CN116333161A - 一种covid-19亚单位疫苗及其制备方法与应用 - Google Patents

一种covid-19亚单位疫苗及其制备方法与应用 Download PDF

Info

Publication number
CN116333161A
CN116333161A CN202210977641.7A CN202210977641A CN116333161A CN 116333161 A CN116333161 A CN 116333161A CN 202210977641 A CN202210977641 A CN 202210977641A CN 116333161 A CN116333161 A CN 116333161A
Authority
CN
China
Prior art keywords
fusion protein
vaccine
seq
rbd
vaccine composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210977641.7A
Other languages
English (en)
Other versions
CN116333161B (zh
Inventor
李展如
刘洪恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Keguanda Pharmaceutical Technology Co ltd
Original Assignee
Guangdong Keguanda Pharmaceutical Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Keguanda Pharmaceutical Technology Co ltd filed Critical Guangdong Keguanda Pharmaceutical Technology Co ltd
Priority to CN202210977641.7A priority Critical patent/CN116333161B/zh
Publication of CN116333161A publication Critical patent/CN116333161A/zh
Application granted granted Critical
Publication of CN116333161B publication Critical patent/CN116333161B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/385Haptens or antigens, bound to carriers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6056Antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Virology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明通过基因工程手段将新型冠状病毒(SARS‑CoV‑2)刺突蛋白受体结合结构域(RBD)与人免疫球蛋白hFc域或His标签结合得到的融合蛋白RBD‑hFc/RBD‑His便于提取与纯化,质量稳定可控,耗时短且可大规模生产。利用本发明的融合蛋白与佐剂配置得到的疫苗组合物,可以增加疫苗的溶解度、稳定性,增强疫苗免疫原性,延长疫苗在体内半衰期。本发明的融合蛋白及其疫苗组合物可抑制SARS‑CoV‑2野生型和/或变异型毒株的复制、传播或阻止其在宿主体内定居,从而能有效预防和/或治疗SARS‑CoV‑2野生型和/或变异型毒株引起的新型冠状病毒肺炎。

Description

一种COVID-19亚单位疫苗及其制备方法与应用
本申请是CN113321739A(申请日为2021年04月20日、申请号为 202110421895.6、发明创造名称为一种COVID-19亚单位疫苗及其制备方法与应用)的分案申请。
技术领域
本发明涉及生物技术领域,尤其涉及一种COVID-19亚单位疫苗及其制备方法与应用。
背景技术
SARS-CoV-2是一种正义单链RNA病毒,直径约80~120nm,与SARS-CoV 和MERS-CoV同属于β冠状病毒属。其基因组长度约为29.8Kb,共编码四种结构蛋白:刺突蛋白(Spike,S)、小囊膜蛋白(Envelope,E)、膜蛋白(Membrane, M)和核衣壳蛋白(Nucleocapsid,N)(Immunity,2020.53(6):p.1315-1330)。其中S蛋白位于病毒表面,由N-末端S1结构域和C-末端S2结构域组成。位于 S1亚基中的受体结合结构域(receptor-binding domain,RBD)能与细胞表面的血管紧张素转化酶2(angiotensin-converting enzyme 2,ACE2)结合,在介导病毒进入细胞的过程中发挥重要作用。研究表明SARS-CoV-2RBD与ACE2的结合能力比SARS-CoV高约10~20倍(Science,2020.367(6483):p.1260-1263),此提示RBD作为开发亚单位疫苗抗原的可行性。目前基于RBD蛋白设计的疫苗种类主要包括重组蛋白疫苗(Vaccine,2020.38(46):p.7205-7212)、DNA疫苗(Science,2020.369(6505):p.806-811)和mRNA疫苗(Cell,2020.182(5):p. 1271-1283)等。
一般而言,进行蛋白疫苗抗原设计时,SARS-CoV-2RBD的抗原长度可能会影响疫苗诱导的免疫反应,因此需要研究不同长度的RBD以筛选最优的序列。此外,RBD分子量小(~21KDa),具有免疫原性差、诱导产生的免疫反应持续时间较短、需要多次接种等缺点,不适合单独制备成疫苗,且体外获得的RBD 蛋白不易提取与纯化,因此,如何得到亚单位疫苗并提高亚单位疫苗的有效性与安全性是急需解决的技术问题。利用基因工程技术将SARS-CoV-2S蛋白的抗原,通过连接子(linker)与人免疫球蛋白Fc(hFc)域或组氨酸(His)标签连接,制得抗SARS-CoV-2的融合蛋白疫苗,在稳定性、溶解度和体内半衰期等方面都能得到一定程度的改善,并易于规模生产和提取分离。融合蛋白中连接子的有无及种类会对蛋白质空间结构、溶解性、稳定性、蛋白质表面上氨基酸暴露数量、序列柔韧性及抗原表位等方面造成影响,甚至可能会增强蛋白的某些生物学活性(J Med Virol,2020),因此,RBD重组蛋白疫苗连接子的有无及连接子的种类对RBD抗原在体内免疫原性可能有较大的影响。
从结构上来看,SARS-CoV-2毒株具有Furin蛋白酶切割位点,经Furin切割后暴露出开放结构域可极大提高S蛋白与ACE2的结合能力,因此Furin位点附近的突变可能会对毒株的结合能力及传染性造成影响,其次是RBD的6个关键交界面氨基酸与ACE2结合,也可能影响毒株的结合能力及传染性。2020年 12月公布的B.1.1.7变异型毒株产生了RBD交界面氨基酸的N501Y与Furin蛋白酶切割位点附近A570D的关键突变,这对病毒的传播速度可能具有影响(Cell. 2021;doi:10.1016/j.cell.2021.02.042);501Y.V2变异型毒株产生的E484K不仅使其传染能力增强,还可能逃脱中和抗体(Nature.2021; doi:10.1038/s41586-021-03471-w)。针对SARS-CoV-2野生型毒性的RBD制备的疫苗对变异型毒株是否具有预防或治疗作用仍待进一步研究,但不能排除作用减弱甚至无效,因此,急需设计一种能同时针对野生型与变异型SARS-CoV-2 的联合疫苗。
发明内容
COVID-19亚单位疫苗及其制备方法与应用,可以有效地克服野生型 SARS-CoV-2和/或变异型SARS-CoV-2导致的传染及其对防治COVID-19 带来的巨大困难。
为实现上述目的,本发明采取的技术方案为:提供一种融合蛋白,所述融合蛋白为将新型冠状病毒刺突蛋白的受体结合结构域RBD通过连接子和人免疫球蛋白hFc域或His标签多肽片段连接得到。
本发明通过基因工程手段将蛋白RBD与人免疫球蛋白hFc域或His标签结合得到的融合蛋白RBD-hFc/RBD-His便于提取与纯化,质量稳定可控,耗时短且可大规模生产。利用融合蛋白RBD-hFc/RBD-His与佐剂配制得到的疫苗组合物,可以增加疫苗的溶解度、稳定性,增强疫苗免疫原性,延长疫苗在体内半衰期。本发明的融合蛋白及其疫苗组合物可抑制SARS-CoV-2野生型和/或变异型毒株的复制、传播或阻止其在宿主体内定居,从而能有效预防和/或治疗野生型和/或变异型毒株引起的新型冠状病毒肺炎。
作为本发明所述融合蛋白的优选实施方式,所述连接子的氨基酸序列为 ADDDDK、AAA或A。
作为本发明所述融合蛋白的优选实施方式,所述新型冠状病毒包括野生型毒株、B.1.1.7变异型毒株和501Y.V2变异型毒株;
所述野生型毒株的GeneID为NC_045512;
所述B.1.1.7变异型毒株的GeneID为MW735442,所述B.1.1.7变异型毒株产生了RBD交界面氨基酸的N501Y与Furin蛋白酶切割位点附近A570D的突变;
所述501Y.V2变异型毒株的GeneID为MW789246,所述501Y.V2变异型毒株产生了K417N、E484K和N501Y突变。
作为本发明所述融合蛋白的优选实施方式,所述RBD的氨基酸序列为:新型冠状病毒刺突蛋白氨基酸序列的第319-593位或新型冠状病毒刺突蛋白氨基酸序列的第319-593位中的任意一段;
所述新型冠状病毒刺突蛋白氨基酸序列的第319-593位的氨基酸序列如 SEQ IDNo.1所示。
作为本发明所述融合蛋白的优选实施方式,所述RBD的氨基酸序列为:新型冠状病毒刺突蛋白氨基酸序列的第319-541位、第331-593位或第319-583位。
作为本发明所述融合蛋白的优选实施方式,所述人免疫球蛋白hFc域包括来自人源IgG、IgA、IgD、IgE和IgM的Fc片段中的至少一种。
作为本发明所述融合蛋白的优选实施方式,所述人免疫球蛋白hFc域的氨基酸序列如SEQ ID No.33所示,所述人免疫球蛋白hFc域的核苷酸序列(HD-13) 如SEQ ID No.32所示。
作为本发明所述融合蛋白的优选实施方式,所述His标签多肽片段含有4~14 个组氨酸残基,优选地,含有10个组氨酸残基。
作为本发明所述融合蛋白的优选实施方式,所述融合蛋白的氨基酸序列如 SEQID No.3、SEQ ID No.5、SEQ ID No.7、SEQ ID No.9、SEQ ID No.11、SEQ ID No.13、SEQ IDNo.15、SEQ ID No.17、SEQ ID No.19、SEQ ID No.21、SEQ ID No.23、SEQ ID No.25、SEQ IDNo.27、SEQ ID No.29、SEQ ID No.31、SEQ ID No.35和SEQ ID No.37任一所述。
作为本发明所述融合蛋白的优选实施方式,所述融合蛋白包括17种: HD-R1、HD-R2、HD-05、HD-R3、HD-01、HD-02、HD-03、HD-04、HD-06、 HD-07、HD-08、HD-09、HD-10、HD-11、HD-12、HD-S1和HD-S,所述融合蛋白的核苷酸序列和氨基酸序列如表1所示:
表1:17种融合蛋白的核苷酸序列和氨基酸序列
融合蛋白编号 核苷酸序列 氨基酸序列
HD-R1 SEQ ID No.2 SEQ ID No.3
HD-R2 SEQ ID No.4 SEQ ID No.5
HD-05 SEQ ID No.6 SEQ ID No.7
HD-R3 SEQ ID No.8 SEQ ID No.9
HD-01 SEQ ID No.10 SEQ ID No.11
HD-02 SEQ ID No.12 SEQ ID No.13
HD-03 SEQ ID No.14 SEQ ID No.15
HD-04 SEQ ID No.16 SEQ ID No.17
HD-06 SEQ ID No.18 SEQ ID No.19
HD-07 SEQ ID No.20 SEQ ID No.21
HD-08 SEQ ID No.22 SEQ ID No.23
HD-09 SEQ ID No.24 SEQ ID No.25
HD-10 SEQ ID No.26 SEQ ID No.27
HD-11 SEQ ID No.28 SEQ ID No.29
HD-12 SEQ ID No.30 SEQ ID No.31
HD-S1 SEQ ID No.34 SEQ ID No.35
HD-S SEQ ID No.36 SEQ ID No.37
本发明同时提供了编码所述融合蛋白的核酸分子。
作为本发明所述核酸分子的优选实施方式,所述核酸分子的序列是指SEQ IDNo.2、SEQ ID No.4、SEQ ID No.6、SEQ ID No.8、SEQ ID No.10、SEQ ID No.12、 SEQ IDNo.14、SEQ ID No.16、SEQ ID No.18、SEQ ID No.20、SEQ ID No.22、 SEQ ID No.24、SEQID No.26、SEQ ID No.28、SEQ ID No.30、SEQ ID No.34 和SEQ ID No.36任一所示的多核苷酸序列或其简并序列。
本发明同时提供包含所述核酸分子的载体。
作为本发明所述载体的优选实施方式,所述载体是将所述核酸分子连接到质粒pcDNA3.1中得到。
本发明同时提供包含所述核酸分子或所述载体的细胞。
作为本发明所述细胞的优选实施方式,所述细胞为将核酸分子或载体转入宿主细胞Expi293F中得到。
本发明同时提供一种疫苗组合物,所述疫苗组合物包含所述融合蛋白、所述核酸分子或所述的载体。
本发明同时提供一种多价疫苗组合物,所述多价疫苗组合物包含至少两种所述融合蛋白。
本发明同时提供了一种针对野生型与变异型SARS-CoV-2不同氨基酸序列的RBD融合蛋白疫苗及其联合疫苗(包括但不限制于二价、三价疫苗),这些疫苗对野生型毒株和/或变异型毒株同时具有免疫反应作用。这些融合蛋白疫苗可通过重组蛋白技术、载体表达技术、核酸技术实现,并进行组合作为联合疫苗、多价疫苗应用。
为考察单一疫苗免疫时对变异型毒株的抵抗作用,及三种疫苗联合免疫时对野生型毒株和变异型毒株的免疫反应作用,针对野生型毒株设计的疫苗有9 种:HD-R1、HD-R2、HD-R3、HD-04、HD-05、HD-07、HD-10、HD-S1和HD-S;针对变异型毒株501Y.V2(K417N、E484K和N501Y)设计的疫苗有4种:HD-01、 HD-06、HD-09和HD-12;针对变异型毒株B.1.1.7(A570D和N501Y)设计的疫苗有4种:HD-02、HD-03、HD-08和HD-11。以上的17种蛋白疫苗可以单独或任意两种或者三种通过不同比例混合,制备成疫苗。优选含有针对野生型毒株、针对变异型毒株501Y.V2和针对变异型毒株B.1.1.7三类疫苗中的两种或者三种相互混合;融合蛋白质量比包括1:1:1、0:1:1、1:0:1、1:1:0、1:0.5:1、0.5:1:1、 1:1:0.5、2:1:1、1:2:1与1:1:2,优选的,所述融合蛋白质量比为1:1:1、0:1:1、1:0:1 或1:1:0。
重组蛋白疫苗技术是基于已发布的病毒基因序列,将病毒目的抗原基因通过重组的方式构建在表达载体上,再转化到细菌、酵母、哺乳动物或昆虫细胞中,诱导表达出抗原蛋白,最后纯化并加入佐剂后制成疫苗。载体疫苗通过将特定病毒(如腺病毒、腺相关病毒等)作为遗传信息的载体,用基因工程技术将外源性抗原基因植入到病毒基因组内并转染细胞获得重组病毒,获得的重组病毒能在机体内利用宿主的遗传物质表达目的抗原蛋白,并诱导机体产生相应抗体,从而达到免疫接种的目的。核酸疫苗技术直接将编码抗原的核酸序列(DNA和mRNA)导入人体内,在人体细胞内合成蛋白质抗原,激发免疫应答。
联合疫苗是指含有两个或多个活的或灭活的生物体、或者提纯的抗原,用于预防多种疾病或由同一生物体的不同种或不同血清型引起的疾病。联合疫苗具有预防多种疾病、减少接种次数、简化免疫程序、提高接种率、降低交叉感染机会等优点,是当今疫苗研究的发展方向之一。联合疫苗指根据病原体的不同类型,而各型别之间交叉免疫性较低,针对不同型别病原体的设计,以预防多个型别感染的疫苗。一般是由同一制作方式制备出单价疫苗,再混合于同一针剂中供免疫使用。多联、多价疫苗是未来发展趋势,其优点在于:(1)节省疫苗接种的成本;(2)节省多个单个疫苗分别包装、物流和组装的成本;(3)减少对接种者,尤其是婴儿的伤害;(4)增加疫苗接种覆盖率;(5)节约疫苗接种时间; (6)减少疫苗储存空间等。联合或多价疫苗可以节省包括多次就诊、遗漏接种等在内的直接和间接成本等,如目前常用的多价联合疫苗包括肺炎链球菌、脑膜炎球菌、脊灰病毒、轮状病毒、流感、HPV等疫苗。
作为本发明所述疫苗组合物或多价疫苗组合物的优选实施方式,所述疫苗组合物或多价疫苗组合物还包括免疫学和药学上接受的载体或佐剂。
作为本发明所述疫苗组合物或多价疫苗组合物的优选实施方式,所述佐剂包括铝佐剂、弗氏佐剂、磷酸铝、磷酸钙、石蜡油、羊毛脂、表面活性剂、藻酸钙、多聚核苷酸、胞壁肽、皂苷、RIBI佐剂系统、霍乱毒素、丙烯酸或甲基丙烯酸的聚合物、油包水乳剂、水包油乳剂中的一种或几种,优选地,为铝佐剂。
本发明还提供了所述疫苗组合物或多价疫苗组合物在制备预防和/或治疗新型冠状病毒肺炎药物中的应用。
作为本发明所述的亚单位疫苗的优选实施方式,所述的预防和/或治疗是指在涉及SARS-CoV-2野生型和/或变异型毒株感染时抑制SARS-CoV-2野生型和/ 或变异型毒株的复制、传播或阻止其在宿主体内定居,以及减轻SARS-CoV-2 野生型和/或变异型毒株感染的疾病或病症的症状。若使用亚单位疫苗后病毒荷载量降低和/或病症减轻就可以认为所述预防和/或治疗达到了效果。
本发明的有益效果:
(1)本发明设计制备的融合蛋白考察了不同RBD残基长度的免疫活性,并筛选最优的序列。
(2)本发明考察了融合蛋白中连接子的有无及连接子的种类对RBD体内免疫原性的影响。
(3)通过基因工程手段将蛋白RBD与人免疫球蛋白hFc域或His标签结合得到的融合蛋白RBD-hFc/RBD-His更便于提取与纯化,质量稳定可控,耗时短且可大规模生产。
(4)hFc/His融合蛋白技术可以增加RBD-hFc/RBD-His疫苗的溶解度、稳定性和在体内的半衰期。
(5)本发明的融合蛋白及其疫苗组合物可抑制SARS-CoV-2野生型和/或变异型毒株的复制、传播或阻止其在宿主体内定居,从而能有效预防和/或治疗 SARS-CoV-2野生型和/或变异型毒株引起的新型冠状病毒肺炎。
附图说明
图1是本发明实施例1-3的融合蛋白疫苗诱导小鼠产生的抗体IgG免疫活性评价图;
图2是本发明实施例1-3的融合蛋白疫苗诱导小鼠产生的抗体IgG亚型免疫活性评价图;
图3是本发明实施例1-2与实施例4的融合蛋白不同给药剂量的亚单位疫苗诱导小鼠产生的抗体IgG亚型免疫活性评价图;
图4是本发明实施例1-2与实施例5的不同RBD-hFc的融合蛋白的亚单位疫苗诱导小鼠产生的抗体IgG亚型免疫活性评价图;
图5是本发明实施例1-2与实施例6的二价疫苗诱导小鼠产生的抗体IgG亚型免疫活性评价图;
图6是本发明实施例1-3的融合蛋白疫苗诱导小鼠产生的抗体中和实验免疫活性评价图;
图7是本发明实施例1-2与实施例4的融合蛋白不同给药剂量的亚单位疫苗诱导小鼠产生的抗体中和实验免疫活性评价图,HD-07的疫苗组中和抗体所用的毒株为野生毒株;
图8是本发明实施例1-2与实施例5的不同RBD-hFc的融合蛋白的亚单位疫苗诱导小鼠产生的抗体中和实验免疫活性评价图,含HD-02、HD-03与HD-08 的疫苗组中和抗体所用的毒株为B.1.1.7变异型毒株,含HD-01、HD-06与HD-09 的疫苗组中和抗体所用的毒株为501Y.V2变异型毒株,含HD-04、HD-05与 HD-07的疫苗组中和抗体所用的毒株为野生毒株;
图9是本发明实施例1-2与实施例6的二价疫苗诱导小鼠产生的抗体中和实验免疫活性评价图,含HD-03的疫苗组中和抗体所用的毒株为B.1.1.7变异型毒株,含HD-05的疫苗组中和抗体所用的毒株为野生毒株;
图10是本发明实施例1-3的融合蛋白疫苗诱导小鼠产生的抗体血清特异性识别转染了ACE2载体的人肾上皮细胞系293T的流式细胞实验评价图;
图11是本发明实施例1-3的融合蛋白疫苗诱导小鼠脾细胞分泌出的IL-4细胞因子的免疫活性图,其中***P<0.001;
图12是本发明实施例1-3的融合蛋白疫苗诱导小鼠脾细胞分泌出的IFN-γ细胞因子的免疫活性图,其中***P<0.001。
具体实施方式
为更清楚地表述本发明的技术方案,下面结合具体实施例进一步说明,但不能用于限制本发明,此仅是本发明的部分实施例。
在本发明的描述中,需要说明的是,除非另有定义,本发明所使用的所有的技术和科学术语与属于本技术领域的技术人员通常理解的含义相同。本发明说明书中所使用的术语只是以描述具体的实施例为目的,不旨在限制本发明,对于本领域的普通技术人员而言,可以结合具体情况理解上述术语在本发明中的具体含义。
术语:融合蛋白(fusion protein),有两种不同的含义,一种是通过DNA重组技术得到的两个基因重组后的表达产物,将两个不同的蛋白质连成一个大分子;另一种是通过化学方法连接两个不同的蛋白组成一个大分子。
本发明涉及的序列信息如下:
(1)SEQ ID No.1:野生型毒株S蛋白片段第319-593位氨基酸序列;
(2)SEQ ID No.2:野生型毒株的RBD(319-541)-hFc融合蛋白(编号HD-R1) 人工合成核苷酸序列;
(3)SEQ ID No.3:野生型毒株的RBD(319-541)-hFc融合蛋白(编号HD-R1) 人工合成氨基酸序列;
(4)SEQ ID No.4:野生型毒株的RBD(319-541)-His融合蛋白(编号HD-R2) 人工合成核苷酸序列;
(5)SEQ ID No.5:野生型毒株的RBD(319-541)-His融合蛋白(编号HD-R2) 人工合成氨基酸序列;
(6)SEQ ID No.6:野生型毒株的RBD(331-593)-hFc融合蛋白(编号HD-05) 人工合成核苷酸序列;
(7)SEQ ID No.7:野生型毒株的RBD(331-593)-hFc融合蛋白(编号HD-05) 人工合成氨基酸序列;
(8)SEQ ID No.8:野生型毒株的RBD(331-593)-His融合蛋白(编号HD-R3) 人工合成核苷酸序列;
(9)SEQ ID No.9:野生型毒株的RBD(331-593)-His融合蛋白(编号HD-R3) 人工合成氨基酸序列;
(10)SEQ ID No.10:501Y.V2变异型毒株(K417N,E484K,N501Y)的 RBD(319-541)-Fc融合蛋白(编号HD-01)核苷酸序列;
(11)SEQ ID No.11:501Y.V2变异型毒株(K417N,E484K,N501Y)的 RBD(319-541)-Fc融合蛋白(编号HD-01)氨基酸序列;
(12)SEQ ID No.12:B.1.1.7变异型毒株(N501Y,A570D)的RBD(319-541) -Fc融合蛋白(编号HD-02)人工合成核苷酸序列;
(13)SEQ ID No.13:B.1.1.7变异型毒株(N501Y,A570D)的RBD(319-541) -Fc融合蛋白(编号HD-02)人工合成氨基酸序列;
(14)SEQ ID No.14:B.1.1.7变异型毒株(N501Y,A570D)的RBD(319-583) -Fc融合蛋白(编号HD-03)人工合成核苷酸序列;
(15)SEQ ID No.15:B.1.1.7变异型毒株(N501Y,A570D)的RBD(319-583) -Fc融合蛋白(编号HD-03)人工合成氨基酸序列;
(16)SEQ ID No.16:野生型毒株的RBD(319-583)-hFc融合蛋白(编号 HD-04)人工合成核苷酸序列;
(17)SEQ ID No.17:野生型毒株的RBD(319-583)-hFc融合蛋白(编号 HD-04)人工合成氨基酸序列;
(18)SEQ ID No.18:501Y.V2变异型毒株(K417N,E484K,N501Y)的 RBD(319-583)-Fc融合蛋白(编号HD-06)人工合成核苷酸序列;
(19)SEQ ID No.19:501Y.V2变异型毒株(K417N,E484K,N501Y)的 RBD(319-583)-Fc融合蛋白(编号HD-06)人工合成氨基酸序列;
(20)SEQ ID No.20:野生型毒株的RBD(319-583)-hFc融合蛋白(编号 HD-07)人工合成核苷酸序列;
(21)SEQ ID No.21:野生型毒株的RBD(319-583)-hFc融合蛋白(编号 HD-07)人工合成氨基酸序列;
(22)SEQ ID No.22:B.1.1.7变异型毒株(N501Y,A570D)的RBD(319-583) -Fc融合蛋白(编号HD-08)人工合成核苷酸序列;
(23)SEQ ID No.23:B.1.1.7变异型毒株(N501Y,A570D)的RBD(319-583) -Fc融合蛋白(编号HD-08)人工合成氨基酸序列;
(24)SEQ ID No.24:501Y.V2变异型毒株(K417N,E484K,N501Y)的 RBD(319-583)-Fc融合蛋白(编号HD-09)人工合成核苷酸序列;
(25)SEQ ID No.25:501Y.V2变异型毒株(K417N,E484K,N501Y)的 RBD(319-583)-Fc融合蛋白(编号HD-09)人工合成氨基酸序列;
(26)SEQ ID No.26:野生型毒株的RBD(319-583)-His融合蛋白(编号 HD-10)人工合成核苷酸序列;
(27)SEQ ID No.27:野生型毒株的RBD(319-583)-His融合蛋白(编号 HD-10)人工合成氨基酸序列;
(28)SEQ ID No.28:B.1.1.7变异型毒株(N501Y,A570D)的RBD(319-583) -His融合蛋白(编号HD-11)人工合成核苷酸序列;
(29)SEQ ID No.29:B.1.1.7变异型毒株(N501Y,A570D)的RBD(319-583) -His融合蛋白(编号HD-11)人工合成氨基酸序列;
(30)SEQ ID No.30:501Y.V2变异型毒株(K417N,E484K,N501Y)的 RBD(319-583)-His融合蛋白(编号HD-12)人工合成核苷酸序列;
(31)SEQ ID No.31:501Y.V2变异型毒株(K417N,E484K,N501Y)的 RBD(319-583)-His融合蛋白(编号HD-12)人工合成氨基酸序列;
(32)SEQ ID No.32:蛋白hFc(编号HD-13)的核苷酸序列;
(33)SEQ ID No.33:蛋白hFc(编号HD-13)的氨基酸序列;
(34)SEQ ID No.34:野生型毒株的蛋白S1(1-685)-hFc融合蛋白(编号 HD-S1)人工合成核苷酸序列;
(35)SEQ ID No.35:野生型毒株的蛋白S1(1-685)-hFc融合蛋白(编号 HD-S1)人工合成氨基酸序列;
(36)SEQ ID No.36:野生型毒株的全长蛋白S(1-1213)-His融合蛋白(编号 HD-S)人工合成核苷酸序列;
(37)SEQ ID No.37:野生型毒株的全长蛋白S(1-1213)-His融合蛋白(编号 HD-S)人工合成核苷酸序列。
实施例1:融合蛋白HD-R1的制备、鉴定及含量测定
根据NCBI(https://www.ncbi.nlm.nih.gov)报道的新型冠状病毒中S蛋白片段(野生型毒株中S蛋白的GeneID:43740568)中RBD中和表位的基因序列 (人工合成,氨基酸序列如SEQ ID No.1所示,为S蛋白氨基酸序列的第319-593 位),以及人免疫球蛋白IgG中Fc蛋白的基因序列(人工合成,核苷酸序列如 SEQ ID No.32所示,氨基酸序列如SEQ IDNo.33所示),通过基因工程手段制备融合蛋白HD-R1(核苷酸序列如SEQ ID No.2所示,氨基酸序列如SEQ ID No.3 所示)。
(1)PCDNA3.1-HD-R1重组表达质粒的构建及鉴定
在质粒载体pcDNA3.1 BamHI与XhoI酶切位点间插入双链DNA分子 HD-R1,构建得到序列正确的重组表达质粒PCDNA3.1-RBD-hFc,测序鉴定正确。
(2)HD-R1蛋白在Expi293F悬浮型细胞中的表达
转染前,将3×106个Expi293F细胞接种于30mL Expi293F表达培养基中,持续培养数小时,当细胞密度达3.5×106个/mL时,将表达质粒加入5mL无血清的DMEM培养基中混匀,然后加入120μL Vortex Simple-Fect,混匀并室温孵育20分钟,将孵育好的体系缓慢加入细胞培养瓶中,并混匀,培养72小时后收集细胞进行HD-R1表达量的鉴定。
(3)HD-R1蛋白表达量的鉴定
取步骤(2)中的细胞培养液50μL,离心后用含有还原剂的蛋白上样缓冲液制样并电泳;电泳结束后,用湿转方法将蛋白转移到经甲醇激活的PVDF膜上;转膜后,用5%脱脂牛奶对PVDF膜室温摇床封闭1小时,分别用抗Fc兔多抗和Strep II-tag(HRP)抗体与封闭后的PVDF室温孵育1.5小时;用TBST清洗PVDF膜;加入羊抗兔二抗(HRP)室温孵育1小时;用TBST清洗PVDF膜;利用蛋白印迹显色液进行显色并鉴定HD-R1蛋白在Expi293F细胞中表达量。
(4)HD-R1蛋白的纯化及鉴定
利用Ni-NTA亲和柱对收获后的细胞总蛋白进行纯化,同时在纯化过程中收取目的蛋白的洗脱峰、柱前和柱后,进行SDS-PAGE分析,在收取的洗脱峰中获得了纯度较好的HD-R1蛋白。纯化后的HD-R1蛋白进行了蛋白印迹鉴定。
实施例2:其他融合蛋白的制备、鉴定及含量测定
表2中HD-R2、HD-05、HD-R3、HD-01、HD-02、HD-03、HD-04、HD-06、 HD-07、HD-08、HD-09、HD-10、HD-11、HD-12、HD-S1和HD-S等16种融合蛋白的制备、鉴定及含量测定,除各自对应的质粒载体pcDNA3.1中分别含有其对应表2中16种融合蛋白氨基酸序列相对的核苷酸序列的不同外,其制备、鉴定及含量测定的步骤与实施例1类似。其中,16种融合蛋白是分别将不同RBD 通过连接子与相应的标签相连接得到。
表2:17种融合蛋白的来源及特征信息
Figure BDA0003795462470000121
Figure BDA0003795462470000131
实施例3:亚单位疫苗的制备及小鼠免疫
(1)分别将实施例1和实施例2制备的融合蛋白HD-R1、HD-R2、HD-S1 和HD-S用PBS缓冲盐溶液进行稀释,并加入铝佐剂(Al)充分乳化混匀即可得到相对应的亚单位疫苗,融合蛋白与铝佐剂的配比如表3所示。
表3:亚单位疫苗配比
Figure BDA0003795462470000132
(2)对于以上融合蛋白疫苗组和对照组,试验采用一次初始免疫(1st boost) 和二次增强(2nd boost)免疫方案,小鼠分别在第0和30天肌肉注射制备的疫苗,每只每次注射量为10μg/100μL,对照组注射同体积的PBS溶液;第30、 40天取血,每只小鼠取血0.1mL到0.2mL,在0℃放置60分钟,4000rpm离心15分钟,取上层清亮血清用于ELISA检测分析,并在第42天对小鼠进行安乐死,取脾脏制成单细胞混悬液用于后续ELISPOT实验。
实施例4:含有不同剂量HD-07融合蛋白的亚单位疫苗制备
用PBS缓冲盐溶液将实施例2制备的融合蛋白HD-07进行稀释,并加入铝佐剂(Al)充分乳化混匀,得到相对应的亚单位疫苗,HD-07亚单位疫苗配比如表4所示。
表4:融合蛋白不同剂量的亚单位疫苗配比
Figure BDA0003795462470000141
实施例5:HD-01、HD-02、HD-03、HD-04、HD-05、HD-06、HD-08和 HD-09融合蛋白的亚单位疫苗制备
用PBS缓冲盐溶液将实施例2制备的融合蛋白HD-01、HD-02、HD-03、 HD-04、HD-05、HD-06、HD-08和HD-09进行稀释,并加入铝佐剂(Al)充分乳化混匀,得到相对应亚单位疫苗,配比如表5所示。
表5:不同RBD-hFc的融合蛋白的亚单位疫苗配比
Figure BDA0003795462470000142
实施例6:二价疫苗的制备
分别将实施例1与实施例2中的融合蛋白HD-03、HD-05、HD-03+HD-R1 和HD-05+HD-R1用PBS缓冲盐溶液进行稀释,并加入铝佐剂(Al)充分乳化混匀可得到相对应的亚单位疫苗,配比如表6所示。
表6:二价疫苗的配比
Figure BDA0003795462470000151
实施例7:小鼠分组免疫
取6-8周龄的Balb/c小鼠,随机分为16组,每组5只,将实施例4、实施例5和实施例6中的15种融合蛋白疫苗分别免疫小鼠,对照组Control(共1 组,注射同体积的PBS溶液),对于以上融合蛋白疫苗组和对照组,试验采用一次初始免疫(1st boost)和二次增强(2ndboost)免疫方案,分别在第0和14 天肌肉注射制备的疫苗,每只每次注射量为100μL;第21天,每只小鼠取血0.1 mL到0.2mL,在0℃放置60分钟,4000rpm离心15分钟,取上层清亮血清用于ELISA检测和中和抗体分析。
实施例8:ELISA免疫分析
(1)用0.1M碳酸盐缓冲液(pH 9.6)将蛋白抗原【野生型毒株铺板蛋白为HD-10(野生型),B.1.1.7变异型毒株铺板蛋白为HD-11(B.1.1.7突变株), 501Y.V2变异型毒株铺板蛋白为HD-12(501Y.V2突变株)】配置成浓度为0.5 μg/ml的溶液,以每孔100μL的量加入96孔板,放入4℃孵育过夜;第二天放入37℃培养箱孵育1小时;用PBST(PBS+0.1%吐温20)洗板3次,每孔加入300μL洗液;洗板后加入2%脱脂奶粉,每孔加入250μL,37℃孵育1小时;用PBST(PBS+0.1%吐温20)洗板3次。分别在每个孔中加入hFc标记的融合蛋白疫苗免疫后的小鼠血清(稀释倍数1:300),每孔加入100μL,放置在37℃培养箱孵育1小时;洗板3次后;分别在一次免疫或二次免疫的小鼠血清组加入HRP(辣根过氧化物酶)标记的IgG,在二次免疫的小鼠血清组加入HRP(辣根过氧化物酶)标记的IgG1、IgG2b、IgG2c与IgG3,每孔加入100μL,室温孵育1小时;洗板3次。加入TMB溶液,每孔加入100μL,室温避光显色15 分钟。加入0.5M H2SO4溶液终止显色,每孔加100μL,酶标仪检测吸光度,检测波长为450nm,570nm作为背景波长。
(2)吸光度结果分析
1)将吸光度(OD)值相对于实施例3中不同亚单位疫苗作图,如图1所示,本发明实施例3中的亚单位融合蛋白疫苗HD-R1/PBS及其疫苗组合物 HD-R1/Al、HD-R2/Al、HD-S1/Al与HD-S/Al,在小鼠体内均能诱导产生高滴度的IgG抗体,第二次免疫后的OD值较第一次免疫有显著升高,表明小鼠首次疫苗免疫后再次接受同样的疫苗抗原能迅速并大量产生特异性抗体;其中 RBD-hFc(HD-R1/Al与HD-R1/PBS)的融合蛋白疫苗产生抗体的OD值显著高于S1-hFc(HD-S1/Al)和S-His(HD-S/Al)的融合蛋白疫苗,说明RBD作为融合蛋白抗原的效果比S1与全长S蛋白好;RBD-hFc(HD-R1/Al与HD-R1/PBS) 的融合蛋白疫苗产生的抗体的OD值均明显高于RBD-His(HD-R2/Al)的融合蛋白疫苗,说明hFc能有效提高RBD的免疫原性;HD-R1/Al组的OD值高于 HD-R1/PBS组,表明铝佐剂能增强RBD-hFc的免疫原性。
2)将吸光度(OD)值相对于实施例3中不同亚型抗体作图,如图2所示,亚单位融合蛋白疫苗HD-R1/PBS及其疫苗组合物HD-R1/Al、HD-R2/Al和 HD-S/Al组免疫的小鼠显著增强了IgG1和IgG2b的分泌,表明RBD的融合蛋白疫苗可以同时诱导Th2和Th1免疫反应并产生强效的抗体,RBD-hFc (HD-R1/Al、HD-R1/PBS)组诱导分泌的IgG1和IgG2b的OD值明显高于S-hFc (HD-S/Al)组与RBD-His(HD-R2/Al)组,再次验证了RBD作为融合蛋白抗原的效果比S1好,hFc能有效提高RBD的免疫原性。
3)将吸光度(OD)值相对于实施例4中融合蛋白不同给药剂量的疫苗组合物HD-07/Al作图,如图3所示,三组不同蛋白剂量的疫苗诱导小鼠产生的IgG 抗体值大小如下:10μgHD-07/100μg Al>5μgHD-07/100μg Al>15μgHD-07/ 100μg Al,说明该融合蛋白作为疫苗给药10μg时效果最好。
4)将吸光度(OD)值相对于实施例5中不同亚单位疫苗作图,如图4所示,本发明实施例6中的亚单位融合蛋白疫苗组合物10μg HD-01/100μg Al~10 μg HD-09/100μg Al,在小鼠体内诱导产生的IgG抗体的OD值均显著高于空白组,说明该融合蛋白均能诱导有效的免疫反应,可作为疫苗中的抗原;其他条件一样的情况下,以AAA作为融合蛋白连接子的疫苗组合物10μg HD-07/100 μg Al诱导产生抗体的OD值显著高于以ADDDDK作为连接子的10μg HD-04/100μg Al,501Y.V2变异型毒株组以AAA作为融合蛋白连接子的10μg HD-09/100μgAl诱导产生抗体的OD值也比HD-06/Al高,说明作为融合蛋白的连接子,AAA比ADDDDK更能增强RBD的免疫原性,融合蛋白中的连接子影响融合蛋白抗原的免疫原性。
5)将吸光度(OD)值相对实施例6中的二价疫苗组合物作图,如图5所示,二价疫苗10μg HD-03+10μg HD-R1/1mg Al与10μg HD-05+10μg HD-R1/1mg Al在小鼠体内诱导产生IgG抗体的OD值显著高于单价疫苗10μg HD-03/1mg Al 与10μg HD-05/1mg Al,说明二价疫苗中变异型毒株的RBD作为抗原诱导产生的抗体也能识别野生型毒株的RBD,即变异型毒株产生的抗体与野生型毒株产生的抗体能交叉识别对方的抗原。
实施例9:中和抗体实验
将Vero E6细胞(2×104个/孔)接种到96孔板中,在37℃和5%CO2下培养过夜,直到形成单层。将SARS-CoV-2(HD-02、HD-03与HD-08的疫苗组用B.1.1.7变异型毒株,HD-01、HD-06与HD-09的疫苗组用501Y.V2变异型毒株,HD-04、HD-05与HD-07的疫苗组用野生毒株)的100TCID50与连续4倍稀释的小鼠抗血清混合,在37℃孵育一小时,将血清样品在56℃加热30分钟,随后加入到Vero E6细胞培养孔混合。在每种测定中,感染了100TCID50 SARS-CoV-2的细胞为阳性对照,而无病毒的细胞为阴性对照,然后在感染后第 3天记录CPE(细胞病变效应)。通过Reed-Muench法计数SARS-CoV-2病毒感染Vero E6细胞数(CPE),能使50%接种后的细胞产生细胞病变小鼠血清的最大稀释倍数,即为此疫苗的中和抗体滴度(NA)。
中和抗体滴度越高,说明病毒复制水平越低,对病毒感染的防护能力越强。将中和抗体(NA)值相对于实施例3中的不同融合蛋白作图,如图6所示, HD-R1/PBS、HD-R1/Al与HD-S1/Al组在第二次免疫后诱导的血清中和抗体滴度显著升高,表明S1-hFc组(HD-S/Al)与RBD-hFc组(HD-R1/Al、HD-R1/PBS) 均能产生强效的体液免疫应答,其诱导产生的抗体血清具有较强的活性,并保护细胞免受SARS-CoV-2感染;RBD-hFc组(HD-R1/Al、HD-R1/PBS)中和抗体滴度显著高于S1-hFc组(HD-S/Al)组,说明RBD比S1和S蛋白更具有作为疫苗特异性抗原的潜力;没有使用hFc的RBD-His组(HD-R2/Al)和全长蛋白S-His组(HD-S/Al)产生的中和抗体滴度接近于0,再次说明hFc可以有效提高RBD的免疫原性。
将中和抗体(NA)值相对于实施例4融合蛋白不同给药剂量的疫苗组合物 HD-07/Al作图,如图7所示,10μg HD-07/100μg Al组疫苗诱导小鼠产生的血清中和抗体值显著高于15μg HD-07/100μg Al与5μg HD-07/100μg Al,说明该融合蛋白作为疫苗给药10μg时效果最好。
将中和抗体(NA)值实施例5中相对于不同亚单位疫苗作图,如图8所示,各组疫苗组合物给药后第21天诱导的抗体血清的中和抗体滴度显著高于空白组疫苗,表明以突变株的RBD为抗原的疫苗诱导产生的抗体血清具有较强的中和活性,并保护细胞免受SARS-CoV-2感染。在其他条件一样的情况下,以AAA 作为融合蛋白连接子的疫苗组合物10μg HD-07/100μg Al诱导产生中和抗体滴度显著高于以ADDDDK作为连接子的10μg HD-04/100μg Al,501Y.V2变异型毒株组以AAA作为融合蛋白连接子的HD-09/Al诱导产生的中和抗体滴度高于 10μg HD-06/100μg Al,以及N501Y变异型毒株组以AAA作为融合蛋白连接子的10μg HD-08/100μg Al诱导产生中和抗体滴度也比10μg HD-03/100μg Al 高,说明作为融合蛋白的连接子AAA比ADDDDK更能增强RBD的中和抗体活性,抗病毒感染能力更强。
将中和抗体(NA)值相对于实施例6中的二价疫苗组合物作图,如图9所示,二价疫苗10μg HD-03+10μgHD-R1/1mg Al与10μg HD-05+10μg HD-R1/1 mg Al在小鼠体内均能诱导产生高滴度的血清中和抗体值,说明野生型毒株与变异型毒株联合给药产生的抗体均能中和病毒感染,其中二价疫苗10μg HD-03+10μg HD-R1/1mg Al产生的血清中和抗体值显著高于单价疫苗10μg HD-03/100μg Al,说明野生型毒株诱导产生的抗体可以中和变异型毒株。
实施例10:流式细胞实验
将人肾上皮细胞系293T用人ACE2载体转染48h,分离并用PBS洗涤细胞 3次,计数使293T/ACE2 1.0×106个细胞/管,将采用hFc标记的融合蛋白疫苗免疫后小鼠的血清(1:10稀释)分别加入到293T/ACE2细胞中,然后加入1μg/mL RBD-His蛋白,在冰上孵育1h。用PBS洗涤3次后,加入anti-His-FITC,在冰上避光孵育1h,用PBS洗涤3次后通过流式细胞仪检测平均荧光强度。
将人肾上皮细胞系293T用人ACE2载体转染48h,分离并用PBS洗涤细胞 3次,计数使293T/ACE2 1.0×106个细胞/管,将采用His标记的融合蛋白疫苗免疫后小鼠的血清(1:10稀释)分别加入到293T/ACE2细胞中,然后加入1μg/mL RBD-hFc蛋白,在冰上孵育1h。用PBS洗涤3次后,加入anti-hFc-FITC,在冰上避光孵育1h,用PBS洗涤3次后通过流式细胞仪检测平均荧光强度。
结果如图10所示,与Positive control(阳性对照)组相比,亚单位疫苗 HD-R1/Al(RBD-hFc)的峰图明显向左移,与Negative control(阴性对照)组几乎重合,PositiveControl(空白血清)组峰图明显右移,计算得到抑制率为 67.33%,说明亚单位疫苗HD-R1/Al组(RBD-hFc)的小鼠血清在1:10稀释时有效阻断了RBD与293T/ACE2细胞的结合,而对照的空白血清在相同稀释度下没有抑制作用。亚单位疫苗HD-R2/Al(RBD-His)诱导的小鼠血清的荧光峰在Negative control(阴性对照)组与Positive Control(空白血清)组荧光峰之间,计算得到抑制率为36.75%,说明HD-R2/Al(RBD-His)诱导的小鼠血清有效阻断了RBD与293T/ACE2细胞的结合,但其抑制效果没有HD-R1/Al(RBD-hFc) 好,再次验证了hFc组有效提高RBD的免疫原性。
实施例11:Elispot实验
第一天接种细胞:无菌条件下分离小鼠脾脏,于6孔板中加入淋巴细胞分离液,4mL/孔,将单只小鼠脾脏置于200目尼龙网细胞筛,用5mL注射器芯研磨为细胞悬液,将细胞悬液转移至15mL离心管中,缓缓加入1mL无血清的 1640培养基,浮于细胞悬液上方;800rpm离心30min后,用移液枪插至白膜层,吸取尽量多的淋巴细胞加到含有5mL无血清的1640培养基15mL离心管中。用PBS洗涤细胞3次,800rpm水平离心10min,弃上清,每管加入500μL 无血清的1640培养基重悬后进行细胞计数,调整细胞密度为1×106个/mL。
每孔加入200μL无血清的1640培养基,室温静置5-10分钟后将其取出,活化预包被板;将调整好浓度的细胞悬液加入各实验孔,100μL/孔;加入刺激物:10μL/孔,所有样品和刺激物加完后,盖好板盖,放入37℃,5%CO2培养箱培养16-24小时。
第二天倾倒孔内细胞及培养基,加入冰冷的去离子水,200μL/孔,4℃冰箱放置10分钟,低渗裂解细胞,甩出孔内液体,每孔加入260μL 1×Washing buffer/孔洗5次;将稀释好的生物素标记的抗体(Biotinylated antibody)工作液加入各实验孔,100μL/孔,37℃孵育1小时;洗板5次;将稀释好的酶标亲和素(Streptavidin-HRP)工作液加入各实验孔,100μL/孔,37℃孵育1小时;洗板5次;将现配的AEC显色液加入各实验孔,100μL/孔;室温避光静置5-30 分钟,根据斑点生成情况选择终止显色时间;倾倒孔内液体,揭开板底座,用去离子水洗涤正反面及底座3-5遍,终止显色,将板放置在室温阴凉处,待其自然晾干后上机检测斑点数。
结果如图11、图12所示,从免疫后小鼠中分离出的脾细胞分泌出的IL-4 及IFN-γ数量多少关系为:HD-R1/Al组>HD-R1/PBS组>HD-R2/Al组,HD-R2/Al 组分泌的IFN-γ较少,接近空白组,表明RBD-hFc(HD-R1/Al及HD-R1/PBS) 融合疫苗可同时诱导体液免疫和细胞免疫应答,其免疫效果均比(RBD-His) HD-R2/Al好,说明hFc可有效提高RBD在体内的免疫应答能力;HD-R1/Al组脾细胞分泌出的IL-4及IFN-γ均高于HD-R1/Al组,表明铝佐剂能增强RBD-hFc 的免疫原性(***P<0.001,表示差异性显著)。
综上所述,以RBD蛋白与人免疫球蛋白hFc域或His标签结合得到融合蛋白制成的亚单位疫苗RBD-hFc与RBD-His,及在该融合蛋白中加入佐剂制成的疫苗组合物,可以促进其被选择性吸收,并诱导针对SARS-CoV-2的特异性免疫反应,达到抑制SARS-CoV-2野生型和/或变异型毒株的复制、传播或阻止其在宿主体内定居的目的。免疫活性评价中,以RBD作为抗原的融合蛋白疫苗诱导的免疫活性均明显比S1和S强,因此,筛选出RBD作为疫苗最理想的特异性抗原。RBD-hFc(HD-R1/Al、HD-R1/PBS)融合蛋白诱导产生的抗体及抗体特异性识别ACE2的能力均显著高于RBD-His(HD-R2/Al),说明hFc可以有效提高RBD的免疫原性。HD-R1/Al组较HD-R1/PBS组免疫活性强,表明铝佐剂能有效提高融合蛋白的免疫原性。在不同剂量给药的研究中,融合蛋白的剂量为10μg时最佳,过低或过高均影响其免疫效果;此外,融合蛋白中的连接子与 RBD长度影响抗原的免疫原性。二价疫苗HD-03+HD-R1/1mg Al与 HD-05+HD-R1/1mg Al在小鼠体内均能诱导产生IgG抗体的OD值显著高于单价疫苗HD-03/1mg与HD-05/1mg Al,说明二价疫苗对野生型毒株和/或变异型毒株同时都具有免疫反应作用。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (13)

1.一种融合蛋白,其特征在于,所述融合蛋白的氨基酸序列如SEQ ID No.7或SEQ IDNo.17所述。
2.编码权利要求1所述融合蛋白的核酸分子。
3.根据权利要求2所述的核酸分子,其特征在于,所述核酸分子的序列是指SEQ IDNo.6或SEQ ID No.16所示的多核苷酸序列或其简并序列。
4.包含权利要求2或3所述核酸分子的载体。
5.根据权利要求4所述的载体,其特征在于,所述载体是将所述核酸分子连接到质粒pcDNA3.1中得到。
6.包含权利要求2或3所述核酸分子或权利要求4~5任一所述载体的细胞。
7.根据权利要求6所述的细胞,其特征在于,所述细胞为将核酸分子或载体转入宿主细胞Expi293F中得到。
8.一种疫苗组合物,其特征在于,所述疫苗组合物包含权利要求1所述的融合蛋白,权利要求2或3所述核酸分子,或权利要求4或5所述的载体。
9.一种多价疫苗组合物,其特征在于,所述多价疫苗组合物包含至少两种如权利要求1中所述融合蛋白。
10.根据权利要求8所述的疫苗组合物或权利要求9所述的多价疫苗组合物,其特征在于,所述疫苗组合物或多价疫苗组合物还包括免疫学和药学上接受的载体或佐剂。
11.根据权利要求10任一所述的疫苗组合物或多价疫苗组合物,其特征在于,所述佐剂包括铝佐剂、弗氏佐剂、磷酸钙、石蜡油、羊毛脂、表面活性剂、藻酸钙、多聚核苷酸、胞壁肽、皂苷、RIBI佐剂系统、霍乱毒素、丙烯酸或甲基丙烯酸的聚合物、油包水乳剂、水包油乳剂中的一种或几种。
12.根据权利要求11任一所述的疫苗组合物或多价疫苗组合物,其特征在于,所述佐剂为铝佐剂。
13.根据权利要求10任一所述疫苗组合物或多价疫苗组合物在制备预防和/或治疗新型冠状病毒肺炎药物中的应用。
CN202210977641.7A 2021-02-04 2021-04-20 一种covid-19亚单位疫苗及其制备方法与应用 Active CN116333161B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210977641.7A CN116333161B (zh) 2021-02-04 2021-04-20 一种covid-19亚单位疫苗及其制备方法与应用

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163145505P 2021-02-04 2021-02-04
US63/145,505 2021-02-04
CN202210977641.7A CN116333161B (zh) 2021-02-04 2021-04-20 一种covid-19亚单位疫苗及其制备方法与应用
CN202110421895.6A CN113321739B (zh) 2021-02-04 2021-04-20 一种covid-19亚单位疫苗及其制备方法与应用

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN202110421895.6A Division CN113321739B (zh) 2021-02-04 2021-04-20 一种covid-19亚单位疫苗及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN116333161A true CN116333161A (zh) 2023-06-27
CN116333161B CN116333161B (zh) 2024-01-26

Family

ID=77414844

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202110421895.6A Active CN113321739B (zh) 2021-02-04 2021-04-20 一种covid-19亚单位疫苗及其制备方法与应用
CN202210977641.7A Active CN116333161B (zh) 2021-02-04 2021-04-20 一种covid-19亚单位疫苗及其制备方法与应用
CN202210972216.9A Active CN116143938B (zh) 2021-02-04 2021-04-20 一种covid-19亚单位疫苗及其制备方法与应用

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202110421895.6A Active CN113321739B (zh) 2021-02-04 2021-04-20 一种covid-19亚单位疫苗及其制备方法与应用

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202210972216.9A Active CN116143938B (zh) 2021-02-04 2021-04-20 一种covid-19亚单位疫苗及其制备方法与应用

Country Status (1)

Country Link
CN (3) CN113321739B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113896774B (zh) * 2021-09-18 2023-07-28 中国医学科学院医学生物学研究所 一种重组蛋白k-s及其制备方法和应用
CN114324626B (zh) * 2021-11-08 2024-02-02 中国计量大学 一种用于新型冠状病毒刺突蛋白含量检测的特征肽段及方法
CN114276969A (zh) * 2021-11-25 2022-04-05 军事科学院军事医学研究院军事兽医研究所 一种SARS-CoV-2细菌样颗粒及其在疫苗中的应用
CN114432435B (zh) * 2022-01-25 2024-05-17 苏州大学 一种基于多角体纳米结构的SARS-Cov-2疫苗及其制备方法和应用
US11931410B1 (en) 2022-01-27 2024-03-19 Shenzhen Rhegen Biotechnology Co., Ltd. SARS-CoV-2 mRNA vaccine and preparation method and use thereof
WO2023142283A1 (zh) * 2022-01-27 2023-08-03 深圳市瑞吉生物科技有限公司 一种新型冠状病毒mRNA疫苗及其制备方法与应用
CN114702556A (zh) * 2022-03-22 2022-07-05 中国人民解放军军事科学院军事医学研究院 一种冠状病毒rbd变异体及其应用
CN114574502B (zh) * 2022-04-11 2023-07-14 四川大学 一种以复制缺陷腺相关病毒为载体的新型冠状病毒疫苗
WO2023212579A1 (en) * 2022-04-25 2023-11-02 Boost Biopharma, Inc. Recombinant polypeptides containing at least one immunogenic fragment and uses thereof
CN114807179B (zh) * 2022-06-01 2022-10-21 广州达博生物制品有限公司 一种新型冠状病毒肺炎疫苗的构建与应用
CN117304317A (zh) * 2022-06-28 2023-12-29 四川大学 Ace2受体特异性结合肽及其应用
CN116063411A (zh) * 2022-09-16 2023-05-05 广东珩达生物医药科技有限公司 新型冠状病毒抗原多肽及其重组腺相关病毒和制备疫苗的应用
WO2024061188A1 (zh) * 2022-09-19 2024-03-28 百奥泰生物制药股份有限公司 一种冠状病毒多价疫苗及其应用
CN118085111A (zh) * 2024-04-28 2024-05-28 天津中逸安健生物科技有限公司 一种融合蛋白gE-Fc及其在制备重组带状疱疹疫苗中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111533809A (zh) * 2020-04-21 2020-08-14 中国科学院武汉病毒研究所 针对新型冠状病毒的亚单位疫苗及应用
CN112225814A (zh) * 2020-09-29 2021-01-15 东莞博盛生物科技有限公司 一种新型冠状病毒rbd融合蛋白亚单位疫苗及其制备方法和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005251738A1 (en) * 2004-06-02 2005-12-22 New York Blood Center, Inc. SARS vaccines and methods to produce highly potent antibodies
US11696948B2 (en) * 2018-06-12 2023-07-11 Kbio Holdings Limited Vaccines formed by virus and antigen conjugation
WO2020110154A1 (en) * 2018-11-30 2020-06-04 Bharat Biotech International Limited A chimeric therapeutic vaccine
CN111333704B (zh) * 2020-02-24 2021-01-12 军事科学院军事医学研究院微生物流行病研究所 新型冠状病毒covid-19疫苗、制备方法及其应用
CN111217917B (zh) * 2020-02-26 2020-10-23 康希诺生物股份公司 一种新型冠状病毒SARS-CoV-2疫苗及其制备方法
CN111366734B (zh) * 2020-03-20 2021-07-13 广州市康润生物科技有限公司 双指标筛选新冠病毒及预判重型肺炎的方法
CN111662389A (zh) * 2020-06-05 2020-09-15 广州中医药大学(广州中医药研究院) 一种SARS-CoV-2的融合蛋白及其疫苗组合物
CN111944064B (zh) * 2020-08-21 2021-10-15 中国科学院微生物研究所 一种covid-19亚单位疫苗及其制备方法
CN112480268B (zh) * 2020-12-10 2021-08-03 北京康乐卫士生物技术股份有限公司 一种新型冠状病毒的重组亚单位疫苗及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111533809A (zh) * 2020-04-21 2020-08-14 中国科学院武汉病毒研究所 针对新型冠状病毒的亚单位疫苗及应用
CN112225814A (zh) * 2020-09-29 2021-01-15 东莞博盛生物科技有限公司 一种新型冠状病毒rbd融合蛋白亚单位疫苗及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GARY BAISA等: "A Recombinant Protein SARS-CoV-2 Candidate Vaccine Elicits High-titer Neutralizing Antibodies in Macaques", 《RESEARCH SQUARE》, pages 1 - 22 *
徐铮昊;王诚;余润芷;丁翠玲;何燕华;江亮亮;彭浩然;吴俊杰;赵平;戚中田;: "严重急性呼吸综合征冠状病毒2 DNA疫苗与重组亚单位疫苗在小鼠中诱导中和抗体的效力分析", 第二军医大学学报, no. 05, pages 16 - 22 *

Also Published As

Publication number Publication date
CN113321739A (zh) 2021-08-31
CN116143938A (zh) 2023-05-23
CN116143938B (zh) 2023-11-10
CN116333161B (zh) 2024-01-26
CN113321739B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
CN116333161B (zh) 一种covid-19亚单位疫苗及其制备方法与应用
WO2021243974A1 (zh) 一种SARS-CoV-2的融合蛋白及其疫苗组合物
US11998596B2 (en) Immunogenic compositions and vaccines comprising African swine fever virus peptides and proteins and uses thereof
CN112876570B (zh) 非洲猪瘟病毒疫苗及其制备方法
CN112076315A (zh) 新冠病毒s蛋白和铁蛋白亚基融合的纳米抗原颗粒、新冠疫苗及其制备方法和应用
CN110269932A (zh) 非洲猪瘟病毒疫苗及其用途
CN109182380B (zh) 杆状病毒表达的猪瘟e2亚单位疫苗的制备方法及应用
CN107098974B (zh) 一种融合蛋白及其应用
KR20220009959A (ko) Csfv 서브유닛 백신
AU2020103776A4 (en) Koi herpesvirus (khv) orf-149-based carbon nanotube supported nucleic acid vaccine and application thereof
WO2021042947A1 (zh) 微环dna疫苗设计及应用
CN115322247A (zh) 一种新型冠状病毒受体结合区电荷突变体抗原及应用
CN115957316B (zh) 一种猪流行性腹泻亚单位疫苗及其制备方法和应用
CN115975042B (zh) 一种β冠状病毒异源多聚体抗原、其制备方法和应用
CN116284260B (zh) 一种非洲猪瘟多组分亚单位疫苗及其制备方法与应用
WO2023051611A1 (zh) SARS-CoV-2特异性多肽及其应用
CN117903260A (zh) Ppv多肽抗原和组合物及其应用、ppv疫苗
CN113121656B (zh) EBV包膜糖蛋白gp350抗原表位及其单克隆抗体
US20230218736A1 (en) Cocktail Vaccine of Recombinant African Swine Fever Virus (ASFV) Antigen and Use Thereof
TW202332684A (zh) 具有b/c結構域交換的重組經典豬瘟病毒e2蛋白
CN117587050A (zh) 编码融合蛋白Pre F-CCD的重组DNA分子、应用及呼吸道合胞病毒DNA疫苗
CN112521453A (zh) 寨卡病毒优势t细胞表位肽及其在疫苗和诊断中的应用
WO2022246449A1 (en) Sars-coronavirus 2 (sars-cov-2) spike protein subunit vaccines
CN105198982A (zh) 基于il-6的抗原表位及其应用
CN117964718A (zh) 一种基于h9亚型禽流感病毒ha1蛋白t细胞表位多肽及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant