CN116332632A - 一种多光谱抑制陶瓷材料的制备方法 - Google Patents

一种多光谱抑制陶瓷材料的制备方法 Download PDF

Info

Publication number
CN116332632A
CN116332632A CN202310379561.6A CN202310379561A CN116332632A CN 116332632 A CN116332632 A CN 116332632A CN 202310379561 A CN202310379561 A CN 202310379561A CN 116332632 A CN116332632 A CN 116332632A
Authority
CN
China
Prior art keywords
samarium
temperature
oxide
chromate
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310379561.6A
Other languages
English (en)
Inventor
王丽熙
冯夏
朱海奎
侯翼
张其土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Publication of CN116332632A publication Critical patent/CN116332632A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/12Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on chromium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种兼容吸收的多光谱抑制陶瓷材料的制备方法。具体步骤为:根据所设置的摩尔质量比,加入氧化钐和氧化铬粉体作为基体材料,再加入金属氧化物作为添加材料,充分研磨后,使其颜色均一;将预处理后的铬酸钐粉体,经过高温煅烧,自然冷却获得铬酸钐晶相;将含铬酸钐晶相的粉体研磨后,制成致密陶瓷片,通过二次煅烧,自然冷却后,获得多光谱抑制陶瓷材料。本发明制备工艺简单,所制得的陶瓷材料在保持绿峰的同时又能保证1064nm处有着较低的反射率,具有十分广泛的实际应用价值。

Description

一种多光谱抑制陶瓷材料的制备方法
技术领域
本发明涉及一种多光谱抑制陶瓷材料的制备方法,属于功能陶瓷材料技术领域。
背景技术
随着现代光谱探测技术不断发展,对光谱防护材料提出了更高的要求。传统单一频段的防护手段已经很难满足现实的需要,逐渐开始转向多频段兼容防护方向发展。目前国内外对雷达与红外、红外与激光、红外与可见光的光谱兼容材料也已经研究了很多,并且这些材料在光谱兼容方面都起到了很好的效果。然而,对于可见光-近红外-激光的兼容却研究较少,很大的原因在于他们对于反射率要求的不同。通常情况下,近红外频段会与1064nm激光频段产生重合,激光抑制要求材料在此处具有有较低反射率,而近红外兼容则需要一个较高的平原。也就是说,所制备的材料仅在1064nm处具有较低反射率,以达到“光谱挖孔”的效果。
因此,需要研究一种一体化材料,使其在激光工作波段附近出现较窄的低反射率带,同时它又对可见光波段影响不大。
根据材料种类的不同,光谱兼容材料通常有光子晶体、超材料和陶瓷材料这几类。光子晶体主要是通过光子禁带和光子局域两大特性来实现光谱兼容。有研究者制备的一维光子晶体(Procedia Engineering,15(2011)1668-1672)和光子晶体薄膜(Laser&Optoelectronocs progress,56(2019)214-219)就可以达到兼容吸收的效果。然而,光子晶体稳定性较差,很难应用于实际。超材料是通过对人工“原子”的尺寸和性能进行合理的设计,达到对不同波段兼容吸收的效果。有研究者利用超材料制备了Ti-SiO2立方体吸收器(Optics Express,26(2018)5696)和Hehmloltz谐振腔阵列(Optics Express,26(2018)5696)来实现多波段的吸收。然而,超材料的制备工艺复杂,很难大规模使用。陶瓷材料是利用其本身的特性和稀土离子的转换效实现光谱兼容。其中,铬绿(Materials,13(2020)1540)和钴绿材料(Ceramics International,42(2016)8198-8205)就常被用于光谱特性的研究。
铬酸钐陶瓷材料作为一种具有正交结构的多铁性材料已被广泛应用于电学,磁学和光学等众多领域(Journal of Alloys and Compounds,792(2019)1122-1131)。在电极、传感器等实际应用中也有很大的发展前景(CN 108387628A)。作为一种绿色光谱特征陶瓷材料,铬酸钐还兼具稀土离子的上转换效应,因此有望用于激光兼容吸收。然而,将铬酸钐材料用于可见光-近红外-激光兼容抑制目前还鲜有报道,且针对其多光谱兼容特性的制备工艺优化技术同样具有迫切需求。
发明内容
本发明的目的是针对于可见光-近红外-激光多光谱兼容特性的需求,提出了一种多光谱抑制陶瓷材料的制备方法,制备了光谱性能可调控的铬酸钐光谱抑制陶瓷材料,并以此作为模板,结合煅烧温度和离子掺杂的手段,对其进行配比优化,最终实现了可见光-近红外-激光的兼容吸收。该材料在1064nm处具有较低的反射率且兼具绿峰的效果,具有十分优良的实用价值。此外,本发明操作时间短,工艺简单,可以实现大规模的批量生产。
本发明的技术方案为:一种多光谱抑制陶瓷材料的制备方法,其具体步骤为:(1)铬酸钐材料的预处理:根据所设置的摩尔质量比,加入氧化钐和氧化铬粉体作为基体材料,再加入金属氧化物作为添加材料,充分研磨后,使其颜色均一;(2)一次煅烧处理:将预处理后的铬酸钐粉体,经过高温煅烧,自然冷却获得铬酸钐晶相;
(3)二次研磨与煅烧:将含铬酸钐晶相的粉体研磨后,制成致密陶瓷片,通过二次煅烧,自然冷却后,获得多光谱抑制陶瓷材料。
优选所述步骤(1)中氧化钐与氧化铬的摩尔质量比为0.8-1.2:1。
优选所述步骤(1)中的金属氧化物为氧化钴或氧化铁中的一种或两种;金属氧化物与氧化铬的摩尔质量比为0.005-0.04:1。
优选所述步骤(2)中的所述的高温煅烧的煅烧温度T1为1200-1400℃,保温时间为4-6h;升温速率为4-7℃/min。
优选所述步骤(3)中的二次煅烧为:先以4-7℃/min的升温速率升至煅烧温度T1为1200-1400℃并保温1-2h;再以2-4℃/min的升温速率从煅烧温度T1升至二次煅烧温度T2为1300-1500℃并保温4-6h。
有益效果:
与现有技术相比,本发明验证了铬酸钐陶瓷材料在光谱兼容领域的价值,使其可用于可见光-近红外-激光的兼容吸收,也为后续配比优化提供了理论基础。另一方面,本发明通过烧结温度的控制和离子掺杂的手段,对其配比进行进一步优化,从而得到了最优的吸收效果。
附图说明
图1为对比例1制备流程图。
图2为对比例1中1400℃下制备铬酸钐光谱曲线图。
图3为对比例1二次煅烧前的实物照片。
图4为对比例1二次煅烧后的实物照片。
图5为实施例3中2%氧化钴掺杂铬酸钐光谱曲线图。
图6为实施例4中4%氧化钴掺杂铬酸钐光谱曲线图。
图7为实施例6中2%氧化铁掺杂铬酸钐光谱曲线图。
图8为实施例7中氧化钴和氧化铁共掺杂铬酸钐光谱曲线图。
具体实施方式
现结合实施例对本发明作进一步描述:
以下实施例1-7的制备流程图如图1所示。
对比例1:
(1)将1.7436g(0.005mol)氧化钐和0.75995g(0.005mol)氧化铬充分研磨,直至颜色均一。
(2)将步骤1中的样品进行一次煅烧,煅烧温度为1300℃,保温时间为5h,升温速率为5℃/min。
(3)将步骤2中的样品再次研磨,制成致密陶瓷片。
(4)将步骤3中的样品进行二次煅烧,以5℃/min的升温速率升至1300℃,保温1h,在以3℃/min的升温速率升至1400℃,保温5h。
图2为对比例1在1400℃下的铬酸钐光谱曲线图,可以看出,在不添加金属氧化物的情况下,铬酸钐会产生一个绿峰,对1064nm处的反射率有一定的吸收效果,反射率可以达到44.93%。这表明,铬酸钐陶瓷材料可用于可见光-近红外-激光的兼容吸收。
实施例1:
(1)将1.7436g(0.005mol)氧化钐和0.75995g(0.005mol)氧化铬充分研磨,直至颜色均一,再加入0.00829g(0.00005mol)氧化钴进行研磨。
(2)将步骤1中的样品进行一次煅烧,煅烧温度为1300℃,保温时间为5h,升温速率为5℃/min。
(3)将步骤2中的样品再次研磨,制成致密陶瓷片。
(4)将步骤3中的样品进行二次煅烧,以5℃/min的升温速率升至1300℃,保温1h,在以3℃/min的升温速率升至1400℃,保温5h。二次煅烧前后的实物照片分别如图3和图4所示;从图上可以看出,二次煅烧后样品颜色由深绿向浅绿转变,有利于对激光吸收。
通过金属氧化物(氧化钴)的添加,可以对激光的吸收产生一定的增益效果,在保证绿峰的同时,使1064nm处的反射率由44.93%降低到43.82%。
实施例2:
(1)将2.0225g(0.0058mol)氧化钐和0.75995g(0.005mol)氧化铬充分研磨,再加入0.00829g(0.00005mol)氧化钴进行研磨,直至颜色均一。
(2)将步骤1中的样品进行一次煅烧,煅烧温度为1300℃,保温时间为5h,升温速率为5℃/min。
(3)将步骤2中的样品再次研磨,制成致密陶瓷片。
(4)将步骤3中的样品进行二次煅烧,以5℃/min的升温速率升至1300℃,保温1h,在以3℃/min的升温速率升至1400℃,保温4h。
通过通过优化基体材料的摩尔比,可以对激光的吸收产生一定的增益效果,在保证绿峰的同时,使1064nm处的反射率由44.93%降低到44.17%。
实施例3:
(1)将2.0225g(0.0058mol)氧化钐和0.75995g(0.005mol)氧化铬充分研磨,再加入0.001658g(0.0001mol)氧化钴进行研磨,直至颜色均一。
(2)将步骤1中的样品进行一次煅烧,煅烧温度为1250℃,保温时间为6h,升温速率为4℃/min。
(3)将步骤2中的样品再次研磨,制成致密陶瓷片。
(4)将步骤3中的样品进行二次煅烧,以4℃/min的升温速率升至1250℃,保温1h,在以2℃/min的升温速率升至1350℃,保温6h。
图5为2%氧化钴掺杂铬酸钐光谱曲线图,可以看出,2%氧化钴的掺杂与未参杂金属氧化物相比,可以形成一个较平的近红外高原平台,绿峰没有明显位置的变化,1064nm处的反射率也得到了下降。升温速率的降低使得结构更致密,有利于反射率的下降,优化了可见光-近红外-激光的兼容吸收效果。
实施例4:
(1)将1.4646g(0.0042mol)氧化钐和0.75995g(0.005mol)氧化铬充分研磨,再加入0.003316g(0.0002mol)氧化钴进行研磨,直至颜色均一。
(2)将步骤1中的样品进行一次煅烧,煅烧温度为1350℃,保温时间为4h,升温速率为7℃/min。
(3)将步骤2中的样品再次研磨,制成致密陶瓷片。
(4)将步骤3中的样品进行二次煅烧,以7℃/min的升温速率升至1350℃,保温2h,在以4℃/min的升温速率升至1450℃,保温4h。
图6为4%氧化钴掺杂铬酸钐光谱曲线图,可以看出,4%氧化钴的掺杂使得1064nm处的反射率得到很大程度的下降,对于激光的吸收有很好的效果。
实施例5:
(1)将2.0225g(0.0058mol)氧化钐和0.75995g(0.005mol)氧化铬充分研磨,再加入0.007975g(0.00005mol)氧化铁进行研磨,直至颜色均一。
(2)将步骤1中的样品进行一次煅烧,煅烧温度为1350℃,保温时间为5h,升温速率为6℃/min。
(3)将步骤2中的样品再次研磨,制成致密陶瓷片。
(4)将步骤3中的样品进行二次煅烧,以6℃/min的升温速率升至1350℃,保温1h,在以3℃/min的升温速率升至1450℃,保温5h。
实施例5说明,通过金属氧化物(氧化铁)的添加,可以对激光的吸收产生一定的增益效果,在保证绿峰的同时,使1064nm处的反射率由44.93%降低到43.71%。
实施例6:
(1)将2.0225g(0.0058mol)氧化钐和0.75995g(0.005mol)氧化铬充分研磨,再加入0.001595g(0.0001mol)氧化铁进行研磨,直至颜色均一。
(2)将步骤1中的样品进行一次煅烧,煅烧温度为1300℃,保温时间为5h,升温速率为4℃/min。
(3)将步骤2中的样品再次研磨,制成致密陶瓷片。
(4)将步骤3中的样品进行二次煅烧,以4℃/min的升温速率升至1300℃,保温2h,在以3℃/min的升温速率升至1400℃,保温5h。
图7为2%氧化铁掺杂铬酸钐光谱曲线图,可以看出,2%氧化铁的掺杂与未参杂金属氧化物相比,在保证绿峰的同时还使得1064nm的反射率得到了下降。此外,基体材料摩尔比的提高也有利于激光的吸收,优化了可见光-近红外-激光的兼容吸收效果。
实施例7:
(1)将2.0225g(0.0058mol)氧化钐和0.75995g(0.005mol)氧化铬充分研磨,再加入0.00829g(0.00005mol)氧化钴和0.001595g(0.0001mol)氧化铁进行研磨,直至颜色均一。
(2)将步骤1中的样品进行一次煅烧,煅烧温度为1300℃,保温时间为5h,升温速率为4℃/min。
(3)将步骤2中的样品再次研磨,制成致密陶瓷片。
(4)将步骤3中的样品进行二次煅烧,以4℃/min的升温速率升至1300℃,保温1h,在以2℃/min的升温速率升至1400℃,保温5h。
图8为1%氧化钴和2%氧化铁共同掺杂铬酸钐光谱曲线图,可以看出,双离子共掺在保证平台的同时,也能很好的实现可见光-近红外-激光的兼容吸收,使1064nm的反射率降低到了41.56%。

Claims (5)

1.一种多光谱抑制陶瓷材料的制备方法,其具体步骤为:
(1)铬酸钐材料的预处理:根据所设置的摩尔质量比,加入氧化钐和氧化铬粉体作为基体材料,再加入金属氧化物作为添加材料,充分研磨后,使其颜色均一;(2)一次煅烧处理:将预处理后的铬酸钐粉体,经过高温煅烧,自然冷却获得铬酸钐晶相;
(3)二次研磨与煅烧:将含铬酸钐晶相的粉体研磨后,制成致密陶瓷片,通过二次煅烧,自然冷却后,获得多光谱抑制陶瓷材料。
2.根据权利要求1所述的制备方法,其特征在于:所述步骤(1)中氧化钐与氧化铬的摩尔比为0.8-1.2:1。
3.根据权利要求1所述的制备方法,其特征在于:所述步骤(1)中的金属氧化物为氧化钴或氧化铁中的一种或两种;金属氧化物与氧化铬的摩尔比为0.005-0.04:1。
4.根据权利要求1所述的制备方法,其特征在于:所述步骤(2)中的所述的高温煅烧的煅烧温度T1为1200-1400℃,保温时间为4-6h;升温速率为4-7℃/min。
5.根据权利要求1所述的制备方法,其特征在于:所述步骤(3)中的二次煅烧为:先以4-7℃/min的升温速率升至煅烧温度T1为1200-1400℃并保温1-2h;再以2-4℃/min的升温速率从煅烧温度T1升至二次煅烧温度T2为1300-1500℃并保温4-6h。
CN202310379561.6A 2022-12-12 2023-04-11 一种多光谱抑制陶瓷材料的制备方法 Pending CN116332632A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211587095 2022-12-12
CN2022115870952 2022-12-12

Publications (1)

Publication Number Publication Date
CN116332632A true CN116332632A (zh) 2023-06-27

Family

ID=86885726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310379561.6A Pending CN116332632A (zh) 2022-12-12 2023-04-11 一种多光谱抑制陶瓷材料的制备方法

Country Status (1)

Country Link
CN (1) CN116332632A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357828A (ja) * 1999-06-15 2000-12-26 Matsushita Electric Ind Co Ltd 強磁性酸化物およびこれを用いた磁気抵抗素子
US20050056055A1 (en) * 2003-09-05 2005-03-17 Ahmet Celikkaya Methods of making Al2O3-SiO2 ceramics
CN1738781A (zh) * 2003-01-20 2006-02-22 宇部兴产株式会社 用于光转化的陶瓷复合材料及其应用
US20070191209A1 (en) * 2006-02-13 2007-08-16 Fujifilm Corporation Ceramic optical parts and production methods thereof
US20090061530A1 (en) * 2007-08-31 2009-03-05 Alstom Technology, Ltd. Method for designating a component having a heat insulation layer and for determining its operating time
US20120161090A1 (en) * 2009-06-01 2012-06-28 Kawamura Institute Of Chemical Research Rutile-type titanium oxide crystal and mid-infrared filter using the same
CN104402417A (zh) * 2014-10-24 2015-03-11 桂林电子科技大学 稀土ReCrO3磁性吸波材料及其制备方法
WO2018004383A1 (ru) * 2016-07-01 2018-01-04 Дмитрий Николаевич ЗАДОРИН Контрастный многослойный пигмент и способ его получения
CN114716148A (zh) * 2021-01-05 2022-07-08 长春理工大学 一种可见光/激光/红外/雷达兼容隐身材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357828A (ja) * 1999-06-15 2000-12-26 Matsushita Electric Ind Co Ltd 強磁性酸化物およびこれを用いた磁気抵抗素子
CN1738781A (zh) * 2003-01-20 2006-02-22 宇部兴产株式会社 用于光转化的陶瓷复合材料及其应用
US20050056055A1 (en) * 2003-09-05 2005-03-17 Ahmet Celikkaya Methods of making Al2O3-SiO2 ceramics
US20070191209A1 (en) * 2006-02-13 2007-08-16 Fujifilm Corporation Ceramic optical parts and production methods thereof
US20090061530A1 (en) * 2007-08-31 2009-03-05 Alstom Technology, Ltd. Method for designating a component having a heat insulation layer and for determining its operating time
US20120161090A1 (en) * 2009-06-01 2012-06-28 Kawamura Institute Of Chemical Research Rutile-type titanium oxide crystal and mid-infrared filter using the same
CN104402417A (zh) * 2014-10-24 2015-03-11 桂林电子科技大学 稀土ReCrO3磁性吸波材料及其制备方法
WO2018004383A1 (ru) * 2016-07-01 2018-01-04 Дмитрий Николаевич ЗАДОРИН Контрастный многослойный пигмент и способ его получения
CN114716148A (zh) * 2021-01-05 2022-07-08 长春理工大学 一种可见光/激光/红外/雷达兼容隐身材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
L.H. YIN等: "Multiple temperature-induced magnetization reversals in SmCr1-xFexO3 system", MATERIALS RESEARCH BULLETIN, pages 4016 - 4021 *
VASYL HREB等: "Anomalous High Temperature Structural Behavior of Potential Multifunctional Material SmCo0.5Cr0.5O3", JOURNAL OF INORGANIC AND GENERAL CHEMISTRY, pages 1138 - 1143 *
何寿成;陈涵;郭露村;: "Ce_(0.8)Sm_(0.2)O_(1.9)中间层对La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3-δ)阳极电化学性能的影响", 南京工业大学学报(自然科学版), no. 03, pages 100 - 104 *

Similar Documents

Publication Publication Date Title
CN104557013B (zh) 一种四价铬掺杂钇铝石榴石透明陶瓷的制备方法
CN111423881B (zh) 一种Cr3+掺杂的近红外发光材料及其制备方法
Perrella et al. Er3+-doped Y2O3 obtained by polymeric precursor: Synthesis, structure and upconversion emission properties
CN110628428A (zh) 一种铯铅卤钙钛矿量子点的制备方法及其应用
CN109678506A (zh) 一种氧化铒透明陶瓷的制备方法
CN107245757A (zh) 一种硼酸盐拉曼晶体及其制备方法和用途
CN115651655A (zh) 一种具有超高荧光热稳定性的近红外发光材料及其制备方法与应用
CN116332632A (zh) 一种多光谱抑制陶瓷材料的制备方法
CN102766906B (zh) 一类铒离子激活3微米波段镓酸盐激光晶体及其制备方法
CN114196404A (zh) 一种双钙钛矿型近红外发光材料及其制备方法
CN103332863A (zh) 农业大棚用Cr3+激活氧化铝微晶玻璃、制备及其应用
CN103864423B (zh) 一种微波介质陶瓷材料的制备方法
CN114075075A (zh) 具有γ辐射屏蔽效果的高熵陶瓷材料的制备方法与应用
CN102534792A (zh) 可调谐激光晶体掺铬钼酸镁及其制备
CN108034424B (zh) 一种超灵敏的光学温度传感材料及其制备方法
CN108975714B (zh) 一种促进植物光合作用的双能转光玻璃及其制备方法
CN109233829B (zh) 一种镁铒镱三掺铌酸钠及其制备方法和应用
CN114656255A (zh) 钛酸镁锂复合微波介质陶瓷材料及其制备方法
CN101174756A (zh) 掺镱铌酸钙激光晶体及其制备方法
CN105887200A (zh) 一种铥钬共掺镓酸锶镧激光晶体、制造方法及其应用
CN107502012B (zh) 一种耐紫外热控涂层及其制备方法
CN112410878A (zh) 一种掺铥的2μm激光晶体及其制备方法
KR100726027B1 (ko) 단일상을 갖는 Li4Ti5012 분말의 제조 방법
CN112281217A (zh) 一种非线性光学晶体及其制备方法和应用
CN117186890B (zh) 一种宽波段紫外激发、红蓝双波段发射的氧化钇基发光材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination