合α半乳糖苷酶1-β甘露聚糖酶1展示在毕赤酵母细胞表面的方法及其在全细胞直接催化提高半乳甘露聚糖降解率中的应用,包括如下步骤:
(1)优化毕赤酵母锚定蛋白基因、α半乳糖苷酶1、β甘露聚糖酶1和连接肽的序列,如SEQ ID No.1、SEQ ID No.2、SEQ ID No.3和SEQ ID No.5;
(2)化学合成如SEQ ID No.7所示的锚定蛋白-连接肽-α半乳糖苷酶1-连接肽-β甘露聚糖酶1融合基因anc-L-aga1-L-man1;融合基因序列两端包含EcoRI和Not1酶切位点序列和载体pPIC9K的同源臂序列;
(3)融合基因片段和载体pPIC9K均经EcoRI和Not1双酶切,酶切体系如下:
Figure BDA0003832203790000051
(4)将酶切后的融合基因片段与酶切后的pPIC9K载体连接,连接体系如下:
Figure BDA0003832203790000052
(5)将连接产物转化入大肠杆菌Top10感受态细胞;
(6)涂布含氨苄青霉素的平板;
(7)PCR检测阳性克隆。菌检上游引物PF2:AGCATCCTCCGCATTAGCTG,下游引物PR2:CTGATCAGGTGGCAGGGAAG;
(8)扩大培养并用质粒小提试剂盒抽提质粒,得到目的质粒p-anc-L-aga1-L-man1;
(9)质粒均用SacI酶切线性化,酶切体系如下:
Figure BDA0003832203790000061
(10)跑1%的agarose琼脂糖凝胶确认质粒完全线性化;
(11)将线性化的质粒电转化入毕赤酵母GS115感受态细胞中,220rpm条件下进行摇床培养1-2h,4000rpm离心10min收集菌体;
(12)将菌体涂布在His缺陷平板上培养2-3天,挑选单菌落;
(13)通过3-5mg/mL G418的平板筛选出含有融合基因的毕赤酵母菌p-anc-L-aga1-L-man1;
(14)将毕赤酵母工程菌p-anc-L-aga1-L-man1转接入含有10-15mL BMGY培养基带透气塞的50mL离心管,在28℃,220rpm条件下进行摇床培养至OD600=4-5;
(15)4000rpm离心10min收集菌体;
(16)菌体重悬于BMM培养基,220rpm条件下进行摇床培养,每24h加0.5%甲醇诱导,培养4-5天,离心收集菌体;
(17)以半乳甘露聚糖为底物,使用全细胞催化降解半乳甘露聚糖,反应体系如下:含3%半乳甘露聚糖的1ml底物+10mg全细胞,混匀后静置,反应温度:60℃,反应时间:3h;
(18)跑PLC检测降解结果。结果如图2所示。
对比例2将融合β甘露聚糖酶1-β甘露聚糖酶2-α半乳糖苷酶1展示在毕赤酵母细胞表面的方法及其在全细胞直接催化降解半乳甘露聚糖中的应用,包括如下步骤:
(1)优化毕赤酵母锚定蛋白基因、α半乳糖苷酶1、β甘露聚糖酶1、β甘露聚糖酶2和连接肽的序列,如SEQ ID No.1、SEQ ID No.2、SEQ ID No.3、SEQ ID No.4和SEQ ID No.5;
(2)化学合成如SEQ ID No.8所示的锚定蛋白-连接肽-β甘露聚糖酶1-连接肽-β甘露聚糖酶2-连接肽-α半乳糖苷酶1融合基因anc-L-man1-L-man2-L-aga1;融合基因序列两端包含EcoRI和Not1酶切位点序列和载体pPIC9K的同源臂序列;
(3)融合基因片段和载体pPIC9K均经EcoRI和Not1双酶切,酶切体系如下:
Figure BDA0003832203790000071
(4)将酶切后的融合基因片段与酶切后的pPIC9K载体连接,连接体系如下:
Figure BDA0003832203790000072
(5)将连接产物转化入大肠杆菌Top10感受态细胞;
(6)涂布含氨苄青霉素的平板;
(7)PCR检测阳性克隆。菌检上游引物PF3:TCCTCAAGTCATGCACCCAC,下游引物PR3:GTCAAACTTCCTGCGTTCACA;
(8)扩大培养并用质粒小提试剂盒抽提质粒,得到目的质粒p-anc-L-man1-L-man2-L-aga1;
(9)质粒均用SacI酶切线性化,酶切体系如下:
Figure BDA0003832203790000081
(10)跑1%的agarose琼脂糖凝胶确认质粒完全线性化;
(11)将线性化的质粒电转化入毕赤酵母GS115感受态细胞中,220rpm条件下进行摇床培养1-2h,4000rpm离心10min收集菌体;
(12)将菌体涂布在His缺陷平板上培养2-3天,挑选单菌落;
(13)通过3-5mg/mL G418的平板筛选出含有融合基因的毕赤酵母菌p-anc-L-man1-L-man2-L-aga1;
(14)将毕赤酵母工程菌p-anc-L-man1-L-man2-L-aga1转接入含有10-15mL BMGY培养基带透气塞的50mL离心管,在28℃,220rpm条件下进行摇床培养至OD600=4-5;
(15)4000rpm离心10min收集菌体;
(16)菌体重悬于BMM培养基,220rpm条件下进行摇床培养,每24h加0.5%甲醇诱导,培养4-5天,离心收集菌体;
(17)以半乳甘露聚糖为底物,使用全细胞催化降解半乳甘露聚糖,反应体系如下:含3%半乳甘露聚糖的1ml底物+10mg全细胞,混匀后静置,反应温度:60℃,反应时间:3h;
(18)跑PLC检测降解结果。
对比例3分别单独表达α半乳糖苷酶1、β甘露聚糖酶1和β甘露聚糖酶2分离纯化固定后共同催化降解半乳甘露聚糖中的应用,包括如下步骤:
(1)优化α半乳糖苷酶1、β甘露聚糖酶1和β甘露聚糖酶2的序列,如SEQ ID No.2、SEQ ID No.3和SEQ ID No.4;
(2)分别化学合成如SEQ ID No.2、SEQ ID No.3和SEQ ID No.4所示的序列;每个基因序列两端加入EcoRI和Not1酶切位点序列和载体pPIC9K的同源臂序列;
(3)基因片段和载体pPIC9K均经EcoRI和Not1双酶切,酶切体系如下:
Figure BDA0003832203790000091
(4)将酶切后的三个基因片段分别与酶切后的pPIC9K载体连接,连接体系如下:
Figure BDA0003832203790000092
(5)将三个连接产物分别转化入大肠杆菌Top10感受态细胞;
(6)涂布含氨苄青霉素的平板;
(7)PCR检测阳性克隆。三种菌的菌检引物分别为
PF4:CGTACCTCCTGGGATAACGC,PR4:GGCAGACAAAGCACCCATTG;
PF5:CCGAGGTAGTTACGACGCTC,PR5:TAGTGCCTGGTCAGCAATCG;
PF6:TACCAGGACATCGTGAACGC,PR6:CTGGTAGTAGCTGGGGTTGC;
(8)扩大培养并用质粒小提试剂盒抽提质粒,分别得到目的质粒p-aga1、p-man1和p-man2;
(9)三种质粒均用SacI酶切线性化,酶切体系如下:
Figure BDA0003832203790000093
Figure BDA0003832203790000101
(10)跑1%的agarose琼脂糖凝胶确认三种质粒完全线性化;
(11)将三种线性化的质粒分别电转化入毕赤酵母GS115感受态细胞中,220rpm条件下进行摇床培养1-2h,4000rpm离心10min收集菌体;
(12)将三种菌体分别涂布在His缺陷平板上培养2-3天,挑选单菌落;
(13)通过3-5mg/mL G418的平板筛选出含有整合基因的三种毕赤酵母菌p-aga1、p-man1和p-man2;
(14)将三种毕赤酵母工程菌p-aga1、p-man1和p-man2分别转接入含有10-15mLBMGY培养基带透气塞的50mL离心管,在28℃,220rpm条件下进行摇床培养至OD600=4-5;
(15)4000rpm离心10min分别收集三种菌体;
(16)三种菌体重悬于BMM培养基,220rpm条件下进行摇床培养,每24h加0.5%甲醇诱导,培养4-5天,离心去除菌体,收集三种滤液;
(17)分离纯化固定三种酶;
(18)以半乳甘露聚糖为底物,将三种酶联合应用催化降解半乳甘露聚糖,反应体系如下:
含3%半乳甘露聚糖的1ml底物+10mg混合酶液(3.33μL AGA1+3.33μL MAN1+3.33μL MAN2),混匀后静置,反应温度:60℃,
反应时间:3h
(19)跑PLC检测降解结果。
实施例1与对比例1-3的半乳甘露聚糖降解率估值对照见表1。
表1
Figure BDA0003832203790000111
以上实验结果表明,本方法将融合酶α半乳糖苷酶1-β甘露聚糖酶1-β甘露聚糖酶2展示在毕赤酵母表面,可以全细胞催化提高降解半乳甘露聚糖的降解率,相比将融合酶α半乳糖苷酶1-β甘露聚糖酶1或β甘露聚糖酶1-β甘露聚糖酶2-α半乳糖苷酶1展示在毕赤酵母表面进行全细胞催化降解半乳甘露聚糖提高了半乳甘露聚糖的降解率。毕赤酵母表面展示融合酶α半乳糖苷酶1-β甘露聚糖酶1-β甘露聚糖酶2比融合酶α半乳糖苷酶1-β甘露聚糖酶1或β甘露聚糖酶1-β甘露聚糖酶2-α半乳糖苷酶1的酶活更高。因此,本发明可用于提高半乳甘露聚糖的降解率。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明,任何本领域技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简介修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (7)

1.一种融合酶,其特征在于其序列如SEQ ID No.9所示。
2.一种毕赤酵母,其特征在于其细胞表面表达如SEQ ID No.9所示的蛋白,该蛋白为AGA1、MAN1和MAN2的融合蛋白。
3.权利要求2所述的毕赤酵母在催化降解半乳甘露聚糖中的应用。
4.根据权利要求3所述的应用,其特征在于其步骤包括:收集培养的毕赤酵母全细胞,将毕赤酵母全细胞加入半乳甘露聚糖水溶液中进行反应。
5.权利要求2所述的毕赤酵母的制备方法,其特征在于其步骤包括:
(1)合成如SEQ ID No.6所示的融合基因anc-L-aga1-L-man1-L-man2,其中anc为锚定基因,L为连接肽序列,aga1为α半乳糖苷酶1基因,man1为β甘露聚糖酶1基因,man2为β甘露聚糖酶2基因;
(2)将步骤(1)合成的融合基因片段构建到载体pPIC9K中;
(3)将连接产物转化入大肠杆菌感受态细胞,筛选出阳性克隆;
(4)培养大肠杆菌感受态细胞阳性克隆,从中抽提出质粒pPIC9K-anc-L-aga1-L-man1-L-man2;
(5)将质粒pPIC9K-anc-L-aga1-L-man1-L-man2线性化;
(6)将线性化的质粒电转化入毕赤酵母感受态细胞,筛选出阳性克隆,得到表面表达权利要求1所述的融合酶的毕赤酵母。
6.根据权利要求5所述的毕赤酵母的制备方法,其特征在于:步骤(3)中将融合基因片段和载体pPIC9K分别经EcoRI和Not1双酶切,然后采用T4 DNA连接酶连接酶切后的融合基因片段与酶切后的pPIC9K载体。
7.根据权利要求5所述的毕赤酵母的制备方法,其特征在于:步骤(5)中用SacI酶切将质粒线性化。
CN202211077488.9A 2022-09-05 2022-09-05 融合酶、毕赤酵母、其制备方法及应用 Pending CN116355880A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211077488.9A CN116355880A (zh) 2022-09-05 2022-09-05 融合酶、毕赤酵母、其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211077488.9A CN116355880A (zh) 2022-09-05 2022-09-05 融合酶、毕赤酵母、其制备方法及应用

Publications (1)

Publication Number Publication Date
CN116355880A true CN116355880A (zh) 2023-06-30

Family

ID=86926184

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211077488.9A Pending CN116355880A (zh) 2022-09-05 2022-09-05 融合酶、毕赤酵母、其制备方法及应用

Country Status (1)

Country Link
CN (1) CN116355880A (zh)

Similar Documents

Publication Publication Date Title
CN115029257B (zh) 产β-胡萝卜素的重组解脂耶氏酵母及其构建方法和应用
CN108060114A (zh) 一种发酵生产l-丙氨酸的大肠杆菌及其应用
CN112301013A (zh) 复合酶及其在制备麦角硫因中的应用
CN111321101A (zh) 一种利用CRISPR-Cas9技术敲除大肠杆菌中胞苷脱氨酶基因cdd的方法及应用
CN102782130A (zh) 马克斯克鲁维酵母来源的高表达启动子
CN105602921B (zh) 一种壳聚糖酶突变体
CN107488639B (zh) 甲苯单加氧酶及其在手性亚砜生物催化合成中的应用
CN113249237A (zh) 一种毕赤酵母工程菌株KM71H_pCHIT及其构建方法和应用
CN116355880A (zh) 融合酶、毕赤酵母、其制备方法及应用
CN115612628A (zh) 毕赤酵母、其制备方法及其在催化蔗糖生产低聚果糖中的应用
CN105368913A (zh) 用于工业化生产手性非天然氨基酸的双酶制备法
CN106754446B (zh) 一种转化解脂耶氏酵母及其构建方法与应用
CN111518851B (zh) 一种固定化酶连续制备[14/15n]-l-瓜氨酸的方法
CN112575022A (zh) 一种体外人工脚手架蛋白介导海藻糖多酶复合体的构建方法
CN116200419A (zh) 细胞表面展示果糖基转移酶和葡萄糖氧化酶混合酶制剂的方法及其应用
US9222110B2 (en) Microorganism and method for lactic acid production
CN108913732B (zh) 一种莫纳可林j异源生产的方法及应用
CN115725535B (zh) 一种n-脱氧核糖转移酶及其在脱氧核苷制备中的应用
CN110669788A (zh) 一种紫球藻叶绿体表达系统及其应用
CN114958894B (zh) 一种基于CcmK2纤维状蛋白的亚精胺合成多酶复合体的构建方法及其应用
CN116574750B (zh) 一种提高腈类化合物生物转化效率的腈水合酶重组质粒及其构建方法与应用
CN117683801A (zh) 一种多基因表达载体、d-氨基酸及其制备方法
CN114854717B (zh) 一种脂肪酶及其编码基因与应用
CN115247136A (zh) 一种制备表面展示果糖基转移酶的毕赤酵母的方法
CN108588043B (zh) 一种单加氧酶复合体及其在手性亚砜合成中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination