CN116217214A - 一种超高温低损耗锰锌铁氧体材料及其制备方法 - Google Patents

一种超高温低损耗锰锌铁氧体材料及其制备方法 Download PDF

Info

Publication number
CN116217214A
CN116217214A CN202211725776.0A CN202211725776A CN116217214A CN 116217214 A CN116217214 A CN 116217214A CN 202211725776 A CN202211725776 A CN 202211725776A CN 116217214 A CN116217214 A CN 116217214A
Authority
CN
China
Prior art keywords
dosage
main material
main
weight percent
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211725776.0A
Other languages
English (en)
Inventor
王修炜
李庆
赵光
陈小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maanshan New Conda Magnetic Industrial Co ltd
Original Assignee
Maanshan New Conda Magnetic Industrial Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maanshan New Conda Magnetic Industrial Co ltd filed Critical Maanshan New Conda Magnetic Industrial Co ltd
Priority to CN202211725776.0A priority Critical patent/CN116217214A/zh
Publication of CN116217214A publication Critical patent/CN116217214A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种超高温低损耗锰锌铁氧体材料及其制备方法,属于铁氧体生产技术领域。该锰锌铁氧体材料的化学式为(MnxZnyFez)Fe2O4,0.6<x<0.8,0.1<y<0.2,0.05<z<0.1,它由主料和添加剂制成,所述主料由Fe2O3:49.9‑53mol%、MnO:37‑43mol%和ZnO:7.1‑10mol%组成,所述添加剂由CaO、SiO2、Nb2O5、HfO2、K2CO3组成,其中,CaO的用量为主料的0.2‑0.4wt%,SiO2的用量为主料的0.05‑0.1wt%,Nb2O5的用量为主料的0.2‑0.4wt%,HfO2的用量为主料的0.1‑0.2wt%,K2CO3的用量为主料的0.3‑0.6wt%。

Description

一种超高温低损耗锰锌铁氧体材料及其制备方法
技术领域
本发明属于铁氧体生产技术领域,更具体地说,涉及一种超高温低损耗锰锌铁氧体材料及其制备方法。
背景技术
针对新能源汽车大功率充电桩的应用,因充电功率越来越大,器件的工作温度也越来越高,最高工作温度可达150-160℃,开发一款能够在此温度下应用的低损耗材料。
现有材料在超高温度下电阻率很低,造成涡流损耗很大;且现有材料二峰点在100℃左右,在超高温下的磁滞损耗也偏大,这样总损耗非常高。例如中国专利申请CN201310673514.9公开了一种二峰55℃的高居里点高磁导率锰锌铁氧体材料,本发明的锰锌铁氧体材料由主料和添加剂制成,主料由Fe2O3:52.6-53.2mol%、MnO:30.1-31.3mol%和ZnO:16.1-17.5mol%组成,添加剂由用量分别为主料的0.025wt%、0.020wt%、0.020wt%、0.020wt%、0.050wt%和0.030wt%-0.100wt%的CaCO3、V2O5、Nb2O5、ZrO2、Co3O4和Li2CO3组成。本发明的制备方法依次包括如下步骤:混合、预烧、粉碎、造粒、压制和烧结。
再如中国专利申请CN200910033031.6公开了一种宽温宽频高居里点低损耗锰锌铁氧体材料,以氧化物含量计算的组成为:Fe2O3为52-57mol%;ZnO为3-7mol%;其余为MnO;第一辅助成分包括0.01wt%-0.1wt%CaO、0.005wt%-0.02wt%SiO2;第二辅助成分包括V2O5、Nb2O5、Ta2O5、ZrO2、K2O、NiO中的一种或几种,其含量计算为0-0.2wt%、第三辅助成分包括0.04-0.075wt%SnO2;0.08-0.15wt%TiO2;0.05-0.5wt%Co2O3,其中TiO2的含量是SnO2的两倍。
发明内容
1.要解决的问题
针对现有锰锌铁氧体材料在超高温度下电阻率低,造成涡流损耗大的问题,本发明提供一种超高温低损耗锰锌铁氧体材料及其制备方法,降低锰锌铁氧体材料在超高温下的磁滞损耗和涡流损耗,使总损耗适应开发应用条件。
2.技术方案
为了解决上述问题,本发明所采用的技术方案如下:
本发明的一种超高温低损耗锰锌铁氧体材料,化学式为(MnxZnyFez)Fe2O4,0.6<x<0.8,0.1<y<0.2,0.05<z<0.1,它由主料和添加剂制成,所述主料由Fe2O3:49.9-53mol%、MnO:37-43mol%和ZnO:7.1-10mol%组成,所述添加剂由CaO、SiO2、Nb2O5、HfO2、K2CO3组成,其中,CaO的用量为主料的0.2-0.4wt%,SiO2的用量为主料的0.05-0.1wt%,Nb2O5的用量为主料的0.2-0.4wt%,HfO2的用量为主料的0.1-0.2wt%,K2CO3的用量为主料的0.3-0.6wt%。
于本发明一种可能实施方式中,所述主料由Fe2O3:51-52mol%、MnO:37-40mol%和ZnO:8-10mol%组成。
于本发明一种可能实施方式中,K2CO3的用量是HfO2的用量的2-3倍。
于本发明一种可能实施方式中,HfO2的用量为主料的0.1-0.2wt%,K2CO3的用量为主料的0.3-0.6wt%。
本发明的超高温低损耗锰锌铁氧体材料的制备方法,包括以下步骤:
步骤S101、混合:将主料按配比配料后,采用湿法混合得到主料浆,湿法混合的混合时间为30-60分钟;
所述主料由Fe2O3:51-53mol%、MnO:37-43mol%和ZnO:7.1-10mol%组成,所述添加剂由CaO、SiO2、Nb2O5、HfO2、K2CO3组成,其中,CaO的用量为主料的0.2-0.4wt%,SiO2的用量为主料的0.05-0.1wt%,Nb2O5的用量为主料的0.2-0.4wt%,HfO2的用量为主料的0.1-0.2wt%,K2CO3的用量为主料的0.3-0.6wt%。
步骤S102、预烧:将主料浆喷雾干燥后投加到回转窑中进行预烧,得到预烧料,预烧的温度为900-1000℃,预烧的时间为45 -75分钟;
步骤S103、粉碎:将添加剂投加到预烧料中后,进行湿法粉碎,得到粉碎料,湿法粉碎的粉碎时间为90 -120分钟,粉碎料的粒径为0.5-0.8μm;
步骤S104、造粒:向粉碎料中投加相当于粉碎料重量的10%的PVA/(溶液浓度10%),采用喷雾造粒,得到颗粒料;
步骤S105、压制:用粉末成型机将颗粒料压制成坯件,坯件的密度为3.0±0.1g/cm3
步骤S106、烧结:将坯件置于氮窑中烧结,升温速率为1.5-3℃/分钟,在950℃到烧结温度实行致密化控制,控制氧含量低于0.1%,烧结温度控制在1200-1250℃,保温段氧含量控制在1.5-3%,保温4-7小时,降温速率控制在1.2-2℃/分钟,得到锰锌铁氧体材料。
于本发明一种可能实施方式中,所述PVA溶液的浓度为0.5-1.0mol/L。
3.有益效果
相比于现有技术,本发明的有益效果为:
(1)本发明的配方采用低铁低锌配方,使材料在高温下的磁晶各向异性常数较小,降低磁滞损耗;掺杂引入适量K+离子,进一步降低材料在超高温(160℃)下的磁晶各向异性常数,使材料在该温度下磁滞损耗最低;
(2)本发明的锰锌铁氧体材料的涡流损耗随温度上升而升高,在超高温时,一般材料的涡流损耗会非常大;采用低温烧结,同时加入Nb、Hf等高熔点杂质,使材料的电阻率提升,降低了涡流损耗;
(3)本发明的锰锌铁氧体材料的二峰点在160℃,25℃磁导率温度稳定性好,磁导率达到1600以上,居里温度高,居里温度大于240℃。
附图说明
图1为本发明实施例1超高温低损耗锰锌铁氧体材料的SEM图。
具体实施方式
下文对本发明的示例性实施例进行了详细描述。尽管这些示例性实施例被充分详细地描述以使得本领域技术人员能够实施本发明,但应当理解可实现其他实施例且可在不脱离本发明的精神和范围的情况下对本发明作各种改变。下文对本发明的实施例的更详细的描述并不用于限制所要求的本发明的范围,而仅仅为了进行举例说明且不限制对本发明的特点和特征的描述,以提出执行本发明的最佳方式,并足以使得本领域技术人员能够实施本发明。因此,本发明的范围仅由所附权利要求来限定。
下文对本发明的详细描述和示例实施例进行说明。
本发明的超高温低损耗锰锌铁氧体材料,化学式为(MnxZnyFez)Fe2O4,0.6<x<0.8,0.1<y<0.2,0.05<z<0.1,它由主料和添加剂制成,所述主料由Fe2O3:49.9-53mol%、MnO:37-43mol%和ZnO:7.1-10mol%组成,所述添加剂由CaO、SiO2、Nb2O5、HfO2、K2CO3组成,其中,CaO的用量为主料的0.2-0.4wt%,SiO2的用量为主料的0.05-0.1wt%,Nb2O5的用量为主料的0.2-0.4wt%,HfO2的用量为主料的0.1-0.2wt%,K2CO3的用量为主料的0.3-0.6wt%。所述主料由Fe2O3:51-52mol%、MnO:37-40mol%和ZnO:8-10mol%组成;K2CO3的用量是HfO2的用量的2-3倍;HfO2的用量为主料的0.1-0.2wt%,K2CO3的用量为主料的0.3-0.6wt%。
上述的各种添加剂的作用叙述如下:
(1)CaO的作用:在晶界形成高电阻层,抑制涡流损耗;(2)SiO2的作用:和CaO配合使用,反应生成CaSiO3,沉积在晶界,提高晶界电阻率;(3)Nb2O5的作用:高熔点,不进入晶格,在晶格生成时抑制晶格的连续生长,使晶粒细化:(4)HfO2的作用:超高熔点,进一步使晶粒细化,降低损耗:(5)K2CO3的作用:助溶剂,消除晶粒生长时的空穴,提高材料密度,提高磁导率,降低磁滞损耗。
此外,本发明的锰锌铁氧体材料在使用过程中,本发明的发明人还惊奇的发现了一些需要强调的内容。本领域的技术人员熟知,最终上述的粉体需要进行压制、烧制等过程,在这些过程中,尤其是烧制时,无法避免的锰锌铁氧体材料会产生烧制裂纹,甚至烧制时直接崩裂的问题。通过分析主要的原因是添加上述的添加剂,出现线膨胀(过渡金属固溶体)等不利因素,导致锰锌铁氧体材料抗热震性变差,经过实际的数据统计,大概是5-7%左右的体积增加。
上述的不利因素也增加了锰锌铁氧体材料烧制不合格的几率,通过大量的试验分析,尽可能的减少锰锌铁氧体材料因体积膨胀带来的问题,本发明的发明人在现有技术的基础上,增加了CaO的含量,同时加入K2CO3,且使得K2CO3的用量是HfO2的用量的2-3倍。其中CaO一部分发挥自身的作用,另一部分与SiO2反应生成CaSiO3,在高温(1200-1250℃)碱性环境中,CaSiO3表面被大量的低熔点钾物质包裹,进而阻止了尤其是铁离子、锰离子进入阳离子空位的可能性,从而CaSiO3无法与过渡金属等形成固溶体,而这些固溶体具有较大的膨胀系数,有效地减少了锰锌铁氧体材料开裂的几率,提高了产品合格率。
此外,上述的K2CO3的用量是HfO2的用量的2-3倍,是根据最终产品的烧制过程中的液相量计算得到。
实施例1
本实施例的超高温低损耗锰锌铁氧体材料的制备方法,包括以下步骤:
步骤S101、混合:将主料按配比配料后,采用湿法混合得到主料浆,湿法混合的混合时间为60分钟;
所述主料由Fe2O3:51mol%、MnO:41.9mol%和ZnO:7.1mol%组成,所述添加剂由CaO、SiO2、Nb2O5、HfO2、K2CO3组成,其中,CaO的用量为主料的0.2wt%,SiO2的用量为主料的0.1wt%,Nb2O5的用量为主料的0.3wt%,HfO2的用量为主料的0.1wt%,K2CO3的用量为主料的0.4wt%。
步骤S102、预烧:将主料浆喷雾干燥后投加到回转窑中进行预烧,得到预烧料,预烧的温度为900℃,预烧的时间为75分钟;
步骤S103、粉碎:将添加剂投加到预烧料中后,进行湿法粉碎,得到粉碎料,湿法粉碎的粉碎时间为100分钟,粉碎料的粒径为0.6μm;
步骤S104、造粒:向粉碎料中投加相当于粉碎料重量的10%的PVA溶液(所述PVA溶液的浓度为0.5mol/L),采用喷雾造粒,得到颗粒料;
步骤S105、压制:用粉末成型机将颗粒料压制成坯件,坯件的密度为3.0±0.1g/cm3
步骤S106、烧结:将坯件置于氮窑中烧结,升温速率为2.0℃/分钟,在950℃到烧结温度实行致密化控制,控制氧含量低于0.1%,烧结温度控制在1200℃,保温段氧含量控制在2.5%,保温5小时,降温速率控制在1.8℃/分钟,得到锰锌铁氧体材料。
实施例2
本实施例的超高温低损耗锰锌铁氧体材料的制备方法,包括以下步骤:
步骤S101、混合:将主料按配比配料后,采用湿法混合得到主料浆,湿法混合的混合时间为30分钟;
所述主料由Fe2O3:52mol%、MnO:40mol%和ZnO:8mol%组成,所述添加剂由CaO、SiO2、Nb2O5、HfO2、K2CO3组成,其中,CaO的用量为主料的0.3wt%,SiO2的用量为主料的0.05wt%,Nb2O5的用量为主料的0.4wt%,HfO2的用量为主料的0.2wt%,K2CO3的用量为主料的0.5wt%。
步骤S102、预烧:将主料浆喷雾干燥后投加到回转窑中进行预烧,得到预烧料,预烧的温度为950℃,预烧的时间为60分钟;
步骤S103、粉碎:将添加剂投加到预烧料中后,进行湿法粉碎,得到粉碎料,湿法粉碎的粉碎时间为110分钟,粉碎料的粒径为0.7μm;
步骤S104、造粒:向粉碎料中投加相当于粉碎料重量的10%的PVA溶液,采用喷雾造粒,得到颗粒料;
步骤S105、压制:用粉末成型机将颗粒料压制成坯件,坯件的密度为3.0±0.1g/cm3
步骤S106、烧结:将坯件置于氮窑中烧结,升温速率为1.5℃/分钟,在950℃到烧结温度实行致密化控制,控制氧含量低于0.1%,烧结温度控制在1210℃,保温段氧含量控制在2.8%,保温6小时,降温速率控制在1.2℃/分钟,得到锰锌铁氧体材料。
实施例3
本实施例的超高温低损耗锰锌铁氧体材料的制备方法,包括以下步骤:
步骤S101、混合:将主料按配比配料后,采用湿法混合得到主料浆,湿法混合的混合时间为45分钟;
所述主料由Fe2O3:53mol%、MnO:37mol%和ZnO:10mol%组成,所述添加剂由CaO、SiO2、Nb2O5、HfO2、K2CO3组成,其中,CaO的用量为主料的0.4wt%,SiO2的用量为主料的0.08wt%,Nb2O5的用量为主料的0.2wt%,HfO2的用量为主料的0.15wt%,K2CO3的用量为主料的0.6wt%。
步骤S102、预烧:将主料浆喷雾干燥后投加到回转窑中进行预烧,得到预烧料,预烧的温度为980℃,预烧的时间为50分钟;
步骤S103、粉碎:将添加剂投加到预烧料中后,进行湿法粉碎,得到粉碎料,湿法粉碎的粉碎时间为90分钟,粉碎料的粒径为0.65μm;
步骤S104、造粒:向粉碎料中投加相当于粉碎料重量的10%的PVA溶液(所述PVA溶液的浓度为1.0mol/L),采用喷雾造粒,得到颗粒料;
步骤S105、压制:用粉末成型机将颗粒料压制成坯件,坯件的密度为3.0±0.1g/cm3
步骤S106、烧结:将坯件置于氮窑中烧结,升温速率为1.8℃/分钟,在950℃到烧结温度实行致密化控制,控制氧含量低于0.1%,烧结温度控制在1250℃,保温段氧含量控制在3%,保温7小时,降温速率控制在1.5℃/分钟,得到锰锌铁氧体材料。
实施例4
本实施例的超高温低损耗锰锌铁氧体材料的制备方法,包括以下步骤:
步骤S101、混合:将主料按配比配料后,采用湿法混合得到主料浆,湿法混合的混合时间为50分钟;
所述主料由Fe2O3:52.1mol%、MnO:40.6mol%和ZnO:7.3mol%组成,所述添加剂由CaO、SiO2、Nb2O5、HfO2、K2CO3组成,其中,CaO的用量为主料的0.25wt%,SiO2的用量为主料的0.06wt%,Nb2O5的用量为主料的0.25wt%,HfO2的用量为主料的0.15wt%,K2CO3的用量为主料的0.3wt%。
步骤S102、预烧:将主料浆喷雾干燥后投加到回转窑中进行预烧,得到预烧料,预烧的温度为920℃,预烧的时间为70分钟;
步骤S103、粉碎:将添加剂投加到预烧料中后,进行湿法粉碎,得到粉碎料,湿法粉碎的粉碎时间为120分钟,粉碎料的粒径为0.8μm;
步骤S104、造粒:向粉碎料中投加相当于粉碎料重量的10%的PVA溶液,采用喷雾造粒,得到颗粒料;
步骤S105、压制:用粉末成型机将颗粒料压制成坯件,坯件的密度为3.0±0.1g/cm3
步骤S106、烧结:将坯件置于氮窑中烧结,升温速率为2.5℃/分钟,在950℃到烧结温度实行致密化控制,控制氧含量低于0.1%,烧结温度控制在1220℃,保温段氧含量控制在1.5%,保温4小时,降温速率控制在2℃/分钟,得到锰锌铁氧体材料。
实施例5
本实施例的超高温低损耗锰锌铁氧体材料的制备方法,包括以下步骤:
步骤S101、混合:将主料按配比配料后,采用湿法混合得到主料浆,湿法混合的混合时间为60分钟;
所述主料由Fe2O3:51.6mol%、MnO:38.6mol%和ZnO:9.8mol%组成,所述添加剂由CaO、SiO2、Nb2O5、HfO2、K2CO3组成,其中,CaO的用量为主料的0.35wt%,SiO2的用量为主料的0.07wt%,Nb2O5的用量为主料的0.35wt%,HfO2的用量为主料的0.15wt%,K2CO3的用量为主料的0.45wt%。
步骤S102、预烧:将主料浆喷雾干燥后投加到回转窑中进行预烧,得到预烧料,预烧的温度为1000℃,预烧的时间为45分钟;
步骤S103、粉碎:将添加剂投加到预烧料中后,进行湿法粉碎,得到粉碎料,湿法粉碎的粉碎时间为95分钟,粉碎料的粒径为0.5μm;
步骤S104、造粒:向粉碎料中投加相当于粉碎料重量的10%的PVA溶液,采用喷雾造粒,得到颗粒料;
步骤S105、压制:用粉末成型机将颗粒料压制成坯件,坯件的密度为3.0±0.1g/cm3
步骤S106、烧结:将坯件置于氮窑中烧结,升温速率为3℃/分钟,在950℃到烧结温度实行致密化控制,控制氧含量低于0.1%,烧结温度控制在1240℃,保温段氧含量控制在1.9%,保温5小时,降温速率控制在1.6℃/分钟,得到锰锌铁氧体材料。
上述五个实施例的主料和添加剂及相关参数:
表1实施例1-5主料和添加剂及相关参数
实施例1 实施例2 实施例3 实施例4 实施例5
Fe2O3/mol% 51 52 53 52.1 51.6
MnO/mol% 41.9 40 37 40.6 38.6
ZnO/mol% 7.1 8 10 7.3 9.8
CaO/wt% 0.2 0.3 0.4 0.25 0.35
SiO2/wt% 0.1 0.05 0.08 0.06 0.07
Nb2O5/wt% 0.3 0.4 0.2 0.25 0.35
HfO2/wt% 0.1 0.2 0.15 0.15 0.15
K2CO3/wt% 0.4 0.5 0.6 0.3 0.45
预烧的温度/℃ 900 950 980 920 1000
预烧的时间/分钟 75 60 50 70 45
粉碎时间/分钟 100 110 90 120 95
粉碎料的粒径/μm 0.6 0.7 0.65 0.8 0.5
升温速率℃/分钟 2.0 1.5 1.8 2.5 3.0
烧结温度/℃ 1200 1210 1250 1220 1240
保温段氧含量/% 2.5 2.8 3.0 1.5 1.9
保温/小时 5 6 7 4 5
降温速率℃/分钟 1.8 1.2 1.5 2.0 1.6
上述五个实施例的磁性能和密测试结果见下表:
表2实施例1-5锰锌铁氧体材料的磁性能和密测试结果
Figure BDA0004029824900000071
/>
Figure BDA0004029824900000081
对比例1
与实施例1基本一致,其中按照专利CN200910033031.6中的CaO的用量为主料的0.1wt%,且不添加HfO2、K2CO3,通过现场的数据分析得到,依次烧制的数量为1000块,其中实施例1的锰锌铁氧体材料烧制开裂数量为5块,该对比例的开裂数量为16块,增幅为22%。
对比例2
与实施例2基本一致,其中按照专利CN200910033031.6中的CaO的用量为主料的0.05wt%,且不添加HfO2、K2CO3,通过现场的数据分析得到,依次烧制的数量为1000块,其中实施例2的锰锌铁氧体材料烧制开裂数量为7块,该对比例的开裂数量为21块,增幅为20%。
由上述得到的对比例1-2以及与相关实施例1-2的对比,本发明的锰锌铁氧体材料不仅降低锰锌铁氧体材料在超高温下的磁滞损耗和涡流损耗,使总损耗适应开发应用条件;而且还解决了锰锌铁氧体材料烧制开裂的问题。
以上所述仅为本发明的优选实施方案,应当指出,对于本技领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干赶紧和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种超高温低损耗锰锌铁氧体材料,其特征在于,化学式为(MnxZnyFez)Fe2O4,0.6<x<0.8,0.1<y<0.2,0.05<z<0.1,它由主料和添加剂制成,所述主料由Fe2O3:49.9-53mol%、MnO:37-43mol%和ZnO:7.1-10mol%组成,所述添加剂由CaO、SiO2、Nb2O5、HfO2、K2CO3组成,其中,CaO的用量为主料的0.2-0.4wt%,SiO2的用量为主料的0.05-0.1wt%,Nb2O5的用量为主料的0.2-0.4wt%,HfO2的用量为主料的0.1-0.2wt%,K2CO3的用量为主料的0.3-0.6wt%。
2.根据权利要求1所述的超高温低损耗锰锌铁氧体材料,其特征在于,所述主料由Fe2O3:51-52mol%、MnO:37-40mol%和ZnO:8-10mol%组成。
3.根据权利要求1所述的超高温低损耗锰锌铁氧体材料,其特征在于,K2CO3的用量是HfO2的用量的2-3倍。
4.根据权利要求1所述的超高温低损耗锰锌铁氧体材料,其特征在于,HfO2的用量为主料的0.1-0.2wt%,K2CO3的用量为主料的0.3-0.6wt%。
5.一种超高温低损耗锰锌铁氧体材料的制备方法,其特征在于,包括以下步骤:
步骤S101、混合:将主料按配比配料后,采用湿法混合得到主料浆,湿法混合的混合时间为30-60分钟;
所述主料由Fe2O3:49.9-53mol%、MnO:37-43mol%和ZnO:7.1-10mol%组成,所述添加剂由CaO、SiO2、Nb2O5、HfO2、K2CO3组成,其中,CaO的用量为主料的0.2-0.4wt%,SiO2的用量为主料的0.05-0.1wt%,Nb2O5的用量为主料的0.2-0.4wt%,HfO2的用量为主料的0.1-0.2wt%,K2CO3的用量为主料的0.3-0.6wt%;
步骤S102、预烧:将主料浆喷雾干燥后投加到回转窑中进行预烧,得到预烧料,预烧的温度为900-1000℃,预烧的时间为45-75分钟;
步骤S103、粉碎:将添加剂投加到预烧料中后,进行湿法粉碎,得到粉碎料,湿法粉碎的粉碎时间为90-120分钟,粉碎料的粒径为0.5-0.8μm;
步骤S104、造粒:向粉碎料中投加相当于粉碎料重量的10%的PVA溶液,采用喷雾造粒,得到颗粒料;
步骤S105、压制:用粉末成型机将颗粒料压制成坯件,坯件的密度为3.0±0.1g/cm3
步骤S106、烧结:将坯件置于氮窑中烧结,升温速率为1.5-3℃/分钟,在950℃到烧结温度实行致密化控制,控制氧含量低于0.1%,烧结温度控制在1200-1250℃,保温段氧含量控制在1.5-3%,保温4-7小时,降温速率控制在1.2-2℃/分钟,得到锰锌铁氧体材料。
6.根据权利要求5所述的超高温低损耗锰锌铁氧体材料的制备方法,其特征在于,所述PVA溶液的浓度为0.5-1.0mol/L。
CN202211725776.0A 2022-12-30 2022-12-30 一种超高温低损耗锰锌铁氧体材料及其制备方法 Pending CN116217214A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211725776.0A CN116217214A (zh) 2022-12-30 2022-12-30 一种超高温低损耗锰锌铁氧体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211725776.0A CN116217214A (zh) 2022-12-30 2022-12-30 一种超高温低损耗锰锌铁氧体材料及其制备方法

Publications (1)

Publication Number Publication Date
CN116217214A true CN116217214A (zh) 2023-06-06

Family

ID=86581558

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211725776.0A Pending CN116217214A (zh) 2022-12-30 2022-12-30 一种超高温低损耗锰锌铁氧体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116217214A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536516A (ja) * 1991-07-30 1993-02-12 Tdk Corp マンガン−亜鉛系フエライト材料、その製造方法および高周波電源トランス用磁心
JPH05226136A (ja) * 1992-02-18 1993-09-03 Tokin Corp 低損失酸化物磁性材料
CN1686930A (zh) * 2005-03-21 2005-10-26 乳源瑶族自治县东阳光实业发展有限公司 高叠加性能锰锌系铁氧体及其制备方法
CN1686929A (zh) * 2005-03-21 2005-10-26 乳源瑶族自治县东阳光实业发展有限公司 低损耗锰锌系铁氧体及其制备方法
CN102300830A (zh) * 2009-01-29 2011-12-28 杰富意化学株式会社 MnZn系铁氧体芯及其制造方法
CN103247405A (zh) * 2012-02-10 2013-08-14 Tdk株式会社 铁氧体铁芯以及变压器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536516A (ja) * 1991-07-30 1993-02-12 Tdk Corp マンガン−亜鉛系フエライト材料、その製造方法および高周波電源トランス用磁心
JPH05226136A (ja) * 1992-02-18 1993-09-03 Tokin Corp 低損失酸化物磁性材料
CN1686930A (zh) * 2005-03-21 2005-10-26 乳源瑶族自治县东阳光实业发展有限公司 高叠加性能锰锌系铁氧体及其制备方法
CN1686929A (zh) * 2005-03-21 2005-10-26 乳源瑶族自治县东阳光实业发展有限公司 低损耗锰锌系铁氧体及其制备方法
CN102300830A (zh) * 2009-01-29 2011-12-28 杰富意化学株式会社 MnZn系铁氧体芯及其制造方法
CN103247405A (zh) * 2012-02-10 2013-08-14 Tdk株式会社 铁氧体铁芯以及变压器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孙科: "MnZn功率铁氧体的研究进展", 《磁性材料及器件》, vol. 36, no. 6, 31 December 2005 (2005-12-31), pages 17 - 20 *
林其壬: "《铁氧体工艺原理》", 30 April 1987, 上海科学技术出版社, pages: 165 - 168 *

Similar Documents

Publication Publication Date Title
CN104529425B (zh) 一种宽温高磁导率MnZn铁氧体材料及其制造方法
CN110156451B (zh) 一种高阻抗的贫铁锰锌铁氧体材料及其制备方法
JP3108803B2 (ja) Mn−Znフェライト
CN106747396B (zh) 一种汽车电子用高磁导率锰锌铁氧体材料及其制备方法
JP3584438B2 (ja) Mn−Znフェライトおよびその製造方法
CN113277840A (zh) 一种高频高工作磁密低损耗锰锌铁氧体及其制备方法
CN102432279A (zh) 一种高强度耐热冲击镍锌铁氧体及其制备方法
JP2004247603A (ja) MnZn系フェライト電波吸収体
JP3108804B2 (ja) Mn−Znフェライト
CN104513059B (zh) 一种超宽温高磁导率MnZn铁氧体材料及其制造方法
CN116217214A (zh) 一种超高温低损耗锰锌铁氧体材料及其制备方法
CN108911733A (zh) 一种低功耗高Bs高频MnZn铁氧体材料及其制备方法
CN114773047B (zh) 一种宽频高阻抗的锰锌铁氧体材料及其制备方法和应用
CN112194481A (zh) 一种镍锌铁氧体材料及其制备方法
CN115010480A (zh) 一种锰锌铁氧体kah100材料制备方法
CN111362684B (zh) 一种移动谷点提高MnZn功率铁氧体材料Bs的方法
CN113511889A (zh) 一种软磁镍锌铁氧体材料及其制备方法和应用
JP2004247602A (ja) MnZn系フェライト電波吸収体
JPS60262404A (ja) Mn−Znフエライトの製造方法
CN107573051B (zh) 一种不提高损耗改善MnZn功率铁氧体磁芯强度的方法
JP3597665B2 (ja) Mn−Niフェライト材料
JP3584437B2 (ja) Mn−Znフェライトの製造方法
CN115745592B (zh) 一种宽频高Tc高磁导率锰锌铁氧体材料及其制备方法
CN115536379B (zh) 一种高频低损软磁铁氧体材料及其制备方法和应用
CN115745596B (zh) 氧化锌基电阻片组合物、氧化锌基电阻片及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination