CN116161968A - 一种具有智能开关可切换的透波材料的制备方法及用途 - Google Patents

一种具有智能开关可切换的透波材料的制备方法及用途 Download PDF

Info

Publication number
CN116161968A
CN116161968A CN202310238455.6A CN202310238455A CN116161968A CN 116161968 A CN116161968 A CN 116161968A CN 202310238455 A CN202310238455 A CN 202310238455A CN 116161968 A CN116161968 A CN 116161968A
Authority
CN
China
Prior art keywords
aerogel
ceramic
wave
treatment
wet gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310238455.6A
Other languages
English (en)
Other versions
CN116161968B (zh
Inventor
汤玉斐
谢章雯
罗紫芸
唐晨
赵康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN202310238455.6A priority Critical patent/CN116161968B/zh
Publication of CN116161968A publication Critical patent/CN116161968A/zh
Application granted granted Critical
Publication of CN116161968B publication Critical patent/CN116161968B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B17/00Vessels parts, details, or accessories, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/36Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like adapted to receive antennas or radomes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5072Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with oxides or hydroxides not covered by C04B41/5025
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B17/00Vessels parts, details, or accessories, not otherwise provided for
    • B63B2017/0045Caps, hoods, or the like devices for protective purposes, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/486Boron containing organic compounds, e.g. borazine, borane or boranyl
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种具有智能开关可切换的透波材料的制备方法,首先配制泡沫溶液,并将其冷冻及解冻处理得到湿凝胶;其次将湿凝胶进行施压使其高度变化;在通过干燥和煅烧得到陶瓷气凝胶;最后将光热成分和相变成分复合于气凝胶内,并进行光照处理,得到具有智能开关可切换的透波材料。本发明制备的智能开关可切换的透波材料,能够得到多拱微结构的陶瓷气凝胶,实现良好的阻抗匹配和超弹性功能,并使相变材料和光热材料复合于透波材料的拱形孔壁,有利于光热材料受光激发引起电子空穴迁移,并产生热量促使相变材料发生相转变,有效实现材料的高低电导率的动态变化,实现具有隐身性能动态可控,以达到根据特定的应用要求。

Description

一种具有智能开关可切换的透波材料的制备方法及用途
技术领域
本发明属于透波材料制备领域,涉及一种具有智能开关可切换的透波材料的制备方法。
背景技术
多孔陶瓷气凝胶(氮化硅、氮化硼等)具备透波、耐腐蚀、耐高温等优异特性,常用于导弹天线罩、天线窗、潜艇导流罩等透波领域,起到保护和传输信号的功能。然而,透波频带的存在也会增大被敌方雷达发现的风险。因此,具有隐身性能动态可控,透波效果可随使用场景智能变化的材料具有重要意义。然而,传统陶瓷气凝胶的透波、隐身性能与结构强度又是相互矛盾的。如果满足透波性能的要求,其隐身功能无法满足,且在高应变循环压缩下通常通过屈曲或断裂永久失效,导致塑性变形和压缩下强度降低,如果保证隐身和结构强度,其透波性能必然会下降。因此,可通过合理的微观结构设计优先满足材料的透波和力学性能,在此基础上,引入介电性能可变化的成分实现隐身可开关功能对于实现透波智能化十分必要。
据报道,具有丰富的多拱微结构可以通过弯曲和扭曲来容纳大的压缩变形和应力。例如高等人报道通过双向冷冻过程获得壳聚糖-氧化石墨烯(CS-GO)支架,随后通过退火将平板层压成多拱形微结构碳气凝胶,具有超弹性和高抗疲劳性(H.L.Gao,Y.B.Zhu,L.B.Mao,etal.Super-elastic and fatigue resistant carbon material withlamellar multi-arch microstructure[J].Nature communication,2016,12920.)。刘等人通过模板法制备了层状拱形碳气凝胶,具有可逆的可压缩性。(X.F.Liu,Y.Li,X.Sun,etal,Off/on switchable smart electromagnetic interference shielding aerogel[J].Matter,2021,4:1735-1747.)然而这些拱形微结构气凝胶的制备方法依赖于设备和原料,成本高昂,操作复杂的劣势。因此,探索一种简单有效的方法制备具有微拱形结构的陶瓷气凝胶十分必要。
此外,研究表明,相变材料是一种电磁新材料,因其相变特性而在不同环境下具有不同的电磁特性。典型的相变材料有氧化钒、锗锑碲的化合物等,通常用于器件光学调控,例如光电转换、智能窗材料等。程等人制备了还原氧化石墨烯/VO2复合气凝胶(Z.Cheng,R.F.Wang,Y.S.Cao,et al,Intelligent off/On switchable microwave absorptionperformance of reduced graphene oxide/VO2 composite aerogel[J],Advanced.Functional.Materials.2022,32,2205160.),随着温度的升高(>68℃),二氧化钒表现出从单斜相到金红石相的相变,并伴随着气凝胶的电导率和介电常数的显著变化,从而导致可开关的电磁波吸收性能,然而其隐身开关只依赖于温度,实际应用存在局限性。
发明内容
本发明的目的是提供一种具有智能开关可切换的透波材料的制备方法,解决了目前透波陶瓷气凝胶材料不能智能隐身、结构强度下降的问题。
本发明所采用的技术方案是,一种具有智能开关可切换的透波材料的制备方法,具体按以下步骤实施:
步骤1,配制泡沫溶液;
将含陶瓷前驱体、发泡剂、表面活性剂和溶剂混合搅拌,获得泡沫溶液;
步骤2,制备湿凝胶;
将泡沫溶液倒入反应釜中,进行水热处理,得到湿凝胶。
步骤3,冷冻及解冻处理;
将湿凝胶在一定温度下完全冷冻,随后在进行解冻处理,得到解冻湿凝胶;
步骤4,湿压处理;
将步骤3中得到的解冻湿凝胶给予横向或纵向的力进行施压处理,得到湿压凝胶;
步骤5,干燥处理;
将步骤4中得到的湿压凝胶进行干燥处理,得到前驱体气凝胶;
步骤6,煅烧处理;
将步骤5中得到的前驱体气凝胶进行煅烧处理,得到陶瓷气凝胶;
步骤7,陶瓷气凝胶吸附处理;
将步骤6中得到的陶瓷气凝胶放入含相变成分和光热成分的碱性溶液中进行吸附处理,干燥后得到陶瓷复合气凝胶;
步骤8,陶瓷复合气凝胶光照处理;
将步骤7中得到的陶瓷复合气凝胶进行光照处理,得到具有智能开关可切换的透波材料。
优选方案,步骤1中泡沫溶液按质量百分比由以下物质组成:陶瓷前驱体3%~10%,发泡剂1%~5%,表面活性剂1%~5%,溶剂80%~95%,以上组分总和为100%。其中陶瓷前驱体为聚硼氮烷、聚硼硅氮烷、氢化聚硅氮烷先驱体等中的任意一种,表面活性剂为抗坏血酸、聚乙烯吡咯烷酮、十六烷基三甲基溴化铵等中的任意一种,发泡剂为烷基糖苷、脂肪醇聚氧乙烯醚硫酸钠,十二烷基硫酸钠等中的任意一种,溶剂为乙醇、甲醇、乙二醇、乙酸中的任意一种。
优选方案,步骤2中水热反应温度为60-180℃,水热反应时间为10-24h。
优选方案,步骤3中冷冻温度为-10~-30℃,冷冻时间为6-20h,解冻温度为20-30℃。
优选方案,步骤4中湿压处理的压力使湿凝胶高度在原始基础的10-90%范围内变化;
优选方案,步骤5中干燥处理为真空干燥、空气干燥、冷冻干燥等中的任意一种。
优选方案,步骤6中煅烧处理的温度为600~1300℃,气氛为氮气、氩气和氨气中的一种,煅烧时间为2~4h,升温速率为2~5℃/min。
优选方案,步骤7中陶瓷气凝胶吸附时间为2-12h,吸附温度为20-60℃,其中相变成分/光热成分的质量比为1-3:3-1,相变成分为二氧化钒、五氧化二钒、氯化钒等中的任意一种,光热成分为银盐(氯化银、硝酸银、溴化银)、金盐(氯化金、氯化亚金等)、半导体(氧化钛、氧化锌等)等中的任意一种,碱性物质为氨水、尿素、氢氧化钠等中的任意一种,溶剂为乙醇、甲醇、乙二醇等中的任意一种。
优选方案,步骤8中光照处理中光源为100、300和500W汞灯中的任意一种,加热处理温度为30-150℃,光照时间为0.5-2h。
本发明的有益效果是:一种具有智能开关可切换的透波材料的制备方法,能够得到多拱微结构的陶瓷气凝胶,实现良好的阻抗匹配和超弹性功能,并使相变材料和光热材料复合于透波材料的拱形孔壁,有利于光热材料受光激发引起电子空穴迁移,并产生热量促使相变材料发生相转变,有效实现材料的高低电导率的动态变化,实现具有隐身性能动态可控,以达到根据特定的应用要求。
同时,相变材料和光热材料的弥散分布有利于提高陶瓷气凝胶的力学性能,保证材料的结构强度,在航天飞行器、航海导流罩、军事智能隐身设备等领域中具有广阔的应用前景。
附图说明:
图1本发明制备具有智能开关可切换的透波材料的微观形貌示意图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
实施例1制备VO2-Ag-Si3N4复合气凝胶
将3g氢化聚硅氮烷、1g烷基糖苷、1g抗坏血酸和82mL乙醇混合均匀,获得泡沫溶液;
将泡沫溶液倒入反应釜中,180℃进行水热处理24h,得到湿凝胶;
将湿凝胶在-10℃冷冻处理20h,随后在25℃进行解冻,得到解冻湿凝胶;
将得到的解冻湿凝胶纵向施加压力,使湿凝胶高度为原始基础的70%;
将得到的湿压凝胶进行在空气中干燥处理,得到前驱体气凝胶;
将得到的前驱体气凝胶置于氮气炉中,以3℃/min的升温速率至800℃保温1h,再以2℃/min的升温速率至1300℃保温3h,随炉冷却得到陶瓷气凝胶;
将得到的陶瓷气凝胶放入含二氧化钒和氯化银的氨水溶液中,在40℃下吸附6h,其中二氧化钒和氯化银的质量比为1:3,得到陶瓷复合气凝胶。
将得到的陶瓷复合气凝胶在300W汞灯下光照1h,得到具有智能开关可切换的VO2-Ag-Si3N4复合气凝胶。
实施例2制备VO2-Au-Si3N4的复合气凝胶
将3g氢化聚硅氮烷、1g烷基糖苷、1g抗坏血酸和82mL乙醇混合搅拌均匀,获得泡沫溶液;
将泡沫溶液倒入反应釜中,180℃进行水热处理24h,得到湿凝胶;
将湿凝胶在-10℃冷冻处理20h,随后在25℃进行解冻,得到解冻湿凝胶;
将得到的解冻湿凝胶纵向施加压力,使湿凝胶高度为原始基础的70%;
将得到的湿压凝胶进行在空气中干燥处理,得到前驱体气凝胶;
将得到的前驱体气凝胶置于氮气炉中,以3℃/min的升温速率至800℃保温1h,再以2℃/min的升温速率至1300℃保温3h,随炉冷却得到陶瓷气凝胶;
将得到的陶瓷气凝胶放入含二氧化钒和氯化金的氨水溶液中,在40℃下吸附6h,其中二氧化钒和氯化银的质量比为1:2,得到陶瓷复合气凝胶。
将得到的陶瓷复合气凝胶在300W汞灯下光照1h,得到具有智能开关可切换的VO2-Au-Si3N4复合气凝胶。
实施例3制备VO2-TiO2-Si3N4的复合气凝胶
将3g氢化聚硅氮烷、1g烷基糖苷、1g抗坏血酸和82mL乙醇混合搅拌均匀,获得泡沫溶液;
将泡沫溶液倒入反应釜中,180℃进行水热处理24h,得到湿凝胶;
将湿凝胶在-10℃冷冻处理20h,随后在25℃进行解冻,得到解冻湿凝胶;
将得到的解冻湿凝胶纵向施加压力,使湿凝胶高度为原始基础的70%;
将得到的湿压凝胶进行在空气中干燥处理,得到前驱体气凝胶;
将得到的前驱体气凝胶置于氮气炉中,以3℃/min的升温速率至800℃保温1h,再以2℃/min的升温速率至1300℃保温3h,随炉冷却得到陶瓷气凝胶;
将得到的陶瓷气凝胶放入含二氧化钒和氧化钛的氨水溶液中,在40℃下吸附6h,其中二氧化钒和氧化钛的质量比为1:1,得到陶瓷复合气凝胶。
将得到的陶瓷复合气凝胶在300W汞灯下光照2h,得到具有智能开关可切换的VO2-TiO2-Si3N4复合气凝胶。
实施例4制备VO2-Ag-BN-1复合气凝胶
将2g氢化聚硅氮烷、3g烷基糖苷、1g抗坏血酸和82mL乙醇混合搅拌均匀,获得泡沫溶液;
将泡沫溶液倒入反应釜中,120℃进行水热处理24h,得到湿凝胶;
将湿凝胶在-10℃冷冻处理20h,随后在25℃进行解冻,得到解冻湿凝胶;
将得到的解冻湿凝胶纵向施加压力,使湿凝胶高度为原始基础的70%;
将得到的湿压凝胶进行在真空干燥处理,得到前驱体气凝胶;
将得到的前驱体气凝胶置于氮气炉中,以3℃/min的升温速率至800℃保温1h,再以2℃/min的升温速率至1300℃保温3h,随炉冷却得到陶瓷气凝胶;
将得到的陶瓷气凝胶放入含二氧化钒和氯化银的氨水溶液中,在40℃下吸附6h,其中二氧化钒和氯化银的质量比为1:3,得到陶瓷复合气凝胶。
将得到的陶瓷复合气凝胶在500W汞灯下光照1h,得到具有智能开关可切换的VO2-Ag-BN复合气凝胶。
实施例5制备VO2-Ag-BN-2复合气凝胶
将5g聚硼氮烷、0.5g脂肪醇聚氧乙烯醚硫酸钠、0.5g抗坏血酸和82mL乙醇混合搅拌均匀,获得泡沫溶液;
将泡沫溶液倒入反应釜中,120℃进行水热处理24h,得到湿凝胶;
将湿凝胶在-30℃冷冻处理20h,随后在25℃进行解冻,得到解冻湿凝胶;
将得到的解冻湿凝胶纵向施加压力,使湿凝胶高度为原始基础的80%;
将得到的湿压凝胶进行真空干燥处理,得到前驱体气凝胶;
将得到的前驱体气凝胶置于氮气炉中,以3℃/min的升温速率至900℃保温1h,再以2℃/min的升温速率至1300℃保温5h,随炉冷却得到陶瓷气凝胶;
将得到的陶瓷气凝胶放入含二氧化钒和氯化银的氨水溶液中,在60℃下吸附6h,其中二氧化钒和氯化银的质量比为1:3,得到陶瓷复合气凝胶。
将得到的陶瓷复合气凝胶在500W汞灯下光照1h,得到具有智能开关可切换的VO2-Ag-BN-2复合气凝胶。
实施例6制备VO2-Ag-BN-3复合气凝胶
将1g聚硼氮烷、0.5g脂肪醇聚氧乙烯醚硫酸钠、0.5g聚乙烯吡咯烷酮和85mL乙醇混合搅拌均匀,获得泡沫溶液;
将泡沫溶液倒入反应釜中,120℃进行水热处理24h,得到湿凝胶;
将湿凝胶在-30℃冷冻处理20h,随后在25℃进行解冻,得到解冻湿凝胶;
将得到的解冻湿凝胶纵向施加压力,使湿凝胶高度为原始基础的80%;
将得到的湿压凝胶进行在空气中干燥处理,得到前驱体气凝胶;
将得到的前驱体气凝胶置于氮气炉中,以5℃/min的升温速率至900℃保温1h,再以2℃/min的升温速率至1300℃保温3h,随炉冷却得到陶瓷气凝胶;
将得到的陶瓷气凝胶放入含二氧化钒和氯化银的氨水溶液中,在60℃下吸附6h,其中二氧化钒和氯化银的质量比为1:3,得到陶瓷复合气凝胶。
将得到的陶瓷复合气凝胶在500W汞灯下光照0.5h,得到具有智能开关可切换的VO2-Ag-BN-3复合气凝胶。
本发明通过控制陶瓷湿凝胶的施压压力,可获得拱形微结构的陶瓷气凝胶,以满足阻抗匹配原则和超弹性,有效促使电磁波进入材料内部;选择相变成分和光热成分作为智能开关的双闸门,将二者与陶瓷气凝胶进行有效复合,通过光照处理,充分利用光热材料的电荷变化及诱发相变材料发生相变实现或高或低的导电率,实现透波材料的隐身功能开或关;通过控制相变成分和光热成分含量,可得到具有不同界面极化效果的陶瓷复合气凝胶,实现隐身功能的强弱,达到智能可控的目的。

Claims (9)

1.一种具有智能开关可切换的透波材料的制备方法,其特征在于,具体按以下步骤实施:
步骤1,配制泡沫溶液;
将含陶瓷前驱体、发泡剂、表面活性剂和溶剂混合搅拌,获得泡沫溶液;
步骤2,制备湿凝胶;
将泡沫溶液倒入反应釜中,进行水热处理,得到湿凝胶。
步骤3,冷冻及解冻处理;
将湿凝胶在一定温度下完全冷冻,随后在进行解冻处理,得到解冻湿凝胶;
步骤4,湿压处理;
将步骤3中得到的解冻湿凝胶给予横向或纵向的力进行施压处理,湿压凝胶;
步骤5,干燥处理;
将步骤4中得到的湿压凝胶进行干燥处理,得到前驱体气凝胶;
步骤6,煅烧处理;
将步骤5中得到的前驱体气凝胶进行煅烧处理,得到陶瓷气凝胶;
步骤7,陶瓷气凝胶吸附处理;
将步骤6中得到的陶瓷气凝胶放入含相变成分和光热成分的碱性溶液中进行吸附处理,干燥后得到陶瓷复合气凝胶;
步骤8,陶瓷复合气凝胶光照处理;
将步骤7中得到的陶瓷复合气凝胶进行光照处理,得到具有智能开关可切换的透波材料。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤1中泡沫溶液按质量百分比由以下物质组成:陶瓷前驱体3%~10%,发泡剂1%~5%,表面活性剂1%~5%,溶剂80%~95%,以上组分总和为100%;
其中陶瓷前驱体为聚硼氮烷、聚硼硅氮烷、氢化聚硅氮烷先驱体等中的任意一种,表面活性剂为抗坏血酸、聚乙烯吡咯烷酮、十六烷基三甲基溴化铵等中的任意一种,发泡剂为烷基糖苷、脂肪醇聚氧乙烯醚硫酸钠,十二烷基硫酸钠等中的任意一种,溶剂为乙醇、甲醇、乙二醇、乙酸中的任意一种。
3.根据权利要求2所述的制备方法,其特征在于,步骤2中步骤2中水热反应温度为60-180℃,水热反应时间为10-24h。
4.根据权利要求2所述的制备方法,其特征在于,步骤3中冷冻温度为-10~-30℃,冷冻时间为6-20h,解冻温度为20-30℃。
5.根据权利要求2所述的制备方法,其特征在于,步骤4中湿压处理的压力使湿凝胶高度在原始基础的10-90%范围内变化。
6.根据权利要求2所述的制备方法,其特征在于,步骤6中煅烧处理的温度为1100~1300℃,气氛为氮气、氩气和氨气中的一种,煅烧时间为2~4h,升温速率为2~5℃/min。
7.根据权利要求2所述的制备方法,其特征在于,步骤7中陶瓷气凝胶吸附时间为2-12h,吸附温度为20-60℃,其中相变成分/光热成分的质量比为1-3:3-1,相变成分为二氧化钒、五氧化二钒、氯化钒等中的任意一种,光热成分为银盐(氯化银、硝酸银、溴化银)、金盐(氯化金、氯化亚金等)、半导体(氧化钛、氧化锌等)等中的任意一种,碱性物质为氨水、尿素、氢氧化钠等中的任意一种,溶剂为乙醇、甲醇、乙二醇等中的任意一种。
8.根据权利要求2所述的制备方法,其特征在于,步骤8中光照处理中光源为100、300和500W汞灯中的任意一种,光照时间为0.5-2h。
9.如权利要求1-8任一所述制备方法得到的具有智能开关可切换的透波材料在航天飞行器、航海导流罩或军事智能隐身设备领域中的应用。
CN202310238455.6A 2023-03-10 2023-03-10 一种具有智能开关可切换的透波材料的制备方法及用途 Active CN116161968B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310238455.6A CN116161968B (zh) 2023-03-10 2023-03-10 一种具有智能开关可切换的透波材料的制备方法及用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310238455.6A CN116161968B (zh) 2023-03-10 2023-03-10 一种具有智能开关可切换的透波材料的制备方法及用途

Publications (2)

Publication Number Publication Date
CN116161968A true CN116161968A (zh) 2023-05-26
CN116161968B CN116161968B (zh) 2024-02-20

Family

ID=86416421

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310238455.6A Active CN116161968B (zh) 2023-03-10 2023-03-10 一种具有智能开关可切换的透波材料的制备方法及用途

Country Status (1)

Country Link
CN (1) CN116161968B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160093923A1 (en) * 2014-09-26 2016-03-31 Hongpeng Wang Inherently safe thermo-responsive gel electrolytes for electrochemical devices
CN106630931A (zh) * 2016-10-10 2017-05-10 南京工业大学 透波隔热一体化纤维增强Al2 O3 ‑SiO2 气凝胶材料的制备方法
CN113340153A (zh) * 2021-05-20 2021-09-03 西北工业大学 一种基于原生木材的红外-雷达兼容隐身材料及制备方法
KR20210134093A (ko) * 2020-04-28 2021-11-09 (주) 우조하이텍 폴리우레탄 발포 단열재 및 이의 제조방법
CN113716966A (zh) * 2021-09-09 2021-11-30 航天特种材料及工艺技术研究所 一种SiCN陶瓷气凝胶及其制备方法和应用
CN113979753A (zh) * 2021-10-29 2022-01-28 航天特种材料及工艺技术研究所 一种SiBCN陶瓷气凝胶及其制备方法和应用
CN115140714A (zh) * 2022-06-07 2022-10-04 哈尔滨工业大学 一种Si3N4气凝胶及其制备方法
CN115583836A (zh) * 2022-09-09 2023-01-10 航天特种材料及工艺技术研究所 一种耐高温复相陶瓷气凝胶及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160093923A1 (en) * 2014-09-26 2016-03-31 Hongpeng Wang Inherently safe thermo-responsive gel electrolytes for electrochemical devices
CN106630931A (zh) * 2016-10-10 2017-05-10 南京工业大学 透波隔热一体化纤维增强Al2 O3 ‑SiO2 气凝胶材料的制备方法
KR20210134093A (ko) * 2020-04-28 2021-11-09 (주) 우조하이텍 폴리우레탄 발포 단열재 및 이의 제조방법
CN113340153A (zh) * 2021-05-20 2021-09-03 西北工业大学 一种基于原生木材的红外-雷达兼容隐身材料及制备方法
CN113716966A (zh) * 2021-09-09 2021-11-30 航天特种材料及工艺技术研究所 一种SiCN陶瓷气凝胶及其制备方法和应用
CN113979753A (zh) * 2021-10-29 2022-01-28 航天特种材料及工艺技术研究所 一种SiBCN陶瓷气凝胶及其制备方法和应用
CN115140714A (zh) * 2022-06-07 2022-10-04 哈尔滨工业大学 一种Si3N4气凝胶及其制备方法
CN115583836A (zh) * 2022-09-09 2023-01-10 航天特种材料及工艺技术研究所 一种耐高温复相陶瓷气凝胶及其制备方法

Also Published As

Publication number Publication date
CN116161968B (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
CN105255446B (zh) 一种还原氧化石墨烯和纳米氧化铈复合的微波吸收材料及制备方法
CN109310038B (zh) 一种多孔Co/Cu/C复合吸波材料及其制备方法
CN103738964B (zh) 一种SiC/SiO2同轴纳米线的制备方法
CN113772637B (zh) 一种集导热、吸波于一体的纳米复合材料及其制备方法
CN114554819B (zh) 基于铁基金属有机框架材料的电磁吸波剂及其制备方法
CN112093801B (zh) 一种稻壳基纳米碳化硅/碳复合吸波材料及其制备方法
CN113873859A (zh) CoFe@MXene/碳气凝胶复合材料的制备方法
CN111892420A (zh) 块状碳化钛、氮化钛或碳氮化钛气凝胶的制备方法
CN113840529A (zh) 一种NiCo2O4@木耳碳气凝胶复合材料及其制备方法和应用
CN114195197A (zh) 一种磁性多孔碳复合物及其制备方法与应用
CN111574831A (zh) 一种聚苯胺-钡铁氧体-石墨烯电磁屏蔽材料及其制法
CN109293939B (zh) 一种具有分级孔结构的zif-67的制备方法及类蜂窝状碳/钴吸波材料的制备方法
CN116161968B (zh) 一种具有智能开关可切换的透波材料的制备方法及用途
CN114501966A (zh) 具有零维/一维/二维复合纳米结构型吸波材料及其制备方法和应用
CN112499685B (zh) 一种制备MnO2@多孔碳复合吸波材料的方法
CN111924822B (zh) 一种低频高效吸波的SiC/多孔碳复合材料的制备方法
CN110950320A (zh) 一种轻质空心碳立方体吸波材料及其制备方法
CN112980389A (zh) 一种功能化石墨烯吸波材料的制备方法
CN114455630B (zh) 一种多频段复合电磁波吸收材料及其制备方法和应用
CN114058328A (zh) 一种吸波复合材料及其制备方法
CN108795378B (zh) 一种多级孔碳/磁性电磁波吸收材料及其制备方法与应用
CN113845116A (zh) 一种基于玉米芯制备电磁波吸收材料的方法
CN109097043B (zh) 一种铒和镱双掺杂铌酸钠上转换材料及其制备方法和应用
CN115725265B (zh) 一种微波/太赫兹波兼容吸收气凝胶及其制备方法
CN113697849B (zh) 一种MXene/rGO/二氧化锡纳米复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant