CN113511889A - 一种软磁镍锌铁氧体材料及其制备方法和应用 - Google Patents

一种软磁镍锌铁氧体材料及其制备方法和应用 Download PDF

Info

Publication number
CN113511889A
CN113511889A CN202110723198.6A CN202110723198A CN113511889A CN 113511889 A CN113511889 A CN 113511889A CN 202110723198 A CN202110723198 A CN 202110723198A CN 113511889 A CN113511889 A CN 113511889A
Authority
CN
China
Prior art keywords
soft magnetic
zinc ferrite
ferrite material
magnetic nickel
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110723198.6A
Other languages
English (en)
Other versions
CN113511889B (zh
Inventor
张冬震
张凯
刘培元
谭翔滨
朱鹏飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ruyuan Dong Yang Guang Materials Co ltd
Shaoguan East Sunshine Technology R&D Co Ltd
Original Assignee
Ruyuan Dong Yang Guang Materials Co ltd
Shaoguan East Sunshine Technology R&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruyuan Dong Yang Guang Materials Co ltd, Shaoguan East Sunshine Technology R&D Co Ltd filed Critical Ruyuan Dong Yang Guang Materials Co ltd
Priority to CN202110723198.6A priority Critical patent/CN113511889B/zh
Publication of CN113511889A publication Critical patent/CN113511889A/zh
Application granted granted Critical
Publication of CN113511889B publication Critical patent/CN113511889B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种软磁镍锌铁氧体材料及其制备方法和应用。软磁镍锌铁氧体材料包括主成分和副成分,其中主成分为Fe2O3 48.0~50.0mol%,ZnO 30.0~35.0mol%,NiO 16.0~20.0mol%,副成分为Ca2CO3 0.05~0.15wt%,CuO0.01~0.50wt%,V2O5 0.01~0.06wt%。本发明通过控制主成分为无氧化铜的三元配方体系,同时将副成分中CuO的质量百分比控制在0.01~0.50wt%内,减少Cu的离子点位,控制晶粒的生长大小,有利于优化磁芯内部的微观结构和降低铁氧体超交换作用,从而达到高居里温度高磁导率的效果,在140~155℃的高居里温度下仍可以保持1300~1550的高磁导率,可以广泛应用于制备通讯基站和服务器中。

Description

一种软磁镍锌铁氧体材料及其制备方法和应用
技术领域
本发明涉及电子材料技术领域,更具体地,涉及一种软磁镍锌铁氧体材料及其制备方法和应用。
背景技术
电子材料是现代电子工业和科学技术发展的物质基础,主要是一类应用于电子技术和微电子技术中的材料,包括介电材料、半导体材料、压电与铁电材料、导电金属及其合金材料、磁性材料、光电子材料以及其他相关材料,作为电子材料之一的铁氧体磁芯材料,广泛应用于通信设备和汽车电子等领域。软磁材料在工业中的应用始于十九世纪末,应用范围极其广泛。软磁材料不仅应用于家电领域、信息化领域、汽车领域和其他配套领域,更是电子元器件生产的主要原材料。而随着电子行业的发展与应用领域的扩展,对磁性材料的要求也越来越高,且对材料特性的分类要求更加细化和专业化,且当前通信设备和汽车等户外设施在工作过程中都需要经历高温和低温的环境,要保证这些设备能够正常使用,就必须要求使用的磁芯材料从低温-20℃到150℃都具有很高的磁导率。现行技术中的很多铁氧体磁芯材料虽具有较高的起始磁导率,相对镍锌铁氧体体来讲,磁导就率与居里温度成反比关系,磁导率越高,居里温度就越低。较难在较高居里温度条件下仍能保持高的磁导率。
CN101236819一种镍铜锌铁氧体及其制造方法,镍铜锌铁氧体包括主成分和副成分,主成分分别为:氧化铁、氧化亚镍、氧化锌、氧化铜,所述主成分以各自标准物计的含量如下,Fe2O3:48mol%~50mol%,NiO:13mol%~16mol%,ZnO:29mol%~31.5mol%,CuO:4.5mol%~6.5mol%;所述副成分包括氧化钒、氧化钼、氧化钛,相对所述主成分总量,所述副成分以其各自标准物V2O5、MoO3、TiO2计的总含量为0.01wt%~0.08wt%。其中限定主成分CuO的含量为4.5mol%~6.5mol%,若小于4.5mol%则烧结温度高,且会形成异常晶粒,超过6.5mol%则居里温度低。其制备的镍铜锌铁氧体的启示磁导率可以实现高温起始磁导率的提升,但只能提升至1200左右,还存在进一步改善的空间。
发明内容
本发明要解决的技术问题是克服现有磁芯材料不能在较高居里温度条件下保持较高磁导率的缺陷和不足,提供一种具有高磁导率高居里温度的软磁镍锌铁氧体材料,通过特定的配方体系与制备工艺的融合,从而实现镍锌铁氧体材料高温磁导率的提升。
本发明的另一目的在于提供一种软磁镍锌铁氧体材料的制备方法。
本发明的又一目的在于提供一种软磁镍锌铁氧体材料在通讯基站、服务器中的应用。
本发明上述目的通过以下技术方案实现:
一种软磁镍锌铁氧体材料,包括主成分和副成分,其中主成分为如下摩尔百分比的组分:Fe2O3 48.0~50.0mol%,ZnO 30.0~35.0mol%,NiO 16.0~20.0mol%,所述副成分为如下质量百分比的组分:Ca2CO3 0.05~0.15wt%,CuO0.01~0.50wt%,V2O5 0.01~0.06wt%,其副成分的质量百分比是相对于主成分总质量的百分比。
本发明的软磁镍锌铁氧体材料通过控制主配方中各成分的含量,去除氧化铜,使期趋三元配方体系,同时将副成分中CuO的质量百分比控制在0.01~0.50wt%内,Cu通过占据不同的离子空位、影响晶胞参数的大小,减少Cu的离子点位,对产品晶粒大小的控制以及居里温度的提高具有较好的作用,从而达到提高材料的磁导率和居里温度的效果。
CuO副成分作为助溶剂加入,烧结过程中形成液相烧结,可以有效降低材料的烧结温度,但过量加入会导致晶粒的不连续生长,导致内部气孔增加,导致磁芯内部的微观结构恶化,影响磁芯材料的ui(磁导率)μB下降。同时Cu离子的磁矩是1μB,小于Fe3+和Ni3+的5μB和2μB,Cu离子的过量加入会导致铁氧体超交换作用的降低,从而降低居里温度,无法达到高居里温度高磁导率的效果。
优选地,包括主成分和副成分,其中主成分包括如下摩尔百分比的组分:Fe2O348.5~49.0mol%,ZnO 31.0~32.0mol%,NiO 19.0~20.0mol%,所述副成分组分的质量百分比为:Ca2CO3 0.05~0.12wt%,CuO 0.08~0.3wt%,V2O5 0.03~0.05wt%,其副成分的质量百分比是相对于主成分总质量的百分比。
优选地,所述软磁镍锌铁氧体材料的密度为4.8~5.3g/cm3。例如可以为4.93g/cm3、4.96g/cm3、5.05g/cm3、5.10g/cm3或5.15g/cm3
软磁镍锌铁氧体材料的密度与磁导率性能直接相关,软磁镍锌铁氧体材料的密度过低,磁导率也会较低,无法达到相关要求。
进一步优选地,所述软磁镍锌铁氧体材料的密度为5.05~5.15g/cm3
优选地所述软磁镍锌铁氧体材料的晶粒大小为10~35μm。例如可以为10μm,20μm或35μm。
进一步优选地,所述软磁镍锌铁氧体材料的晶粒大小为18~31μm。
同上,软磁镍锌铁氧体材料的晶粒也会直接影响相关磁导率大小,软磁镍锌铁氧体材料的晶粒过大,则晶界相应较大,软磁镍锌铁氧体材料的磁导率就会较低,无法达到相关要求。
上述软磁镍锌铁氧体材料的制备方法也在本发明的保护范围之内,包括如下步骤:
S1:对主成分按摩尔百分比含量进行配比,混合破碎,循环混合后加入聚乙烯醇溶液,烘干后预烧结;
S2:将S1中预烧结的主成分与副成分组合二次破碎,制得粒度为0.55~0.85μm的磨细粉料;
S3:将磨细粉料进行喷雾造粒,制得喷雾粉料;然后将喷雾粉料压制成型,制得密度为3.2~3.45g/cm3的生坯;
S4:将S3所述生坯在空气隧道窑炉,在1200~1250℃下烧结定型,冷却后制得所述软磁镍锌铁氧体材料。
粉料制作上,本发明的料将的平均粒径控制比常规的小,0.55~0.85um(透气法测试),常规产品在1.1um左右,粒径较小的粉料便于控制产品最终晶粒在10~35μm范围内,控制材料的内部晶粒结构,从而提高材料高温磁导率。
在产品烧结上,控制产品烧结温度在1200~1250℃,使产品最终密度控制在4.8~5.3g/cm3
为了达到更好的混合效果,S1中破碎时间为40~60min,循环混合时间为10~20min。
优选地,S1中所述预烧结温度为840~920℃,保温2~3h。
进一步优选地,S1中所述预烧结温度为860~920℃。
优选地,S2中所述二次破碎时间为180~240min。
优选地,优选地,S4中所述烧结定型的烧结温度为1210℃。
优选地,S4中冷却定型得到的软磁镍锌铁氧体材料为H12.5-7.5-5.0样环。其中12.5、7.5和5.0分别表示软磁镍锌铁氧体材料样环的外径-内径-高度。
将本发明的软磁镍锌铁氧体材料应用于制备通讯基站、服务器中也在本发明的保护范围之内。本发明的软磁镍锌铁氧体材料具备高温高磁导率性能,尤其适用于150℃左右的高温度环境,可广泛应用于制备通讯基站、服务器等。
与现有技术相比,本发明的有益效果是:
本发明提供了一种软磁镍锌铁氧体材料,通过控制主成分为无氧化铜的三元配方体系,同时将副成分中CuO的质量百分比控制在0.01~0.50wt%内,减少Cu的离子点位,控制晶粒的生长大小,有利于优化磁芯内部的微观结构和降低铁氧体超交换作用,从而达到高居里温度高磁导率的效果,在140~155℃的高居里温度下仍可以保持1300~1550的高磁导率,可以广泛应用于制备通讯基站和服务器中。
说明书附图
图1为实施例1的铁氧体晶粒大小的扫描电子显微镜SEM图谱。
图2为实施例5的铁氧体晶粒大小的扫描电子显微镜SEM图谱。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明,但实施例并不对本发明做任何形式的限定。除非另有说明,本发明实施例采用的原料试剂为常规购买的原料试剂。
实施例1
一种软磁镍锌铁氧体材料,其原料包括主成分和副成分,其中主成分包括如下摩尔百分比的组分:Fe2O3 48mol%,ZnO 30.0mol%,NiO16.0mol%,副成分组分的质量百分比为:Ca2CO3 0.05wt%,V2O5 0.01wt%,CuO0.01wt%,其副成分的质量百分比是相对于主成分总质量的百分比。
软磁镍锌铁氧体材料的制备包括如下步骤:
S1:对主成分按摩尔百分比含量进行配比,混合破碎,循环混合后加入聚乙烯醇溶液,烘干后预烧结,预烧结温度为860℃,保温2h,升温速率2℃/min;
S2:将S1中预烧结的主成分与副成分组合二次破碎,制得粒度为0.85μm的磨细粉料;
S3:将磨细粉料进行喷雾造粒,制得100μm的喷雾粉料;然后将喷雾粉料压制成型,制得密度为3.2g/cm3的生坯;
S4:将S3所述生坯在空气隧道窑炉,在1210℃下烧结定型,冷却后制得所述高频锰锌软磁铁氧体材料。
实施例2
一种软磁镍锌铁氧体材料,其原料包括主成分和副成分,其中主成分包括如下摩尔百分比的组分:Fe2O3 48.5mol%,ZnO 31.5mol%,NiO 20.0mol%,副成分组分的质量百分比为:Ca2CO3 0.10wt%,V2O5 0.03wt%,CuO 0.08wt%,其副成分的质量百分比是相对于主成分总质量的百分比。
软磁镍锌铁氧体材料的制备包括如下步骤:
S1:对主成分按摩尔百分比含量进行配比,混合破碎,循环混合后加入聚乙烯醇溶液,烘干后预烧结,预烧结温度为860℃,保温2h,升温速率2℃/min;
S2:将S1中预烧结的主成分与副成分组合二次破碎,制得粒度为0.85μm的磨细粉料;
S3:将磨细粉料进行喷雾造粒,制得100μm的喷雾粉料;然后将喷雾粉料压制成型,制得密度为3.2g/cm3的生坯;
S4:将S3所述生坯在空气隧道窑炉,在1210℃下烧结定型,冷却后制得所述高频锰锌软磁铁氧体材料。
实施例3
一种软磁镍锌铁氧体材料,其原料包括主成分和副成分,其中主成分包括如下摩尔百分比的组分:Fe2O3 49mol%,ZnO 32.0mol%,NiO19.0mol%,副成分组分的质量百分比为:Ca2CO3 0.12wt%,V2O5 0.05wt%,CuO0.20wt%,其副成分的质量百分比是相对于主成分总质量的百分比。
软磁镍锌铁氧体材料的制备包括如下步骤:
S1:对主成分按摩尔百分比含量进行配比,混合破碎,循环混合后加入聚乙烯醇溶液,烘干后预烧结,预烧结温度为860℃,保温2h,升温速率2℃/min;
S2:将S1中预烧结的主成分与副成分组合二次破碎,制得粒度为0.85μm的磨细粉料;
S3:将磨细粉料进行喷雾造粒,制得100μm的喷雾粉料;然后将喷雾粉料压制成型,制得密度为3.2g/cm3的生坯;
S4:将S3所述生坯在空气隧道窑炉,在1210℃下烧结定型,冷却后制得所述高频锰锌软磁铁氧体材料。
实施例4
一种软磁镍锌铁氧体材料,其原料包括主成分和副成分,其中主成分包括如下摩尔百分比的组分:Fe2O3 48.5mol%,ZnO 31.5mol%,NiO 20.0mol%,副成分组分的质量百分比为:Ca2CO3 0.05wt%,V2O5 0.03wt%,CuO 0.30wt%,其副成分的质量百分比是相对于主成分总质量的百分比。
软磁镍锌铁氧体材料的制备包括如下步骤:
S1:对主成分按摩尔百分比含量进行配比,混合破碎,循环混合后加入聚乙烯醇溶液,烘干后预烧结,预烧结温度为860℃,保温2h,升温速率2℃/min;
S2:将S1中预烧结的主成分与副成分组合二次破碎,制得粒度为0.85μm的磨细粉料;
S3:将磨细粉料进行喷雾造粒,制得100μm的喷雾粉料;然后将喷雾粉料压制成型,制得密度为3.2g/cm3的生坯;
S4:将S3所述生坯在空气隧道窑炉,在1210℃下烧结定型,冷却后制得所述高频锰锌软磁铁氧体材料。
实施例5
一种软磁镍锌铁氧体材料,其原料包括主成分和副成分,其中主成分包括如下摩尔百分比的组分:Fe2O350 mol%,ZnO 35mol%,NiO 20.0mol%,副成分组分的质量百分比为:Ca2CO3 0.15wt%,V2O5 0.06wt%,CuO0.50wt%,其副成分的质量百分比是相对于主成分总质量的百分比。
软磁镍锌铁氧体材料的制备包括如下步骤:
S1:对主成分按摩尔百分比含量进行配比,混合破碎,循环混合后加入聚乙烯醇溶液,烘干后预烧结,预烧结温度为860℃,保温2h,升温速率2℃/min;
S2:将S1中预烧结的主成分与副成分组合二次破碎,制得粒度为0.85μm的磨细粉料;
S3:将磨细粉料进行喷雾造粒,制得100μm的喷雾粉料;然后将喷雾粉料压制成型,制得密度为3.2g/cm3的生坯;
S4:将S3所述生坯在空气隧道窑炉,在1210℃下烧结定型,冷却后制得所述高频锰锌软磁铁氧体材料。
实施例6
一种实施例4的软磁镍锌铁氧体材料的制备方法,包括如下步骤:
S1:对主成分按摩尔百分比含量进行配比,混合破碎,循环混合后加入聚乙烯醇溶液,烘干后预烧结,预烧结温度为840℃,升温速度为2℃/min,保温2h;
S2:将S1中预烧结的主成分与副成分组合二次破碎,循环混合后加入聚乙烯醇溶液,制得粒度为0.8μm的磨细粉料;
S3:将磨细粉料进行喷雾造粒,制得100μm的喷雾粉料;然后将喷雾粉料压制成型,制得密度为3.20g/cm3的生坯;
S4:将S3所述生坯在空气隧道窑1200℃下烧结定型,冷却后制得实施例2的软磁镍锌铁氧体材料,高频磁材料的密度为5.05g/cm3
实施例7
一种软磁镍锌铁氧体材料的制备方法,包括如下步骤:
S1:对主成分按摩尔百分比含量进行配比,混合破碎,循环混合后加入聚乙烯醇溶液,烘干后预烧结,预烧结温度为920℃,升温速度为2℃/min,保温2h;
S2:将S1中预烧结的主成分与副成分组合二次破碎,循环混合后加入聚乙烯醇溶液,制得粒度为0.78μm的磨细粉料;
S3:将磨细粉料进行喷雾造粒,制得100μm的喷雾粉料;然后将喷雾粉料压制成型,制得密度为3.20g/cm3的生坯;
S4:将S3所述生坯在空气隧道窑1250℃下烧结定型,冷却后制得实施例2的软磁镍锌铁氧体材料,高频磁材料的密度为5.10g/cm3
实施例8
一种软磁镍锌铁氧体材料的制备方法,包括如下步骤:
S1:对主成分按摩尔百分比含量进行配比,混合破碎,循环混合后加入聚乙烯醇溶液,烘干后预烧结,预烧结温度为900℃,升温速度为2℃/min,保温2h;
S2:将S1中预烧结的主成分与副成分组合二次破碎,循环混合后加入聚乙烯醇溶液,制得粒度为0.62μm的磨细粉料;
S3:将磨细粉料进行喷雾造粒,制得100μm的喷雾粉料;然后将喷雾粉料压制成型,制得密度为3.20g/cm3的生坯;
S4:将S3所述生坯在空气隧道窑1210℃下烧结定型,冷却后制得实施例2的软磁镍锌铁氧体材料,高频磁材料的密度为5.15g/cm3
对比例1
一种软磁镍锌铁氧体材料,其原料包括主成分和副成分,其中主成分包括如下摩尔百分比的组分:Fe2O3 48.5mol%,ZnO 31.5mol%,NiO 20.0mol%,副成分组分的质量百分比为:Ca2CO3 0.05wt%,V2O5 0.03wt%,CuO 0wt%,其副成分的质量百分比是相对于主成分总质量的百分比。
软磁镍锌铁氧体材料的制备包括如下步骤:
S1:对主成分按摩尔百分比含量进行配比,混合破碎,循环混合后加入聚乙烯醇溶液,烘干后预烧结,预烧结温度为860℃,保温2h,升温速率2℃/min;
S2:将S1中预烧结的主成分与副成分组合二次破碎,制得粒度为0.85μm的磨细粉料;
S3:将磨细粉料进行喷雾造粒,制得100μm的喷雾粉料;然后将喷雾粉料压制成型,制得密度为3.2g/cm3的生坯;
S4:将S3所述生坯在空气隧道窑炉,在1200℃下烧结定型,冷却后制得所述高频锰锌软磁铁氧体材料。
对比例2
一种软磁镍锌铁氧体材料,其原料包括主成分和副成分,其中主成分包括如下摩尔百分比的组分:Fe2O3 48.5mol%,ZnO 31.5mol%,NiO 20.0mol%,CuO0.6%副成分组分的质量百分比为:Ca2CO3 0.05wt%,V2O5 0.03wt%,其副成分的质量百分比是相对于主成分总质量的百分比。
软磁镍锌铁氧体材料的制备包括如下步骤:
S1:对主成分按摩尔百分比含量进行配比,混合破碎,循环混合后加入聚乙烯醇溶液,烘干后预烧结,预烧结温度为860℃,保温2h,升温速率2℃/min;
S2:将S1中预烧结的主成分与副成分组合二次破碎,制得粒度为0.85μm的磨细粉料;
S3:将磨细粉料进行喷雾造粒,制得100μm的喷雾粉料;然后将喷雾粉料压制成型,制得密度为3.2g/cm3的生坯;
S4:将S3所述生坯在空气隧道窑炉,在1200℃下烧结定型,冷却后制得所述高频锰锌软磁铁氧体材料。
结果检测
对实施例和对比例的软磁镍锌铁氧体材料的性能进行检测,其中μi为起始磁导率,Tc为居里温度,检测结果如表1所示。
μi和Tc数据通过HP4284电感仪进行检测。
铁氧体晶粒大小的检测方法如下:扫描电子显微镜SEM对磁芯内部晶粒尺寸进行测试,图1为实施例1的铁氧体晶粒大小的扫描电子显微镜SEM图谱,图2为实施例5的铁氧体晶粒大小的扫描电子显微镜SEM图谱,可以看出本发明的铁氧体晶粒大小在10~35μm。
表1
序号 ui Tc 砂磨粒径 密度 铁氧体晶粒/μm
实施例1 1286 145℃ 0.85um 4.93g/cm<sup>3</sup> 15
实施例2 1396 150℃ 0.82um 4.96g/cm<sup>3</sup> 12
实施例3 1420 140℃ 0.79um 5.05g/cm<sup>3</sup> 18
实施例4 1432 146℃ 0.81um 5.08g/cm<sup>3</sup> 25
实施例5 1389 148℃ 0.75um 5.12g/cm<sup>3</sup> 32
实施例6 1385 155℃ 0.80um 5.05g/cm<sup>3</sup> 26
实施例7 1467 153℃ 0.78um 5.10g/cm<sup>3</sup> 28
实施例8 1550 150℃ 0.62um 5.15g/cm<sup>3</sup> 31
对比例1 982 153℃ 0.83um 4.78g/cm<sup>3</sup> 9
对比例2 1623 128℃ 0.77um 5.18g/cm<sup>3</sup> 38
从上表1可以看出,本发明的软磁镍锌铁氧体材料在150℃左右的高居里温度下仍然可以达到很高的起始磁导率,μi值可以达到1500以上,具有高居里温度高磁导率性,可以适用于150℃左右的高温度环境,广泛应用于制备通讯基站、服务器等。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

1.一种软磁镍锌铁氧体材料,其特征在于,包括主成分和副成分,其中主成分为如下摩尔百分比的组分:Fe2O3 48.0~50.0mol%,ZnO 30.0~35.0mol%,NiO 16.0~20.0mol%,所述副成分为如下质量百分比的组分:Ca2CO3 0.05~0.15wt%,CuO 0.01~0.50wt%,V2O50.01~0.06wt%,其副成分的质量百分比是相对于主成分总质量的百分比。
2.如权利要求1所述软磁镍锌铁氧体材料,其特征在于,包括主成分和副成分,其中主成分包括如下摩尔百分比的组分:Fe2O3 48.5~49.0mol%,ZnO 31.0~32.0mol%,NiO19.0~20.0mol%,所述副成分组分的质量百分比为:Ca2CO3 0.05~0.12wt%,CuO 0.08~0.3wt%,V2O5 0.03~0.05wt%,其副成分的质量百分比是相对于主成分总质量的百分比。
3.如权利要求1所述软磁镍锌铁氧体材料,其特征在于,所述软磁镍锌铁氧体材料的密度为4.8~5.3g/cm3
4.如权利要求3所述软磁镍锌铁氧体材料,其特征在于,所述软磁镍锌铁氧体材料的密度为5.05~5.15g/cm3
5.如权利要求1所述软磁镍锌铁氧体材料,其特征在于,所述软磁镍锌铁氧体材料的晶粒大小为10~35μm。
6.一种权利要求1~5任意一项所述软磁镍锌铁氧体材料的制备方法,其特征在于,包括如下步骤:
S1:对主成分按摩尔百分比含量进行配比,混合破碎,循环混合后加入聚乙烯醇溶液,烘干后预烧结;
S2:将S1中预烧结的主成分与副成分组合二次破碎,制得粒度为0.55~0.85μm的磨细粉料;
S3:将磨细粉料进行喷雾造粒,制得喷雾粉料;然后将喷雾粉料压制成型,制得密度为3.2~3.45g/cm3的生坯;
S4:将S3所述生坯在空气隧道窑炉,在1200~1250℃下烧结定型,冷却后制得所述软磁镍锌铁氧体材料。
7.如权利要求6所述制备方法,其特征在于,S1中所述预烧结温度为840~920℃,保温2~3h。
8.如权利要求7所述所述制备方法,其特征在于,S1中所述预烧结温度为860~920℃。
9.根据权利要求6所述的制备方法,其特征在于,S4中所述烧结定型的烧结温度为1210℃。
10.一种权利要求1~5任意一项所述软磁镍锌铁氧体材料在制备通讯基站、服务器中的应用。
CN202110723198.6A 2021-06-28 2021-06-28 一种软磁镍锌铁氧体材料及其制备方法和应用 Active CN113511889B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110723198.6A CN113511889B (zh) 2021-06-28 2021-06-28 一种软磁镍锌铁氧体材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110723198.6A CN113511889B (zh) 2021-06-28 2021-06-28 一种软磁镍锌铁氧体材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113511889A true CN113511889A (zh) 2021-10-19
CN113511889B CN113511889B (zh) 2022-12-23

Family

ID=78065954

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110723198.6A Active CN113511889B (zh) 2021-06-28 2021-06-28 一种软磁镍锌铁氧体材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113511889B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115650717A (zh) * 2022-11-11 2023-01-31 广东风华邦科电子有限公司 一种大电流片式电感器用镍锌铁氧体及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295811A (ja) * 1993-02-10 1994-10-21 Kawasaki Steel Corp 酸化物軟質磁性材料
CN101575206A (zh) * 2008-05-07 2009-11-11 重庆仪表材料研究所 高频大功率镍锌基软磁铁氧体材料及其制造方法
CN105967670A (zh) * 2016-05-06 2016-09-28 江苏泰昌电子有限公司 镍-锌软磁铁氧体材料及其制备方法
CN111099890A (zh) * 2019-12-31 2020-05-05 天长市中德电子有限公司 一种大功率镍锌软磁铁氧体材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295811A (ja) * 1993-02-10 1994-10-21 Kawasaki Steel Corp 酸化物軟質磁性材料
CN101575206A (zh) * 2008-05-07 2009-11-11 重庆仪表材料研究所 高频大功率镍锌基软磁铁氧体材料及其制造方法
CN105967670A (zh) * 2016-05-06 2016-09-28 江苏泰昌电子有限公司 镍-锌软磁铁氧体材料及其制备方法
CN111099890A (zh) * 2019-12-31 2020-05-05 天长市中德电子有限公司 一种大功率镍锌软磁铁氧体材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
刘银: "《博士论丛 Ni-Zn铁氧体材料的制备、微结构、性能及其改性研究》", 31 July 2015, 中国科学技术大学出版社, pages: 135 - 138 *
夏德贵等: "《软磁铁氧体制造原理与技术》", 31 December 2010, 陕西科学技术出版社, pages: 368 - 371 *
焦宝祥: "《功能与信息材料》", 31 May 2011, 华东理工大学出版社, pages: 135 - 136 *
王振华: "《超声波清洗技术》", 30 September 2019, 武汉理工大学出版社, pages: 193 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115650717A (zh) * 2022-11-11 2023-01-31 广东风华邦科电子有限公司 一种大电流片式电感器用镍锌铁氧体及其制备方法

Also Published As

Publication number Publication date
CN113511889B (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
KR101274368B1 (ko) 페라이트 소결체 및 그 제조 방법
KR101607353B1 (ko) 개선된 육방정계 페라이트 재료 및 그 제조 방법 및 용도
CN101859622B (zh) 一种中频低损耗MnZn铁氧体磁芯的制造方法
JP2021011421A (ja) 低損失ガーネットフェライト材料の調製方法
CN109851346B (zh) 一种高频锰锌软磁铁氧体材料及其制备方法和应用
CN105993053B (zh) 复合软磁材料及其制备方法
CN104529423A (zh) 一种低温度因数抗应力镍锌铁氧体及其制备方法
CN104392819A (zh) 一种复合软磁材料及其制备方法
CN113511889B (zh) 一种软磁镍锌铁氧体材料及其制备方法和应用
CN114262221B (zh) 一种高温度稳定性镍锌铁氧体材料及其制备方法和应用
CN114773047B (zh) 一种宽频高阻抗的锰锌铁氧体材料及其制备方法和应用
CN108774057B (zh) 一种用于LTCC环形器的NiCuZn旋磁铁氧体材料及其制备方法
CN114573334B (zh) 高功率高居里温度低线宽石榴石铁氧体及制备方法
JP2002075723A (ja) 高周波特性に優れた低温焼結多層チップインダクタ材料およびその製造方法
JP7172091B2 (ja) 複合磁性体
CN110723967B (zh) 一种抗直流偏置低温烧结铁氧体材料及其制备方法
CN116323491A (zh) MnZn系铁氧体及其制造方法
CN114890779B (zh) 高机械强度高功率低共振线宽的石榴石铁氧体及制备方法
CN103073305A (zh) 烧结添加组合物、介电陶瓷组合物、及它们的应用
CN113004026A (zh) Ltcc微波介质陶瓷材料及其制造方法
CN116621571B (zh) 微波铁氧体材料及制备方法和介电常数调节方法
JP2010111545A (ja) フェライト組成物及びインダクタ
JP4706837B2 (ja) Li系フェライト焼結体の製造方法及びLi系フェライト焼結体
CN115745596B (zh) 氧化锌基电阻片组合物、氧化锌基电阻片及其制备方法和应用
CN117383924B (zh) 一种宽频高阻抗高磁导率锰锌软磁铁氧体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant