CN114958894B - 一种基于CcmK2纤维状蛋白的亚精胺合成多酶复合体的构建方法及其应用 - Google Patents

一种基于CcmK2纤维状蛋白的亚精胺合成多酶复合体的构建方法及其应用 Download PDF

Info

Publication number
CN114958894B
CN114958894B CN202210672219.0A CN202210672219A CN114958894B CN 114958894 B CN114958894 B CN 114958894B CN 202210672219 A CN202210672219 A CN 202210672219A CN 114958894 B CN114958894 B CN 114958894B
Authority
CN
China
Prior art keywords
linker
spee
seq
sped
spermidine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210672219.0A
Other languages
English (en)
Other versions
CN114958894A (zh
Inventor
王昕�
胡鑫峰
陈可泉
刘逸
王靖
周彩莲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202210672219.0A priority Critical patent/CN114958894B/zh
Publication of CN114958894A publication Critical patent/CN114958894A/zh
Application granted granted Critical
Publication of CN114958894B publication Critical patent/CN114958894B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/315Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01016Spermidine synthase (2.5.1.16)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/0105Adenosylmethionine decarboxylase (4.1.1.50)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了一种基于CcmK2纤维状蛋白的亚精胺合成多酶复合体的构建方法及其应用。利用来源于自然界中的纤维小体中存在的相互作用蛋白对,将亚精胺合酶SpeE和S‑腺苷蛋氨酸脱羧酶SpeD分别融合粘连蛋白CohesinⅡ和锚定蛋白DockerinⅡ,利用CohesinⅡ和DockerinⅡ的相互作用,形成SpeE‑SpeD双酶结合体;再在CohesinⅡ上融合结合分子肽SpyTag,将SpeE‑SpeD双酶结合体组装到融合结合蛋白SpyCatche的纤维状蛋白CcmK2上;形成多酶复合体。本发明多酶复合体在多酶之间形成底物通道,拉近底物与酶之间的空间距离,提高了中间体的传递效率,充分发挥双酶间的协同作用,大大提高了亚精胺的合成效率。

Description

一种基于CcmK2纤维状蛋白的亚精胺合成多酶复合体的构建 方法及其应用
技术领域
本发明属于生物技术领域,涉及一种基于CcmK2纤维状蛋白的亚精胺按合成多酶复合体的构建方法及其应用。
背景技术
亚精胺是一种自然界中广泛存在的多胺类物质,几乎存在于自然界的所有动植物体内。亚精胺在DNA的复制、翻译和转录方面起着至关重要的作用,具有促进心血管保护、参与蛋白质与RNA的合成、抗氧化、抗炎、诱导细胞自噬、调节神经、改善线粒体代谢、延缓衰老、提高记忆力等多种功能。在农业和医学上,亚精胺也有着广泛的应用:在农业上,亚精胺应用于调节植物生长代谢,抵抗环境变化带来的副作用,提高果实产量与质量;在医学上,亚精胺可以作为治疗由不同蛋白病变引起的神经退行性疾病的潜在开发药物。
目前生产亚精胺的方法主要有化学法、提取法和发酵法。化学法以1,4-丁二胺和丙烯腈为原料,通过加成、氢化和还原反应得到亚精胺,由于反应条件苛刻,残留的底物难去除,导致提纯成本高,限制了亚精胺的工业化生产;提取法制备亚精胺通常是以谷类物质如薏米为原料,经碾碎、酸水解(或碱水解,酶水解)后再通过树脂交换等分离方法收集洗脱液即为亚精胺,由于制作繁琐,产物纯度低导致目标产品价格昂贵,不适用于大规模生产;生物发酵法主要以葡萄糖或蔗糖作为碳源,通过微生物(酿酒酵母或芽孢杆菌)代谢生成亚精胺,相较于前两种制备方法,发酵法产亚精胺具有条件温和,生产成本低的优势。但该方法也存在限制性因素,如产物量少,菌株产物耐受性差等,因此开发一种绿色高效的亚精胺生物合成路径具有重要意义。
体外酶催化的合成方法可通过一步或简单几步的酶催化反应达到合成的目的。利用S-腺苷蛋氨酸脱羧酶和亚精胺合酶可以催化S-腺苷蛋氨酸和丁二胺合成亚精胺。S-腺苷蛋氨酸脱羧酶催化S-腺苷蛋氨酸形成脱羧的S-腺苷蛋氨酸,丁二胺与脱羧的S-腺苷蛋氨酸反应,在亚精胺合酶的作用下转移其氨基丙基接到丁二胺后形成亚精胺。酶法级联催化合成亚精胺存在催化时间较长的问题,原因是两种酶都以游离酶的形态存在,由S-腺苷蛋氨酸脱羧酶形成的脱羧S-腺苷蛋氨酸均匀扩散在溶液中,局部浓度较低即中间产物的传递存在问题,导致最终的反应速率受到限制。
通过构建多酶组装体在多酶之间形成底物通道,可以提高多酶级联反应的催化效率。例如Zhenjun Liu等利用SpyTag/SpyCatcher自反应系统高效稳定的共价偶联特征构建了两种蛋白支架。将酶与蛋白支架用对接蛋白进行组装得到的多酶纳米结构有效的提高了甲萘醌生物合成的催化速率和产物产量。细菌微室的外壳蛋白,在大肠杆菌中过表达会形成密集的轴向蛋白丝。在体外,同样可以自组装形成该结构。可以作为天然的蛋白支架。Guoqiang Zhang等将乙醇胺利用细菌微室的外壳蛋白EutM与结合蛋白SpyCatcher融合表达构建蛋白支架,再将酶与结合分子肽SpyTag融合表达后与蛋白支架进行组装。最终形成的蛋白质支架多酶组装系统与游离酶系统相比,提高了手性胺的合成速率。利用粘连蛋白和锚定蛋白之间的相互作用将亚精胺合酶和S-腺苷蛋氨酸脱羧酶连接,虽然构建了底物通道,但是在整个反应体系中,SpeE-SpeD双酶结合体仍处于游离状态,组装技术带来的邻近优势并未完全发挥。
发明内容
针对现有技术的不足,本发明提供了一种基于CcmK2纤维状蛋白的亚精胺合成多酶复合体的构建方法及其应用。该方法首先将S-腺苷蛋氨酸脱羧酶SpeD和亚精胺合酶SpeE进行连接形成SpeE-SpeD双酶结合体,形成底物通道,拉近底物与酶之间的空间距离,提高了中间体的传递效率。随后又用CcmK2纤维状蛋白融合结合蛋白SpyCatcher构建蛋白支架,利用蛋白支架将SpeE-SpeD双酶结合体进行二次组装得到最终的多酶复合体,充分发挥酶之间的协同作用,大大提高了亚精胺的合成效率。
一种基于CcmK2纤维状蛋白的亚精胺合成多酶复合体的构建方法,包括以下步骤:
步骤1、蛋白支架CcmK2-linker-SpyCatcher的构建
将纤维状蛋白CcmK2的C端和结合蛋白SpyCatcher融合表达,构建蛋白支架CcmK2-linker-SpyCatcher;
步骤2、SpeE-linkerⅠ-CohⅡ-linkerⅡ-SpyTag的构建
将亚精胺合酶SpeE的C端融合粘连蛋白CohesinⅡ形成SpeE-linkerⅠ-CohⅡ,再将SpeE-linkerⅠ-CohⅡ的C端融合结合分子肽SpyTag形成SpeE-linkerⅠ-CohⅡ-linkerⅡ-SpyTag;
步骤3、SpeD-linker-DocⅡ的构建
将S-腺苷蛋氨酸脱羧酶SpeD的C端融合锚定蛋白DockerinⅡ形成SpeD-linker-DocⅡ;
步骤4、亚精胺合成多酶复合体的胞外自组装
首先将纯化得到的SpeE-linkerⅠ-CohⅡ-linkerⅡ-SpyTag和SpeD-linker-DocⅡ体外自组装形成SpeE-SpeD双酶结合体,再将SpeE-SpeD双酶结合体和蛋白支架CcmK2-linker-SpyCatcher结合形成亚精胺合成多酶复合体。
作为改进的是,步骤1中纤维状蛋白CcmK2的基因片段用PCR扩增引物的核苷酸序列为EcoRⅠ-CcmK2-F和CcmK2-linker-R,分别如SEQ ID NO.8和SEQ ID NO.9所示;结合蛋白SpyCatcher的基因片段用PCR扩增引物的核苷酸序列为linker-SpyCatcher-F和SpyCatcher-HindⅢ-R,分别如SEQ ID NO.10和SEQ ID NO.11所示;纤维状蛋白CcmK2的基因片段和结合蛋白SpyCatcher的基因片段用Overlap-PCR技术融合扩增,融合扩增引物的核苷酸序列为EcoRⅠ-CcmK2-F和SpyCatcher-HindⅢ-R,分别如SEQ ID NO.8和SEQ IDNO.11所示。
作为改进的是,步骤2中亚精胺合酶SpeE的基因片段用PCR扩增引物的核苷酸序列为EcoRⅠ-SpeE-F和SpeE-linkerⅠ-R,分别如SEQ ID NO.12和SEQ ID NO.13所示;粘连蛋白CohesinⅡ的基因片段用PCR扩增引物的核苷酸序列为linkerⅠ-CohⅡ-F和CohⅡ-linkerⅡ-R,分别如SEQ ID NO.14和SEQ ID NO.15所示;结合分子肽SpyTag的基因片段用PCR扩增引物的核苷酸序列为linkerⅡ-SpyTag-F和SpyTag-HindⅢ-R,分别如SEQ ID NO.16和SEQID NO.17所示;亚精胺合酶SpeE的基因片段、粘连蛋白CohesinⅡ的基因片段和结合分子肽SpyTag的基因片段用Overlap-PCR技术融合扩增,融合扩增引物的核苷酸序列为EcoRⅠ-SpeE-F和SpyTag-HindⅢ-R,分别如SEQ ID NO.12和SEQ ID NO.17所示。
作为改进的是,步骤3中S-腺苷蛋氨酸脱羧酶SpeD的基因片段用PCR扩增引物的核苷酸序列为EcoRⅠ-SpeD-F和SpeD-linker-R,分别如SEQ ID NO.18和SEQ ID NO.19所示;锚定蛋白DockerinⅡ的基因片段用PCR扩增引物的核苷酸序列为linker-DocⅡ-F和DocⅡ-HindⅢ-R,分别如SEQ ID NO.20和SEQ ID NO.21所示;S-腺苷蛋氨酸脱羧酶SpeD的基因片段和锚定蛋白DockerinⅡ的基因片段用Overlap-PCR技术融合扩增,融合扩增引物的核苷酸序列为EcoRⅠ-SpeD-F和DocⅡ-HindⅢ-R,分别如SEQ ID NO.18和SEQ ID NO.21所示。
作为改进的是,步骤4中所述的SpeE-SpeD双酶结合体胞外自组装的条件为:SpeE-linkerⅠ-CohⅡ-linkerⅡ-SpyTag:SpeD-linker-DocⅡ的蛋白摩尔比为1:1,于30℃,200rpm,pH7.0条件下孵育0.5h;所述自组装的条件为:蛋白支架CcmK2-linker-SpyCatcher:SpeE-SpeD双酶结合体的蛋白摩尔比为3:1,于30℃,200rpm,pH7.0条件下孵育0.5h。
上述亚精胺合成多酶复合体在催化丁二胺和S-腺苷蛋氨酸合成亚精胺上的应用。
作为改进的是,反应体系中亚精胺合成多酶复合体的浓度为4μM,丁二胺的浓度为2.5g/L,S-腺苷蛋氨酸的浓度为15g/L,外添加20mM Mg2+为辅因子,反应温度为35℃,反应pH为7.0;反应液经过衍生化处理后利用高效液相色谱测量其中亚精胺浓度。
进一步改进的是,反应液衍生化的方法为:300μL反应液中加入65μL浓度为2mol/L的NaOH溶液与100μL饱和NaHCO3溶液,振荡10S后加入1mL的10g/L的丹磺酰氯-乙腈溶液,40℃下反应35min,随后再加入40μL氯水,25℃下反应30min,再将反应液在4℃下离心10min,转速3000r/min,即可。
有益效果:
与现有技术相比,本发明一种基于CcmK2纤维状蛋白的亚精胺合成多酶复合体的构建方法及其应用,首先利用锚定蛋白DockerinⅡ和粘连蛋白CohesinⅡ将S-腺苷蛋氨酸脱羧酶SpeD和亚精胺合酶SpeE进行连接形成SpeE-SpeD双酶结合体,形成底物通道,同完全游离的双酶体系比,提高了亚精胺的合成效率与产量。为了进一步加大组装技术所带来的邻近效应的优势,又选择了可以形成蛋白纤维的羧酶体细菌微室的外壳蛋白CcmK2融合结合蛋白SpyCatcher构建蛋白支架,利用结合分子肽SpyTag和SpyCatcher的自发蛋白质共价反应将蛋白支架和SpeE-SpeD双酶结合体进行二次组装得到最终的多酶复合体。多酶复合体同上述的SpeE-SpeD双酶结合体相比,又使亚精胺的合成效率和产量得到进一步的提高。
1、亚精胺合酶和S-腺苷蛋氨酸脱羧酶连接形成的SpeE-SpeD双酶结合体在两个酶之间形成底物通道,拉近底物与酶之间的空间距离,提高了中间体的传递效率。
2、多酶复合体实现了对SpeE-SpeD双酶结合体的二次组装,充分发挥了组装带来的邻近效应优势,进一步提高了双酶之间的协同作用。
3、本发明构建的亚精胺合成多酶复合体,在不影响S-腺苷蛋氨酸脱羧酶SpeD和亚精胺合酶SpeE最初酶活的基础上,改善了两个酶的酶学性质,提高酶的反应速率和稳定性。
附图说明
图1为本发明亚精胺合成多酶复合体的组装路线图;
图2为亚精胺合成多酶复合体中各组装元件的SDS-PAGE胶图;
图3为亚精胺合成多酶复合体中各组装元件以及组装后的非变性电泳凝胶图;
图4为蛋白支架CcmK2-linker-SpyCatcher的透射电镜图;
图5为亚精胺合成多酶复合体和游离酶合成亚精胺的进程曲线。
具体实施方式
以下通过具体实施方式的描述对本发明作进一步说明,但这并非是对本发明的限制,本领域技术人员根据本发明的基本思想,可以做出各种修改或改进,但是只要不脱离本发明的基本思想,均在本发明的范围之内。
实施例1蛋白支架CcmK2-linker-SpyCatcher的构建
纤维状蛋白CcmK2来源于菌株Synechocystis,其基因片段的核苷酸序列如SEQ IDNO.1所示;结合蛋白SpyCatcher来源于菌株Streptococcus pyogenes,其基因片段的核苷酸序列如SEQ ID NO.2所示。纤维状蛋白CcmK2和结合蛋白SpyCatcher的基因由擎科生物科技有限公司(南京)全基因合成获取。
通过文献调研得知在CcmK2蛋白聚合成纤维状蛋白时,CcmK2的C端位于纤维丝的外侧,因此,构建蛋白支架时在CcmK2的C端融合结合蛋白SpyCatcher,连接两种蛋白的linker氨基酸序列为:GSGSGSGSGSGS。采用Overlap-PCR的方法将CcmK2的基因与SpyCatcher的基因进行融合后克隆到载体pRSFDuet(载体pRSFDuet为市售商品)上,获得重组质粒pRSFDuet-CcmK2-linker-SpyCatcher,具体的构建方法是:1、在引物设计时将linker的序列分别添加到CcmK2基因的下引CcmK2-linker-R与SpyCatcher基因的上引linker-SpyCatcher-F中。以含有CcmK2基因的质粒为模板,用CcmK2基因的上引EcoRⅠ-CcmK2-F与CcmK2基因的下引CcmK2-linker-R扩增得到C端带有linker的CcmK2基因片段,利用DNA纯化试剂盒(TianGen)纯化CcmK2基因片段备用。以同样的方法,以含有SpyCatcher基因的质粒为模板,用SpyCatcher基因的上引linker-SpyCatcher-F与SpyCatcher基因的下引SpyCatcher-HindⅢ-R扩增得到N端带有linker的SpyCatcher基因片段,利用DNA纯化试剂盒(TianGen)纯化SpyCatcher基因片段备用。以EcoRⅠ-CcmK2-F为上引,以SpyCatcher-HindⅢ-R为下引,用Overlap-PCR的方法将CcmK2的基因与SpyCatcher的基因进行融合,利用DNA纯化试剂盒(TianGen)纯化CcmK2-linker-SpyCatcher基因片段。2、用限制性内切酶EcoRⅠ/HindⅢ双酶切pRSFDuet空载,胶回收试剂盒(TianGen)回收目的基因后备用。用限制性内切酶EcoRⅠ/HindⅢ双酶切CcmK2-linker-SpyCatcher基因片段,99℃10min灭活内切酶。3、将纯化后得到的CcmK2-linker-SpyCatcher基因片段及线性化的pRSFDuet空载,按照T4DND Ligase的说明书比例添加至重组体系中,25℃水浴1h后得到pRSFDuet-CcmK2-linker-SpyCatcher。经过转化测序得到阳性转座子后,导入大肠杆菌BL21(DE3)中,完成蛋白支架CcmK2-linker-SpyCatcher的构建。
实施例2 SpeE-linkerⅠ-CohⅡ-linkerⅡ-SpyTag的构建
亚精胺合酶SpeE来源于菌株Escherichia coli,其基因片段核苷酸序列如SEQ IDNO.3所示;粘连蛋白CohesinⅡ来源于菌株Clostridium cellulolyticum,其基因片段核苷酸序列如SEQ ID NO.4所示;结合分子肽SpyTag来源于菌株Streptococcus pyogenes,其基因片段核苷酸序列如SEQ ID NO.5所示。亚精胺合酶SpeE、粘连蛋白CohesinⅡ和结合分子肽SpyTag的基因由擎科生物科技有限公司(南京)全基因合成获取。
在亚精胺合酶SpeE的C端融合粘连蛋白CohesinⅡ,用以和SpeD-linker-DocⅡ连接形成SpeE-SpeD双酶结合体,连接SpeE和CohesinⅡ两种蛋白的linkerⅠ氨基酸序列为:GGGGSGGGGS。再在SpeE-linkerⅠ-CohⅡ的C端融合结合分子肽SpyTag,用以将SpeE-SpeD双酶结合体组装到蛋白支架CcmK2-linker-SpyCatcher上,连接SpeE-linkerⅠ-CohⅡ和SpyTag两种蛋白的linkerⅡ氨基酸序列为:GSGGSGVD。采用Overlap-PCR的方法将SpeE的基因、CohesinⅡ的基因以及SpyTag的基因进行融合后克隆到载体pETDuet(载体pETDuet为市售商品)上,获得重组质粒pETDuet-SpeE-linkerⅠ-CohⅡ-linkerⅡ-SpyTag,具体的构建方法是:1、在引物设计时将linkerⅠ的序列分别添加到SpeE基因的下引SpeE-linkerⅠ-R与CohesinⅡ基因的上引linkerⅠ-CohⅡ-F中,将linkerⅡ的序列分别添加到CohesinⅡ基因的下引CohⅡ-linkerⅡ-R与SpyTag基因的上引linkerⅡ-SpyTag-F中。以含有SpeE基因的质粒为模板,用SpeE基因的上引EcoRⅠ-SpeE-F与SpeE基因的下引SpeE-linkerⅠ-R扩增得到C端带有linkerⅠ的SpeE基因片段,利用DNA纯化试剂盒(TianGen)纯化SpeE基因片段备用;以含有CohesinⅡ基因的质粒为模板,用CohesinⅡ基因的上引linkerⅠ-CohⅡ-F与CohesinⅡ基因的下引CohⅡ-linkerⅡ-R扩增得到N端带有linkerⅠ,C端带有linkerⅡ的CohesinⅡ基因片段,利用DNA纯化试剂盒(TianGen)纯化CohesinⅡ基因片段备用;以含有SpyTag基因的质粒为模板,用SpyTag基因的上引linkerⅡ-SpyTag-F与SpyTag基因的下引SpyTag-HindⅢ-R扩增得到N端带有linkerⅡ的SpyTag基因片段,利用DNA纯化试剂盒(TianGen)纯化SpyTag基因片段备用。以EcoRⅠ-SpeE-F为上引,以SpyTag-HindⅢ-R为下引,用Overlap-PCR的方法将SpeE的基因、CohesinⅡ基因以及SpyCatcher的基因进行融合,利用DNA纯化试剂盒(TianGen)纯化SpeE-linkerⅠ-CohⅡ-linkerⅡ-SpyTag基因片段。2、用限制性内切酶EcoRⅠ/HindⅢ双酶切pETDuet空载,胶回收试剂盒(TianGen)回收目的基因后备用。用限制性内切酶EcoRⅠ/HindⅢ双酶切SpeE-linkerⅠ-CohⅡ-linkerⅡ-SpyTag基因片段,99℃10min灭活内切酶。3、将纯化后得到的SpeE-linkerⅠ-CohⅡ-linkerⅡ-SpyTag基因片段及线性化的pETDuet空载,按照T4DND Ligase的说明书比例添加至重组体系中,25℃水浴1h后得到pETDuet-SpeE-linkerⅠ-CohⅡ-linkerⅡ-SpyTag。经过转化测序得到阳性转座子后,导入大肠杆菌BL21(DE3)中,完成SpeE-linkerⅠ-CohⅡ-linkerⅡ-SpyTag的构建。
实施例3 SpeD-linker-DocⅡ的构建
S-腺苷蛋氨酸脱羧酶SpeD来源于玉米,其基因片段核苷酸序列如SEQ ID NO.6所示;锚定蛋白DockerinⅡ来源于菌株Clostridium cellulolyticum,其基因片段核苷酸序列如SEQ ID NO.7所示。S-腺苷蛋氨酸脱羧酶SpeD和锚定蛋白DockerinⅡ的基因由擎科生物科技有限公司(南京)全基因合成获取。
在S-腺苷蛋氨酸脱羧酶SpeD的C端融合锚定蛋白DockerinⅡ,用以和SpeE-linkerⅠ-CohⅡ-linkerⅡ-SpyTag连接形成SpeE-SpeD双酶结合体,连接SpeD和DockerinⅡ两种蛋白的linker氨基酸序列为:GGGGSGGGGS。采用Overlap-PCR的方法将SpeD的基因和DockerinⅡ的基因进行融合后克隆到载体pRSFDuet上,获得重组质粒pRSFDuet-SpeD-linker-DocⅡ,具体的构建方法是:1、在引物设计时将linker的序列分别添加到SpeD基因的下引SpeD-linker-R与DockerinⅡ基因的上引linker-DocⅡ-F中。以含有SpeD基因的质粒为模板,用SpeD基因的上引EcoRⅠ-SpeD-F与SpeD基因的下引SpeD-linker-R扩增得到C端带有linker的SpeD基因片段,利用DNA纯化试剂盒(TianGen)纯化SpeD基因片段备用。以同样的方法,以含有DockerinⅡ基因的质粒为模板,用DockerinⅡ基因的上引linker-DocⅡ-F与DockerinⅡ基因的下引DocⅡ-HindⅢ-R扩增得到N端带有linker的DockerinⅡ基因片段,利用DNA纯化试剂盒(TianGen)纯化DockerinⅡ基因片段备用。以EcoRⅠ-SpeD-F为上引,以DocⅡ-HindⅢ-R为下引,用Overlap-PCR的方法将SpeD的基因和DockerinⅡ基因进行融合,利用DNA纯化试剂盒(TianGen)纯化SpeD-linker-DocⅡ基因片段。2、用限制性内切酶EcoRⅠ/HindⅢ双酶切pRSFDuet空载,胶回收试剂盒(TianGen)回收目的基因后备用。用限制性内切酶EcoRⅠ/HindⅢ双酶切SpeD-linker-DocⅡ基因片段,99℃10min灭活内切酶。3、将纯化后得到的SpeD-linker-DocⅡ基因片段及线性化的pRSFDuet空载,按照T4DND Ligase的说明书比例添加至重组体系中,25℃水浴1h后得到pRSFDuet-SpeD-linker-DocⅡ。经过转化测序得到阳性转座子后,导入大肠杆菌BL21(DE3)中,完成SpeD-linker-DocⅡ的构建。
实施例4亚精胺合成多酶复合体中各酶元件的SDS-PAGE分析
制备构建得到的蛋白支架CcmK2-linker-SpyCatcher、亚精胺合酶SpeE-linkerⅠ-CohⅡ-linkerⅡ-SpyTag以及S-腺苷蛋氨酸脱羧酶SpeD-linker-DocⅡ的种子液,培养基为LB培养基,在37℃、200rpm下培养6-7h,将种子液以体积分数2%接种于装有100mlLB的发酵培养基中。蛋白支架CcmK2-linker-SpyCatcher菌株的培养基在37℃、200rpm下培养至OD为0.6,以1‰的添加量添加诱导剂IPTG,在18℃、200rpm下诱导18h后结束发酵。亚精胺合酶SpeE-linkerⅠ-CohⅡ-linkerⅡ-SpyTag菌株的培养基在37℃、200rpm下培养至OD为0.6,以1‰的添加量添加诱导剂IPTG,在25℃、200rpm下诱导16h后结束发酵。S-腺苷蛋氨酸脱羧酶SpeD-linker-DocⅡ菌株的培养基在37℃、200rpm下培养至OD为0.8,以1‰的添加量添加诱导剂IPTG,在18℃、200rpm下诱导20h后结束发酵。收集发酵液。对发酵液进行8000g离心后收集菌体,用蒸馏水洗涤两次后,重悬于25mL PBS缓冲液(PH 6.0-11.0)中,超声破碎后进行8000g离心,收集上清即为各酶元件的粗酶液,4℃贮存备用。因各酶元件上带有His标签,利用镍柱在AKTA蛋白纯化仪器上纯化各酶元件得到蛋白支架CcmK2-linker-SpyCatcher、亚精胺合酶SpeE-linkerⅠ-CohⅡ-linkerⅡ-SpyTag以及S-腺苷蛋氨酸脱羧酶SpeD-linker-DocⅡ的纯酶。分别取各纯酶15μL,用4X protein SDS loading buffer(TaKARa)完成热变性后,进行SDS-PAGE凝胶电泳分析,具体分析结果如图2所示。
实施例5亚精胺合成多酶复合体的胞外自组装与非变性凝胶电泳分析
用考马斯亮蓝法测出各个酶元件的蛋白浓度后,将SpeE-linkerⅠ-CohⅡ-linkerⅡ-SpyTag蛋白和SpeD-linker-DocⅡ蛋白按照1:1的蛋白摩尔比混合,于30℃、200rpm条件下孵育0.5h完成SpeE-SpeD双酶结合体的胞外自组装;再将蛋白支架CcmK2-linker-SpyCatcher与SpeE-SpeD双酶结合体按照3:1的蛋白摩尔比混合,于30℃、200rpm条件下孵育0.5h完成亚精胺合成多酶复合体的胞外自组装。分别取CcmK2-linker-SpyCatcher蛋白液、SpeE-linkerⅠ-CohⅡ-linkerⅡ-SpyTag蛋白液、SpeD-linker-DocⅡ蛋白液、SpeE-linkerⅠ-CohⅡ-linkerⅡ-SpyTag蛋白与SpeD-linker-DocⅡ蛋白组装液、CcmK2-linker-SpyCatcher蛋白与SpeE-linkerⅠ-CohⅡ-linkerⅡ-SpyTag蛋白组装液各15μL,进行非变性凝胶电泳分析,与单一组装元件蛋白液相比,混合组装元件的组装液中都出现了组装形成的新条带,具体分析结果如图3所示。
实施例6亚精胺合成多酶复合体合成亚精胺
反应体系中各反应物的浓度为2.5g/L的丁二胺,15g/L的S-腺苷蛋氨酸,20mM的Mg2+,另外,反应体系的最终酶浓度为4μM。
按照反应体系的最终反应物浓度,首先将各种反应物混合用PBS缓冲液(pH 6.0-11.0)配置反应物母液,之后用2M的NaOH溶液调节母液pH到7.0,之后将实施例5得到的亚精胺合成多酶复合体、SpeE-SpeD双酶结合体以及游离的亚精胺合成酶和S-腺苷蛋氨酸脱羧酶分别加入到母液中直至酶的终浓度达到4μM,剩余体积用PBS缓冲液(pH 6.0-11.0)补齐。反应体系于35℃,200rpm条件下进行反应。每隔1h、2h、4h、6h取样,其中,亚精胺合成酶可参照:Liu Y,Guo X,Wang X,et al.A two-enzyme cascade system for the bio-production of spermidine from putrescine[J].Molecular Catalysis,2021,504(1):111439.,所述S-腺苷蛋氨酸脱羧酶的来源可参照:Liu Y,Guo X,Wang X,et al.A two-enzyme cascade system for the bio-production of spermidine from putrescine[J].Molecular Catalysis,2021,504(1):111439.。
实施例7亚精胺的衍生化反应和液相检测
产物亚精胺需经衍生化反应,之后才能用高效液相色谱法检测其产量。反应液衍生化反应的具体操作为:300μL反应液中加入65μL浓度为2mol/L的NaOH溶液与100μL饱和NaHCO3溶液,振荡10S后加入1mL的10g/L的丹磺酰氯-乙腈溶液,40℃下反应35min,随后再加入40μL氯水,25℃下反应30min,再将反应液在4℃下离心10min,转速3000r/min。
衍生化后的样品取上清液过膜,利用高效液相色谱法检测亚精胺浓度,使用的色谱柱为AlltimaTM C18 5u,使用的流动相为A:超纯水,B:乙腈,采用梯度洗脱,具体程序如下表1所示:
表1 梯度洗脱程序
Figure BDA0003693648180000081
续表1
Figure BDA0003693648180000091
流速为1.0mL/min,检测波长为254nm,柱温箱温度为30℃。
经高效液相色谱方法检测后,结果如图5所示。从图中可以看到,反应结束后,SpeE-SpeD双酶结合体体系SpeE-SpeD的亚精胺产量高于游离酶体系SpeE、SpeD的产量,利用CcmK2蛋白支架二次组装SpeE-SpeD双酶结合体形成的多酶复合体体系CcmK2-SpeE-SpeD的亚精胺产量又高于前两者;并且在反应2h后到反应结束多酶复合体体系的反应速率高于游离酶体系,而在反应4h后多酶复合体体系的反应速率又表现出高于SpeE-SpeD双酶结合体体系,表明多酶复合体体系提高了酶的稳定性,保持酶的活力。
序列表
<110> 南京工业大学
<120> 一种基于CcmK2纤维状蛋白的亚精胺合成多酶复合体的构建方法及其应用
<160> 21
<170> SIPOSequenceListing 1.0
<210> 1
<211> 315
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
atgagcatcg cagtgggtat gattgaaacc cgtggttttc cggcagttgt tgaagcagca 60
gatagcatgg ttaaagcagc acgtgttaca ctggttggtt atgaaaaaat tggtagcggt 120
cgtgttaccg ttattgttcg tggtgatgtt agcgaagttc aggcaagcgt tagcgcaggt 180
attgaagcag caaatcgtgt taatggtggt gaagttctga gcacccatat tattgcacgt 240
ccgcatgaaa atctggaata tgttctgccg attcgttata ccgaagaagt tgaacagttt 300
cgtacctatc tcgag 315
<210> 2
<211> 360
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
ggcgggagcg ctatggtgga caccctgtcg ggcctctcta gtgaacaggg gcaaagcggc 60
gatatgacta tcgaagaaga ttcagcgacg catattaagt tttcgaagcg cgatgaagat 120
gggaaggaac tcgcaggagc aactatggag ctgcgtgaca gtagcgggaa gacaatttcg 180
acctggatta gtgatggcca agttaaagac ttttatctgt atccaggcaa atataccttc 240
gtagaaaccg cagcacctga tggttatgaa gtcgcgaccg ctattacttt tacagtgaac 300
gagcaggggc aggtcaccgt caatgggaaa gctacgaaag gggatgccca tattgactaa 360
<210> 3
<211> 867
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
atggccgaaa aaaaacagtg gcatgaaacg ctacacgacc agtttgggca gtactttgcg 60
gtagataacg ttctgtatca tgaaaagacc gatcaccagg atctgatcat ttttgagaac 120
gctgcatttg gtcgcgtaat ggcgctggat ggcgtagtac aaaccaccga gcgcgacgag 180
tttatctatc atgagatgat gacccatgtt ccgctactgg cccatggtca cgcgaaacat 240
gtgctgatta tcggcggcgg cgacggtgcc atgctgcgtg aagtaacccg acataaaaac 300
gttgagtcaa tcacgatggt ggaaatcgat gcgggtgtcg tatcgttctg ccgtcagtat 360
ctacccaacc ataacgccgg tagctacgac gatccgcgct ttaagctggt gatcgacgat 420
ggcgtcaatt tcgttaatca aaccagccag acctttgatg tcattatctc cgactgcacc 480
gatcctatcg gtcccggcga aagccttttc acttcggcat tttatgaagg ctgcaaacgt 540
tgcctgaatc ctggcggtat cttcgtcgca caaaacggcg tctgcttttt acagcaggaa 600
gaagccatcg acagccatcg caaactcagc cattacttca gcgacgttgg cttttatcag 660
gcggcgatcc cgacctatta cggcggtatc atgacttttg catgggcgac agataacgac 720
gccttacgcc atctctcaac cgaaattatt caggcgcgtt ttctcgcctc tggcctgaaa 780
tgccgttatt acaatccggc aatccatacg gcagcttttg ccttacctca gtatctgcaa 840
gacgcactgg cttcacagcc gtcctaa 867
<210> 4
<211> 531
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
gagttccaca tggaagcaac cccgagcatt gaaatggtgc tggataaaac cgaagttcat 60
gtgggcgatg ttattaccgc aaccattaaa gtgaataata tccgtaaact ggccggctat 120
cagctgaata ttaaattcga tccggaagtt ctgcagccgg ttgatccggc aaccggcgaa 180
gagttcaccg ataaaagcat gccggtgaat cgtgtgctgc tgaccaatag taaatatggc 240
ccgaccccgg tggccggcaa tgatattaaa agcggcatta ttaacttcgc aaccggctat 300
aataatctga ccgcctataa aagcagcggc attgatgaac ataccggtat tattggcgaa 360
attggcttca aagttctgaa aaaacagaat accagtatcc gcttcgaaga taccctgagt 420
atgccgggtg caattagcgg taccagcctg ttcgattggg atgcagaaac cattaccggt 480
tatgaagtga ttcagccgga tctgattgtt gtggaagcag ccatggcata a 531
<210> 5
<211> 63
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
atgggctcag gtgcacatat cgtcatggtt gatgcgtaca aaccgaccaa aggcagcgga 60
taa 63
<210> 6
<211> 1200
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
atggcagttc tgagcgcagc agatgcaagt ccggtgagtg ccattggttt tgaaggttat 60
gaaaaacgtc tggaaattac ctttagtgaa gcaccggttt ttgttgatcc gcatggtcgc 120
ggtctgcgcg ccctgtcacg tgctcagatt gatagcgttc tggatctggc ccgttgtacc 180
attgttagcg aactgagtaa taaggatttt gatagttacg tgctgagtga aagcagcctg 240
tttatctatc cgctgaaaat tgttattaag acctgtggca ccaccaaact gctgctgacc 300
attccgcgta ttctggaact ggcagaagaa ctgagtatgc cgctggcagc cgttaaatat 360
agtcgtggca cctttatttt tccgggtgca cagccggcac cgcatcgcag ttttagtgaa 420
gaagttgccg ccctgaatcg ttattttggc ggtctgaaaa gtggcggtaa tgcatacgtt 480
attggtgacc cggcacgtcc gggccagaaa tggcatgttt tctatgcaac cgaatatccg 540
gaacagccga tggttaatct ggaaatgtgc atgaccggcc tggataaaaa gaaagcctgt 600
gttttcttta agaccaatgc agatggtaat accacctgtg caaaagaaat gaccaaactg 660
agcggtatta gtgaaattat tccggaaatg gaaatctgcg attttgattt tgaaccgtgt 720
ggttatagta tgaatgcaat tcatggcagt gcctttagta ccattcatgt taccccggaa 780
gatggtttta gttatgcaag ttatgaagtt atgggtctgg atgccaccgc actgagctat 840
ggcgatctgg tgaaacgtgt tctgcgttgc tttggcccga gtgaattttc tgtggccgtt 900
accatttttg gtggccgcgg tcatgccggt acctggggta aagccctggg cgccgaagtg 960
tatgattgca ataatatggt tgaacaggaa ctgccgggcg gcggcctgct ggtttatcag 1020
agcttttgtg ccgcagaaga tgccgtggcc accagcccga aaagcgtttt tcattgtttt 1080
gatggcgaaa atgttgaaag tgcaccgccg ccgatgaaaa aagattataa actggccaat 1140
ctgctgtgtt gggaagaaga agcagatgca atggaagaaa aagccggtgt tctggatgaa 1200
<210> 7
<211> 495
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
ctgcagaata aaccggtgat tgaaggctat aaagttagtg gctatattct gccggacttc 60
agcttcgatg caaccgttgc cccgctggtg aaagcaggct tcaaagttga aattgtgggt 120
accgaactgt atgcagtgac cgatgcaaat ggctacttcg aaattaccgg cgtgccggca 180
aatgcaagcg gctataccct gaaaattagc cgcgcaacct atctggatcg cgtgattgcc 240
aatgttgtgg ttaccggcga taccagcgtg agtaccagtc aggcaccgat tatgatgtgg 300
gttggcgata ttgtgaaaga taatagtatt aacctgctgg atgttgcaga agttattcgc 360
tgcttcaatg ccaccaaagg tagcgccaat tatgttgaag aactggatat taatcgcaat 420
ggtgcaatta atatgcagga tattatgatt gtgcacaaac acttcggtgc aaccagtagc 480
gattatgatg cacag 495
<210> 8
<211> 31
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
ccggaattcc atgagcatcg cagtgggtat g 31
<210> 9
<211> 64
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
agaaccagaa ccagaaccag aaccagaacc agaaccctcg agataggtac gaaactgttc 60
aact 64
<210> 10
<211> 52
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
ggttctggtt ctggttctgg ttctggttct ggttctggcg ggagcgctat gg 52
<210> 11
<211> 35
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
cccaagcttt tagtcaatat gggcatcccc tttcg 35
<210> 12
<211> 32
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
ccggaattca tggccgaaaa aaaacagtgg ca 32
<210> 13
<211> 51
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
tgatccgcca cctccggacc cgcctccacc ggacggctgt gaagccagtg c 51
<210> 14
<211> 52
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
ggtggaggcg ggtccggagg tggcggatca ggatccgagt tccacatgga ag 52
<210> 15
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
gtcgacaccg gatccccctg aacctgccat ggctgcttcc ac 42
<210> 16
<211> 45
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 16
ggttcagggg gatccggtgt cgacggctca ggtgcacata tcgtc 45
<210> 17
<211> 30
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 17
cccaagcttt tatccgctgc ctttggtcgg 30
<210> 18
<211> 30
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 18
ccggaattct atggcagttc tgagcgcagc 30
<210> 19
<211> 55
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 19
gctaccgcca ccgccgctac caccaccacc ttcatccaga acaccggctt tttct 55
<210> 20
<211> 53
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 20
ggtggtggtg gtagcggcgg tggcggtagc ggatccctgc agaataaacc ggt 53
<210> 21
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 21
cccaagcttg ttactgtgca tcataatcgc tact 34

Claims (8)

1.一种基于CcmK2纤维状蛋白的亚精胺合成多酶复合体的构建方法,其特征在于,包括以下步骤:
步骤1、蛋白支架CcmK2-linker-SpyCatcher的构建
将纤维状蛋白CcmK2的C端和结合蛋白SpyCatcher融合表达,构建蛋白支架CcmK2-linker-SpyCatcher,其中,编码纤维状蛋白CcmK2的核苷酸序列如SEQ ID NO.1所示,编码结合蛋白SpyCatcher的核苷酸序列如SEQ ID NO.2所示,在CcmK2的C端融合结合蛋白SpyCatcher,连接两种蛋白的linker氨基酸序列为:GSGSGSGSGSGS;
步骤2、SpeE-linkerⅠ-CohⅡ-linkerⅡ-SpyTag的构建
将亚精胺合酶SpeE的C端融合粘连蛋白CohesinⅡ形成SpeE-linkerⅠ-CohⅡ,再将SpeE-linkerⅠ-CohⅡ的C端融合结合分子肽SpyTag形成SpeE-linkerⅠ-CohⅡ-linkerⅡ-SpyTag,其中,编码亚精胺合酶SpeE的核苷酸序列如SEQ ID NO.3所示,编码粘连蛋白CohesinⅡ的核苷酸序列如SEQ ID NO.4所示,编码结合分子肽SpyTag的核苷酸序列如SEQID NO.5所示,连接SpeE和CohesinⅡ两种蛋白的linkerⅠ氨基酸序列为:GGGGSGGGGS,连接SpeE-linkerⅠ-CohⅡ和SpyTag两种蛋白的linkerⅡ氨基酸序列为:GSGGSGVD;
步骤3、SpeD-linker-DocⅡ的构建
将S-腺苷蛋氨酸脱羧酶SpeD的C端融合锚定蛋白DockerinⅡ形成SpeD-linker-DocⅡ,其中,编码S-腺苷蛋氨酸脱羧酶SpeD的核苷酸序列如SEQ ID NO.6所示,编码锚定蛋白DockerinⅡ的核苷酸序列如SEQ ID NO.7所示,融合SpeD和DockerinⅡ所用的linker氨基酸序列为:GGGGSGGGGS;
步骤4、亚精胺合成多酶复合体的胞外自组装
首先将纯化得到的SpeE-linkerⅠ-CohⅡ-linkerⅡ-SpyTag和SpeD-linker-DocⅡ体外自组装形成SpeE-SpeD双酶结合体,再将SpeE-SpeD双酶结合体和蛋白支架CcmK2-linker-SpyCatcher结合形成亚精胺合成多酶复合体。
2.根据权利要求1所述的一种基于CcmK2纤维状蛋白的亚精胺合成多酶复合体的构建方法,其特征在于,步骤1中纤维状蛋白CcmK2的基因片段用PCR扩增引物的核苷酸序列为EcoRⅠ-CcmK2-F和CcmK2-linker-R,分别如SEQ ID NO.8和SEQ ID NO.9所示;结合蛋白SpyCatcher的基因片段用PCR扩增引物的核苷酸序列为linker-SpyCatcher-F和SpyCatcher-HindⅢ-R,分别如SEQ ID NO.10和SEQ ID NO.11所示;纤维状蛋白CcmK2的基因片段和结合蛋白SpyCatcher的基因片段用Overlap-PCR技术融合扩增,融合扩增引物的核苷酸序列为EcoRⅠ-CcmK2-F和SpyCatcher-HindⅢ-R,分别如SEQ ID NO.8和SEQ IDNO.11所示。
3.根据权利要求1所述的一种基于CcmK2纤维状蛋白的亚精胺合成多酶复合体的构建方法,其特征在于,步骤2中亚精胺合酶SpeE的基因片段用PCR扩增引物的核苷酸序列为EcoRⅠ-SpeE-F和SpeE-linkerⅠ-R,分别如SEQ ID NO.12和SEQ ID NO.13所示;粘连蛋白CohesinⅡ的基因片段用PCR扩增引物的核苷酸序列为linkerⅠ-CohⅡ-F和CohⅡ-linkerⅡ-R,分别如SEQ ID NO.14和SEQ ID NO.15所示;结合分子肽SpyTag的基因片段用PCR扩增引物的核苷酸序列为linkerⅡ-SpyTag-F和SpyTag-HindⅢ-R,分别如SEQ ID NO.16和SEQID NO.17所示;亚精胺合酶SpeE的基因片段、粘连蛋白CohesinⅡ的基因片段和结合分子肽SpyTag的基因片段用Overlap-PCR技术融合扩增,融合扩增引物的核苷酸序列为EcoRⅠ-SpeE-F和SpyTag-HindⅢ-R,分别如SEQ ID NO.12和SEQ ID NO.17所示。
4.根据权利要求1所述的一种基于CcmK2纤维状蛋白的亚精胺合成多酶复合体的构建方法,其特征在于,步骤3中S-腺苷蛋氨酸脱羧酶SpeD的基因片段用PCR扩增引物的核苷酸序列为EcoRⅠ-SpeD-F和SpeD-linker-R,分别如SEQ ID NO.18和SEQ ID NO.19所示;锚定蛋白DockerinⅡ的基因片段用PCR扩增引物的核苷酸序列为linker-DocⅡ-F和DocⅡ-HindⅢ-R,分别如SEQ ID NO.20和SEQ ID NO.21所示;S-腺苷蛋氨酸脱羧酶SpeD的基因片段和锚定蛋白DockerinⅡ的基因片段用Overlap-PCR技术融合扩增,融合扩增引物的核苷酸序列为EcoRⅠ-SpeD-F和DocⅡ-HindⅢ-R,分别如SEQ ID NO.18和SEQ ID NO.21所示。
5.根据权利要求1所述的一种基于CcmK2纤维状蛋白的亚精胺合成多酶复合体的构建方法,其特征在于,步骤4中所述的SpeE-SpeD双酶结合体胞外自组装的条件为:SpeE-linkerⅠ-CohⅡ-linkerⅡ-SpyTag:SpeD-linker-DocⅡ的蛋白摩尔比为1:1,于30℃,200rpm,pH7.0条件下孵育0.5h;所述的亚精胺合成多酶复合体自组装的条件为:蛋白支架CcmK2-linker-SpyCatcher:SpeE-SpeD双酶结合体的蛋白摩尔比为3:1,于30℃,200rpm,pH7.0条件下孵育0.5h。
6.基于权利要求1-5中任一种所述的亚精胺合成多酶复合体在催化丁二胺和S-腺苷蛋氨酸合成亚精胺上的应用。
7.根据权利要求6所述的应用,其特征在于,反应体系中亚精胺合成多酶复合体的浓度为4μM,丁二胺的浓度为2.5g/L,S-腺苷蛋氨酸的浓度为15g/L,外添加20mM Mg 2+为辅因子,反应温度为35℃,反应pH为7.0;反应液经过衍生化处理后利用高效液相色谱测量其中亚精胺浓度。
8.根据权利要求7所述的应用,其特征在于,反应液衍生化的方法为:300μL反应液中加入65μL浓度为2mol/L的NaOH溶液与100μL饱和NaHCO3溶液,振荡10S后加入1mL的10g/L的丹磺酰氯-乙腈溶液,40℃下反应35min,随后再加入40μL氯水,25℃下反应30min,再将反应液在4℃下离心10min,转速3000r/min,即可。
CN202210672219.0A 2022-06-14 2022-06-14 一种基于CcmK2纤维状蛋白的亚精胺合成多酶复合体的构建方法及其应用 Active CN114958894B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210672219.0A CN114958894B (zh) 2022-06-14 2022-06-14 一种基于CcmK2纤维状蛋白的亚精胺合成多酶复合体的构建方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210672219.0A CN114958894B (zh) 2022-06-14 2022-06-14 一种基于CcmK2纤维状蛋白的亚精胺合成多酶复合体的构建方法及其应用

Publications (2)

Publication Number Publication Date
CN114958894A CN114958894A (zh) 2022-08-30
CN114958894B true CN114958894B (zh) 2023-05-30

Family

ID=82962688

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210672219.0A Active CN114958894B (zh) 2022-06-14 2022-06-14 一种基于CcmK2纤维状蛋白的亚精胺合成多酶复合体的构建方法及其应用

Country Status (1)

Country Link
CN (1) CN114958894B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111019960A (zh) * 2019-11-26 2020-04-17 南京工业大学 一种酶法制备亚精胺的方法
CN112575022A (zh) * 2020-12-24 2021-03-30 齐鲁工业大学 一种体外人工脚手架蛋白介导海藻糖多酶复合体的构建方法
CN112877347A (zh) * 2021-01-28 2021-06-01 华南理工大学 一种多酶复合体及其构建方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10913777B2 (en) * 2017-05-22 2021-02-09 The Regents Of The University Of California In vitro assembly of bacterial microcompartments
WO2019216930A2 (en) * 2017-07-25 2019-11-14 Regents Of The University Of Minnesota Self-assembling protein scaffolds and methods
US11130788B2 (en) * 2018-05-14 2021-09-28 The Regents Of The University Of California Modified bacterial microcompartment shell proteins

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111019960A (zh) * 2019-11-26 2020-04-17 南京工业大学 一种酶法制备亚精胺的方法
CN112575022A (zh) * 2020-12-24 2021-03-30 齐鲁工业大学 一种体外人工脚手架蛋白介导海藻糖多酶复合体的构建方法
CN112877347A (zh) * 2021-01-28 2021-06-01 华南理工大学 一种多酶复合体及其构建方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Protein scaffolds: A tool for multi-enzyme assembly;Shubhada Gad等;Biotechnology reports;第32卷;全文 *
利用SpyTag/SpyCatcher构建胞内自组装多酶复合体实现高效生物合成;刘璐;殷亮;黄飞;张勇;刘倩;冯雁;;中国生物工程杂志(第07期);全文 *
集胞蓝细菌PCC 6803中CcmK2蛋白多克隆抗体的制备与检测;李盼;支瑶;汪方奎;陈雯莉;;华中农业大学学报(第01期);全文 *

Also Published As

Publication number Publication date
CN114958894A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
CN105331642B (zh) 一种利用L-谷氨酸氧化酶催化生产α-酮戊二酸的方法
JP2022535648A (ja) ゲンチオオリゴ糖の製造における耐熱性β-グルコシダーゼの使用
CN112831488A (zh) 一种谷氨酸脱羧酶及γ-氨基丁酸高产菌株
CN104178533A (zh) 一种r-3-氨基丁醇的生产方法
CN112358530B (zh) 多肽标签、高度可溶性的重组腈水解酶及其在医药化学品合成中的应用
CN107828752B (zh) 一种蔗糖淀粉酶、制备方法及在生产α-熊果苷中的应用
CN112575022A (zh) 一种体外人工脚手架蛋白介导海藻糖多酶复合体的构建方法
CN114958894B (zh) 一种基于CcmK2纤维状蛋白的亚精胺合成多酶复合体的构建方法及其应用
CN109679978B (zh) 一种用于制备l-2-氨基丁酸的重组共表达体系及其应用
CN108424937B (zh) 一种酶法合成丹参素的方法
CN114891707B (zh) 重组菌株及其全细胞催化生产胆红素的方法
CN107988131B (zh) 一种高产α-酮-γ-甲硫基丁酸的方法
CN113061562B (zh) 一种利用钝齿棒杆菌发酵生产1,4-丁二胺的方法
CN110760533B (zh) 一种编码谷氨酸脱羧酶的基因、重组工程菌及其应用
CN109971803A (zh) 一种l-赤藓酮糖和赤藓糖醇生产方法
CN116855467A (zh) 一种化学-酶偶联方法用于合成麦角硫因
CN110872595B (zh) 抗酸表达盒及其在发酵产有机酸中的应用
CN110452920A (zh) 一种基因工程菌及以d,l-扁桃酸为底物制备l-苯甘氨酸的方法
CN110004119B (zh) ε-酮酯还原酶突变体及其催化合成(R)-α-硫辛酸前体的应用
CN112280756B (zh) 异亮氨酸羟化酶突变体及在(2s,3r,4s)-4-羟基异亮氨酸合成中的应用
CN118620880A (zh) 一种酶组合物及其在制备l-正缬氨酸中的应用
CN118374423A (zh) 一种重组工程菌株及其应用
CN117965581A (zh) 编码d-阿洛酮糖-3-差向异构酶的dna分子及其应用方法、重组载体
CN118374468A (zh) 一种转氨酶突变体及其在(s)-苯并二氢吡喃-4-胺制备上的应用
CN118685438A (zh) 一种基于nad(h)辅因子循环系统合成d-木糖醇的方法及其专用工程菌

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant