CN116218216A - 一种高储能密度聚酰亚胺基复合材料及其制备方法 - Google Patents

一种高储能密度聚酰亚胺基复合材料及其制备方法 Download PDF

Info

Publication number
CN116218216A
CN116218216A CN202310277669.4A CN202310277669A CN116218216A CN 116218216 A CN116218216 A CN 116218216A CN 202310277669 A CN202310277669 A CN 202310277669A CN 116218216 A CN116218216 A CN 116218216A
Authority
CN
China
Prior art keywords
polyimide
energy storage
composite material
storage density
based composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310277669.4A
Other languages
English (en)
Other versions
CN116218216B (zh
Inventor
李恩竹
刘倩
王�华
张庶
钟朝位
张树人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202310277669.4A priority Critical patent/CN116218216B/zh
Publication of CN116218216A publication Critical patent/CN116218216A/zh
Application granted granted Critical
Publication of CN116218216B publication Critical patent/CN116218216B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/325Calcium, strontium or barium phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本发明属于电子材料及其制造领域,具体为一种高储能密度聚酰亚胺基复合材料及其制备方法。本发明在合成磷酸钙化合物的过程中,在钙离子与磷酸根离子形成团簇并成核之前,加入了三乙胺,其作为封端分子与磷酸根形成了氢键,使整个反应处于稳定的状态。最终制备的磷酸钙纳米颗粒是通过聚合和交联的形式获得的,所以当其作为无机填料引入到有机材料中时,能制备出更加均匀、更高储能密度的复合材料,该聚酰亚胺基复合材料击穿电场196~392MV/m,储能密度1.16~6.16J/cm3,储能效率高达98.1%;且制备工艺简单,所制备的复合材料性能稳定,为电子行业用于制备电容器的材料提供了更好地选择。

Description

一种高储能密度聚酰亚胺基复合材料及其制备方法
技术领域
本发明属于电子材料及其制造领域,涉及储能复合材料,具体为一种高储能密度聚酰亚胺基复合材料及其制备方法。
背景技术
随着科技和时代的不断发展,人们对高质量电能的需求也逐渐增加,因此关于新型高效的能量储存与转换的电能储存器件的开发已经备受研究人员的关注。聚合物基电介质因其优异的电介电强度、相对较低的介电损耗、快速充电-放电能力和机械柔性已成为当前研究的热点。聚酰亚胺(PI)是一种综合性能极好的有机聚合物材料,因其优异的电绝缘性能、优异的温度稳定性和柔韧性而被选为基质,被广泛应用于电介质薄膜的研究。
然而,聚酰亚胺的储能密度受到其较低的介电常数限制,并不能满足在高能量密度电介质方向应用的需要。提高介电常数、增强击穿强度和降低介电损耗均可以改善聚合物材料的储能密度。因此,高介电常数的无机纳米填料常常被作为填料来引入到聚合物中,从而制备高储能密度的电介质薄膜。
纳米材料与聚合物的复合虽然提升了材料的储能密度或εr,但是也伴随着基体与填料之间的界面调控问题。由于纳米级填料的高比表面积,界面相的体积分数可高达50%~70%。聚合物复合材料的性能不仅仅取决于单个组分的结构和性能。基体与填料之间的界面相互作用对整体性能的决定也起着重要作用。纳米填料表面的高能性、不饱和性、易团聚特性,使得在有机-无机界面处产生大量的物理缺陷,降低了材料的力学性能和绝缘性能。
发明内容
针对上述存在问题或不足,本发明提供了一种高储能密度聚酰亚胺基复合材料及其制备方法,以满足当前电子行业对高储能密度的电容器的需求。
一种高储能密度聚酰亚胺基复合材料,为有机无机复合材料,由质量比1:0.01~0.07的磷酸钙纳米颗粒与聚酰亚胺构成;其中制备聚酰亚胺的原料为:4,4’-二氨基二苯醚(ODA)和均苯四甲酸二酐(PMDA);磷酸钙纳米颗粒的原料为:二水合氯化钙、磷酸和三乙胺。在测试温度为100℃时,聚酰亚胺基复合材料的击穿电场为196~392MV/m,储能密度为1.16~6.16J/cm3,储能效率最高可达98.1%。
上述高储能密度聚酰亚胺基复合材料的制备方法,包括如下步骤:
步骤1、将磷酸和无水乙醇配置成浓度为2.4wt.%~2.5wt.%的磷酸乙醇溶液,二水合氯化钙和无水乙醇配置成浓度为0.18wt.%~0.20wt.%的氯化钙乙醇溶液。
步骤2、将步骤1所得氯化钙乙醇溶液加入三乙胺并搅拌均匀后,再加入步骤1所得磷酸乙醇溶液,分离烘干获得磷酸钙纳米颗粒;其中,三乙胺与二水合氯化钙质量比为1:33.2~36.4。
步骤3、将4,4’-二氨基二苯醚(ODA)和N,N-二甲基乙酰胺(DMAC)配置成浓度为4.8wt.%~5.6wt.%的溶液,加入步骤2获得的磷酸钙纳米颗粒并充分搅拌。
步骤4、将均苯四甲酸二酐PMDA加入步骤3所得溶液中反应完全,其中PMDA与ODA的摩尔比为1:1.02~1.08。
步骤5、将步骤4合成的混合液在玻璃板表面涂膜后,于100℃~300℃之间采用梯度升温完成热亚胺化过程,最终获得磷酸钙纳米颗粒与聚酰亚胺质量比1:0.01~0.07的聚酰亚胺基复合材料。
进一步,所述步骤4中均苯四甲酸二酐(PMDA)加入步骤3所得溶液时,分多次加入,以使得两者反应易于完全。
进一步,所述步骤4合成的混合液经消泡处理,玻璃板经清洁后再使用,以使得最终的材料性能更佳。
本发明在合成磷酸钙化合物的过程中,在钙离子与磷酸根离子形成团簇并成核之前,加入了三乙胺,其作为封端分子与磷酸根形成了氢键,使整个反应处于稳定的状态。使用此法制备的磷酸钙纳米颗粒是通过聚合和交联的形式获得的,所以当其作为无机填料引入到有机材料中时,能制备出更加均匀、更高储能密度的复合材料,为电子行业用于制备电容器的材料提供了更好地选择。
综上所述,本发明提供的聚酰亚胺基复合材料,具有:1、击穿电场大(196~392MV/m),储能密度高(1.16~6.16J/cm3),储能效率高达98.1%;2、制备工艺简单,仅在目前应用最普遍的两步法上进行了改进,可操作性很强,所制备的复合材料性能稳定。
附图说明
图1为实施例1的样品不同电场强度下的电位移-电场强度曲线图。
图2为实施例2的样品不同电场强度下的电位移-电场强度曲线图。
图3为实施例3的样品不同电场强度下的电位移-电场强度曲线图。
图4为实施例4的样品不同电场强度下的电位移-电场强度曲线图。
图5为实施例5的样品不同电场强度下的电位移-电场强度曲线图。
图6为实施例6的样品不同电场强度下的电位移-电场强度曲线图。
具体实施方式
一种高储能密度聚酰亚胺基复合材料及其制备,下面结合附图和实施例对本发明做进一步的详细说明。
实施例1
将4,4’-二氨基二苯醚(ODA)和N,N-二甲基乙酰胺(DMAC)配置成浓度为5.32wt.%的溶液,然后加入均苯四甲酸二酐(PMDA)搅拌5h至反应完全,PMDA:ODA的摩尔比为1:1.06。密封静置8h,保证混合液没有气泡后在洁净的玻璃板上涂膜,将湿膜在60℃烘箱中保温1h后,依次进行100℃、200℃、300℃各1h的热亚胺化,最终得到厚度为10μm的聚酰亚胺薄膜。
实施例2
将磷酸和无水乙醇配置成浓度为2.48wt.%的磷酸乙醇溶液,二水合氯化钙和无水乙醇配置成浓度为0.186wt.%的氯化钙乙醇溶液。在氯化钙乙醇溶液中加入与二水合氯化钙质量比为1:34.2的三乙胺后搅拌30min,逐滴加入配置好的磷酸乙醇溶液,其中磷酸和二水合氯化钙的摩尔比是1:1。将以上混合液搅拌12h后,分离烘干,获得磷酸钙纳米颗粒。
将4,4’-二氨基二苯醚(ODA)和N,N-二甲基乙酰胺(DMAC)配置成浓度为5.32wt.%的溶液,加入磷酸钙纳米颗粒,搅拌3h混合均匀。将与4,4’-二氨基二苯醚(ODA)摩尔比为1:1.06的均苯四甲酸二酐(PMDA)加入上述混合液之后搅拌5h保证反应完全。密封静置8h,保证混合液没有气泡后在洁净的玻璃板上涂膜,将湿膜在60℃烘箱中保温1h后,依次进行100℃,200℃,300℃各1h的热亚胺化,最终得到磷酸钙纳米颗粒与聚酰亚胺质量比为1:0.01厚度10μm的聚酰亚胺薄膜。
实施例3
将磷酸和无水乙醇配置成浓度为2.48wt.%的磷酸乙醇溶液,二水合氯化钙和无水乙醇配置成浓度为0.186wt.%的氯化钙乙醇溶液。在氯化钙乙醇溶液中加入与二水合氯化钙质量比为1:34.2的三乙胺后搅拌30min,逐滴加入配置好的磷酸乙醇溶液,其中磷酸和二水合氯化钙的摩尔比是1:1。将以上混合液搅拌12h后,分离烘干,获得磷酸钙纳米颗粒。
将4,4’-二氨基二苯醚(ODA)和N,N-二甲基乙酰胺(DMAC)配置成浓度为5.32wt.%的溶液,加入与理论上可获得的聚酰亚胺质量比为1:0.03的磷酸钙纳米颗粒,搅拌3h混合均匀。将与4,4’-二氨基二苯醚(ODA)摩尔比为1:1.06的均苯四甲酸二酐(PMDA)加入上述混合液之后搅拌5h保证反应完全。密封静置8h,保证混合液没有气泡后在洁净的玻璃板上涂膜,将湿膜在60℃烘箱中保温1h后,依次进行100℃,200℃,300℃各1h的热亚胺化,最终得到厚度为10μm左右的聚酰亚胺薄膜。
实施例4
将磷酸和无水乙醇配置成浓度为2.48wt.%的磷酸乙醇溶液,二水合氯化钙和无水乙醇配置成浓度为0.186wt.%的氯化钙乙醇溶液。在氯化钙乙醇溶液中加入与二水合氯化钙质量比为1:34.2的三乙胺后搅拌30min,逐滴加入配置好的磷酸乙醇溶液,其中磷酸和二水合氯化钙的摩尔比是1:1。将以上混合液搅拌12h后,分离烘干,获得磷酸钙纳米颗粒。将4,4’-二氨基二苯醚(ODA)和N,N-二甲基乙酰胺(DMAC)配置成浓度为5.32wt.%的溶液,加入与理论上可获得的聚酰亚胺质量比为1:0.05的磷酸钙纳米颗粒,搅拌3h混合均匀。将与4,4’-二氨基二苯醚(ODA)摩尔比为1:1.06的均苯四甲酸二酐(PMDA)加入上述混合液之后搅拌5h保证反应完全。密封静置8h,保证混合液没有气泡后在洁净的玻璃板上涂膜,将湿膜在60℃烘箱中保温1h后,依次进行100℃,200℃,300℃各1h的热亚胺化,最终得到厚度为10μm左右的聚酰亚胺薄膜。
实施例5
将磷酸和无水乙醇配置成浓度为2.48wt.%的磷酸乙醇溶液,二水合氯化钙和无水乙醇配置成浓度为0.186wt.%的氯化钙乙醇溶液。在氯化钙乙醇溶液中加入与二水合氯化钙质量比为1:34.2的三乙胺后搅拌30min,逐滴加入配置好的磷酸乙醇溶液,其中磷酸和二水合氯化钙的摩尔比是1:1。将以上混合液搅拌12h后,分离烘干,获得磷酸钙纳米颗粒。
将4,4’-二氨基二苯醚(ODA)和N,N-二甲基乙酰胺(DMAC)配置成浓度为5.32wt.%的溶液,加入与理论上可获得的聚酰亚胺质量比为1:0.07的磷酸钙纳米颗粒,搅拌3h混合均匀。将与4,4’-二氨基二苯醚(ODA)摩尔比为1:1.06的均苯四甲酸二酐(PMDA)加入上述混合液之后搅拌5h保证反应完全。密封静置8h,保证混合液没有气泡后在洁净的玻璃板上涂膜,将湿膜在60℃烘箱中保温1h后,依次进行100℃,200℃,300℃各1h的热亚胺化,最终得到厚度为10μm左右的聚酰亚胺薄膜。
实施例6
将磷酸和无水乙醇配置成浓度为2.48wt.%的磷酸乙醇溶液,二水合氯化钙和无水乙醇配置成浓度为0.186wt.%的氯化钙乙醇溶液。在氯化钙乙醇溶液中加入与二水合氯化钙质量比为1:34.2的三乙胺后搅拌30min,逐滴加入配置好的磷酸乙醇溶液,其中磷酸和二水合氯化钙的摩尔比是1:1。将以上混合液搅拌12h后,分离烘干,获得磷酸钙纳米颗粒。
将4,4’-二氨基二苯醚(ODA)和N,N-二甲基乙酰胺(DMAC)配置成浓度为5.32wt.%的溶液,加入与理论上可获得的聚酰亚胺质量比为1:0.09的磷酸钙纳米颗粒,搅拌3h混合均匀。将与4,4’-二氨基二苯醚(ODA)摩尔比为1:1.06的均苯四甲酸二酐(PMDA)加入上述混合液之后搅拌5h保证反应完全。密封静置8h,保证混合液没有气泡后在洁净的玻璃板上涂膜,将湿膜在60℃烘箱中保温1h后,依次进行100℃,200℃,300℃各1h的热亚胺化,最终得到厚度为10μm左右的聚酰亚胺薄膜。
各实施例所得样品的各项性能如表1所示。
表1各例中样品的性能
Figure BDA0004136903110000051
图1~6展示了本发明聚酰亚胺基复合材料在100℃下所测得的不同电场强度下的电位移-电场强度曲线图,分别依次对应实施例样品1~6号。在磷酸钙纳米颗粒与聚酰亚胺质量比为1:0.05时,样品的性能达到最佳。
通过以上实施例可见,本发明通过在磷酸钙纳米颗粒的制备流程中加入三乙胺获得了通过聚合和交联的方式形成的均相无机纳米颗粒,并将其作为填料引入到聚酰亚胺中,最终获得了高储能密度(1.16~6.16J/cm3)以及高储能效率(最高可达98.1%)的聚酰亚胺基复合材料。此外,本发明的制备工艺简单,可操作性强,为电子行业对于电容器材料的需求提供了更好地选择。

Claims (4)

1.一种高储能密度聚酰亚胺基复合材料,其特征在于:为有机无机复合材料,由质量比1:0.01~0.07的磷酸钙纳米颗粒与聚酰亚胺构成;
其中制备聚酰亚胺的原料为:4,4’-二氨基二苯醚ODA和均苯四甲酸二酐PMDA;磷酸钙纳米颗粒的原料为:二水合氯化钙、磷酸和三乙胺;
在测试温度为100℃时,聚酰亚胺基复合材料的击穿电场为196~392MV/m,储能密度为1.16~6.16J/cm3,储能效率高达98.1%。
2.如权利要求1所述高储能密度聚酰亚胺基复合材料的制备方法,其特征在于,包括如下步骤:
步骤1、将磷酸和无水乙醇配置成浓度为2.4wt.%~2.5wt.%的磷酸乙醇溶液,二水合氯化钙和无水乙醇配置成浓度为0.18wt.%~0.20wt.%的氯化钙乙醇溶液;
步骤2、将步骤1所得氯化钙乙醇溶液加入三乙胺并搅拌均匀后,再加入步骤1所得磷酸乙醇溶液,分离烘干获得磷酸钙纳米颗粒;其中,三乙胺与二水合氯化钙质量比为1:33.2~36.4;
步骤3、将4,4’-二氨基二苯醚ODA和N,N-二甲基乙酰胺DMAC配置成浓度为4.8wt.%~5.6wt.%的溶液,加入步骤2获得的磷酸钙纳米颗粒并充分搅拌;
步骤4、将均苯四甲酸二酐PMDA加入步骤3所得溶液中反应完全,其中PMDA与ODA的摩尔比为1:1.02~1.08;
步骤5、将步骤4合成的混合液在玻璃板表面涂膜后,于100℃~300℃之间采用梯度升温完成热亚胺化过程,最终获得磷酸钙纳米颗粒与聚酰亚胺质量比1:0.01~0.07的聚酰亚胺基复合材料。
3.如权利要求1所述高储能密度聚酰亚胺基复合材料的制备方法,其特征在于:所述步骤4中均苯四甲酸二酐PMDA加入步骤3所得溶液时,分多次加入,以使得两者反应易于完全。
4.如权利要求1所述高储能密度聚酰亚胺基复合材料的制备方法,其特征在于:所述步骤4合成的混合液经消泡处理,玻璃板经清洁后再使用。
CN202310277669.4A 2023-03-21 2023-03-21 一种高储能密度聚酰亚胺基复合材料及其制备方法 Active CN116218216B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310277669.4A CN116218216B (zh) 2023-03-21 2023-03-21 一种高储能密度聚酰亚胺基复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310277669.4A CN116218216B (zh) 2023-03-21 2023-03-21 一种高储能密度聚酰亚胺基复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN116218216A true CN116218216A (zh) 2023-06-06
CN116218216B CN116218216B (zh) 2024-05-17

Family

ID=86589134

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310277669.4A Active CN116218216B (zh) 2023-03-21 2023-03-21 一种高储能密度聚酰亚胺基复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116218216B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220195A (ja) * 1993-01-21 1994-08-09 Shin Etsu Chem Co Ltd 易滑性ポリイミドフィルムの製造法
CN101146850A (zh) * 2005-04-12 2008-03-19 株式会社钟化 聚酰亚胺薄膜
DE102008034959A1 (de) * 2008-07-25 2010-01-28 Fuchs Petrolub Ag Calcium/Lithium-Komplexfette und gekapseltes Gleichlaufgelenk enthaltend diese sowie deren Anwendung
KR20190106222A (ko) * 2018-03-08 2019-09-18 (주)이녹스첨단소재 연성 동박 적층필름 및 이의 제조방법
CN110819308A (zh) * 2018-08-10 2020-02-21 北京天山新材料技术有限公司 相变储能微胶囊及其制备方法和应用
CN110885466A (zh) * 2019-11-22 2020-03-17 桂林电器科学研究院有限公司 高取向稳定性聚酰亚胺薄膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220195A (ja) * 1993-01-21 1994-08-09 Shin Etsu Chem Co Ltd 易滑性ポリイミドフィルムの製造法
CN101146850A (zh) * 2005-04-12 2008-03-19 株式会社钟化 聚酰亚胺薄膜
DE102008034959A1 (de) * 2008-07-25 2010-01-28 Fuchs Petrolub Ag Calcium/Lithium-Komplexfette und gekapseltes Gleichlaufgelenk enthaltend diese sowie deren Anwendung
KR20190106222A (ko) * 2018-03-08 2019-09-18 (주)이녹스첨단소재 연성 동박 적층필름 및 이의 제조방법
CN110819308A (zh) * 2018-08-10 2020-02-21 北京天山新材料技术有限公司 相变储能微胶囊及其制备方法和应用
CN110885466A (zh) * 2019-11-22 2020-03-17 桂林电器科学研究院有限公司 高取向稳定性聚酰亚胺薄膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HASHIZUME, M 等: "Biomimetic calcium phosphate coating on polyimide films by utilizing surface-selective hydrolysis treatments", 《JOURNAL OF THE CERAMIC SOCIETY OF JAPAN》, vol. 161, no. 1417, 19 February 2014 (2014-02-19), pages 816 - 818 *
任小龙;韩艳霞;蒋耿杰;: "黑色聚酰亚胺薄膜研究进展", 中国塑料, no. 03, 26 March 2016 (2016-03-26) *

Also Published As

Publication number Publication date
CN116218216B (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
KR101140196B1 (ko) 폴리이미드 나노복합체 및 그 제조방법
WO2011081314A2 (ko) 대전방지특성 또는 전기전도특성을 가지는 전방향족 폴리이미드 분말의 제조방법
CN114854087B (zh) 一种具备双导热网络的聚酰亚胺复合材料及其制备方法
CN109880133B (zh) 一种含氟树脂混合物薄膜及覆铜板制备方法
Zheng et al. High-k 3D-barium titanate foam/phenolphthalein poly (ether sulfone)/cyanate ester composites with frequency-stable dielectric properties and extremely low dielectric loss under reduced concentration of ceramics
CN112898614A (zh) 一种高介电常数聚酰亚胺三相复合材料及其制备方法
CN114106374A (zh) 聚酰亚胺基复合薄膜及其制备方法与应用
Zhang et al. β-Cyclodextrin toughened polyimide composites toward all-organic dielectric materials
CN107955167A (zh) 一种高性能聚酰亚胺碳化钛纳米片复合材料的制备方法
Mao et al. Preparation and characterization of PI/PVDF composite films with excellent dielectric property
CN116218216B (zh) 一种高储能密度聚酰亚胺基复合材料及其制备方法
CN103467986A (zh) 有机小分子修饰的纳米碳化钛/聚酰亚胺复合材料
CN111004507A (zh) 一种交联型聚醚酰亚胺基介电复合薄膜的制备方法和用途
CN115216151B (zh) 一种聚酰亚胺薄膜导热通道的构建方法
Liu et al. Polyamide-imide/polyimide alloy with enhanced energy density and efficiency
KR20160146113A (ko) 마이크로파를 이용한 폴리이미드 필름 제조방법
CN112608597B (zh) 一种高储能密度聚合物复合材料及其制备方法
CN114559721A (zh) 三明治结构高储能密度聚酰亚胺基复合薄膜及其制备方法
CN114456526A (zh) 一种聚合物复合材料及其制备方法和应用
CN113845751A (zh) 一种环氧树脂基电磁屏蔽复合材料及其制备方法和用途
CN109401142B (zh) 一种具有海岛结构的pvdf基复合材料及其制备方法
Su et al. Fabrication of high-k epoxy composites with low dielectric loss based on polymer shell-coated multiwalled carbon nanotubes
CN114736408B (zh) 一种高介电pi/pvdf复合薄膜的制备方法
CN114044901B (zh) 一种聚酰亚胺材料及其制备方法和应用
CN117511208B (zh) 一种聚醚酰亚胺基复合介电薄膜材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant